1
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14:1104423. [PMID: 36798134 PMCID: PMC9927018 DOI: 10.3389/fimmu.2023.1104423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.
Collapse
|
3
|
Monocyte Gene and Molecular Expression Profiles Suggest Distinct Effector and Regulatory Functions in Beninese HIV Highly Exposed Seronegative Female Commercial Sex Workers. Viruses 2022; 14:v14020361. [PMID: 35215954 PMCID: PMC8878004 DOI: 10.3390/v14020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that the female genital tract (FGT) of Beninese HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs), presented elevated frequencies of a myeloid HLA-DR+CD14+CD11c+ population presenting “tolerogenic” monocyte derived dendritic cells (MoDC) features. In order to assess whether a differential profile of monocytes may be involved in the generation of these genital MoDCs, we have herein characterized the blood monocyte compartment of Beninese HESNs (HIV-uninfected ≥ 10 years CSWs) and relevant controls (HIV-uninfected 2.5–5 years CSWs herein termed “early HESNs”), HIV-infected CSWs, and low-risk HIV-uninfected women from the general population. Transcriptomic analyses by RNA-Seq of total sorted blood monocytes demonstrate that in comparison to the control groups, HESNs present increased expression levels of FCGR2C, FCAR, ITGAX, ITGAM, CR2, CD68, and CD163 genes, associated with effector functions. Moreover, we found increased expression levels of genes associated with protection/control against SHIV/HIV such as CCL3, CCL4, CCL5, BHLHE40, and TNFSF13, as well as with immune regulation such as IL-10, Ahr, CD83, and the orphan nuclear receptor (NR)4A1, NR4A2, and NR4A3. Through multicolor flow cytometry analyses, we noticed that the frequencies of intermediate and non-classical monocyte populations tended to be elevated in the blood of HESNs, and exhibited increased expression levels of effector CD16, CD11c, CD11b, as well as regulatory HLA-G, IL-10, and IFN-α markers when compared to HIV-uninfected women and/or HIV-infected CSWs. This profile is compatible with that previously reported in the FGT of HESNs, and likely confers an enormous advantage in their resistance to HIV infection.
Collapse
|
4
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
5
|
Zhao NQ, Vendrame E, Ferreira AM, Seiler C, Ranganath T, Alary M, Labbé AC, Guédou F, Poudrier J, Holmes S, Roger M, Blish CA. Natural killer cell phenotype is altered in HIV-exposed seronegative women. PLoS One 2020; 15:e0238347. [PMID: 32870938 PMCID: PMC7462289 DOI: 10.1371/journal.pone.0238347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Highly exposed seronegative (HESN) individuals present a unique setting to study mechanisms of protection against HIV acquisition. As natural killer (NK) cell activation and function have been implicated as a correlate of protection in HESN individuals, we sought to better understand the features of NK cells that may confer protection. We used mass cytometry to phenotypically profile NK cells from a cohort of Beninese sex workers and healthy controls. We found that NK cells from HESN women had increased expression of NKG2A, NKp30 and LILRB1, as well as the Fc receptor CD16, and decreased expression of DNAM-1, CD94, Siglec-7, and NKp44. Using functional assessments of NK cells from healthy donors against autologous HIV-infected CD4+ T cells, we observed that NKp30+ and Siglec-7+ cells had improved functional activity. Further, we found that NK cells from HESN women trended towards increased antibody-dependent cellular cytotoxicity (ADCC) activity; this activity correlated with increased CD16 expression. Overall, we identify features of NK cells in HESN women that may contribute to protection from HIV infection. Follow up studies with larger cohorts are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nancy Q. Zhao
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
- Immunology Program, Stanford University, Stanford, CA, United States of America
| | - Elena Vendrame
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Thanmayi Ranganath
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
| | - Michel Alary
- Centre de Recherche du CHU de Québec–Université Laval, Québec, Canada, Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada, Institut National de Santé Publique du Québec, Québec, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada, Service de maladies infectieuses et microbiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada, Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada, Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (CAB); (MR)
| | - Catherine A. Blish
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
- Immunology Program, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
- * E-mail: (CAB); (MR)
| |
Collapse
|
6
|
Fourcade L, Sabourin-Poirier C, Perraud V, Faucher MC, Chagnon-Choquet J, Labbé AC, Alary M, Guédou F, Poudrier J, Roger M. Natural Immunity to HIV is associated with Low BLyS/BAFF levels and low frequencies of innate marginal zone like CD1c+ B-cells in the genital tract. PLoS Pathog 2019; 15:e1007840. [PMID: 31173604 PMCID: PMC6583986 DOI: 10.1371/journal.ppat.1007840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
