1
|
Weber F, Utpatel K, Evert K, Weiss TS, Buechler C. Hepatic Bone Morphogenetic Protein and Activin Membrane-Bound Inhibitor Levels Decline in Hepatitis C but Are Not Associated with Progression of Hepatocellular Carcinoma. Biomedicines 2024; 12:2397. [PMID: 39457709 PMCID: PMC11504530 DOI: 10.3390/biomedicines12102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is an antagonist of transforming growth factor (TGF)-β type 1 signaling. BAMBI functions as an anti-fibrotic protein and exerts pro- as well as anti-cancerogenic activities. Our study aimed to correlate hepatocyte BAMBI protein levels in hepatocellular carcinoma (HCC) with T stage, lymph node invasion, vessel invasion, grading, tumor size and Union for International Cancer Control (UICC) stage, as well as with liver inflammation and fibrosis stages. METHODS Hepatocyte BAMBI protein expression was assessed by immunohistochemistry in HCC tissues of 320 patients and non-tumor tissues of 51 patients. RESULTS In the HCC tissues of the whole cohort and sex-specific analysis, BAMBI protein was not related to T stage, vessel invasion, lymph node invasion, histologic grade, UICC stage and tumor size. Accordingly, BAMBI was not associated with overall survival, recurrence-free and metastasis-free survival. BAMBI protein levels in tumor and non-tumor tissues were not related to inflammation and fibrosis grade. BAMBI protein levels in HCC tissues and non-tumor tissues from HCC patients, which were analyzed by immunoblot in a small cohort and by immunohistochemistry in the tissues of patients described above, were similar. Notably, BAMBI protein was low-abundant in HCC tissues of hepatitis C virus (HCV) compared to hepatitis B virus (HBV)-infected patients with comparable disease severity. Immunoblot analysis revealed reduced BAMBI protein in non-tumor tissues of patients with HCV in comparison to patients with HBV and normal human liver tissues. CONCLUSIONS In summary, this analysis showed that hepatocyte BAMBI protein levels of patients with HCC are related to HCV infection rather than the severity of the underlying liver disease and cancer staging.
Collapse
Affiliation(s)
- Florian Weber
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.W.); (K.U.); (K.E.)
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.W.); (K.U.); (K.E.)
| | - Katja Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.W.); (K.U.); (K.E.)
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), Regensburg University Hospital, 93053 Regensburg, Germany;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Elgun T, Yurttas AG, Cinar K, Ozcelik S, Gul A. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode. Photodiagnosis Photodyn Ther 2023; 44:103849. [PMID: 37863378 DOI: 10.1016/j.pdpdt.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer affecting women worldwide.Photodynamic therapy(PDT) has now proven to be a promising form of cancer therapy due to its targeted and low cytotoxicity to healthy cells and tissues.PDT is a technique used to create cell death localized by light after application of a light-sensitive agent.Aza-BODIPY is a promising photosensitizer for use in PDT. Our results showed that aza-BODIPY-PDT induced apoptosis, probably through p53 and caspase3 in MCF-7 cells. Future studies should delineate the molecular mechanisms underlying aza-BODIPY-PDT-induced cell death for a better understanding of the signaling pathways modulated by the therapy so that this novel technology could be implemented in the clinic for treating breast cancer. AIM In this study,we aimed to determine the change in the expression levels of 88 carcinoma-associated genes induced by aza-BODIPY-PDT were analyzed so as to understand the specific pathways that are modulated by aza-BODIPY-PDT. MATERIAL METHOD In this study,the molecular basis of the anti-cancer activity of aza-BODIPY-PDT was investigated.Induction of apoptosis and necrosis in MCF-7 breast cancer cells after treatment with aza- BODIPY derivative with phthalonitrile substituents (aza-BODIPY) followed by light exposure was evaluated by Annexin V 7- Aminoactinomycin D (7-AAD) flow cytometry. RESULTS Aza-BODIPY-PDT induced cell death in MCF-7 cells treated with aza-BODIPY-PDT; flow cytometry revealed that 28 % of the cells died by apoptosis. Seven of the 88 carcinoma-associated genes that were assayed were differentially expressed -EGF, LEF1, WNT1, TCF7, and TGFBR2 were downregulated, and CASP3 and TP53 were upregulated - in cells subjected to aza-BODIPY-PDT.This made us think that the aza-BODIPY-PDT induced caspase 3 and p53-mediated apoptosis in MCF7 cells. CONCLUSION In our study,it was determined that the application of aza-BODIPY-PDT to MCF7 cells had a negative effect on cell connectivity and cell cycle.The fact that the same effect was not observed in control cells and MCF7 cells in the dark field of aza-BODIPY indicates that aza-BODIPY has a strong phodynamic anticancer effect.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Cinar
- Department of Physics, Faculty of Basic Sciences, Gebze Technical University, Istanbul, Turkey
| | - Sennur Ozcelik
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Nair L, Mukherjee S, Kaur K, Murphy CM, Ravichandiran V, Roy S, Singh M. Multi compartmental 3D breast cancer disease model–recapitulating tumor complexity in in-vitro. Biochim Biophys Acta Gen Subj 2023; 1867:130361. [PMID: 37019341 DOI: 10.1016/j.bbagen.2023.130361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Breast cancer is the most common ailment among women. In 2020, it had the highest incidence of any type of cancer. Many Phase II and III anti-cancer drugs fail due to efficacy, durability, and side effects. Thus, accelerated drug screening models must be accurate. In-vivo models have been used for a long time, but delays, inconsistent results, and a greater sense of responsibility among scientists toward wildlife have led to the search for in-vitro alternatives. Stromal components support breast cancer growth and survival. Multi-compartment Transwell models may be handy instruments. Co-culturing breast cancer cells with endothelium and fibroblasts improves modelling. The extracellular matrix (ECM) supports native 3D hydrogels in natural and polymeric forms. 3D Transwell cultured tumor spheroids mimicked in-vivo pathological conditions. Tumor invasion, migration, Trans-endothelial migration, angiogenesis, and spread are studied using comprehensive models. Transwell models can create a cancer niche and conduct high-throughput drug screening, promising future applications. Our comprehensive shows how 3D in-vitro multi compartmental models may be useful in producing breast cancer stroma in Transwell culture.
Collapse
Affiliation(s)
- Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India
| | - Souvik Mukherjee
- Department of Pharmaceutical Sciences, Guru Ghasidas University, Koni, Bilaspur,(C.G 495009, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN77, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India.
| |
Collapse
|
5
|
Pagnotti GM, Trivedi T, Wright LE, John SK, Murthy S, Pattyn RR, Willis MS, She Y, Suresh S, Thompson WR, Rubin CT, Mohammad KS, Guise TA. Low-Magnitude Mechanical Signals Combined with Zoledronic Acid Reduce Musculoskeletal Weakness and Adiposity in Estrogen-Deprived Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.531571. [PMID: 36993656 PMCID: PMC10054938 DOI: 10.1101/2023.03.12.531571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED Combination treatment of Low-Intensity Vibration (LIV) with zoledronic acid (ZA) was hypothesized to preserve bone mass and muscle strength while reducing adipose tissue accrual associated with complete estrogen (E 2 )-deprivation in young and skeletally mature mice. Complete E 2 -deprivation (surgical-ovariectomy (OVX) and daily injection of aromatase inhibitor (AI) letrozole) were performed on 8-week-old C57BL/6 female mice for 4 weeks following commencement of LIV administration or control (no LIV), for 28 weeks. Additionally, 16-week-old C57BL/6 female E 2 -deprived mice were administered ±LIV twice daily and supplemented with ±ZA (2.5 ng/kg/week). By week 28, lean tissue mass quantified by dual-energy X-ray absorptiometry was increased in younger OVX/AI+LIV(y) mice, with increased myofiber cross-sectional area of quadratus femorii. Grip strength was greater in OVX/AI+LIV(y) mice than OVX/AI(y) mice. Fat mass remained lower in OVX/AI+LIV(y) mice throughout the experiment compared with OVX/AI(y) mice. OVX/AI+LIV(y) mice exhibited increased glucose tolerance and reduced leptin and free fatty acids than OVX/AI(y) mice. Trabecular bone volume fraction and connectivity density increased in the vertebrae of OVX/AI+LIV(y) mice compared to OVX/AI(y) mice; however, this effect was attenuated in the older cohort of E 2 -deprived mice, specifically in OVX/AI+ZA mice, requiring combined LIV with ZA to increase trabecular bone volume and strength. Similar improvements in cortical bone thickness and cross-sectional area of the femoral mid-diaphysis were observed in OVX/AI+LIV+ZA mice, resulting in greater fracture resistance. Our findings demonstrate that the combination of mechanical signals in the form of LIV and anti-resorptive therapy via ZA improve vertebral trabecular bone and femoral cortical bone, increase lean mass, and reduce adiposity in mice undergoing complete E 2 -deprivation. One Sentence Summary: Low-magnitude mechanical signals with zoledronic acid suppressed bone and muscle loss and adiposity in mice undergoing complete estrogen deprivation. TRANSLATIONAL RELEVANCE Postmenopausal patients with estrogen receptor-positive breast cancer treated with aromatase inhibitors to reduce tumor progression experience deleterious effects to bone and muscle subsequently develop muscle weakness, bone fragility, and adipose tissue accrual. Bisphosphonates (i.e., zoledronic acid) prescribed to inhibit osteoclast-mediated bone resorption are effective in preventing bone loss but may not address the non-skeletal effects of muscle weakness and fat accumulation that contribute to patient morbidity. Mechanical signals, typically delivered to the musculoskeletal system during exercise/physical activity, are integral for maintaining bone and muscle health; however, patients undergoing treatments for breast cancer often experience decreased physical activity which further accelerates musculoskeletal degeneration. Low-magnitude mechanical signals, in the form of low-intensity vibrations, generate dynamic loading forces similar to those derived from skeletal muscle contractility. As an adjuvant to existing treatment strategies, low-intensity vibrations may preserve or rescue diminished bone and muscle degraded by breast cancer treatment.
