1
|
Angarola BL, Sharma S, Katiyar N, Kang HG, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukόw O. Comprehensive single-cell aging atlas of healthy mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. NATURE AGING 2025; 5:122-143. [PMID: 39587369 PMCID: PMC11754115 DOI: 10.1038/s43587-024-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. In this study, we investigated how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single-cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory and cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveals co-localization of aged immune and epithelial cells in situ. Lastly, we found transcriptional signatures of aging mammary cells in human breast tumors, suggesting possible links between aging and cancer. Together, these data uncover that epithelial, immune and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| | - Olga Anczukόw
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Paavolainen O, Peurla M, Koskinen LM, Pohjankukka J, Saberi K, Tammelin E, Sulander SR, Valkonen M, Mourao L, Boström P, Brück N, Ruusuvuori P, Scheele CLGJ, Hartiala P, Peuhu E. Volumetric analysis of the terminal ductal lobular unit architecture and cell phenotypes in the human breast. Cell Rep 2024; 43:114837. [PMID: 39368089 DOI: 10.1016/j.celrep.2024.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The major lactiferous ducts of the human breast branch out and end at terminal ductal lobular units (TDLUs). Despite their functional and clinical importance, the three-dimensional (3D) architecture of TDLUs has remained undetermined. Our quantitative and volumetric imaging of healthy human breast tissue demonstrates that highly branched TDLUs, which exhibit increased proliferation, are uncommon in the resting tissue regardless of donor age, parity, or hormonal contraception. Overall, TDLUs have a consistent shape and branch parameters, and they contain a main subtree that dominates in bifurcation events and exhibits a more duct-like keratin expression pattern. Simulation of TDLU branching morphogenesis in three dimensions suggests that evolutionarily conserved mechanisms regulate mammary gland branching in humans and mice despite their anatomical differences. In all, our data provide structural insight into 3D anatomy and branching of the human breast and exemplify the power of volumetric imaging in gaining a deeper understanding of breast biology.
Collapse
Affiliation(s)
- Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Pohjankukka
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Kamyab Saberi
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ella Tammelin
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Suvi-Riitta Sulander
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Masi Valkonen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Larissa Mourao
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Nina Brück
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pekka Ruusuvuori
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Hartiala
- University of Turku, 20520 Turku, Finland; Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland; Medicity Research Laboratories and InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
3
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Balcioglu O, Gates BL, Freeman DW, Hagos BM, Mehrabad EM, Ayala-Talavera D, Spike BT. Mcam stabilizes a luminal progenitor-like breast cancer cell state via Ck2 control and Src/Akt/Stat3 attenuation. NPJ Breast Cancer 2024; 10:80. [PMID: 39277578 PMCID: PMC11401886 DOI: 10.1038/s41523-024-00687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
Cell state control is crucial for normal tissue development and cancer cell mimicry of stem/progenitor states, contributing to tumor heterogeneity, therapy resistance, and progression. Here, we demonstrate that the cell surface glycoprotein Mcam maintains the tumorigenic luminal progenitor (LP)-like epithelial cell state, leading to Basal-like mammary cancers. In the Py230 mouse mammary carcinoma model, Mcam knockdown (KD) destabilized the LP state by deregulating the Ck2/Stat3 axis, causing a switch to alveolar and basal states, loss of an estrogen-sensing subpopulation, and resistance to tamoxifen-an effect reversed by Ck2 and Stat3 inhibitors. In vivo, Mcam KD blocked generation of Basal-like tumors and Sox10+Krt14+ cells. In human tumors, MCAM loss was largely exclusive of the Basal-like subtype, linked instead to proliferative Luminal subtypes, including often endocrine-resistant Luminal B cancers. This study has implications for developing therapies targeting MCAM, CK2, and STAT3 and their likely effective contexts.
Collapse
Affiliation(s)
- Ozlen Balcioglu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brooke L Gates
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - David W Freeman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Berhane M Hagos
- Emergency Medicine, Oregon Health & Science University School of Medicine, Portland, OR, 97239, USA
| | | | - David Ayala-Talavera
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Benjamin T Spike
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
5
|
Omar M, Harrell JC, Tamimi R, Marchionni L, Erdogan C, Nakshatri H, Ince TA. A triple hormone receptor ER, AR, and VDR signature is a robust prognosis predictor in breast cancer. Breast Cancer Res 2024; 26:132. [PMID: 39272208 PMCID: PMC11395215 DOI: 10.1186/s13058-024-01876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Despite evidence indicating the dominance of cell-of-origin signatures in molecular tumor patterns, translating these genome-wide patterns into actionable insights has been challenging. This study introduces breast cancer cell-of-origin signatures that offer significant prognostic value across all breast cancer subtypes and various clinical cohorts, compared to previously developed genomic signatures. METHODS We previously reported that triple hormone receptor (THR) co-expression patterns of androgen (AR), estrogen (ER), and vitamin D (VDR) receptors are maintained at the protein level in human breast cancers. Here, we developed corresponding mRNA signatures (THR-50 and THR-70) based on these patterns to categorize breast tumors by their THR expression levels. The THR mRNA signatures were evaluated across 56 breast cancer datasets (5040 patients) using Kaplan-Meier survival analysis, Cox proportional hazard regression, and unsupervised clustering. RESULTS The THR signatures effectively predict both overall and progression-free survival across all evaluated datasets, independent of subtype, grade, or treatment status, suggesting improvement over existing prognostic signatures. Furthermore, they delineate three distinct ER-positive breast cancer subtypes with significant survival in differences-expanding on the conventional two subtypes. Additionally, coupling THR-70 with an immune signature identifies a predominantly ER-negative breast cancer subgroup with a highly favorable prognosis, comparable to ER-positive cases, as well as an ER-negative subgroup with notably poor outcome, characterized by a 15-fold shorter survival. CONCLUSIONS The THR cell-of-origin signature introduces a novel dimension to breast cancer biology, potentially serving as a robust foundation for integrating additional prognostic biomarkers. These signatures offer utility as a prognostic index for stratifying existing breast cancer subtypes and for de novo classification of breast cancer cases. Moreover, THR signatures may also hold promise in predicting hormone treatment responses targeting AR and/or VDR.
Collapse
Affiliation(s)
- Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rulla Tamimi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cihat Erdogan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harikrishna Nakshatri
- Departments of Surgery, Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tan A Ince
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- New York-Presbyterian, Brooklyn Methodist Hospital, New York, NY, USA.
| |
Collapse
|
6
|
Genina EA, Lazareva EN, Surkov YI, Serebryakova IA, Shushunova NA. Optical parameters of healthy and tumor breast tissues in mice. JOURNAL OF BIOPHOTONICS 2024; 17:e202400123. [PMID: 38925916 DOI: 10.1002/jbio.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Knowledge of the optical parameters of tumors is important for choosing the correct laser treatment parameters. In this paper, optical properties and refraction indices of breast tissue in healthy mice and a 4T1 model mimicking human breast cancer have been measured. A significant decrease in both the scattering and refractive index of tumor tissue has been observed. The change in tissue morphology has induced the change in the slope of the scattering spectrum. Thus, the light penetration depth into tumor has increased by almost 1.5-2 times in the near infrared "optical windows." Raman spectra have shown lower lipid content and higher protein content in tumor. The difference in the optical parameters of the tissues under study makes it possible to reliably differentiate them. The results may be useful for modeling the distribution of laser radiation in healthy tissues and cancers for deriving optimal irradiation conditions in photodynamic therapy.
Collapse
Affiliation(s)
- Elina A Genina
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Ekaterina N Lazareva
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Yuri I Surkov
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| | - Isabella A Serebryakova
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Natalya A Shushunova
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| |
Collapse
|
7
|
Carabaña C, Sun W, Veludo Ramos C, Huyghe M, Perkins M, Maillot A, Journot R, Hartani F, Faraldo MM, Lloyd-Lewis B, Fre S. Spatially distinct epithelial and mesenchymal cell subsets along progressive lineage restriction in the branching embryonic mammary gland. EMBO J 2024; 43:2308-2336. [PMID: 38760574 PMCID: PMC11183262 DOI: 10.1038/s44318-024-00115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.