BLyS/BAFF is recognized for its role in B-cell ontogenesis, as well as cell fate decision towards the first-line/innate marginal zone (MZ) B-cell pool. Excess BLyS/BAFF is associated with hyperglobulinemia and increased frequencies of activated precursor-like MZ B-cells. Herein, we show that HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs) had lower soluble BLyS/BAFF levels and relative frequencies of BLyS/BAFF expressing cells in their genital mucosa when compared to those from HIV-infected CSWs and HIV-uninfected non-CSWs. Furthermore, we identified genital innate and/or marginal zone (MZ)-like CD1c+ B-cells that naturally bind to fully glycosylated gp120, which frequencies were lower in HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSWs. Although genital levels of total IgA were similar between groups, HESNs had lower levels of total IgG1 and IgG3. Interestingly, HIV-gp41 reactive IgG1 were found in some HESNs. Low genital levels of BLyS/BAFF observed in HESNs may allow for controlled first-line responses, contributing to natural immunity to HIV. Worldwide, most human immunodeficiency virus (HIV) infections affect women through heterosexual intercourse. We and others have identified African female commercial sex workers (CSWs), who remain seronegative despite high exposition to HIV (HESNs). Innate marginal zone (MZ) B-cells recirculate in humans and have been found in front-line areas such as the sub-epithelial lamina propria of mucosal associated lymphoid tissues. MZ B-cells can bind to fully glycosylated gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions reported for HESNs. Here we identify genital MZ-like B-cells, which frequencies are lower in the genital tract of HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSW women. Furthermore, this coincides with significantly lower genital levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and which overexpression leads to MZ deregulation in HIV-infected progressors. HESN individuals provide an exceptional opportunity to determine important clues for the development of protective devices. Here we show that contained BLyS/BAFF levels are concomitant with natural immunity against HIV, and may prevent dysregulated first-line responses. MZ-like B-cells could be harnessed in preventive strategies viewed at soliciting quick first-line to be adjunct to matured long term protection.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Catherine Sabourin-Poirier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Victoire Perraud
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Marie-Claude Faucher
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Josiane Chagnon-Choquet
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- Département de Microbiologie Médicale et Infectiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec–Université Laval, Québec, Canada
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
- Institut National de Santé Publique du Québec, Québec, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| |
Collapse
|
7
|
Gary EN, Kutzler MA. Defensive Driving: Directing HIV-1 Vaccine-Induced Humoral Immunity to the Mucosa with Chemokine Adjuvants. J Immunol Res 2018; 2018:3734207. [PMID: 30648120 PMCID: PMC6311813 DOI: 10.1155/2018/3734207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
A myriad of pathogens gain access to the host via the mucosal route; thus, vaccinations that protect against mucosal pathogens are critical. Pathogens such as HIV, HSV, and influenza enter the host at mucosal sites such as the intestinal, urogenital, and respiratory tracts. All currently licensed vaccines mediate protection by inducing the production of antibodies which can limit pathogen replication at the site of infection. Unfortunately, parenteral vaccination rarely induces the production of an antigen-specific antibody at mucosal surfaces and thus relies on transudation of systemically generated antibody to mucosal surfaces to mediate protection. Mucosa-associated lymphoid tissues (MALTs) consist of a complex network of immune organs and tissues that orchestrate the interaction between the host, commensal microbes, and pathogens at these surfaces. This complexity necessitates strict control of the entry and exit of lymphocytes in the MALT. This control is mediated by chemoattractant chemokines or cytokines which recruit immune cells expressing the cognate receptors and adhesion molecules. Exploiting mucosal chemokine trafficking pathways to mobilize specific subsets of lymphocytes to mucosal tissues in the context of vaccination has improved immunogenicity and efficacy in preclinical models. This review describes the novel use of MALT chemokines as vaccine adjuvants. Specific attention will be placed upon the use of such adjuvants to enhance HIV-specific mucosal humoral immunity in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Ebony N. Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- The Division of Infectious Diseases and HIV Medicine, The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Ghosh M, Daniels J, Pyra M, Juzumaite M, Jais M, Murphy K, Taylor TN, Kassaye S, Benning L, Cohen M, Weber K. Impact of chronic sexual abuse and depression on inflammation and wound healing in the female reproductive tract of HIV-uninfected and HIV-infected women. PLoS One 2018; 13:e0198412. [PMID: 29894487 PMCID: PMC5997353 DOI: 10.1371/journal.pone.0198412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/19/2018] [Indexed: 12/18/2022] Open