Collapse
|
6
|
Li S, Hoefnagel SJM, Read M, Meijer S, van Berge Henegouwen MI, Gisbertz SS, Bonora E, Liu DSH, Phillips WA, Calpe S, Correia ACP, Sancho-Serra MDC, Mattioli S, Krishnadath KK. Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models. Cell Oncol (Dordr) 2022; 45:639-658. [PMID: 35902550 PMCID: PMC9333053 DOI: 10.1007/s13402-022-00689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Abnormalities within the Sonic Hedgehog (SHH), Bone Morphogenetic Protein (BMP) and SMAD4 signalling pathways have been associated with the malignant behavior of esophageal adenocarcinoma (EAC). We recently developed two specific llama-derived antibodies (VHHs), C4C4 and C8C8, which target BMP4 and BMP2/4, respectively. Here we aimed to demonstrate the feasibility of the VHHs for the treatment of EAC and to elucidate its underlying mechanism. METHODS Gene Set Enrichment Analysis (GSEA) was performed on a TCGA dataset, while expression of SHH, BMP2/4 and SMAD4 was validated in a cohort of EAC patients. The effects of the VHHs were tested on the recently established SMAD4(-) ISO76A primary EAC cell line and its counterpart SMAD4(+) ISO76A. In a patient-derived xenograft (PDX) model, the VHHs were evaluated for their ability to selectively target tumor cells and for their effects on tumor growth and survival. RESULTS High expression of BMP2/4 was detected in all SMAD4 negative EACs. SHH upregulated BMP2/4 expression and induced p38 MAPK signaling in the SMAD4(-) ISO76A cells. Inhibition of BMP2/4 by VHHs decreased the aggressive and chemo-resistant phenotype of the SMAD4(-) ISO76A but not of the SMAD4(+) ISO76A cells. In the PDX model, in vivo imaging indicated that VHHs effectively targeted tumor cells. Both VHHs significantly inhibited tumor growth and acted synergistically with cisplatin. Furthermore, we found that C8C8 significantly improved survival of the mice. CONCLUSIONS Our data indicate that increased BMP2/4 expression triggers aggressive non-canonical BMP signaling in SMAD4 negative EAC. Inhibiting BMP2/4 decreases malignant behavior and improves survival. Therefore, VHHs directed against BMP2/4 hold promise for the treatment of SMAD4 negative EAC.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sanne J M Hoefnagel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Read
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sybren Meijer
- Department of Pathology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Suzanne S Gisbertz
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - David S H Liu
- Upper Gatrointestinal Unit, Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Silvia Calpe
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ana C P Correia
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria D C Sancho-Serra
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandro Mattioli
- Department of Medical and Surgical Sciences, University of Bologna, U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022, Ravenna, Italy
| | - Kausilia K Krishnadath
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium.
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Ehata S, Miyazono K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front Cell Dev Biol 2022; 10:883523. [PMID: 35693928 PMCID: PMC9174896 DOI: 10.3389/fcell.2022.883523] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, are multifunctional cytokines. BMPs have a broad range of functions, and abnormalities in BMP signaling pathways are involved in cancer progression. BMPs activate the proliferation of certain cancer cells. Malignant phenotypes of cancer cells, such as increased motility, invasiveness, and stemness, are enhanced by BMPs. Simultaneously, BMPs act on various cellular components and regulate angiogenesis in the tumor microenvironment. Thus, BMPs function as pro-tumorigenic factors in various types of cancer. However, similar to TGF-β, which shows both positive and negative effects on tumorigenesis, BMPs also act as tumor suppressors in other types of cancers. In this article, we review important findings published in the recent decade and summarize the pro-oncogenic functions of BMPs and their underlying mechanisms. The current status of BMP-targeted therapies for cancers is also discussed.
Collapse
Affiliation(s)
- Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Shogo Ehata,
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Inhibiting ALK2/ALK3 Signaling to Differentiate and Chemo-Sensitize Medulloblastoma. Cancers (Basel) 2022; 14:cancers14092095. [PMID: 35565225 PMCID: PMC9102092 DOI: 10.3390/cancers14092095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many cancers re-emerge after treatment, despite the sensitivity of the bulk of tumor cells to treatments. This observation has led to the ‘cancer stem cell’ (CSCs) hypothesis, stating that a subpopulation of cancer cells survive therapy and lead to tumor relapse. However, the lack of universal markers to target CSCs is the main constraint to fully eradicate the CSC pool. Differentiation therapy (DT) might in principle suppress tumorigenesis through conversion of undifferentiated cancer cells of high malignancy into differentiated cells of low tumorigenic potential. Here, we provide evidence that CSCs of medulloblastoma can be forced to resume their differentiation potential by inhibiting the BMP4–ALK2/3 axis, providing a new entry point for medulloblastoma treatment. Abstract Background: Medulloblastoma (MB) is a malignant pediatric brain tumor, and it represents the leading cause of death related to cancer in childhood. New perspectives for therapeutic development have emerged with the identification of cancer stem cells (CSCs) displaying tumor initiating capability and chemoresistance. However, the mechanisms responsible for CSCs maintenance are poorly understood. The lack of a universal marker signature represents the main constraints to identify and isolate CSCs within the tumor. Methods: To identify signaling pathways promoting CSC maintenance in MB, we combined tumorsphere assays with targeted neurogenesis PCR pathway arrays. Results: We showed a consistent induction of signaling pathways regulating pluripotency of CSCs in all the screened MB cells. BMP4 signaling was consistently enriched in all tumorsphere(s) independently of their specific stem-cell marker profile. The octamer-binding transcription factor 4 (OCT4), an important regulator of embryonic pluripotency, enhanced CSC maintenance in MBs by inducing the BMP4 signaling pathway. Consistently, inhibition of BMP4 signaling with LDN-193189 reduced stem-cell traits and promoted cell differentiation. Conclusions: Our work suggests that interfering with the BMP4 signaling pathway impaired the maintenance of the CSC pool by promoting cell differentiation. Hence, differentiation therapy might represent an innovative therapeutic to improve the current standard of care in MB patients.
Collapse
|
9
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
10
|
Mantsou A, Pitou M, Papachristou E, Papi RM, Lamprou P, Choli-Papadopoulou T. Effect of a Bone Morphogenetic Protein-2-derived peptide on the expression of tumor marker ZNF217 in osteoblasts and MCF-7 cells. Bone Rep 2021; 15:101125. [PMID: 34632002 PMCID: PMC8487976 DOI: 10.1016/j.bonr.2021.101125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Zinc Finger Protein 217 (ZNF217), a transcription factor and oncogene product, has been found to dysregulate Bone Morphogenetic Protein (BMP) signaling and induce invasion in breast tumors. In this study, the effect of BMP-2 or an active BMP-2 peptide, AISMLYLDEN, on the expression of ZNF217, BMP4 and CDK-inhibitor p21 gene, CDKN1A, was investigated in MCF-7 breast cancer cells. In parallel, the entire protein (BMP-2) as well as the aforementioned peptide were investigated in hDPSCs during osteogenic differentiation. The treatment of MCF-7 cancer cells with different concentrations of peptide AISMLYLDEN showed that the addition of 22.6 ng/ml was more effective in comparison to the other used concentrations. In particular, 48 h after treatment, CDKN1A and BMP4 mRNA levels were substantially increased in contrast to ZNF217 mRNA levels which were decreased. These results are strongly supported by BrdU assay that clearly indicated inhibition of cancer cell proliferation. Taken together, these results open ways for a concurrent use, at appropriate concentrations, of the peptide AISMLYLDEN during conventional therapeutic treatment in breast tumors with a metastatic tendency to the bones. Regarding the effect of the entire protein as well as its peptide on hDPSCs differentiation into osteocytes, the mRNA levels of osteocalcin, an osteogenic marker, showed that the peptide enhanced osteogenesis at a higher degree in comparison to the entire BMP-2 without however altering ZNF217, CDKN1A and BMP4 expression levels, which remained as expected of non-cancer cells.