Collapse
Affiliation(s)
- Claudia Carabaña
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo, s/n, Villaviciosa de Odón, 28670, Madrid, Spain
| | - Wenjie Sun
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Camila Veludo Ramos
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Aurélien Maillot
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Robin Journot
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Fatima Hartani
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Marisa M Faraldo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France
| | - Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK.
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248, Paris, France.
| |
Collapse
|
8
|
Miller JL, Reddy A, Harman RM, Van de Walle GR. A xenotransplantation mouse model to study physiology of the mammary gland from large mammals. PLoS One 2024; 19:e0298390. [PMID: 38416747 PMCID: PMC10901318 DOI: 10.1371/journal.pone.0298390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
Although highly conserved in structure and function, many (patho)physiological processes of the mammary gland vary drastically between mammals, with mechanisms regulating these differences not well understood. Large mammals display variable lactation strategies and mammary cancer incidence, however, research into these variations is often limited to in vitro analysis due to logistical limitations. Validating a model with functional mammary xenografts from cryopreserved tissue fragments would allow for in vivo comparative analysis of mammary glands from large and/or rare mammals and would improve our understanding of postnatal development, lactation, and premalignancy across mammals. To this end, we generated functional mammary xenografts using mammary tissue fragments containing mammary stroma and parenchyma isolated via an antibody-independent approach from healthy, nulliparous equine and canine donor tissues to study these species in vivo. Cryopreserved mammary tissue fragments were xenotransplanted into de-epithelialized fat pads of immunodeficient mice and resulting xenografts were structurally and functionally assessed. Preimplantation of mammary stromal fibroblasts was performed to promote ductal morphogenesis. Xenografts recapitulated mammary lobule architecture and contained donor-derived stromal components. Mammatropic hormone stimulation resulted in (i) upregulation of lactation-associated genes, (ii) altered proliferation index, and (iii) morphological changes, indicating functionality. Preimplantation of mammary stromal fibroblasts did not promote ductal morphogenesis. This model presents the opportunity to study novel mechanisms regulating unique lactation strategies and mammary cancer induction in vivo. Due to the universal applicability of this approach, this model serves as proof-of-concept for developing mammary xenografts for in vivo analysis of virtually any mammals, including large and rare mammals.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandra Reddy
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Doerfler R, Yerneni S, Newby A, Chaudhary N, Shu A, Fein K, Hofstatter Azambuja J, Whitehead KA. Characterization and comparison of human and mouse milk cells. PLoS One 2024; 19:e0297821. [PMID: 38295101 PMCID: PMC10830055 DOI: 10.1371/journal.pone.0297821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Recent data has characterized human milk cells with unprecedented detail and provided insight into cell populations. While such analysis of freshly expressed human milk has been possible, studies of cell functionality within the infant have been limited to animal models. One commonly used animal model for milk research is the mouse; however, limited data are available describing the composition of mouse milk. In particular, the maternal cells of mouse milk have not been previously characterized in detail, in part due to the difficulty in collecting sufficient volumes of mouse milk. In this study, we have established a method to collect high volumes of mouse milk, isolate cells, and compare the cell counts and types to human milk. Surprisingly, we found that mouse milk cell density is three orders of magnitude higher than human milk. The cell types present in the milk of mice and humans are similar, broadly consisting of mammary epithelial cells and immune cells. These results provide a basis of comparison for mouse and human milk cells and will inform the most appropriate uses of mouse models for the study of human phenomena.
Collapse
Affiliation(s)
- Rose Doerfler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Saigopalakrishna Yerneni
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Alexandra Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Ashley Shu
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Katherine Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Juliana Hofstatter Azambuja
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
10
|
Bagger MM, Sjölund J, Kim J, Kohler KT, Villadsen R, Jafari A, Kassem M, Pietras K, Rønnov-Jessen L, Petersen OW. Evidence of steady-state fibroblast subtypes in the normal human breast as cells-of-origin for perturbed-state fibroblasts in breast cancer. Breast Cancer Res 2024; 26:11. [PMID: 38229104 PMCID: PMC10790388 DOI: 10.1186/s13058-024-01763-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Human breast cancer most frequently originates within a well-defined anatomical structure referred to as the terminal duct lobular unit (TDLU). This structure is endowed with its very own lobular fibroblasts representing one out of two steady-state fibroblast subtypes-the other being interlobular fibroblasts. While cancer-associated fibroblasts (CAFs) are increasingly appreciated as covering a spectrum of perturbed states, we lack a coherent understanding of their relationship-if any-with the steady-state fibroblast subtypes. To address this, we here established two autologous CAF lines representing inflammatory CAFs (iCAFs) and myofibroblast CAFs (myCAFs) and compared them with already established interlobular- and lobular fibroblasts with respect to their origin and impact on tumor formation. METHODS Primary breast tumor-derived CAFs were transduced to express human telomerase reverse transcriptase (hTERT) and sorted into CD105low and CD105high populations using fluorescence-activated cell sorting (FACS). The two populations were tested for differentiation similarities to iCAF and myCAF states through transcriptome-wide RNA-Sequencing (RNA-Seq) including comparison to an available iCAF-myCAF cell state atlas. Inference of origin in interlobular and lobular fibroblasts relied on RNA-Seq profiles, immunocytochemistry and growth characteristics. Osteogenic differentiation and bone formation assays in culture and in vivo were employed to gauge for origin in bone marrow-derived mesenchymal stem cells (bMSCs). Functional characteristics were assessed with respect to contractility in culture and interaction with tumor cells in mouse xenografts. The cells' gene expression signatures were tested for association with clinical outcome of breast cancer patients using survival data from The Cancer Genome Atlas database. RESULTS We demonstrate that iCAFs have properties in common with interlobular fibroblasts while myCAFs and lobular fibroblasts are related. None of the CAFs qualify as bMSCs as revealed by lack of critical performance in bone formation assays. Functionally, myCAFs and lobular fibroblasts are almost equally tumor promoting as opposed to iCAFs and interlobular fibroblasts. A myCAF gene signature is found to associate with poor breast cancer-specific survival. CONCLUSIONS We propose that iCAFs and myCAFs originate in interlobular and lobular fibroblasts, respectively, and more importantly, that the tumor-promoting properties of lobular fibroblasts render the TDLU an epicenter for breast cancer evolution.