Abstract
Sexual violence is associated with increased risk of HIV acquisition/transmission in women. Forced sex can result in physical trauma to the reproductive tract as well as severe psychological distress. However, immuno-biological mechanisms linking sexual violence and HIV susceptibility are incompletely understood. Using the Women’s Interagency HIV Study repository, a total of 77 women were selected to form 4 groups, stratified by HIV serostatus, in the following categories: 1) no sexual abuse history and low depressive symptom score (below clinically significant cut-off, scores <16) (Control); 2) no sexual abuse history but high depressive symptom score, ≥16 (Depression); 3) chronic sexual abuse exposure and low depressive symptom score (Abuse); 4) chronic sexual abuse exposure and high depressive symptom score (Abuse+Depression). Inflammation-associated cytokines/chemokines/proteases (TNF-α, IL-6, IL-1α, IL-1β, TGF-β MIP-3α, IP-10, MCP-1, Cathepsin B), anti-inflammatory/anti-HIV mediators (Secretory leukocyte protease inhibitor (SLPI), Elafin, beta defensin 2 (HBD2), alpha defensins (HNP 1–3), Thrombospondin (TSP-1), Serpin A1, A5, Cystatin A, B), and wound-healing mediators (Gro-α, VEGF, PDGF, EGF, FGF, IGF), were measured in cervical-vaginal lavage (CVL) using ELISA. Linear regression was used to model association of biomarkers with depression and abuse as predictor variables; the interaction between depression and abuse was also tested. Anti-HIV activity in CVL was tested using TZM-bl indicator cell line. In HIV-uninfected women, median levels of IL-6 (p = 0.04), IL-1α (p<0.01), TGF-β (p = 0.01), IP-10 (p = <0.01), PDGF (p<0.01) and FGF (p<0.01), differed significantly between groups. Specifically, an association was found between chronic sexual abuse and increased IL-1α (p<0.01), MIP-3α (p = 0.04), IP-10 (p<0.01), Serpin B1 (p = 0.01), FGF (p = 0.04) and decreased TGF-β (p<0.01), MCP-1 (p = 0.02), PDGF (p<0.01). Further, there was evidence of significant interactions between chronic sexual abuse and current depression for IL-1α, IP-10, Serpin A1, Cystatin B, and FGF. In HIV-infected women, median levels of TNF-α (p<0.01), IL-6 (p = 0.05), MIP-3α (p<0.01), and MCP-1 (p = 0.01), differed significantly between groups. Specifically, an association was found between chronic sexual abuse and increased MCP-1 (p = 0.03), Gro-α (p = 0.01) and decreased TNF-α (p<0.01), IL-1α (p = 0.02), MIP-3α (p<0.01) and Cathepsin B (p = 0.03). Current depressive symptoms were associated with significantly decreased MIP-3α (p<0.01). There was evidence of significant interactions between chronic sexual abuse and current depression for MCP-1 and FGF. No significant differences were observed in anti-HIV activity among all eight groups. Heat-map analyses revealed distinct immune network patterns, particularly in the Abuse groups for both HIV-infected and uninfected women. Our data indicates a complex relationship between chronic sexual abuse exposure, depressive symptoms, and FRT immune mediators that are also affected by HIV status. Association of chronic sexual abuse with increase in inflammation-associated cytokine/chemokine expression, along with impaired wound-healing associated growth-factors can create a microenvironment that can facilitate HIV infection. Evaluation of longitudinal changes in exposures and biomarkers are needed to untangle the immuno-biological mechanisms that may put women who endure life-long sexual abuse at increased risk for HIV.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington DC, United States of America
- * E-mail:
| | - Jason Daniels
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington DC, United States of America
| | - Maria Pyra
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Monika Juzumaite
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington DC, United States of America
| | - Mariel Jais
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington DC, United States of America
| | - Kerry Murphy
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States of America
| | - Tonya N. Taylor
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Seble Kassaye
- Georgetown University Medical Center, Washington DC, United States of America
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Mardge Cohen
- Department of Medicine, John H. Stroger Jr Hospital of Cook County, Chicago, IL, United States of America
| | - Kathleen Weber
- Cook County Health and Hospitals System/ Hektoen Institute of Medicine, Chicago, IL, United States of America
| |
Collapse
|
9
|
Fourcade L, Poudrier J, Roger M. Natural Immunity to HIV: A Template for Vaccine Strategies. Viruses 2018; 10:v10040215. [PMID: 29690575 PMCID: PMC5923509 DOI: 10.3390/v10040215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022] Open
Abstract
Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Johanne Poudrier
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Michel Roger