Collapse
Affiliation(s)
- Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Pitou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Sharma R, Gogoi G, Saikia S, Sharma A, Kalita DJ, Sarma A, Limaye AM, Gaur MK, Bhattacharyya J, Jaganathan BG. BMP4 enhances anoikis resistance and chemoresistance of breast cancer cells through canonical BMP signaling. J Cell Commun Signal 2021; 16:191-205. [PMID: 34608584 DOI: 10.1007/s12079-021-00649-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.
Collapse
Affiliation(s)
- Renu Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College, Dibrugarh, Assam, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anupam Sarma
- Department of Oncopathology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Manish Kumar Gaur
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India. .,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
12
|
Decreased Thrombospondin-1 and Bone Morphogenetic Protein-4 Serum Levels as Potential Indices of Advanced Stage Lung Cancer. J Clin Med 2021; 10:jcm10173859. [PMID: 34501309 PMCID: PMC8432247 DOI: 10.3390/jcm10173859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Lung cancer belongs to the most common carcinoma worldwide and is the leading cause of cancer-related death. Bone morphogenetic protein-4 (BMP-4) is extracellular signaling molecule involved in many important processes, including cell proliferation and mobility, apoptosis and angiogenesis. Thrombospondin-1 (TSP-1) belongs to the extracellular matrix proteins. It participates in the cell-to-cell and cell-to-matrix interactions and thus plays important role in tumor microenvironment for cancer development and metastasis formation. Aim: To investigate serum levels of TSP-1 and BMP-4 together with BMP-4 polymorphism in lung cancer patients. Material and Methods: A total of 111 patients (76 men) with newly diagnosed lung cancer, including 102 patients with non-small cell lung cancer and 9 patients with small-cell lung cancer. Advanced stage of lung cancer was diagnosed in 99 (89%) of patients: stage IV—in 48, stage IIIB—in 33, stage IIIA—in 18 patients; there were six patients with stage II and six patients with stage I. The control group consisted of 61 healthy persons. In all the subjects, serum levels of BMP-4 and TSP-1 were measured by ELISA. With a Real-Time PCR system genotyping of BMP-4 was performed. Results: BMP-4 and TSP-1 serum levels were significantly lower in the patients with lung cancer than in the controls (TSP-1:10,109.2 ± 9581 ng/mL vs. 11,415.09 ± 9781 ng/mL, p < 0.05; BMP-4: 138.35 ± 62.59 pg/mL vs. 226.68 ± 135.86 pg/mL p < 0.001). In lung cancer patients TSP-1 levels were lower in advanced stages (9282.07 ± 4900.78 ng/mL in the stages III-IV vs. 16,933.60 ± 6299.02 ng/mL in the stages I-II, p < 0.05) and in the patients with than without lymph nodes involvement (10,000.13 ± 9021.41 ng/mL vs. 18,497.75 ± 12,548.25 ng/mL, p = 0.01). There was no correlation between TSP-1 and BMP-4 serum levels. BMP-4 gene polymorphism did not influence the results of the study. Conclusion: Decreased levels of TSP-1 and BMP-4 may serve as potential indices of lung cancer, with additional importance of low TSP-1 level as a marker of advanced stage of the disease.
Collapse
|
13
|
Proteomic analysis of hypoxia and non-hypoxia secretome mesenchymal stem-like cells from human breastmilk. Saudi J Biol Sci 2021; 28:4399-4407. [PMID: 34354424 PMCID: PMC8324926 DOI: 10.1016/j.sjbs.2021.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Breastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells. Material and methods The human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure. Results The human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase. Conclusion The human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.
Collapse
Key Words
- AFP, Alpha-Fetoprotein
- ATP, Adenosine Triphosphate
- BD, Becton Dickinson
- BMPR-II, Bone morphogenetic protein type II
- BSA, Bovine Serum Albumin
- EHD3, EH Domain-containing Protein 3
- FACS, Fluorescence-Activated Cell Sorting
- FBS, Fetal Bovine Serum
- HIF-1α, Hypoxia Inducible Factor-1α
- Hypoxia
- IGF1, Insulin-like Growth Factor 1
- LALBA, α-Lactalbumin
- LC-MS
- LC-MS, Liquid Chromatography-Mass Spectrometry
- LF, Lactoferrin
- MAPK, Mitogen-Activated Protein Kinase
- MPS, Multi Proliferative Supplement
- MPZL1, Myelin Protein Zero-like Protein 1
- MSC, Mesenchymal Stem Cell
- Mesenchymal stem-like cell
- PBS, Phosphate-buffered Saline
- SDS, Sodium Dodecyl Sulfate
- SMA, Smooth Muscle Actin
- SMAD, Signals Mothers Against the Decapentaplegic
- Secretome
- TGF-β, Transforming Growth Factor-Beta
- VEGF, Vascular Endothelial Growth Factor
- cDNA, complementary Deoxyribonucleic Acid
- hBSC
- hBSC, Human Breastmilk Stem Cell
- mRNA, messenger Ribonucleic Acid
Collapse
|
14
|
Ogoyama M, Ohkuchi A, Takahashi H, Zhao D, Matsubara S, Takizawa T. LncRNA H19-Derived miR-675-5p Accelerates the Invasion of Extravillous Trophoblast Cells by Inhibiting GATA2 and Subsequently Activating Matrix Metalloproteinases. Int J Mol Sci 2021; 22:ijms22031237. [PMID: 33513878 PMCID: PMC7866107 DOI: 10.3390/ijms22031237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The invasion of extravillous trophoblast (EVT) cells into the maternal decidua, which plays a crucial role in the establishment of a successful pregnancy, is highly orchestrated by a complex array of regulatory mechanisms. Non-coding RNAs (ncRNAs) that fine-tune gene expression at epigenetic, transcriptional, and post-transcriptional levels are involved in the regulatory mechanisms of EVT cell invasion. However, little is known about the characteristic features of EVT-associated ncRNAs. To elucidate the gene expression profiles of both coding and non-coding transcripts (i.e., mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs)) expressed in EVT cells, we performed RNA sequencing analysis of EVT cells isolated from first-trimester placentae. RNA sequencing analysis demonstrated that the lncRNA H19 and its derived miRNA miR-675-5p were enriched in EVT cells. Although miR-675-5p acts as a placental/trophoblast growth suppressor, there is little information on the involvement of miR-675-5p in trophoblast cell invasion. Next, we evaluated a possible role of miR-675-5p in EVT cell invasion using the EVT cell lines HTR-8/SVneo and HChEpC1b; overexpression of miR-675-5p significantly promoted the invasion of both EVT cell lines. The transcription factor gene GATA2 was shown to be a target of miR-675-5p; moreover, small interfering RNA-mediated GATA2 knockdown significantly promoted cell invasion. Furthermore, we identified MMP13 and MMP14 as downstream effectors of miR-675-5p/GATA2-dependent EVT cell invasion. These findings suggest that miR-675-5p-mediated GATA2 inhibition accelerates EVT cell invasion by upregulating matrix metalloproteinases.