Collapse
Affiliation(s)
- Mikkel Morsing Bagger
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
12
|
Gray GK, Girnius N, Kuiken HJ, Henstridge AZ, Brugge JS. Single-cell and spatial analyses reveal a tradeoff between murine mammary proliferation and lineage programs associated with endocrine cues. Cell Rep 2023; 42:113293. [PMID: 37858468 PMCID: PMC10840493 DOI: 10.1016/j.celrep.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Although distinct epithelial cell types have been distinguished in glandular tissues such as the mammary gland, the extent of heterogeneity within each cell type and the degree of endocrine control of this diversity across development are incompletely understood. By combining mass cytometry and cyclic immunofluorescence, we define a rich array of murine mammary epithelial cell subtypes associated with puberty, the estrous cycle, and sex. These subtypes are differentially proliferative and spatially segregate distinctly in adult versus pubescent glands. Further, we identify systematic suppression of lineage programs at the protein and RNA levels as a common feature of mammary epithelial expansion during puberty, the estrous cycle, and gestation and uncover a pervasive enrichment of ribosomal protein genes in luminal cells elicited specifically during progesterone-dominant expansionary periods. Collectively, these data expand our knowledge of murine mammary epithelial heterogeneity and connect endocrine-driven epithelial expansion with lineage suppression.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; The Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aylin Z Henstridge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Sapienza Passos J, Dartora VFMC, Cassone Salata G, Draszesski Malagó I, Lopes LB. Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. Int J Pharm 2023; 635:122681. [PMID: 36738808 DOI: 10.1016/j.ijpharm.2023.122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Breast cancer is a major public health problem, affecting millions of people. It is a very heterogeneous disease, with localized and invasive forms, and treatment generally consists of a combination of surgery and radiotherapy followed by administration of estrogen receptor modulators or aromatase inhibitors. Given its heterogeneity, management strategies that take into consideration the type of disease and biological markers and can provide more personalized and local treatment are required. More recently, the intraductal administration (i.e., into the breast ducts) of drugs has attracted significant attention due to its ability of providing drug distribution through the ductal tree in a minimally invasive manner. Although promising, intraductal administration is not trivial, and difficulties in duct identification and cannulation are important challenges to the further development of this route. New drug delivery strategies such as nanostructured systems can help to achieve the full benefits of the route due to the possibility of prolonging tissue retention, improving targeting and selectivity, increasing cytotoxicity and reducing the frequency of administration. This review aims at discussing the potential benefits and challenges of intraductal administration, focusing on the design and use of nanocarriers as innovative and feasible strategies for local breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil; College of Engineering, University of California-Davis, USA
| | - Giovanna Cassone Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
14
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Ingthorsson S, Traustadottir GA, Gudjonsson T. Cellular Plasticity and Heterotypic Interactions during Breast Morphogenesis and Cancer Initiation. Cancers (Basel) 2022; 14:cancers14215209. [PMID: 36358627 PMCID: PMC9654604 DOI: 10.3390/cancers14215209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary This review aims to discuss the structure, function and dynamics of the breast gland and how changes to the function of the breast’s cells can lead to different types of cancer. Abstract The human breast gland is a unique organ as most of its development occurs postnatally between menarche and menopause, a period ranging from 30 to 40 years. During this period, the monthly menstruation cycle drives the mammary gland through phases of cell proliferation, differentiation, and apoptosis, facilitated via a closely choreographed interaction between the epithelial cells and the surrounding stroma preparing the gland for pregnancy. If pregnancy occurs, maximal differentiation is reached to prepare for lactation. After lactation, the mammary gland involutes to a pre-pregnant state. These cycles of proliferation, differentiation, and involution necessitate the presence of epithelial stem cells that give rise to progenitor cells which differentiate further into the luminal and myoepithelial lineages that constitute the epithelial compartment and are responsible for the branching structure of the gland. Maintaining homeostasis and the stem cell niche depends strongly on signaling between the stem and progenitor cells and the surrounding stroma. Breast cancer is a slowly progressing disease whose initiation can take decades to progress into an invasive form. Accumulating evidence indicates that stem cells and/or progenitor cells at different stages, rather than terminally differentiated cells are the main cells of origin for most breast cancer subgroups. Stem cells and cancer cells share several similarities such as increased survival and cellular plasticity which is reflected in their ability to switch fate by receiving intrinsic and extrinsic signals. In this review, we discuss the concept of cellular plasticity in normal breast morphogenesis and cancer, and how the stromal environment plays a vital role in cancer initiation and progression.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Faculty of nursing and midwifery, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, 101 Reykjavik, Iceland
- Correspondence:
| |
Collapse
|
16
|
Ould-Brahim F, Sau A, Carr DA, Jiang T, Pratt MC. Induction of alternative NF-κB within TAg-induced basal mammary tumors in activation-resistant inhibitor of κ-B kinase (IKKα) mutant mice. Tumour Biol 2022; 44:187-203. [DOI: 10.3233/tub-220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: The alternative NF-κB pathway is activated by the NF-κB-inducing kinase (NIK) mediated phosphorylation of the inhibitor of κ-B kinase α (IKKα). IKKα then phosphorylates p100/NFKB2 to result in its processing to the active p52 subunit. Evidence suggests that basal breast cancers originate within a subpopulation of luminal progenitor cells which is expanded by signaling to IKKα. OBJECTIVE: To determine the role of IKKα in the development of basal tumors. METHODS: Kinase dead IkkαAA/AA mice were crossed with the C3(1)-TAg mouse model of basal mammary cancer. Tumor growth and tumor numbers in WT and IkkαAA/AA mice were assessed and immunopathology, p52 expression and stem/progenitor 3D colony forming assays were performed. Nik-/- mammary glands were isolated and mammary colonies were characterized. RESULTS: While tumor growth was slower than in WT mice, IkkαAA/AA tumor numbers and pathology were indistinguishable from WT tumors. Both WT and IkkαAA/AA tumors expressed p52 except those IkkαAA/AA tumors where NIK, IKKαAA/AA and ErbB2 were undetectable. Colonies formed by WT and IkkαAA/AA mammary cells were nearly all luminal/acinar however, colony numbers and sizes derived from IkkαAA/AA cells were reduced. In contrast to IkkαAA/AA mice, virgin Nik-/- mammary glands were poorly developed and colonies were primarily derived from undifferentiated bipotent progenitor cells. CONCLUSIONS: C3(1)-TAg induced mammary tumors express p100/p52 even without functional IKKα. Therefore the development of basal-like mammary cancer does not strictly rely on IKKα activation. Signal-induced stabilization of NIK may be sufficient to mediate processing of p100NFKB2 which can then support basal-like mammary tumor formation. Lastly, in contrast to the pregnancy specific role of IKKα in lobuloalveogenesis, NIK is obligatory for normal mammary gland development.
Collapse
Affiliation(s)
- Fares Ould-Brahim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David A. Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - M.A. Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Murrow LM, Weber RJ, Caruso JA, McGinnis CS, Phong K, Gascard P, Rabadam G, Borowsky AD, Desai TA, Thomson M, Tlsty T, Gartner ZJ. Mapping hormone-regulated cell-cell interaction networks in the human breast at single-cell resolution. Cell Syst 2022; 13:644-664.e8. [PMID: 35863345 PMCID: PMC9590200 DOI: 10.1016/j.cels.2022.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023]
Abstract
The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy regulates breast development and modifies cancer risk. How these hormones impact each cell type in the breast remains poorly understood because they act indirectly through paracrine networks. Using single-cell analysis of premenopausal breast tissue, we reveal a network of coordinated transcriptional programs representing the tissue-level response to changing hormone levels. Our computational approach, DECIPHER-seq, leverages person-to-person variability in breast composition and cell state to uncover programs that co-vary across individuals. We use differences in cell-type proportions to infer a subset of programs that arise from direct cell-cell interactions regulated by hormones. Further, we demonstrate that prior pregnancy and obesity modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to hormones. Together, these results provide a comprehensive map of the cycling human breast.
Collapse
Affiliation(s)
- Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program (MSTP), University of California, San Francisco, San Francisco, CA 94518, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph A Caruso
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kiet Phong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philippe Gascard
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabrielle Rabadam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95696, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Thea Tlsty
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Ductal keratin 15 + luminal progenitors in normal breast exhibit a basal-like breast cancer transcriptomic signature. NPJ Breast Cancer 2022; 8:81. [PMID: 35821504 PMCID: PMC9276673 DOI: 10.1038/s41523-022-00444-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15+ (K15+) progenitors enriched in ducts. Spatial mapping of luminal progenitors is confirmed at the protein level by staining with critical duct markers. Comparison of the gene expression profiles of normal luminal cells with those of breast cancer subtypes suggests a strong correlation between normal breast ductal progenitors and basal-like breast cancer. We propose that K15+ basal-like breast cancers originate in ductal progenitors, which emphasizes the importance of not only lineages but also cellular position within the ductal-lobular tree.