- Laboratoire d'Immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
- Département de Microbiologie, Infectiologie et Immunologie de l'Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
10
|
Keefer MC, Zheng B, Rosenberg AF, Kobie JJ. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses 2017; 32:1143-1148. [PMID: 27612555 DOI: 10.1089/aid.2016.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success of an HIV vaccine will require induction of a protective immune response in the most at-risk populations. The increased incidence of HIV infection in high-risk populations is assumed to be primarily the result of more frequent exposure to the virus or a greater inoculum of the virus; however, underlying variations in immune homeostasis may also contribute to HIV susceptibility and potentially impact vaccine responses and those required for protection. As an effective humoral immune response is likely to be a critical component of a protective HIV vaccine, we evaluated the steady-state phenotypic profile of peripheral blood B cells by flow cytometry from participants in the HIV Vaccine Trials Network (HVTN) 203 Phase 2a HIV vaccine trial considered to be at higher risk and lower risk for HIV acquisition. Overall, high-risk participants exhibited increased frequency of unswitched IgM memory and activated switched IgD-CD95+ memory B cells than low-risk participants. Most (93%) of the high-risk male participants were men who have sex with men who engaged in high-risk sexual behavior. High-risk males had a significantly increased frequency of CXCR3+ IgD-CD95+ B cells than low-risk males. These results suggest that high-risk populations have altered B cell homeostasis. The increased frequency of activated and memory B cells may suggest increased immune activation in high-risk populations, which may contribute to possible differential responses to HIV vaccine strategies.
Collapse
Affiliation(s)
- Michael C. Keefer
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, New York
| | - Bo Zheng
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, New York
| | - Alexander F. Rosenberg
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York
| | - James J. Kobie
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, New York
| |
Collapse
|
11
|
Ortiz K, Sampathkumar RS, Ansari AA, Byrareddy SN. Preliminary studies on the use of pertussis toxin for the modulation of intravaginal SIV transmission in rhesus macaques. J Med Primatol 2017; 46:327-331. [PMID: 28940591 DOI: 10.1111/jmp.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pertussis toxin (PTX) blocks GPCR signaling resulting in the inhibition of chemotaxis/cell adhesion. It was reasoned that inhibition of cell trafficking may be an approach to prevent HIV/SIV transmission. METHODS In this study, PTX in HEC gel was applied to the vaginal wall of monkeys that were then challenged intravaginally with SIVmac251. RESULTS Results of these studies showed that 2 of 4 animals were resistant to infection. Furthermore, infection was correlated with a marked increase in the plasma and cervicovaginal lavage levels of select chemokines and cytokines. CONCLUSIONS Results from this preliminary feasibility study dictate that further studies that include a larger number of animals are required to optimize this protocol and establish the efficacy of this approach. In addition, such future studies will provide important information on the role of specific chemokines that play a role in lymphocyte trafficking within the genital tract and serve as additional therapeutic targets.
Collapse
Affiliation(s)
- Kristina Ortiz
- Department of Pathology & Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca S Sampathkumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aftab A Ansari
- Department of Pathology & Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Regulatory T-Cell Activity But Not Conventional HIV-Specific T-Cell Responses Are Associated With Protection From HIV-1 Infection. J Acquir Immune Defic Syndr 2017; 72:119-28. [PMID: 26656786 DOI: 10.1097/qai.0000000000000919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Two distinct hypotheses have been proposed for T-cell involvement in protection from HIV-1 acquisition. First, HIV-1-specific memory T-cell responses generated on HIV-1 exposure could mount an efficient response to HIV-1 and inhibit the establishment of an infection. Second, a lower level of immune activation could reduce the numbers of activated, HIV-1-susceptible CD4 T cells, thereby diminishing the likelihood of infection. METHODS To test these hypotheses, we conducted a prospective study among high-risk heterosexual men and women, and tested peripheral blood samples from individuals who subsequently acquired HIV-1 during follow-up (cases) and from a subset of those who remained HIV-1 uninfected (controls). RESULTS We found no difference in HIV-1-specific immune responses between cases and controls, but Treg frequency was higher in controls as compared with cases and was negatively associated with frequency of effector memory CD4 T cells. CONCLUSIONS Our findings support the hypothesis that low immune activation assists in protection from HIV-1 infection.