Collapse
Affiliation(s)
- Manabu Ogoyama
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Dongwei Zhao
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
- Correspondence: ; Tel.: +81-3-3822-2131
| |
Collapse
|
15
|
Khan S, Shukla S, Farhan M, Sinha S, Lakra AD, Penta D, Kannan A, Meeran SM. Centchroman prevents metastatic colonization of breast cancer cells and disrupts angiogenesis via inhibition of RAC1/PAK1/β-catenin signaling axis. Life Sci 2020; 256:117976. [PMID: 32561397 DOI: 10.1016/j.lfs.2020.117976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/24/2022]
Abstract
AIMS We have previously reported that Centchroman (CC), an oral contraceptive drug, inhibits breast cancer progression and metastasis. In this study, we investigated whether CC inhibits local invasion of tumor cells and/or their metastatic colonization with detailed underlying mechanisms. MAIN METHODS The effect of CC on the experimental metastasis and spontaneous metastasis was demonstrated by using tail-vein and orthotopic 4T1-syngeneic mouse tumor models, respectively. The anti-angiogenic potential of CC was evaluated using well established in vitro and in vivo models. The role of RAC1/PAK1/β-catenin signaling axis in the metastasis was investigated and validated using siRNA-mediated knockdown of PAK1 as well as by pharmacological PAK1-inhibitor. KEY FINDINGS The oral administration of CC significantly suppressed the formation of metastatic lung nodules in the 4T1-syngeneic orthotopic as well as experimental metastatic models. More importantly, CC treatment suppressed the tube formation and migration capacities of human umbilical vein endothelial cells (HUVEC) and inhibited pre-existing vasculature as well as the formation of neovasculature. The suppression of migration and invasion capacities of metastatic breast cancer cells upon CC treatment was associated with the inhibition of small GTPases (Rac1 and Cdc42) concomitant with the downregulation of PAK1 and downstream β-catenin signaling. In addition, CC upregulated the expression of miR-145, which is known to target PAK1. SIGNIFICANCE This study warrants the repurposing of CC as a potential therapeutic agent against metastatic breast cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Samriddhi Shukla
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Farhan
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonam Sinha
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amar Deep Lakra
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
16
|
Luo WL, Luo MX, He RZ, Ying LF, Luo J. Multi-Omics Analysis Reveals the Pan-Cancer Landscape of Bone Morphogenetic Proteins. Med Sci Monit 2020; 26:e920943. [PMID: 32248202 PMCID: PMC7156877 DOI: 10.12659/msm.920943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) are widely involved in cancer development. However, a wealth of conflicting data raises the question of whether BMPs serve as oncogenes or as cancer suppressors. Material/Methods By integrating multi-omics data across cancers, we comprehensively analyzed the genomic and pharmacogenomic landscape of BMP genes across cancers. Results Surprisingly, our data indicate that BMPs are globally downregulated in cancers. Further genetics and epigenetics analyses show that this abnormal expression is driven by copy number variations, especially heterozygous amplification. We next assessed the BMP-associated pathways and demonstrated that they suppress cell cycle and estrogen hormone pathways. Bone morphogenetic protein interacts with 58 compounds, and their dysfunction can induce drug sensitivity. Conclusions Our results define the landscape of the BMP family at a systems level and open potential therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Wen-Li Luo
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China (mainland)
| | - Ming-Xing Luo
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China (mainland)
| | - Rong-Zhen He
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China (mainland)
| | - Lv-Fang Ying
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China (mainland)
| | - Jian Luo
- Department of Orthopedics, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
17
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
18
|
Sun Z, Liu C, Jiang WG, Ye L. Deregulated bone morphogenetic proteins and their receptors are associated with disease progression of gastric cancer. Comput Struct Biotechnol J 2020; 18:177-188. [PMID: 31988704 PMCID: PMC6965205 DOI: 10.1016/j.csbj.2019.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic proteins (BMP) are members of the transforming growth factor β superfamily (TGF-β). BMPs are involved in tumourigenesis and disease progression of certain malignancies. To date, the role played by BMPs in gastric cancer (GC) remains largely unknown. In the present study, we systematically analysed the expression and clinical significance of BMP and BMP receptors (BMPR) in TCGA gastric cancer database and GEO database and explored the possible mechanism of action. BMP5 is reduced in gastric cancer tissues, while ACVRL1, ACVR1, TGFBR1, and BMPR2 were significantly increased in the gastric tumours. BMP3, ACVR1, TGFBR1, BMPR1B (also known as ALK6), TGFBR2 and BMPR2 were significantly associated with poorer overall survival of GC patients. A negative correlation was seen between BMP/BMPR and proliferation markers which was supported by their correlation with the cell cycle promoters and inhibitors. More interestingly, further analyses showed that BMPs and their receptors are positively correlated with matrix metalloproteinases (MMPs), epithelial mesenchymal transition (EMT) markers and stemness in GC. Furthermore, positive correlations were also frequently seen between BMP receptors and markers/regulators of angiogenesis and lymphangiogenesis in the gastric tumours. Taken together, these findings suggest that BMPs play dual roles in GC. They may inhibit proliferation of GC cells. On the other hand, they can also promote disease progression through a promotion of invasion, EMT and stemness. The elevated expression of BMP receptors in GC were also highly associated with tumour associated angiogenesis and lymphangiogenesis which facilitate tumour growth, expansion and spread.
Collapse
Affiliation(s)
- Zhiwei Sun
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.,VIP-II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
19
|
Zhou Y, Liu Y, Zhang J, Yu D, Li A, Song H, Zhang W, Davis D, Gilbert MR, Liu F, Yang C. Autocrine BMP4 Signaling Enhances Tumor Aggressiveness via Promoting Wnt/β-Catenin Signaling in IDH1-mutant Gliomas. Transl Oncol 2019; 13:125-134. [PMID: 31865175 PMCID: PMC6926316 DOI: 10.1016/j.tranon.2019.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
The isocitrate dehydrogenase (IDH1/2) mutations are frequent genetic abnormalities in the majority of WHO grade II/III glioma and secondary GBM. IDH1-mutated (IDH1Mut) glioma exhibits distinctive patterns in cancer biology and metabolism. In the present study, we showed that bone morphogenetic proteins (BMP4) are significantly upregulated in IDH1Mut glioma. Further, we demonstrated that cancer-associated BMP4 is secreted to tumor microenvironment, which enhances the tumor migration and invasion through an autocrine manner. Mechanistically, BMP4 activates its receptor and concomitant SMAD1/5/8 signaling, which potentiates Wnt/β-catenin signaling by enhancing Frizzled receptor expression. LDN-193189, a selective BMP receptor inhibitor, prolonged the overall survival of mice bearing IDH1-mutated intracranial xenografts by limiting BMP/catenin signaling. These findings demonstrate the pivotal role of BMP4 on tumor aggressiveness in IDH1Mut gliomas, suggesting a possible therapeutic strategy for this type of malignancy.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, China
| | - Di Yu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aiguo Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dionne Davis
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, China.
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Mihajlović J, Diehl LAM, Hochhaus A, Clement JH. Inhibition of bone morphogenetic protein signaling reduces viability, growth and migratory potential of non-small cell lung carcinoma cells. J Cancer Res Clin Oncol 2019; 145:2675-2687. [PMID: 31531741 DOI: 10.1007/s00432-019-03026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE BMP signaling has an oncogenic and tumor-suppressing activity in lung cancer that makes the prospective therapeutic utility of BMP signaling in lung cancer treatment complex. A more in-depth analysis of lung cancer subtypes is needed to identify BMP-related therapeutic targets. We sought to examine the influence of BMP signaling on the viability, growth and migration properties of the cell line LCLC-103H, which originates from a large cell lung carcinoma with giant cells and an extended aneuploidy. METHODS We used BMP-4 and LDN-214117 as agonist/antagonist system for the BMP receptor type I signaling. Using flow cytometry, wound healing assay, trans-well assay and spheroid culture, we examined the influence of BMP signaling on cell viability, growth and migration. Molecular mechanisms underlying observed changes in cell migration were investigated via gene expression analysis of epithelial-mesenchymal transition (EMT) markers. RESULTS BMP signaling inhibition resulted in LCLC-103H cell apoptosis and necrosis 72 h after LDN-214117 treatment. Cell growth and proliferation are markedly affected by BMP signaling inhibition. Chemotactic motility and migratory ability of LCLC-103H cells were clearly hampered by LDN-214117 treatment. Cell migration changes after BMP signaling inhibition were shown to be coupled with considerable down-regulation of transcription factors involved in EMT, especially Snail. CONCLUSIONS BMP signaling inhibition in LCLC-103H cells leads to reduced growth and proliferation, hindered migration and accelerated cell death. The findings contribute to the pool of evidence on BMP signaling in lung cancer with a possibility of introducing BMP signaling inhibition as a novel therapeutic approach for the disease.
Collapse
Affiliation(s)
- Jelena Mihajlović
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Laura A M Diehl
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Joachim H Clement
- Klinik Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
21
|
Wu B, Sun D, Ma L, Deng Y, Zhang S, Dong L, Chen S. Exosomes isolated from CAPS1‑overexpressing colorectal cancer cells promote cell migration. Oncol Rep 2019; 42:2528-2536. [PMID: 31638236 PMCID: PMC6826328 DOI: 10.3892/or.2019.7361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium‑dependent activator protein for secretion 1 (CAPS1) has been reported to promote metastasis in colorectal cancer (CRC), however, the underlying mechanisms have not yet been elucidated. The present study revealed that exosomes derived from CAPS1‑overexpressing CRC cells could enhance the migration of normal colonic epithelial FHC cells. GW4869, an inhibitor of exosomes, could attenuate the migration of FHC cells. Furthermore, liquid chromatography‑mass spectrometry (LC‑MS) and bioinformatics analysis demonstrated that overexpression of CAPS1 could alter the expression pattern of exosomal proteins involved in cell migration. Bone morphogenetic protein 4, which may serve vital roles in the process of CAPS1‑induced cell migration, was downregulated in the exosomes. In summary, the present results demonstrated that CAPS1 promotes cell migration by regulating exosomes. Inhibiting the secretion of exosomes may be helpful for the treatment of patients with metastatic CRC.