Collapse
|
19
|
Guo Q, Spasic M, Maynard AG, Goreczny GJ, Bizuayehu A, Olive JF, van Galen P, McAllister SS. Clonal barcoding with qPCR detection enables live cell functional analyses for cancer research. Nat Commun 2022; 13:3837. [PMID: 35788590 PMCID: PMC9252988 DOI: 10.1038/s41467-022-31536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
Single-cell analysis methods are valuable tools; however, current approaches do not easily enable live cell retrieval. That is a particular issue when further study of cells that were eliminated during experimentation could provide critical information. We report a clonal molecular barcoding method, called SunCatcher, that enables longitudinal tracking and live cell functional analysis. From complex cell populations, we generate single cell-derived clonal populations, infect each with a unique molecular barcode, and retain stocks of individual barcoded clones (BCs). We develop quantitative PCR-based and next-generation sequencing methods that we employ to identify and quantify BCs in vitro and in vivo. We apply SunCatcher to various breast cancer cell lines and combine respective BCs to create versions of the original cell lines. While the heterogeneous BC pools reproduce their original parental cell line proliferation and tumor progression rates, individual BCs are phenotypically and functionally diverse. Early spontaneous metastases can also be identified and quantified. SunCatcher thus provides a rapid and sensitive approach for studying live single-cell clones and clonal evolution, and performing functional analyses.
Collapse
Affiliation(s)
- Qiuchen Guo
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Adam G Maynard
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory J Goreczny
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanuel Bizuayehu
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jessica F Olive
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Sandra S McAllister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
20
|
Abreu de Oliveira WA, El Laithy Y, Bruna A, Annibali D, Lluis F. Wnt Signaling in the Breast: From Development to Disease. Front Cell Dev Biol 2022; 10:884467. [PMID: 35663403 PMCID: PMC9157790 DOI: 10.3389/fcell.2022.884467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy. In this review, we dissect the fundamental role of Wnt signaling in mammary gland development and adult homeostasis and explore how defects in its tightly regulated and intricated molecular network are interlinked with cancer, with a focus on the breast.
Collapse
Affiliation(s)
- Willy Antoni Abreu de Oliveira
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| | - Youssef El Laithy
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution, Molecular Pathology Division, London, United Kingdom
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology Laboratory, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| |
Collapse
|
21
|
Hadadi E, Deschoemaeker S, Vicente Venegas G, Laoui D. Heterogeneity and function of macrophages in the breast during homeostasis and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:149-182. [PMID: 35461657 DOI: 10.1016/bs.ircmb.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are diverse immune cells populating all tissues and adopting a unique tissue-specific identity. Breast macrophages play an essential role in the development and function of the mammary gland over one's lifetime. In the recent years, with the development of fate-mapping, imaging and scRNA-seq technologies we grew a better understanding of the origin, heterogeneity and function of mammary macrophages in homeostasis but also during breast cancer development. Here, we aim to provide a comprehensive review of the latest improvements in studying the macrophage heterogeneity in healthy mammary tissues and breast cancer.
Collapse
Affiliation(s)
- Eva Hadadi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie Deschoemaeker
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gerard Vicente Venegas
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
22
|
Twigger AJ, Engelbrecht LK, Bach K, Schultz-Pernice I, Pensa S, Stenning J, Petricca S, Scheel CH, Khaled WT. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. Nat Commun 2022; 13:562. [PMID: 35091553 PMCID: PMC8799659 DOI: 10.1038/s41467-021-27895-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/17/2021] [Indexed: 01/09/2023] Open
Abstract
Under normal conditions, the most significant expansion and differentiation of the adult mammary gland occurs in response to systemic reproductive hormones during pregnancy and lactation to enable milk synthesis and secretion to sustain the offspring. However, human mammary tissue remodelling that takes place during pregnancy and lactation remains poorly understood due to the challenge of acquiring samples. We report here single-cell transcriptomic analysis of 110,744 viable breast cells isolated from human milk or non-lactating breast tissue, isolated from nine and seven donors, respectively. We found that human milk largely contains epithelial cells belonging to the luminal lineage and a repertoire of immune cells. Further transcriptomic analysis of the milk cells identified two distinct secretory cell types that shared similarities with luminal progenitors, but no populations comparable to hormone-responsive cells. Taken together, our data offers a reference map and a window into the cellular dynamics that occur during human lactation and may provide further insights on the interplay between pregnancy, lactation and breast cancer. Human mammary tissue remodelling that takes place during pregnancy and lactation remains poorly understood. Here the authors characterize cells in human milk, identifying epithelial cells resembling luminal progenitors and immune cells, contributing insights into this process.
Collapse
Affiliation(s)
- Alecia-Jane Twigger
- Department of Pharmacology, University of Cambridge, Cambridge, England. .,Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, England. .,Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.
| | - Lisa K Engelbrecht
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany
| | - Karsten Bach
- Department of Pharmacology, University of Cambridge, Cambridge, England.,Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, England
| | | | - Sara Pensa
- Department of Pharmacology, University of Cambridge, Cambridge, England.,Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, England
| | - Jack Stenning
- Department of Pharmacology, University of Cambridge, Cambridge, England.,Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, England
| | - Stefania Petricca
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany. .,Department of Dermatology, Ruhr-University Bochum, Bochum, Germany.
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, England. .,Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, England.
| |
Collapse
|
23
|
Munne PM, Martikainen L, Räty I, Bertula K, Nonappa, Ruuska J, Ala-Hongisto H, Peura A, Hollmann B, Euro L, Yavuz K, Patrikainen L, Salmela M, Pokki J, Kivento M, Väänänen J, Suomi T, Nevalaita L, Mutka M, Kovanen P, Leidenius M, Meretoja T, Hukkinen K, Monni O, Pouwels J, Sahu B, Mattson J, Joensuu H, Heikkilä P, Elo LL, Metcalfe C, Junttila MR, Ikkala O, Klefström J. Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nat Commun 2021; 12:6967. [PMID: 34845227 PMCID: PMC8630031 DOI: 10.1038/s41467-021-27220-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ERα + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ERα-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ERα + breast cancer models. The ERα + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ERα is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ERα signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ERα phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.
Collapse
Affiliation(s)
- Pauliina M Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Lahja Martikainen
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
| | - Iiris Räty
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Kia Bertula
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
| | - Nonappa
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Janika Ruuska
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Hanna Ala-Hongisto
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Aino Peura
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Babette Hollmann
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Lilya Euro
- Research Program of Stem Cells and Metabolism, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Kerim Yavuz
- Applied Tumor Genomics Research Program, Enhancer Biology Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linda Patrikainen
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Maria Salmela
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Mikko Kivento
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Liina Nevalaita
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Minna Mutka
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Panu Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Marjut Leidenius
- Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Tuomo Meretoja
- Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Katja Hukkinen
- Department of Mammography, Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Enhancer Biology Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Mattson
- Department of Oncology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Ciara Metcalfe
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Olli Ikkala
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
24
|
Affiliation(s)
- K. Hughes
- Department of Veterinary Medicine University of Cambridge Cambridge UK
| |
Collapse
|
25
|
Abstract
An understanding of the anatomy, histology, and development of the equine mammary gland underpins study of the pathology of diseases including galactorrhoea, agalactia, mastitis, and mammary tumour development. This review examines the prenatal development of the equine mammary gland and the striking degree to which the tissue undergoes postnatal development associated with the reproductive cycle. The gland is characterised by epithelial structures arranged in terminal duct lobular units, similar to those of the human breast, supported by distinct zones of intra- and interlobular collagenous stroma. Mastitis and mammary carcinomas are two of the most frequently described equine mammary pathologies and have an overlap in associated clinical signs. Mastitis is most frequently associated with bacterial aetiologies, particularly Streptococcus spp., and knowledge of the process of post-lactational regression can be applied to preventative husbandry strategies. Equine mammary tumours are rare and carry a poor prognosis in many cases. Recent studies have used mammosphere assays to reveal novel insights into the identification and potential behaviour of mammary stem/progenitor cell populations. These suggest that mammospheres derived from equine cells have different growth dynamics compared to those from other species. In parallel with studying the equine mammary gland in order to advance knowledge of equine mammary disease at the interface of basic and clinical science, there is a need to better understand equine lactational biology. This is driven in part by the recognition of the potential value of horse and donkey milk for human consumption, particularly donkey milk in children with 'Cow Milk Protein Allergy'.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Twigger AJ, Khaled WT. Mammary gland development from a single cell 'omics view. Semin Cell Dev Biol 2021; 114:171-185. [PMID: 33810979 PMCID: PMC8158430 DOI: 10.1016/j.semcdb.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Understanding the complexity and heterogeneity of mammary cell subpopulations is vital to delineate the mechanisms behind breast cancer development, progression and prevention. Increasingly sophisticated tools for investigating these cell subtypes has led to the development of a greater understanding of these cell subtypes, complex interplay of certain subtypes and their developmental potential. Of note, increasing accessibility and affordability of single cell technologies has led to a plethora of studies being published containing data from mammary cell subtypes and their differentiation potential in both mice and human data sets. Here, we review the different types of single cell technologies and how they have been used to improve our understanding of mammary gland development.