Collapse
|
13
|
Highly-Exposed HIV-1 seronegative Female Commercial Sex Workers sustain in their genital mucosa increased frequencies of tolerogenic myeloid and regulatory T-cells. Sci Rep 2017; 7:43857. [PMID: 28262752 PMCID: PMC5338327 DOI: 10.1038/srep43857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/01/2017] [Indexed: 12/28/2022] Open
Abstract
We and others have shown that HIV-1 highly-exposed seronegative (HESN) female commercial sex workers (CSWs) maintain low genital inflammatory conditions to prevent HIV infection. HIV-1 interacts with toll-like receptors (TLR)-7/8 to induce interferon (IFN)-α, an important antiviral and immunomodulatory cytokine, which act together with interleukin (IL)-10, human leukocyte antigen (HLA)-G and immunoglobulin-like transcript (ILT)-4 to initiate a "tolerogenic/regulatory" anti-inflammatory loop. In view of further unravelling elements associated with natural immunity to HIV-1, we have characterised TLR-7, IFN-α, IL-10, HLA-G and ILT-4 expression profiles in the genital tract of female CSWs and HIV-1-uninfected non-CSWs from Benin. Endocervical myeloid HLA-DR+ cells from HESN CSWs expressed higher levels of IFN-α, TLR-7, IL-10 and HLA-G than those from both HIV-1-infected CSWs and HIV-1-uninfected non-CSWs. Further characterization of the endocervical myeloid HLA-DR+ cells in HESN CSWs revealed a population of "tolerogenic" CD103+ CD14+ CD11c+ myeloid cells expressing high levels of IFN-α and IL-10. Concomitantly, HESN CSWs had higher frequencies of endocervical regulatory CD4+ T-cells when compared to those from the two other groups of women. These novel findings provide strong evidence to support the implication of tolerogenic myeloid cells expressing high levels of antiviral molecules in shaping the genital mucosal immune response to prevent HIV infection.
Collapse
|
14
|
Abstract
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Collapse
|
15
|
Zhang J, Lin Y, Li C, Zhang X, Cheng L, Dai L, Wang Y, Wang F, Shi G, Li Y, Yang Q, Cui X, Liu Y, Wang H, Zhang S, Yang Y, Xiang R, Li J, Yu D, Wei Y, Deng H. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2131-44. [PMID: 27527600 DOI: 10.4049/jimmunol.1600446] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/12/2016] [Indexed: 02/05/2023]
Abstract
IL-35 downregulates Th17 cell development and suppresses certain types of autoimmune inflammation such as collagen-induced arthritis and experimental autoimmune uveitis. Psoriasis is thought to be initiated by abnormal interactions between cutaneous keratinocytes and systemic immune cells. However, the role of IL-35 in psoriasis remains unclear. In this study, we assessed IL-35 in three well-known psoriasis models: a human keratinocyte cell line (HaCaT), a keratin 14 (K14)-vascular endothelial growth factor A (VEGF-A)-transgenic (Tg) mouse model, and an imiquimod-induced psoriasis mouse model. First, we found that IL-35 suppressed the expression of IL-6, CXCL8, and S100A7, which are highly upregulated by a mixture of five proinflammatory cytokines in HaCaT. Second, a plasmid coding for the human IL-35 sequence coated with cationic liposomes showed potent immunosuppressive effects on K14-VEGF-A-Tg and imiquimod-induced psoriasis mouse models. In the K14-VEGF-A-Tg model, our results showed that several types of proinflammatory cytokines were significantly reduced, whereas IL-10 was remarkably induced by IL-35. Compared with pcDNA3.1, there was a small number of CD4(+)IL-17(+) T cells and a large number of CD4(+)IL-10(+) and CD4(+)CD25(+)Foxp3(+) T cells in the IL-35 group. Most importantly, we found that IL-35 decreased the total number of macrophages and ratio of M1/M2 macrophages, which has not been reported previously. In addition, compared with dexamethasone, IL-35 showed long-term therapeutic efficacy. In summary, our results strongly indicate that IL-35 plays a potent immunosuppressive role in psoriasis. Thus, IL-35 has potential for development as a new therapeutic strategy for patients with chronic psoriasis and other cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Junfeng Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Provincial Key Discipline of Medical Immunology, Jining Medical University, Jining 272067, Shandong, China
| | - Yi Lin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunlei Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Biochemistry, Faculty of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 400715, China
| | - Xiaomei Zhang
- Laboratory Animal Center, Sichuan University, Chengdu 610040, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Youcui Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangfang Wang
- Hematology Research Laboratory, Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; and
| | - Gang Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiming Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueliang Cui
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Xiang
- Department of Immunology, College of Medicine, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiong Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China;
| |
Collapse
|
16
|
Macura SL, Lathrop MJ, Gui J, Doncel GF, Asin SN, Rollenhagen C. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues. J Acquir Immune Defic Syndr 2016; 71:474-82. [PMID: 26545124 PMCID: PMC4788559 DOI: 10.1097/qai.0000000000000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The interferon-gamma-induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti-HIV-1 activity of prophylactic antiretrovirals. DESIGN Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4 T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. METHODS HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4 T cells was quantified using fluorescence-activated cell sorting. RESULTS Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4 T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. CONCLUSIONS CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals.