Collapse
Affiliation(s)
- Bingrui Wu
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dalong Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lijie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P.R. China
| | - Yiran Deng
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - She Chen
- Key Laboratory of Glycoconjugate Research (Ministry of Public Health), Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
23
|
Choi S, Yu J, Park A, Dubon MJ, Do J, Kim Y, Nam D, Noh J, Park KS. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep 2019; 9:11724. [PMID: 31409851 PMCID: PMC6692307 DOI: 10.1038/s41598-019-48190-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug. BMP-4 also activated Notch signaling in these cells and increased the sphere forming efficiency of the non-transformed mammary epithelial cell line MCF-10A. In addition, BMP-4 upregulated the sphere forming efficiency, colony formation efficiency, and the expression of cancer stem cell markers, such as Nanog and CD44, in the breast carcinoma cell line MDA-MB-231. Inhibition of Notch signaling downregulated EMT and stem cell properties induced by BMP-4. Down-regulation of Smad4 using siRNA impaired the BMP-4-induced activation of Notch signaling, as well as the BMP-4-mediated EMT. These results suggest that EMT and stem cell properties are increased in mammary epithelial cells and breast cancer cells through the activation of Notch signaling in a Smad4-dependent manner in response to BMP-4.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea. .,College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
24
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
25
|
Cao X, Xu L, Liu Q, Yang L, Li N, Li X. MicroRNA-1277 Inhibits Proliferation and Migration of Hepatocellular Carcinoma HepG2 Cells by Targeting and Suppressing BMP4 Expression and Reflects the Significant Indicative Role in Hepatocellular Carcinoma Pathology and Diagnosis After Magnetic Resonance Imaging Assessment. Oncol Res 2019; 27:301-309. [PMID: 29562958 PMCID: PMC7848408 DOI: 10.3727/096504018x15213058045841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our study aimed to investigate the roles and possible regulatory mechanism of miR-1277 in the development of hepatocellular carcinoma (HCC). HCC patients were identified from patients who were diagnosed with focal liver lesions using magnetic resonance imaging (MRI). The expression levels of miR-1277 in the serum of HCC patients and HepG2 cells were measured. Then miR-1277 mimic, miR-1277 inhibitor, or scramble RNA was transfected into HepG2 cells. The effects of miR-1277 overexpression and suppression on HepG2 cell proliferation, migration, and invasion were then investigated. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related markers, including E-cadherin, β-catenin, and vimentin, were detected. Target prediction and luciferase reporter assay were performed to explore the potential target of miR-1277. miR-1277 was significantly downregulated in the serum of HCC patients and HepG2 cells. Suppression of miR-1277 promoted HepG2 cell proliferation, migration, and invasion, whereas overexpression of miR-1277 had opposite effects. In addition, after miR-1277 was suppressed, the expressions of E-cadherin and β-catenin were significantly increased, while the expressions of vimentin were markedly decreased. Bone morphogenetic protein 4 (BMP4) was identified as the direct target of miR-1277. Knockdown of BMP4 reversed the effects of miR-1277 suppression on HepG2 cell migration and invasion, as well as the expressions of E-cadherin, β-catenin, and vimentin. Our results indicate that downregulation of miR-1277 may promote the migration and invasion of HepG2 cells by targeting BMP4 to induce EMT. Combination of MRI and miR-1277 level will facilitate the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xinshan Cao
- *Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Ling Xu
- †Department of Liver Disease Center, Traditional Chinese Medicine Hospital of Binzhou City, Binzhou, Shandong, P.R. China
| | - Quanyuan Liu
- *Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Lijuan Yang
- ‡Department of Experiment Center of Tumor, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Na Li
- §Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Xiaoxiao Li
- *Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
26
|
Macrin D, Alghadeer A, Zhao YT, Miklas JW, Hussein AM, Detraux D, Robitaille AM, Madan A, Moon RT, Wang Y, Devi A, Mathieu J, Ruohola-Baker H. Metabolism as an early predictor of DPSCs aging. Sci Rep 2019; 9:2195. [PMID: 30778087 PMCID: PMC6379364 DOI: 10.1038/s41598-018-37489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-β) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Ammar Alghadeer
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA.,Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam, 31441, Saudi Arabia
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA
| | - Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Damien Detraux
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Arikketh Devi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA. .,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
27
|
García-Jiménez C, Goding CR. Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. Cell Metab 2019; 29:254-267. [PMID: 30581118 PMCID: PMC6365217 DOI: 10.1016/j.cmet.2018.11.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Considerable progress has been made in identifying microenvironmental signals that effect the reversible phenotypic transitions underpinning the early steps in the metastatic cascade. However, although the general principles underlying metastatic dissemination have been broadly outlined, a common theme that unifies many of the triggers of invasive behavior in tumors has yet to emerge. Here we discuss how many diverse signals that induce invasion converge on the reprogramming of protein translation via phosphorylation of eIF2α, a hallmark of the starvation response. These include starvation as a consequence of nutrient or oxygen limitation, or pseudo-starvation imposed by cell-extrinsic microenvironmental signals or by cell-intrinsic events, including oncogene activation. Since in response to resource limitation single-cell organisms undergo phenotypic transitions remarkably similar to those observed within tumors, we propose that a starvation/pseudo-starvation model to explain cancer progression provides an integrated and evolutionarily conserved conceptual framework to understand the progression of this complex disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- Area de Fisiología, Facultad de CC de la Salud, Universidad Rey Juan Carlos, Avenida Atenas s/n, Alcorcón, Madrid 28922, Spain
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Old Road Campus, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
28
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
29
|
SOX9 activity is induced by oncogenic Kras to affect MDC1 and MCMs expression in pancreatic cancer. Oncogene 2017; 37:912-923. [PMID: 29059173 DOI: 10.1038/onc.2017.393] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/24/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
SRY (sex determining region Y)-box 9 (SOX9) is required for oncogenic Kras-mediated acinar-to-ductal metaplasia (ADM), pancreatic intraepithelial neoplasias (PanINs) and ultimately pancreatic ductal adenocarcinoma (PDAC). However, how oncogenic Kras affects SOX9 activity is not yet understood, and SOX9-associated genes in PDAC are also unknown at all. Here, we investigated the mechanistic link between SOX9 and oncogenic Kras, studied biological function of SOX9, and identified SOX9-related genes and their clinical significance in patients with PDAC. Our studies reveal that oncogenic Kras induces SOX9 mRNA and protein expression as well as phosphorylated SOX9 expression in human pancreatic ductal progenitor cells (HPNE) and pancreatic ductal cells (HPDE). Moreover, oncogenic Kras promoted nuclear translocation and transcriptional activity of SOX9 in these cells. TAK1/IκBα/NF-κB pathway contributed to induction of SOX9 by oncogenic Kras, and SOX9 in turn enhanced NF-κB activation. SOX9 promoted the proliferation of HPNE and PDAC cells, and correlated with minichromosome maintenance complex components (MCMs) and mediator of DNA damage checkpoint 1 (MDC1) expression. The overexpressive MDC1 was associated with less perineural and lymph node invasion of tumors and early TNM-stage of patients. Our results indicate that oncogenic Kras induces constitutive activation of SOX9 in HPNE and HPDE cells, and Kras/TAK1/IκBα/NF-κB pathway and a positive feedback between SOX9 and NF-κB are involved in this inducing process. SOX9 accelerates proliferation of cells and affects MCMs and MDC1 expression. MDC1 is associated negatively with invasion and metastasis of PDAC.