Collapse
Affiliation(s)
- Alecia-Jane Twigger
- Department of Pharmacology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
27
|
Hu L, Su L, Cheng H, Mo C, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Zhang J, Xie Y. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Breast Cancer in BRCA1 Mutation Carriers. Cancer Res 2021; 81:2600-2611. [PMID: 33727227 DOI: 10.1158/0008-5472.can-20-2123] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
The cell of origin and the development of breast cancer are not fully elucidated in BRCA1 mutation carriers, especially for estrogen receptor (ER)-positive breast cancers. Here, we performed single-cell RNA sequencing (RNA-seq) on 82,122 cells isolated from the breast cancer tissues and adjacent or prophylactic normal breast tissues from four BRCA1 mutation carriers and three noncarriers. Whole-exome sequencing was performed on breast tumors from the four BRCA1 mutation carriers; for validation, bulk RNA-seq was performed on adjacent normal breast tissues from eight additional BRCA1 mutation carriers and 14 noncarriers. Correlation analyses suggested that breast cancers in BRCA1 mutation carriers might originate from luminal cells. The aberrant luminal progenitor cells with impaired differentiation were significantly increased in normal breast tissues in BRCA1 mutation carriers compared with noncarriers. These observations were further validated by the bulk RNA-seq data from additional BRCA1 mutation carriers. These data suggest that the cell of origin of basal-like breast tumors (ERneg) in BRCA1 mutation carriers might be luminal progenitor cells. The expression of TP53 and BRCA1 was decreased in luminal progenitor cells from normal breast tissue in BRCA1 mutation carriers, which might trigger the basal/mesenchymal transition of luminal progenitors and might result in basal-like tumor development. Furthermore, ERhigh luminal tumors might originate from mature luminal cells. Our study provides in-depth evidence regarding the cells of origin of different breast cancer subtypes in BRCA1 mutation carriers. SIGNIFICANCE: Single-cell RNA-seq data indicate that basal-like breast cancer (ERneg) might originate from luminal progenitors, and ERhigh luminal breast cancer might originate from mature luminal cells in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Li Hu
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Liming Su
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Hainan Cheng
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China
| | - Chunling Mo
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China
| | - Tao Ouyang
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Jinfeng Li
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tianfeng Wang
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhaoqing Fan
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tie Fan
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Benyao Lin
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Jianguang Zhang
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China.
| | - Yuntao Xie
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
28
|
Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273-288. [PMID: 33210256 DOI: 10.1007/s10911-020-09468-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms "3D cell culture" and "organoid". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
29
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
30
|
Wojtynek NE, Olson MT, Bielecki TA, An W, Bhat AM, Band H, Lauer SR, Silva-Lopez E, Mohs AM. Nanoparticle Formulation of Indocyanine Green Improves Image-Guided Surgery in a Murine Model of Breast Cancer. Mol Imaging Biol 2020; 22:891-903. [PMID: 31820350 PMCID: PMC7280079 DOI: 10.1007/s11307-019-01462-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Negative surgical margins (NSMs) have favorable prognostic implications in breast tumor resection surgery. Fluorescence image-guided surgery (FIGS) has the ability to delineate surgical margins in real time, potentially improving the completeness of tumor resection. We have recently developed indocyanine green (ICG)-loaded self-assembled hyaluronic acid (HA) nanoparticles (NanoICG) for solid tumor imaging, which were shown to enhance intraoperative contrast. PROCEDURES This study sought to assess the efficacy of NanoICG on completeness of breast tumor resection and post-surgical survival. BALB/c mice bearing iRFP+/luciferase+ 4T1 syngeneic breast tumors were administered NanoICG or ICG, underwent FIGS, and were compared to bright light surgery (BLS) and sham controls. RESULTS NanoICG increased the number of complete resections and improved tumor-free survival. This was a product of improved intraoperative contrast enhancement and the identification of a greater number of small, occult lesions than ICG and BLS. Additionally, NanoICG identified chest wall invasion and predicted recurrence in a model of late-stage breast cancer. CONCLUSIONS NanoICG is an efficacious intraoperative contrast agent and could potentially improve surgical outcomes in breast cancer.
Collapse
Affiliation(s)
- Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott R Lauer
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Edibaldo Silva-Lopez
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaron M Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
31
|
Regan JL, Smalley MJ. Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. NPJ Breast Cancer 2020; 6:32. [PMID: 32793804 PMCID: PMC7391676 DOI: 10.1038/s41523-020-00175-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The identification and molecular characterization of cellular hierarchies in complex tissues is key to understanding both normal cellular homeostasis and tumorigenesis. The mammary epithelium is a heterogeneous tissue consisting of two main cellular compartments, an outer basal layer containing myoepithelial cells and an inner luminal layer consisting of estrogen receptor-negative (ER−) ductal cells and secretory alveolar cells (in the fully functional differentiated tissue) and hormone-responsive estrogen receptor-positive (ER+) cells. Recent publications have used single-cell RNA-sequencing (scRNA-seq) analysis to decipher epithelial cell differentiation hierarchies in human and murine mammary glands, and reported the identification of new cell types and states based on the expression of the luminal progenitor cell marker KIT (c-Kit). These studies allow for comprehensive and unbiased analysis of the different cell types that constitute a heterogeneous tissue. Here we discuss scRNA-seq studies in the context of previous research in which mammary epithelial cell populations were molecularly and functionally characterized, and identified c-Kit+ progenitors and cell states analogous to those reported in the recent scRNA-seq studies.
Collapse
Affiliation(s)
- Joseph L Regan
- Charité Comprehensive Cancer Centre, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Wales, CF24 4HQ UK
| |
Collapse
|
32
|
Detection of flap tissue ischemia in a rat model: Real-time monitoring of changes in oxygenation and perfusion through injectable biosensors. Surgery 2020; 168:926-934. [PMID: 32653202 DOI: 10.1016/j.surg.2020.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND The success of surgical flaps is improved by timely correction of vascular compromise. Current monitoring methods are labor or cost intensive or have limited clinical benefit. We hypothesize that injectable oxygen sensors can identify acute vascular compromise. The purpose of this study was to use a long-term, real-time method of tissue oxygenation detection in a rat flap model with vascular manipulation. METHODS Sensors incorporated benzo-porphyrin dye into a microporous hydrogel and were injected intradermally 1 day before flap elevation. Inspired oxygen was modulated between 100% and 12% to confirm sensor O2 sensitivity. Eight random flaps (4 cm wide, 8 cm long) were elevated. Sensor and clinical observation to temporary clamping of the flap vascular pedicle was recorded. Sodium fluorescein in saline was injected intraperitoneally on postoperative days 0, 3, and 7 with subsequent perfusion area analysis. RESULTS Tissue oxygen tension measurements reflected the changes in inspired oxygen levels. Clinical observation of the flaps did not show any significant change in color or temperature with pedicle clamping. However, clamping of the pedicle resulted in a significant decrease in sensor tissue oxygen tension within 70 seconds. CONCLUSION Oxygen monitoring of myocutaneous flaps is sensitive and can detect acute vascular occlusion. This technique is faster than current methods and offers a cost-effective and accurate means of monitoring surgical tissues.