Collapse
Affiliation(s)
- Sherrill L. Macura
- Research Service, V. A. Medical Center, White River Junction, VT
- Center for Devices and Radiological Health, Food and Drug Administration, Office of Device Evaluation, Silver Spring, MD
| | - Melissa J. Lathrop
- Research Service, V. A. Medical Center, White River Junction, VT
- Division of Select Agents and Toxins, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - Susana N. Asin
- Research Service, V. A. Medical Center, White River Junction, VT
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH; and
| | - Christiane Rollenhagen
- Research Service, V. A. Medical Center, White River Junction, VT
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
17
|
Ellegård R, Crisci E, Andersson J, Shankar EM, Nyström S, Hinkula J, Larsson M. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:1698-704. [PMID: 26157174 DOI: 10.4049/jimmunol.1500618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
Collapse
Affiliation(s)
- Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Jonas Andersson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Esaki M Shankar
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Sofia Nyström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| |
Collapse
|
18
|
Deruaz M, Luster AD. Chemokine-mediated immune responses in the female genital tract mucosa. Immunol Cell Biol 2015; 93:347-54. [PMID: 25776842 DOI: 10.1038/icb.2015.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 12/25/2022]
Abstract
The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.
Collapse
Affiliation(s)
- Maud Deruaz
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Mucosal immunity in the female genital tract, HIV/AIDS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350195. [PMID: 25313360 PMCID: PMC4181941 DOI: 10.1155/2014/350195] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
Abstract
Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.
Collapse
|
20
|
Systemic cytokine levels show limited correlation with risk of HIV-1 acquisition. J Acquir Immune Defic Syndr 2014; 66:135-9. [PMID: 24413043 DOI: 10.1097/qai.0000000000000104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been hypothesized that immune activation and inflammation may increase HIV-1 susceptibility, and that cytokines may be useful biomarkers for risk. Within a prospective cohort, we conducted a nested case-control analysis of plasma cytokine levels among women who acquired HIV-1 <3 months after sampling, compared with 3 different control groups. We observed associations between lower interleukin (IL)-6 and IL-10 and higher IL-7 levels with HIV-1 acquisition, however, these associations were inconsistent when comparing with different control groups. Inconsistent results within our study and among previous studies suggest that reproducible findings are needed before cytokines are useful biomarkers for HIV-1 susceptibility.
Collapse
|
21
|
Lajoie J, Kimani M, Plummer FA, Nyamiobo F, Kaul R, Kimani J, Fowke KR. Association of sex work with reduced activation of the mucosal immune system. J Infect Dis 2014; 210:319-29. [PMID: 24421257 DOI: 10.1093/infdis/jiu023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Unprotected intercourse and seminal discharge are powerful activators of the mucosal immune system and are important risk factors for transmission of human immunodeficiency virus (HIV). This study was designed to determine if female sex work is associated with changes in the mucosal immunity. METHODS Cervicovaginal lavage and plasma from 122 HIV-uninfected female sex workers (FSW) and 44 HIV-uninfected low-risk non-FSW from the same socioeconomic district of Nairobi were analyzed for evidence of immune activation (IA). The cervico-mononuclear cells (CMC) were analyzed for cellular activation by flow cytometry. RESULTS Lower IA was observed in FSW compared to the low-risk women as demonstrated by the lower level of MIP-3α (P < .001), ITAC (P < .001), MIG (p.0001), IL-1α (P < .001), IL-1β (P < .001), IL-1Rα (P = .0002), IL-6 (P < .001), IL-8 (P < .001), IL-10 (P = .01), IP-10 (P = .0001), MDC (P < .001), MIP-1α, (P < .001), MIP-1β (P = .005), MCP-1 (P = .03), and TNF-α (P = .006). Significant differences were noted as early as 1 year following initiation of sex work and increased with duration of sex work. CONCLUSION This study showed that sex work is associated with important changes in the mucosal immune system. By analyzing chemokine/cytokine levels and CMC activation, we observed a lower mucosal IA in HIV-uninfected FSW compared to low-risk women.