Collapse
|
30
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance. Endocr Relat Cancer 2017; 24:R349-R366. [PMID: 28733469 PMCID: PMC5574206 DOI: 10.1530/erc-17-0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Jeyna Resaul
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Rachel Hargest
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
31
|
Zeng S, Zhang Y, Ma J, Deng G, Qu Y, Guo C, Han Y, Yin L, Cai C, Li Y, Wang G, Bonkovsky HL, Shen H. BMP4 promotes metastasis of hepatocellular carcinoma by an induction of epithelial-mesenchymal transition via upregulating ID2. Cancer Lett 2017; 390:67-76. [PMID: 28093286 DOI: 10.1016/j.canlet.2016.12.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
The role of bone morphogenetic protein 4 (BMP4), a crucial epithelial-mesenchymal transition (EMT) mediator, in the progression of hepatocellular carcinoma (HCC) patients heretofore has not been elucidated. The present study analyzed BMP4 expression in tumors and paired non-tumorous liver tissue and its correlation with clinicopathological characteristics from two independent cohorts consisting of 420 HCC patients. Functional analysis of BMP4 was performed in Bel-7402 and HCCLM3 HCC cells, and in a murine HCC model. The downstream targets of BMP4 in HCC were screened and confirmed. The results indicated that BMP4 expression was significantly increased in HCC tissue and highly metastatic HCC cells. BMP4 expression was correlated with vein invasion, overall survival and recurrence-free survival of HCC. BMP4 promoted HCC EMT and metastasis in vitro, and consistently in vivo. BMP4 knockdown blocked EMT and tumor metastasis in nude mice. ID2 was up-regulated by recombinant human BMP4, resulting in HCC EMT. Knockdown of ID2 blocked BMP4-induced EMT. In conclusion, BMP4 promotes invasion and metastasis of HCC by an induction of EMT via up-regulating ID2. BMP4 may be a valuable prognostic factor and potential therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Shan Zeng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junli Ma
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ganlu Deng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanlin Qu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Yin
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiyi Li
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guqi Wang
- School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Herbert L Bonkovsky
- School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
32
|
Wu X, Ruan L, Yang Y, Mei Q. Analysis of gene expression changes associated with human carcinoma-associated fibroblasts in non-small cell lung carcinoma. Biol Res 2017; 50:6. [PMID: 28231844 PMCID: PMC5322592 DOI: 10.1186/s40659-017-0108-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background This study aimed to investigate the gene expression changes associated with carcinoma-associated fibroblasts (CAFs) involving in non-small cell lung carcinoma (NSCLC). Methods We downloaded the GEO series GSE22862, which contained matched gene expression values for 15 CAF and normal fibroblasts samples, and series GSE27289 containing SNP genotyping for four matched NSCLC samples. The differentially expressed genes in CAF samples were identified using the limma package in R. Then we performed gene ontology (GO) and pathway enrichment analysis and protein–protein interaction (PPI) network construction using the identified DEGs. Moreover, aberrant cell fraction, ploidy, allele-specific copy number, and loss of heterozygosity (LOH) within CAF cells were analyzed using the allele-specific copy number analysis. Results We obtained 545 differentially expressed genes between CAF and normal fibroblasts samples. The up-regulated genes are mainly involved in GO terms such as positive regulation of cell migration and extracellular region, while the down-regulated genes participate in the lung development and extracellular region. Multiple genes including bone morphogenetic protein 4 (BMP4) and transforming growth factor, beta 3 (TGFB3) are involved in the TGF-β signaling pathway. Genes including BMP4, TGFBI and matrix Gla protein (MGP) were hub genes. Moreover, no LOH event for BMP4 and MGP was found, that for sphingosine kinase 1 (SPHK1) was 70%, and for TGFBI was 40%. Conclusion Our data suggested that BMP4, MGP, TGFBI, and SPHK1 may be important in CAFs-associated NSCLC, and the abnormal expression and high LOH frequency of them may be used as the diagnosis targets of CAFs in NSCLC.
Collapse
Affiliation(s)
- Xiaofen Wu
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Ruan
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yang
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
33
|
Meng X, Zhu P, Li N, Hu J, Wang S, Pang S, Wang J. Expression of BMP-4 in papillary thyroid carcinoma and its correlation with tumor invasion and progression. Pathol Res Pract 2017; 213:359-363. [PMID: 28214211 DOI: 10.1016/j.prp.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Bone morphogenetic protein 4 (BMP-4) is a member of the BMP protein family. BMP-4 was reported to induce epithelial-mesenchymal transition (EMT) and promote tumor cell immigration and invasion. This study aimed to investigate the expression of BMP-4 in papillary thyroid carcinoma (PTC) and its correlation with the patients' clinicophathological features and with tumor invasion and metastasis. Surgically resected PTC specimens from 82 patients admitted to the Department of Thyroid Surgery of Yantai Yuhuangding Hospital between Feb 1st and May 31st, 2016 were collected. The expression level of BMP-4 in PTC tissues was examined by immunohistochemical staining. The full clinical records of all patients were collected to analyze the relevance between BMP-4 expression and the clinical pathological features of PTC. Our result showed that BMP-4-positive cell rate and staining intensity were positively correlated with the patient's age (P=0.031, 0.037), tumor size (P=0.033, 0.019), capsular invasion (P=0.001, 0.002) and TNM stage (P=0.001, 0.004), while not correlated with gender, multicentricity of tumor or lymphatic metastasis. In conclusion, this study identified BMP-4 as a potential molecular marker for predicting the invasion and progression of PTC.
Collapse
Affiliation(s)
- Xiaomei Meng
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of Endocrinology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Zhu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ning Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinchen Hu
- Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shaoguang Wang
- Gynecology Department, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
34
|
Ampuja M, Rantapero T, Rodriguez-Martinez A, Palmroth M, Alarmo EL, Nykter M, Kallioniemi A. Integrated RNA-seq and DNase-seq analyses identify phenotype-specific BMP4 signaling in breast cancer. BMC Genomics 2017; 18:68. [PMID: 28077088 PMCID: PMC5225521 DOI: 10.1186/s12864-016-3428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively. Results The RNA-seq data revealed gene expression changes that were consistent with the in vitro phenotypes of the cell lines, particularly in MDA-MB-231, where migration-related processes were enriched. These results were confirmed when enrichment of BMP4-induced open chromatin regions was analyzed. Interestingly, the chromatin in transcription start sites of differentially expressed genes was already open in unstimulated cells, thus enabling rapid recruitment of transcription factors to the promoters as a response to stimulation. Further analysis and functional validation identified MBD2, CBFB, and HIF1A as downstream regulators of BMP4 signaling. Silencing of these transcription factors revealed that MBD2 was a consistent activator of target genes in both cell lines, CBFB an activator in cells with reduced proliferation phenotype, and HIF1A a repressor in cells with induced migration phenotype. Conclusions Integrating RNA-seq and DNase-seq data showed that the phenotypic responses to BMP4 in breast cancer cell lines are reflected in transcriptomic and chromatin levels. We identified and experimentally validated downstream regulators of BMP4 signaling that relate to the different in vitro phenotypes and thus demonstrate that the downstream BMP4 response is regulated in a cell type-specific manner. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Ampuja
- BioMediTech, University of Tampere, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| | - T Rantapero
- BioMediTech, University of Tampere, Tampere, Finland
| | - A Rodriguez-Martinez
- BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - M Palmroth
- BioMediTech, University of Tampere, Tampere, Finland
| | - E L Alarmo
- BioMediTech, University of Tampere, Tampere, Finland
| | - M Nykter
- BioMediTech, University of Tampere, Tampere, Finland
| | - A Kallioniemi
- BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
35
|
Wang K, Sun X, Feng HL, Fei C, Zhang Y. DNALK2 inhibits the proliferation and invasiveness of breast cancer MDA-MB-231 cells through the Smad-dependent pathway. Oncol Rep 2016; 37:879-886. [DOI: 10.3892/or.2016.5343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
|
36
|
Leinhäuser I, Richter A, Lee M, Höfig I, Anastasov N, Fend F, Ercolino T, Mannelli M, Gimenez-Roqueplo AP, Robledo M, de Krijger R, Beuschlein F, Atkinson MJ, Pellegata NS. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma. Oncotarget 2016; 6:39111-26. [PMID: 26337467 PMCID: PMC4770760 DOI: 10.18632/oncotarget.4912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy.
Collapse
Affiliation(s)
- Ines Leinhäuser
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Richter
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Misu Lee
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ines Höfig
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nataša Anastasov
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology Comprehensive Cancer Center Tübingen and University of Tübingen, Tübingen, Germany
| | - Tonino Ercolino
- Azienda Ospedaliero-Universitaria di Careggi, Endocrine Unit, Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR U970, Paris Cardiovascular Research Center-PARCC, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ronald de Krijger
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
37
|
Clément F, Xu X, Donini CF, Clément A, Omarjee S, Delay E, Treilleux I, Fervers B, Le Romancer M, Cohen PA, Maguer-Satta V. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death Differ 2016; 24:155-166. [PMID: 27740625 PMCID: PMC5260492 DOI: 10.1038/cdd.2016.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) and BMP4 are key regulators of the fate and differentiation of human mammary epithelial stem cells (SCs), as well as of their niches, and are involved in breast cancer development. We established that MCF10A immature mammary epithelial cells reliably reproduce the BMP response that we previously identified in human primary epithelial SCs. In this model, we observed that BMP2 promotes luminal progenitor commitment and expansion, whereas BMP4 prevents lineage differentiation. Environmental pollutants are known to promote cancer development, possibly by providing cells with stem-like features and by modifying their niches. Bisphenols, in particular, were shown to increase the risk of developing breast cancer. Here, we demonstrate that chronic exposure to low doses of bisphenol A (BPA) or benzo(a)pyrene (B(a)P) alone has little effect on SCs properties of MCF10A cells. Conversely, we show that this exposure affects the response of immature epithelial cells to BMP2 and BMP4. Furthermore, the modifications triggered in MCF10A cells on exposure to pollutants appeared to be predominantly mediated by altering the expression and localization of type-1 receptors and by pre-activating BMP signaling, through the phosphorylation of small mothers against decapentaplegic 1/5/8 (SMAD1/5/8). By analyzing stem and progenitor properties, we reveal that BPA prevents the maintenance of SC features prompted by BMP4, whereas promoting cell differentiation towards a myoepithelial phenotype. Inversely, B(a)P prevents BMP2-mediated luminal progenitor commitment and expansion, leading to the retention of stem-like properties. Overall, our data indicate that BPA and B(a)P distinctly alter the fate and differentiation potential of mammary epithelial SCs by modulating BMP signaling.