Collapse
|
33
|
van Schie EH, van Amerongen R. Aberrant WNT/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol 2020; 8:25. [PMID: 32083079 PMCID: PMC7005411 DOI: 10.3389/fcell.2020.00025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
WNT signaling is crucial for tissue morphogenesis during development in all multicellular animals. After birth, WNT/CTNNB1 responsive stem cells are responsible for tissue homeostasis in various organs and hyperactive WNT/CTNNB1 signaling is observed in many different human cancers. The first link between WNT signaling and breast cancer was established almost 40 years ago, when Wnt1 was identified as a proto-oncogene capable of driving mammary tumor formation in mice. Since that discovery, there has been a dedicated search for aberrant WNT signaling in human breast cancer. However, much debate and controversy persist regarding the importance of WNT signaling for the initiation, progression or maintenance of different breast cancer subtypes. As the first drugs designed to block functional WNT signaling have entered clinical trials, many questions about the role of aberrant WNT signaling in human breast cancer remain. Here, we discuss three major research gaps in this area. First, we still lack a basic understanding of the function of WNT signaling in normal human breast development and physiology. Second, the overall extent and precise effect of (epi)genetic changes affecting the WNT pathway in different breast cancer subtypes are still unknown. Which underlying molecular and cell biological mechanisms are disrupted as a result also awaits further scrutiny. Third, we survey the current status of targeted therapeutics that are aimed at interfering with the WNT pathway in breast cancer patients and highlight the importance and complexity of selecting the subset of patients that may benefit from treatment.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11101569. [PMID: 31619007 PMCID: PMC6826533 DOI: 10.3390/cancers11101569] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Therapeutic strategies to prevent or treat metastatic disease are still inadequate although great progress has been made in treating early-stage breast cancer. Cancer stem-like cells (CSCs) that are endowed with high plasticity and self-renewal properties have been shown to play a key role in breast cancer development, progression, and metastasis. A subpopulation of CSCs that combines tumor-initiating capacity and a dormant/quiescent/slow cycling status is present throughout the clinical history of breast cancer patients. Dormant/quiescent/slow cycling CSCs are a key component of tumor heterogeneity and they are responsible for chemoresistance, tumor migration, and metastatic dormancy, defined as the ability of CSCs to survive in target organs and generate metastasis up to two decades after diagnosis. Understanding the strategies that are used by CSCs to resist conventional and targeted therapies, to interact with their niche, to escape immune surveillance, and finally to awaken from dormancy is of key importance to prevent and treat metastatic cancer. This review summarizes the current understanding of mechanisms involved in CSCs chemoresistance, dissemination, and metastasis in breast cancer, with a particular focus on dormant cells. Finally, we discuss how advancements in the detection, molecular understanding, and targeting of dormant CSCs will likely open new therapeutic avenues for breast cancer treatment.
Collapse
|
35
|
Role of the Microenvironment in Regulating Normal and Cancer Stem Cell Activity: Implications for Breast Cancer Progression and Therapy Response. Cancers (Basel) 2019; 11:cancers11091240. [PMID: 31450577 PMCID: PMC6770706 DOI: 10.3390/cancers11091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial cells in an adult woman’s breast tissue are continuously replaced throughout their reproductive life during pregnancy and estrus cycles. Such extensive epithelial cell turnover is governed by the primitive mammary stem cells (MaSCs) that proliferate and differentiate into bipotential and lineage-restricted progenitors that ultimately generate the mature breast epithelial cells. These cellular processes are orchestrated by tightly-regulated paracrine signals and crosstalk between breast epithelial cells and their tissue microenvironment. However, current evidence suggests that alterations to the communication between MaSCs, epithelial progenitors and their microenvironment plays an important role in breast carcinogenesis. In this article, we review the current knowledge regarding the role of the breast tissue microenvironment in regulating the special functions of normal and cancer stem cells. Understanding the crosstalk between MaSCs and their microenvironment will provide new insights into how an altered breast tissue microenvironment could contribute to breast cancer development, progression and therapy response and the implications of this for the development of novel therapeutic strategies to target cancer stem cells.
Collapse
|
36
|
Lourenco C, Kalkat M, Houlahan KE, De Melo J, Longo J, Done SJ, Boutros PC, Penn LZ. Modelling the MYC-driven normal-to-tumour switch in breast cancer. Dis Model Mech 2019; 12:12/7/dmm038083. [PMID: 31350286 PMCID: PMC6679384 DOI: 10.1242/dmm.038083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The potent MYC oncoprotein is deregulated in many human cancers, including breast carcinoma, and is associated with aggressive disease. To understand the mechanisms and vulnerabilities of MYC-driven breast cancer, we have generated an in vivo model that mimics human disease in response to MYC deregulation. MCF10A cells ectopically expressing a common breast cancer mutation in the phosphoinositide 3 kinase pathway (PIK3CAH1047R) led to the development of organised acinar structures in mice. Expressing both PIK3CAH1047R and deregulated MYC led to the development of invasive ductal carcinoma. Therefore, the deregulation of MYC expression in this setting creates a MYC-dependent normal-to-tumour switch that can be measured in vivo. These MYC-driven tumours exhibit classic hallmarks of human breast cancer at both the pathological and molecular level. Moreover, tumour growth is dependent upon sustained deregulated MYC expression, further demonstrating addiction to this potent oncogene and regulator of gene transcription. We therefore provide a MYC-dependent model of breast cancer, which can be used to assay invivo tumour signalling pathways, proliferation and transformation from normal breast acini to invasive breast carcinoma. We anticipate that this novel MYC-driven transformation model will be a useful research tool to better understand the oncogenic function of MYC and for the identification of therapeutic vulnerabilities. Summary: We present a MYC-driven transformation model of breast cancer that recapitulates the disease in vivo and which can be used to identify MYC-dependent cancer vulnerabilities.
Collapse
Affiliation(s)
- Corey Lourenco
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Manpreet Kalkat
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada.,Ontario Institute for Cancer Research, 661 University Ave, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Jason De Melo
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Susan J Done
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada.,Ontario Institute for Cancer Research, 661 University Ave, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada .,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
37
|
Tian L, Truong MJ, Lagadec C, Adriaenssens E, Bouchaert E, Bauderlique-Le Roy H, Figeac M, Le Bourhis X, Bourette RP. s-SHIP Promoter Expression Identifies Mouse Mammary Cancer Stem Cells. Stem Cell Reports 2019; 13:10-20. [PMID: 31204299 PMCID: PMC6626869 DOI: 10.1016/j.stemcr.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
During normal mammary gland development, s-SHIP promoter expression marks a distinct type of mammary stem cells, at two different stages, puberty and early mid-pregnancy. To determine whether s-SHIP is a marker of mammary cancer stem cells (CSCs), we generated bitransgenic mice by crossing the C3(1)-SV40 T-antigen transgenic mouse model of breast cancer, and a transgenic mouse (11.5kb-GFP) expressing green fluorescent protein from the s-SHIP promoter. Here we show that in mammary tumors originating in these bitransgenic mice, s-SHIP promoter expression enriches a rare cell population with CSC activity as demonstrated by sphere-forming assays in vitro and limiting dilution transplantation in vivo. These s-SHIP-positive CSCs are characterized by lower expression of Delta-like non-canonical Notch ligand 1 (DLK1), a negative regulator of the Notch pathway. Inactivation of Dlk1 in s-SHIP-negative tumor cells increases their tumorigenic potential, suggesting a role for DLK1 in mammary cancer stemness.