Collapse
Affiliation(s)
- Julie Lajoie
- Department of Medical Microbiology, University of Manitoba
| | | | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba Public Health Agency of Canada Department of Community Health Sciences, University of Manitoba
| | | | - Rupert Kaul
- Department of Medicine and Immunology, University of Toronto
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba Kenyan AIDS Control Program, Nairobi, Kenya University of Nairobi Institute for Tropical and Infectious Diseases
| | - Keith R Fowke
- Department of Medical Microbiology, University of Manitoba Department of Community Health Sciences, University of Manitoba Department of Medical Microbiology, University of Nairobi
| |
Collapse
|
22
|
Natural Immunity to HIV: a delicate balance between strength and control. Clin Dev Immunol 2012; 2012:875821. [PMID: 23304192 PMCID: PMC3529906 DOI: 10.1155/2012/875821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
Abstract
Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host's capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.
Collapse
|
23
|
Kyongo JK, Jespers V, Goovaerts O, Michiels J, Menten J, Fichorova RN, Crucitti T, Vanham G, Ariën KK. Searching for lower female genital tract soluble and cellular biomarkers: defining levels and predictors in a cohort of healthy Caucasian women. PLoS One 2012; 7:e43951. [PMID: 22952818 PMCID: PMC3432048 DOI: 10.1371/journal.pone.0043951] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 02/04/2023] Open
Abstract
Background High concentrations of pro-inflammatory cytokines have been previously observed in the genital fluids of women enrolled in microbicide trials and may explain observed increased HIV transmission in some of these trials. Although the longitudinal nature of these studies allows within-subject comparisons of post-product levels to baseline levels, the fact that the physiologic variations of these cytokines and other markers of immune activation are not fully defined in different populations, makes it difficult to assess changes that can be directly attributed to microbicide use as opposed to other biological and behavioural factors. Methods Cervicovaginal lavage samples were collected from 30 healthy Caucasian and assayed for concentrations of ten cytokines/chemokines, total protein content and two antimicrobial proteins using a multiplex immunoassay and ELISA. Cellular markers were characterized by flow cytometry on mononuclear cells collected from the endocervix using flocked swabs. Bacterial quantification was performed using quantitative PCR. Results Ectopy, menstrual cycle phase, prostate-specific antigen and presence of leucocytes in endocervical cells' supernatant were associated with the concentrations of cyto-/chemokines in cervicovaginal secretions. Approximately 3% of endocervical cells collected were monocytes of which a median of 52% (SD = 17) expressed both CD4 and CCR5 markers. Approximately 1% of the total cells were T-cells with a median of 61% (SD = 10) CD4 and CCR5 expression. Around 5% of the monocytes and 16% of the T-cells expressed the immune activation marker HLA-DR. Higher percentages of T-cells were associated with greater quantities of IL-1RA, GM-CSF and elafin. Conclusion We demonstrate the presence of selected soluble and cellular immune activation markers and identify their predictors in the female genital tract of healthy women. Future clinical trials should consider ectopy, sexual activity, menstrual cycle phase and presence of bacterial species as possible confounders when evaluating the possible inflammatory effects of microbicide compounds.
Collapse
Affiliation(s)
- Jordan K. Kyongo
- Virology Unit, Division of Microbiology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vicky Jespers
- ITM HIV/AIDS Centre, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Odin Goovaerts
- Immunology Unit, Division of Microbiology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Division of Microbiology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joris Menten
- Clinical Trials Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynaecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tania Crucitti
- HIV/STI Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Virology Unit, Division of Microbiology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, Antwerp, Belgium and Faculty of Medicine and Pharmacology, University of Brussels, Brussels, Belgium
| | - Kevin K. Ariën
- Virology Unit, Division of Microbiology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
24
|
Rancez M, Couëdel-Courteille A, Cheynier R. Chemokines at mucosal barriers and their impact on HIV infection. Cytokine Growth Factor Rev 2012; 23:233-43. [PMID: 22728258 DOI: 10.1016/j.cytogfr.2012.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aside from representing a physical barrier and providing an unfavorable chemical milieu to viral and bacterial infections, mucosae of gut and female genital tract also contain organized lymphoid structures that support the initiation of anti-microbial immune responses, and more diffuse lymphoid tissues that represent immune effector mucosal sites. Local expression of specific chemokines orchestrates lymphoid cell trafficking and positioning in the mucosa-associated lymphoid tissues, leading to their efficient priming during antigenic stimulations as well as their specific homing back where they were primed. This review examines productions and roles of mucosae-specific chemokines in healthy and pathological conditions, as well as their possible positive and deleterious effects during mucosal HIV infection.