Collapse
Affiliation(s)
- Flora Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France
| | - Xinyi Xu
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France
| | - Caterina F Donini
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer and Environnement, Centre Léon Bérard, Lyon, France
| | - Alice Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France
| | - Soleilmane Omarjee
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer Cell Plasticity, Centre Léon Bérard, Lyon, France
| | - Emmanuel Delay
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Isabelle Treilleux
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer Cell Plasticity, Centre Léon Bérard, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Béatrice Fervers
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer and Environnement, Centre Léon Bérard, Lyon, France
| | - Muriel Le Romancer
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer Cell Plasticity, Centre Léon Bérard, Lyon, France
| | - Pascale A Cohen
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Cancer and Environnement, Centre Léon Bérard, Lyon, France
| | - Véronique Maguer-Satta
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, F-69008, France.,Department of Tumor Escape Signaling, Centre Léon Bérard, Lyon, France.,CNRS GDR 3697 Micronit, Tours, France
| |
Collapse
|
38
|
In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone. Int J Mol Sci 2016; 17:ijms17091405. [PMID: 27571063 PMCID: PMC5037685 DOI: 10.3390/ijms17091405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022] Open
Abstract
Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.
Collapse
|
39
|
Ampuja M, Alarmo E, Owens P, Havunen R, Gorska A, Moses H, Kallioniemi A. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model. Cancer Lett 2016; 375:238-244. [DOI: 10.1016/j.canlet.2016.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
|
40
|
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol 2016; 36:1509-25. [PMID: 26976638 DOI: 10.1128/mcb.00600-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.
Collapse
|
41
|
A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting β-catenin/LEF-1 signaling. Sci Rep 2016; 6:19156. [PMID: 26750754 PMCID: PMC4707489 DOI: 10.1038/srep19156] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
The inhibition of β-catenin/LEF-1 signaling is an emerging strategy in cancer therapy. However, clinical targeted treatment of the β-catenin/LEF-1 complex remains relatively ineffective. Therefore, development of specific molecular targets is a key approach for identifying new cancer therapeutics. Thus, we attempted to synthesize a peptide (TAT-NLS-BLBD-6) that could interfere with the interaction of β-catenin and LEF-1 at nuclei in human breast cancer cells. TAT-NLS-BLBD-6 directly interacted with β-catenin and inhibited breast cancer cell growth, invasion, migration, and colony formation as well as increased arrest of sub-G1 phase and apoptosis; it also suppressed breast tumor growth in nude mouse and zebrafish xenotransplantation models, showed no signs of toxicity, and did not affect body weight. Furthermore, the human global gene expression profiles and Ingenuity Pathway Analysis software showed that the TAT-NLS-BLBD-6 downstream target genes were associated with the HER-2 and IL-9 signaling pathways. TAT-NLS-BLBD-6 commonly down-regulated 27 candidate genes in MCF-7 and MDA-MB-231 cells, which are concurrent with Wnt downstream target genes in human breast cancer. Our study suggests that TAT-NLS-BLBD-6 is a promising drug candidate for the development of effective therapeutics specific for Wnt/β-catenin signaling inhibition.
Collapse
|
42
|
Alarmo EL, Havunen R, Häyrynen S, Penkki S, Ketolainen J, Nykter M, Kallioniemi A. Bone morphogenetic protein 4 regulates microRNA expression in breast cancer cell lines in diverse fashion. Genes Chromosomes Cancer 2015; 55:227-36. [PMID: 26684238 DOI: 10.1002/gcc.22324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a remarkably powerful inhibitor of breast cancer cell proliferation, but it is also able to induce breast cancer cell migration in certain cellular contexts. Previous data demonstrate that BMP4 controls the transcription of a variety of protein-coding genes, but not much is known about microRNAs (miRNA) regulated by BMP4. To address this question, miRNA expression profiles following BMP4 treatment were determined in one mammary epithelial and seven breast cancer cell lines using microarrays. While the analysis revealed an extensive variation in differentially expressed miRNA across cell lines, four miRNAs (miR-16-5p, miR-106b-5p, miR-23a-3p, and miR-23b-3p) were commonly induced in a subset of breast cancer cells upon BMP4 treatment. Inhibition of their expression demonstrated an increase in BT-474 cell number, indicating that they possess tumor suppressive properties. However, with the exception of miR-106b-5p, these effects were independent of BMP4 treatment. Scratch assay with miR-16-5p and miR-106b-5p inhibitors on BMP4-treated MDA-MB-231 cells resulted in enhanced cell migration, suggesting that these miRNAs are engaged in BMP4-induced motility. Taken together, we have for the first time characterized the BMP4-induced miRNA expression profiles in breast cancer cell lines, showing that induced miRNAs contribute to the fine-tuning of proliferation and migration phenotypes.
Collapse
Affiliation(s)
- Emma-Leena Alarmo
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Riikka Havunen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Sanna Penkki
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Johanna Ketolainen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Matti Nykter
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Anne Kallioniemi
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
43
|
Li ASW, Marikawa Y. An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways. Mol Reprod Dev 2015; 82:1015-36. [PMID: 26387793 DOI: 10.1002/mrd.22585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Certain chemical agents act as teratogens, causing birth defects and fetal deaths when pregnant women are exposed to them. The establishment of in vitro models that recapitulate crucial embryonic events is therefore vital to facilitate screening of potential teratogens. Previously, we created a three-dimensional culture method for mouse P19C5 embryonal carcinoma stem cells that, when cultured as embryoid bodies, display elongation morphogenesis resembling gastrulation, which is the critical event resulting in the germ layers and major body axes. Determination of how well this in vitro morphogenesis represents in vivo gastrulation is essential to assess its applicability as well as to identify limitations of the model for detecting teratogenic agents. Here, we investigated the morphological and molecular characteristics of P19C5 morphogenesis using pharmacological agents that are known to cause abnormal patterning in the embryo in vivo by inhibiting major developmental signaling--e.g., involving Wnt, Nodal, Bone morphogenic protein (Bmp), Fibroblast growth factor (Fgf), Retinoic acid, Notch, and Hedgehog pathways. Inhibitors of Wnt, Nodal, Bmp, Fgf, and Retinoic acid signaling caused distinct changes in P19C5 morphogenesis that were quantifiable using morphometric parameters. These five inhibitors, plus the Notch inhibitor, also altered temporal expression profiles of developmental regulator genes in a manner consistent with the in vivo roles of the corresponding signaling pathways. In contrast, the Hedgehog inhibitor did not have any impact on the process, suggesting an absence of active Hedgehog signaling in these embryoid bodies. These results indicate that the P19C5 in vitro gastrulation model is a promising tool to screen for teratogenic agents that interfere with many of the key developmental signals.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| |
Collapse
|
44
|
Li Q, Wijesekera O, Salas SJ, Wang JY, Zhu M, Aprhys C, Chaichana KL, Chesler DA, Zhang H, Smith CL, Guerrero-Cazares H, Levchenko A, Quinones-Hinojosa A. Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clin Cancer Res 2015; 20:2375-87. [PMID: 24789034 DOI: 10.1158/1078-0432.ccr-13-1415] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Glioblastoma is the most common adult primary malignant intracranial cancer. It is associated with poor outcomes because of its invasiveness and resistance to multimodal therapies. Human adipose-derived mesenchymal stem cells (hAMSC) are a potential treatment because of their tumor tropism, ease of isolation, and ability to be engineered. In addition, bone morphogenetic protein 4 (BMP4) has tumor-suppressive effects on glioblastoma and glioblastoma brain tumor-initiating cells (BTIC), but is difficult to deliver to brain tumors. We sought to engineer BMP4-secreting hAMSCs (hAMSCs-BMP4) and evaluate their therapeutic potential on glioblastoma. EXPERIMENTAL DESIGN The reciprocal effects of hAMSCs on primary human BTIC proliferation, differentiation, and migration were evaluated in vitro. The safety of hAMSC use was evaluated in vivo by intracranial coinjections of hAMSCs and BTICs in nude mice. The therapeutic effects of hAMSCs and hAMSCs-BMP4 on the proliferation and migration of glioblastoma cells as well as the differentiation of BTICs, and survival of glioblastoma-bearing mice were evaluated by intracardiac injection of these cells into an in vivo intracranial glioblastoma murine model. RESULTS hAMSCs-BMP4 targeted both the glioblastoma tumor bulk and migratory glioblastoma cells, as well as induced differentiation of BTICs, decreased proliferation, and reduced the migratory capacity of glioblastomas in vitro and in vivo. In addition, hAMSCs-BMP4 significantly prolonged survival in a murine model of glioblastoma. We also demonstrate that the use of hAMSCs in vivo is safe. CONCLUSIONS Both unmodified and engineered hAMSCs are nononcogenic and effective against glioblastoma, and hAMSCs-BMP4 are a promising cell-based treatment option for glioblastoma.