Collapse
Affiliation(s)
- Lu Tian
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Institut de Biologie de Lille, 1 rue du Professeur Calmette, CS 54447, Lille Cedex 59000/59021, France
| | - Marie-José Truong
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Institut de Biologie de Lille, 1 rue du Professeur Calmette, CS 54447, Lille Cedex 59000/59021, France
| | - Chann Lagadec
- Université de Lille, INSERM U908 - CPAC - Cell Plasticity and Cancer, Lille 59000, France
| | - Eric Adriaenssens
- Université de Lille, INSERM U908 - CPAC - Cell Plasticity and Cancer, Lille 59000, France
| | | | | | - Martin Figeac
- Functional Genomics Platform, Université de Lille, Lille 59000, France
| | - Xuefen Le Bourhis
- Université de Lille, INSERM U908 - CPAC - Cell Plasticity and Cancer, Lille 59000, France
| | - Roland P Bourette
- Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Institut de Biologie de Lille, 1 rue du Professeur Calmette, CS 54447, Lille Cedex 59000/59021, France.
| |
Collapse
|
38
|
Briem E, Ingthorsson S, Traustadottir GA, Hilmarsdottir B, Gudjonsson T. Application of the D492 Cell Lines to Explore Breast Morphogenesis, EMT and Cancer Progression in 3D Culture. J Mammary Gland Biol Neoplasia 2019; 24:139-147. [PMID: 30684066 DOI: 10.1007/s10911-018-09424-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
The human female breast gland is composed of branching epithelial ducts that extend from the nipple towards the terminal duct lobular units (TDLUs), which are the functional, milk-producing units of the gland and the site of origin of most breast cancers. The epithelium of ducts and TDLUs is composed of an inner layer of polarized luminal epithelial cells and an outer layer of contractile myoepithelial cells, separated from the vascular-rich stroma by a basement membrane. The luminal- and myoepithelial cells share an origin and in recent years, there has been increasing understanding of how these cell types interact and how they contribute to breast cancer. Accumulating evidence links stem/or progenitor cells in the mammary/breast gland to breast cancer. In that regard, much knowledge has been gained from studies in mice due to specific strains that have allowed for gene knock out/in studies and lineage tracing of cellular fates. However, there is a large histologic difference between the human female breast gland and the mouse mammary gland that necessitates that research needs to be done on human material where primary cultures are important due to their close relation to the tissue of origin. However, due to difficulties of long-term cultures and lack of access to material, human cell lines are of great importance to bridge the gap between studies on mouse mammary gland and human primary breast cells. In this review, we describe D492, a breast epithelial progenitor cell line that can generate both luminal- and myoepithelial cells in culture, and in 3D culture it forms branching ducts similar to TDLUs. We have applied D492 and its daughter cell lines to explore cellular and molecular mechanisms of branching morphogenesis and cellular plasticity including EMT and MET. In addition to discussing the application of D492 in studying normal morphogenesis, we will also discuss how this cell line has been used to study breast cancer progression.
Collapse
Affiliation(s)
- Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Bylgja Hilmarsdottir
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavík, Iceland.
| |
Collapse
|
39
|
Briem E, Budkova Z, Sigurdardottir AK, Hilmarsdottir B, Kricker J, Timp W, Magnusson MK, Traustadottir GA, Gudjonsson T. MiR-203a is differentially expressed during branching morphogenesis and EMT in breast progenitor cells and is a repressor of peroxidasin. Mech Dev 2019; 155:34-47. [PMID: 30508578 DOI: 10.1016/j.mod.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/01/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022]
Abstract
MicroRNAs regulate developmental events such as branching morphogenesis, epithelial to mesenchymal transition (EMT) and its reverse process mesenchymal to epithelial transition (MET). In this study, we performed small RNA sequencing of a breast epithelial progenitor cell line (D492), and its mesenchymal derivative (D492M) cultured in three-dimensional microenvironment. Among the most downregulated miRNAs in D492M was miR-203a, a miRNA that plays an important role in epithelial differentiation. Increased expression of miR-203a was seen in D492, concomitant with increased complexity of branching. When miR-203a was overexpressed in D492M, a partial reversion towards epithelial phenotype was seen. Gene expression analysis of D492M and D492MmiR-203a revealed peroxidasin, a collagen IV cross-linker, as the most significantly downregulated gene in D492MmiR-203a. Collectively, we demonstrate that miR-203a expression temporally correlates with branching morphogenesis and is suppressed in D492M. Overexpression of miR-203a in D492M induces a partial MET and reduces the expression of peroxidasin. Furthermore, we demonstrate that miR-203a is a novel repressor of peroxidasin. MiR-203-peroxidasin axis may be an important regulator in branching morphogenesis, EMT/MET and basement membrane remodeling.
Collapse
Affiliation(s)
- Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
| | - Jennifer Kricker
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, USA
| | - Magnus Karl Magnusson
- Department of Laboratory Hematology, Landspitali - University Hospital, Iceland; Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali - University Hospital, Iceland.
| |
Collapse
|
40
|
Finot L, Chanat E, Dessauge F. Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty. Sci Rep 2018; 8:16194. [PMID: 30385815 PMCID: PMC6212573 DOI: 10.1038/s41598-018-34691-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Milk production is highly dependent on the extensive development of the mammary epithelium, which occurs during puberty. It is therefore essential to distinguish the epithelial cells committed to development from the related epithelial hierarchy. Using cell phenotyping and sorting, we highlighted four cell sub-populations within the bovine mammary gland at puberty. The CD49fhighCD24neg cells expressing CD10, KRT14, vimentin and PROCR corresponded to cells committed to the basal lineage. The CD49flow sub-population contained two cell subsets (CD49flowCD24neg and CD49flowCD24pos). Both subsets expressed hormone receptors including ER, PR and PRLR, as well as ALDH1 activity but only the CD49flowCD24pos subset expressed ELF5. These data indicated that the CD49flow sub-population is mainly composed of cells displaying a luminal phenotype and that this population comprises two luminal cell subsets, namely the CD24neg and CD24pos cells, likely committed to ductal and alveolar lineage, respectively. The putative mammary stem cell (MaSC) fraction was recovered in the CD49fhighCD24pos sub-population which were shown to form mammospheres in vitro. These cells differentially expressed CD10, KRT14 and KRT7, suggesting the existence of several putative MaSC sub-fractions. In-depth characterization of these epithelial sub-populations provides new insights into the bovine mammary epithelial cell lineage and suggests a common developmental lineage in mammals.
Collapse
Affiliation(s)
- Laurence Finot
- UMR 1348 PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
| | - Eric Chanat
- UMR 1348 PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
| | | |
Collapse
|
41
|
Shehata M, Waterhouse PD, Casey AE, Fang H, Hazelwood L, Khokha R. Proliferative heterogeneity of murine epithelial cells in the adult mammary gland. Commun Biol 2018; 1:111. [PMID: 30271991 PMCID: PMC6123670 DOI: 10.1038/s42003-018-0114-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer in females. The number of years menstruating and length of an individual menstrual cycle have been implicated in increased breast cancer risk. At present, the proliferative changes within an individual reproductive cycle or variations in the estrous cycle in the normal mammary gland are poorly understood. Here we use Fucci2 reporter mice to demonstrate actively proliferating mammary epithelial cells have shorter G1 lengths, whereas more differentiated/non-proliferating cells have extended G1 lengths. We find that cells enter into the cell cycle mainly during diestrus, yet the expansion is erratic and does not take place every reproductive cycle. Single cell expression analyses feature expected proliferation markers (Birc5, Top2a), while HR+ luminal cells exhibit fluctuations of key differentiation genes (ER, Gata3) during the cell cycle. We highlight the proliferative heterogeneity occurring within the normal mammary gland during a single-estrous cycle, indicating that the mammary gland undergoes continual dynamic proliferative changes.