Collapse
|
25
|
A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol 2012; 5:277-87. [PMID: 22318497 DOI: 10.1038/mi.2012.7] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The predominance of HIV-1 sexual transmission requires a greater understanding of the interaction between HIV-1 and the mucosal immune system. The study of HIV-1-exposed seronegative (HESN) individuals serves as a model to identify the correlates of protection and to aid in microbicide development. A total of 22 cytokines/chemokines were analyzed at the systemic and mucosal compartments in 57 HESN, 51 HIV-1-negative, and 67 HIV-1-infected commercial sex workers from Nairobi, Kenya. HESN individuals had significantly lower expression of monokine induced by interferon-γ (MIG), interferon-γ-induced protein 10 (IP-10), and interleukin-1α (IL-1α) in their genital mucosa compared with controls. HESN cytokine expression also distinctly correlates with mucosal antiproteases, suggesting that HESN individuals have a unique pattern of mucosal chemokine/cytokine expression, which may result in reduced trafficking at the mucosa. These data support the immune quiescence model of protection, whereby lower T-cell activation/recruitment at the mucosal compartment reduces HIV-1 target cell numbers and is an important component of natural protection from HIV-1.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response can influence mucosal transmission of HIV-1. RECENT FINDINGS A large array of cell types reside at the mucosal surface ranging from Langerhans cells, dendritic cells, macrophages as well as CD4⁺ lymphocytes, all of which interact with the virus in a unique and different way and which can contribute to risk of HIV-1 transmission. Numerous factors present in bodily secretions as well as the carrier fluids of HIV-1 (breast milk, vaginal secretions, semen and intestinal mucus) can influence transmission and early virus replication. These range from cytokines, chemokines, small peptides, glycoproteins as well as an array of host intracellular molecules which can influence viral uncoating, reverse transcription as well as egress from the infected cell. SUMMARY Better understanding the cellular mechanisms of HIV-1 transmission and how different host factor can influence infection will aide in the future development of vaccines, microbicides, and therapies.
Collapse
|
27
|
Thibodeau V, Lajoie J, Labbé AC, Zannou MD, Fowke KR, Alary M, Poudrier J, Roger M. High level of soluble HLA-G in the female genital tract of Beninese commercial sex workers is associated with HIV-1 infection. PLoS One 2011; 6:e25185. [PMID: 21966450 PMCID: PMC3179477 DOI: 10.1371/journal.pone.0025185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/26/2011] [Indexed: 01/08/2023] Open
Abstract
Background Most HIV infections are transmitted across mucosal epithelium. Understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, are of fundamental importance. HLA-G is a powerful modulator of the immune response. The aim of this study was to investigate whether soluble HLA-G (sHLA-G) expression in the female genital tract is associated with HIV-1 infection. Methods and Findings Genital levels of sHLA-G were determined in 52 HIV-1-uninfected and 44 antiretroviral naïve HIV-1-infected female commercial sex workers (CSWs), as well as 71 HIV-1-uninfected non-CSW women at low risk of exposure, recruited in Cotonou, Benin. HIV-1-infected CSWs had higher genital levels of sHLA-G compared with those in both the HIV-1-uninfected CSW (P = 0.009) and non-CSW groups (P = 0.0006). The presence of bacterial vaginosis (P = 0.008), and HLA-G*01:01:02 genotype (P = 0.002) were associated with higher genital levels of sHLA-G in the HIV-1-infected CSWs, whereas the HLA-G*01:04:04 genotype was also associated with higher genital level of sHLA-G in the overall population (P = 0.038). When adjustment was made for all significant variables, the increased expression of sHLA-G in the genital mucosa remained significantly associated with both HIV-1 infection (P = 0.02) and bacterial vaginosis (P = 0.03). Conclusion This study demonstrates that high level of sHLA-G in the genital mucosa is independently associated with both HIV-1 infection and bacterial vaginosis.
Collapse
Affiliation(s)
- Valérie Thibodeau
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie et Immunologie de l'Université de Montréal, Montréal, Canada
| | - Julie Lajoie
- Department of Medical Microbiology University of Manitoba, Winnipeg, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie et Immunologie de l'Université de Montréal, Montréal, Canada
- Département de Microbiologie Médicale, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Marcel D. Zannou
- Centre National Hospitalier Universitaire Hubert K. Maga, Université d'Abomey Calavi, Cotonou, Bénin
| | - Keith R. Fowke
- Department of Medical Microbiology University of Manitoba, Winnipeg, Canada
| | - Michel Alary
- Unité de Recherche en Santé des Populations, Centre hospitalier affilié universitaire de Québec and Université Laval, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Canada
| | - Johanne Poudrier
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie et Immunologie de l'Université de Montréal, Montréal, Canada
| | - Michel Roger
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie et Immunologie de l'Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|