Collapse
Affiliation(s)
- Qian Li
- Authors' Affiliations: Department of Neurosurgery and Oncology; Division of Pediatric Neurosurgery; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health; Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Department of Neurosurgery, University of Maryland, Baltimore, Maryland; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Neurosurgery, Jefferson Medical College, Philadelphia, Pennsylvania; and Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Twigger AJ, Hepworth AR, Lai CT, Chetwynd E, Stuebe AM, Blancafort P, Hartmann PE, Geddes DT, Kakulas F. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep 2015; 5:12933. [PMID: 26255679 PMCID: PMC4542700 DOI: 10.1038/srep12933] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/15/2015] [Indexed: 01/11/2023] Open
Abstract
Breastmilk is a rich source of cells with a heterogeneous composition comprising early-stage stem cells, progenitors and more differentiated cells. The gene expression profiles of these cells and their associations with characteristics of the breastfeeding mother and infant are poorly understood. This study investigated factors associated with the cellular dynamics of breastmilk and explored variations amongst women. Genes representing different breastmilk cell populations including mammary epithelial and myoepithelial cells, progenitors, and multi-lineage stem cells showed great variation in expression. Stem cell markers ESRRB and CK5, myoepithelial marker CK14, and lactocyte marker α-lactalbumin were amongst the genes most highly expressed across all samples tested. Genes exerting similar functions, such as either stem cell regulation or milk production, were found to be closely associated. Infant gestational age at delivery and changes in maternal bra cup size between pre-pregnancy and postpartum lactation were associated with expression of genes controlling stemness as well as milk synthesis. Additional correlations were found between genes and dyad characteristics, which may explain abnormalities related to low breastmilk supply or preterm birth. Our findings highlight the heterogeneity of breastmilk cell content and its changes associated with characteristics of the breastfeeding dyad that may reflect changing infant needs.
Collapse
Affiliation(s)
- Alecia-Jane Twigger
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Anna R Hepworth
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Ching Tat Lai
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Ellen Chetwynd
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina, 3010 Old Clinic Building, CB 7615, Chapel Hill, NC 27599, USA
| | - Alison M Stuebe
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina, 3010 Old Clinic Building, CB 7615, Chapel Hill, NC 27599, USA
| | - Pilar Blancafort
- 1] Department of Pharmacology, School of Medicine, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599, USA [2] Cancer Epigenetics group, the Harry Perkins Institute of Medical Research, and School of Anatomy, Physiology and human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Peter E Hartmann
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Donna T Geddes
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
46
|
Tudoran O, Soritau O, Balacescu L, Visan S, Barbos O, Cojocneanu-Petric R, Balacescu O, Berindan-Neagoe I. Regulation of stem cells-related signaling pathways in response to doxorubicin treatment in Hs578T triple-negative breast cancer cells. Mol Cell Biochem 2015; 409:163-76. [PMID: 26187676 DOI: 10.1007/s11010-015-2522-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/11/2015] [Indexed: 12/30/2022]
Abstract
Different molecular changes have been previously associated with therapeutic response and recurrent disease, however, the detailed mechanism of action in triple-negative breast cancer subtype remains elusive. In this study, we investigated the cellular and molecular signaling of two claudin-low triple-negative breast cancer cells to doxorubicin and docetaxel treatment. Whole human transcriptomic evaluation was used to identify the subsequent changes in gene expression, while biological effects were measured by means of proliferation and anchorage-independent growth assays. Microarray analysis revealed changes in stem cell-related signaling pathways, suggesting that doxorubicin treatment affects the balance between self-renewal and differentiation. While the treatment reduced the proliferation, aggregation and mammosphere forming ability of stem-like cells derived from Hs578T cell line, stem-like cells derived from MDA-MB-231 cells were not significantly affected. Our results suggest that claudin-low triple-negative breast cancer cells might predominantly alter stem cell-related signaling pathways to promote stem-like cells activity as an innate resistance mechanism to doxorubicin treatment.
Collapse
Affiliation(s)
- Oana Tudoran
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Gh. Str., 400337, Cluj-Napoca, Romania.
| | - Olga Soritau
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania
| | - Loredana Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Gh. Str., 400337, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania
- Department of Pathologic Anatomy, Necropsy and Veterinary Forensic Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania
| | - Otilia Barbos
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Gh. Str., 400337, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute I. Chiricuta, Cluj-Napoca, 34-36 Republicii Str, 400015, Cluj-Napoca, Cluj, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Gh. Str., 400337, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Hu Y, Blair JD, Yuen RKC, Robinson WP, von Dadelszen P. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity. Mol Hum Reprod 2015; 21:452-65. [PMID: 25697377 DOI: 10.1093/molehr/gav007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022] Open
Abstract
Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.
Collapse
Affiliation(s)
- Yuxiang Hu
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - John D Blair
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ryan K C Yuen
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wendy P Robinson
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter von Dadelszen
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer. Mol Cell Biol 2014; 34:3229-43. [PMID: 24934442 DOI: 10.1128/mcb.00737-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the E2F transcription factors (E2Fs) have a clearly defined role in cell cycle control, recent work has uncovered new functions. Using genomic signature methods, we predicted a role for the activator E2F transcription factors in the mouse mammary tumor virus (MMTV)-polyomavirus middle T oncoprotein (PyMT) mouse model of metastatic breast cancer. To genetically test the hypothesis that the E2Fs function to regulate tumor development and metastasis, we interbred MMTV-PyMT mice with E2F1, E2F2, or E2F3 knockout mice. With the ablation of individual E2Fs, we noted alterations of tumor latency, histology, and vasculature. Interestingly, we noted striking reductions in metastatic capacity and in the number of circulating tumor cells in both the E2F1 and E2F2 knockout backgrounds. Investigating E2F target genes that mediate metastasis, we found that E2F loss led to decreased levels of vascular endothelial growth factor (Vegfa), Bmp4, Cyr61, Nupr1, Plod 2, P4ha1, Adamts1, Lgals3, and Angpt2. These gene expression changes indicate that the E2Fs control the expression of genes critical to angiogenesis, the remodeling of the extracellular matrix, tumor cell survival, and tumor cell interactions with vascular endothelial cells that facilitate metastasis to the lungs. Taken together, these results reveal that the E2F transcription factors play key roles in mediating tumor development and metastasis in addition to their well-characterized roles in cell cycle control.
Collapse
|
49
|
Fazilaty H, Mehdipour P. Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin Exp Metastasis 2014; 31:595-612. [PMID: 24493024 DOI: 10.1007/s10585-014-9642-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023]
|
50
|
Du M, Su XM, Zhang T, Xing YJ. Aberrant promoter DNA methylation inhibits bone morphogenetic protein 2 expression and contributes to drug resistance in breast cancer. Mol Med Rep 2014; 10:1051-5. [PMID: 24866720 DOI: 10.3892/mmr.2014.2276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) is a growth factor that is involved in the development and progression of various types of cancer. However, the epigenetic regulation of the expression of BMP2 and the association between BMP2 expression and drug resistance in breast cancer remains to be elucidated. The present study reported that the expression of BMP2 was significantly decreased in primary breast cancer samples and the MCF‑7/ADR breast cancer mulitdrug resistance cell line, which was closely associated with its promoter DNA methylation status. The expression of BMP2 in MCF‑7/ADR cells markedly increased when treated with 5‑Aza‑2'‑deoxycytidine. Knockdown of BMP2 by specific small interfering RNA enhanced the chemoresistance of the MCF‑7 breast cancer cell line. These findings indicated that epigenetic silencing of BMP2 in breast cancer may be involved in breast cancer progression and drug resistance, and provided a novel prognostic marker and therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Min Du
- Department of Oncology, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Xiao-Mei Su
- Department of Oncology, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Tao Zhang
- Department of Oncology, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Yong-Jun Xing
- Affiliated Stomatological Hospital, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|