Collapse
Affiliation(s)
- Mona Shehata
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7.
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK.
| | - Paul D Waterhouse
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7
| | - Alison E Casey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7
| | - Hui Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7
| | - Lee Hazelwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7.
| |
Collapse
|
42
|
Strietz J, Stepputtis SS, Preca BT, Vannier C, Kim MM, Castro DJ, Au Q, Boerries M, Busch H, Aza-Blanc P, Heynen-Genel S, Bronsert P, Kuster B, Stickeler E, Brabletz T, Oshima RG, Maurer J. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget 2018; 7:83278-83293. [PMID: 27829216 PMCID: PMC5347769 DOI: 10.18632/oncotarget.13086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Cancers are heterogeneous by nature. While traditional oncology screens commonly use a single endpoint of cell viability, altering the phenotype of tumor-initiating cells may reveal alternative targets that regulate cellular growth by processes other than apoptosis or cell division. We evaluated the impact of knocking down expression of 420 kinases in bi-lineage triple-negative breast cancer (TNBC) cells that express characteristics of both myoepithelial and luminal cells. Knockdown of ERN1 or ALPK1 induces bi-lineage MDA-MB-468 cells to lose the myoepithelial marker keratin 5 but not the luminal markers keratin 8 and GATA3. In addition, these cells exhibit increased β-casein production. These changes are associated with decreased proliferation and clonogenicity in spheroid cultures and anchorage-independent growth assays. Confirmation of these assays was completed in vivo, where ERN1- or ALPK1-deficient TNBC cells are less tumorigenic. Finally, treatment with K252a, a kinase inhibitor active on ERN1, similarly impairs anchorage-independent growth of multiple breast cancer cell lines. This study supports the strategy to identify new molecular targets for types of cancer driven by cells that retain some capacity for normal differentiation to a non-tumorigenic phenotype. ERN1 and ALPK1 are potential targets for therapeutic development.
Collapse
Affiliation(s)
- Juliane Strietz
- Department of Visceral Surgery, University Hospital Freiburg, German Cancer Consortium (DKTK), Freiburg, Germany
| | - Stella S Stepputtis
- Department of Visceral Surgery, University Hospital Freiburg, German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bogdan-Tiberius Preca
- Department of Visceral Surgery, University Hospital Freiburg, German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinne Vannier
- Department of Visceral Surgery, University Hospital Freiburg, German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mihee M Kim
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - David J Castro
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Qingyan Au
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Systems Biology of the Cellular Microenvironment at The DKFZ Partner Site Freiburg, German Cancer Consortium (DKTK), Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hauke Busch
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Systems Biology of the Cellular Microenvironment at The DKFZ Partner Site Freiburg, German Cancer Consortium (DKTK), Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pedro Aza-Blanc
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Peter Bronsert
- Department of Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Bernhard Kuster
- Technische Universitaet Muenchen, Partner Site of the German Cancer Consortium, Freising, Germany
| | - Elmar Stickeler
- Department of OBGYN, University Clinic Aachen (UKA), Aachen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Robert G Oshima
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Jochen Maurer
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
44
|
Jechlinger M, Kendrick H, Smalley M, Vivanco MDM. See One, Do One, Teach One: A Practical Course on Methods in Mammary Gland Biology. J Mammary Gland Biol Neoplasia 2017; 22:215-219. [PMID: 29446000 DOI: 10.1007/s10911-017-9387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Matthew Smalley
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Maria dM Vivanco
- CIC bioGUNE, Technological Park of Bizkaia, 48160, Derio, Spain.
| |
Collapse
|
45
|
Wyatt RA, Trieu NPV, Crawford BD. Zebrafish Xenograft: An Evolutionary Experiment in Tumour Biology. Genes (Basel) 2017; 8:E220. [PMID: 28872594 PMCID: PMC5615353 DOI: 10.3390/genes8090220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Though the cancer research community has used mouse xenografts for decades more than zebrafish xenografts, zebrafish have much to offer: they are cheap, easy to work with, and the embryonic model is relatively easy to use in high-throughput assays. Zebrafish can be imaged live, allowing us to observe cellular and molecular processes in vivo in real time. Opponents dismiss the zebrafish model due to the evolutionary distance between zebrafish and humans, as compared to mice, but proponents argue for the zebrafish xenograft's superiority to cell culture systems and its advantages in imaging. This review places the zebrafish xenograft in the context of current views on cancer and gives an overview of how several aspects of this evolutionary disease can be addressed in the zebrafish model. Zebrafish are missing homologs of some human proteins and (of particular interest) several members of the matrix metalloproteinase (MMP) family of proteases, which are known for their importance in tumour biology. This review draws attention to the implicit evolutionary experiment taking place when the molecular ecology of the xenograft host is significantly different than that of the donor.
Collapse
Affiliation(s)
- Rachael A Wyatt
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Nhu P V Trieu
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
46
|
Couto JP, Bentires-Alj M. Mouse Models of Breast Cancer: Deceptions that Reveal the Truth. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Carroll JS, Hickey TE, Tarulli GA, Williams M, Tilley WD. Deciphering the divergent roles of progestogens in breast cancer. Nat Rev Cancer 2017; 17:54-64. [PMID: 27885264 DOI: 10.1038/nrc.2016.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most breast cancers are driven by oestrogen receptor-α. Anti-oestrogenic drugs are the standard treatment for these breast cancers; however, treatment resistance is common, necessitating new therapeutic strategies. Recent preclinical and historical clinical studies support the use of progestogens to activate the progesterone receptor (PR) in breast cancers. However, widespread controversy exists regarding the role of progestogens in this disease, hindering the clinical implementation of PR-targeted therapies. Herein, we present and discuss data at the root of this controversy and clarify the confusion and misinterpretations that have consequently arisen. We then present our view on how progestogens may be safely and effectively used in treating breast cancer.
Collapse
Affiliation(s)
- Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| | - Michael Williams
- Division of Epidemiology, Department of Public Health and Preventive Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute and School of Medicine, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
48
|
Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat 2016; 157:77-90. [PMID: 27120467 PMCID: PMC4869778 DOI: 10.1007/s10549-016-3807-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Anti-estrogen and anti-HER2 treatments have been among the first and most successful examples of targeted therapy for breast cancer (BC). However, the treatment of triple-negative BC (TNBC) that lack estrogen receptor expression or HER2 amplification remains a major challenge. We previously discovered that approximately two-thirds of TNBCs express vitamin D receptor (VDR) and/or androgen receptor (AR) and hypothesized that TNBCs co-expressing AR and VDR (HR2-av TNBC) could be treated by targeting both of these hormone receptors. To evaluate the feasibility of VDR/AR-targeted therapy in TNBC, we characterized 15 different BC lines and identified 2 HR2-av TNBC lines and examined the changes in their phenotype, viability, and proliferation after VDR and AR-targeted treatment. Treatment of BC cell lines with VDR or AR agonists inhibited cell viability in a receptor-dependent manner, and their combination appeared to inhibit cell viability additively. Moreover, cell viability was further decreased when AR/VDR agonist hormones were combined with chemotherapeutic drugs. The mechanisms of inhibition by AR/VDR agonist hormones included cell cycle arrest and apoptosis in TNBC cell lines. In addition, AR/VDR agonist hormones induced differentiation and inhibited cancer stem cells (CSCs) measured by reduction in tumorsphere formation efficiency, high aldehyde dehydrogenase activity, and CSC markers. Surprisingly, we found that AR antagonists inhibited proliferation of most BC cell lines in an AR-independent manner, raising questions regarding their mechanism of action. In summary, AR/VDR-targeted agonist hormone therapy can inhibit HR2-av TNBC through multiple mechanisms in a receptor-dependent manner and can be combined with chemotherapy.
Collapse
Affiliation(s)
- A Thakkar
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL, USA
| | - B Wang
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Picon-Ruiz
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - P Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- , Biomedical Research Building, Room 926, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|