1
|
Xiao MY, Li S, Pei WJ, Gu YL, Piao XL. Natural Saponins on Cholesterol-Related Diseases: Treatment and Mechanism. Phytother Res 2025; 39:1292-1318. [PMID: 39754504 DOI: 10.1002/ptr.8432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Saponins are compounds composed of lipophilic aglycones linked to hydrophilic sugars. Natural saponins are isolated from plants and some Marine organisms. As important cholesterol-lowering drugs, natural saponins have attracted wide attention for their therapeutic potential in a variety of cholesterol-related metabolic diseases. To review the effects of natural saponins on cholesterol-related metabolic diseases, and to deepen the understanding of the cholesterol-lowering mechanism of saponins. The literature related to saponins and cholesterol-lowering diseases was collected using keywords "saponins" and "cholesterol" from PubMed, Web of Science, and Google Scholar from January 2000 to May 2024. The total number of articles related to saponins and cholesterol-lowering diseases was 240 after excluding irrelevant articles. Natural saponins can regulate cholesterol to prevent and treat a variety of diseases, such as atherosclerosis, diabetes, liver disease, hyperlipidemia, cancer, and obesity. Mechanistically, natural saponins regulate cholesterol synthesis and uptake through the AMPK/SREBP2/3-hydroxy-3-methyl-glutaryl coenzyme A reductase pathway and PCSK9/LDLR pathway, and regulate cholesterol efflux and esterification targeting Liver X receptor/ABC pathway and ACAT family. Natural saponins have broad application prospects in regulating cholesterol metabolism, for the development of more cholesterol-lowering drugs provides a new train of thought. However, it is still necessary to further explore the molecular mechanism and expand clinical trials to provide more evidence.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Si Li
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
2
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
4
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhang Y, Zhang XY, Shi SR, Ma CN, Lin YP, Song WG, Guo SD. Natural products in atherosclerosis therapy by targeting PPARs: a review focusing on lipid metabolism and inflammation. Front Cardiovasc Med 2024; 11:1372055. [PMID: 38699583 PMCID: PMC11064802 DOI: 10.3389/fcvm.2024.1372055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Yun-Peng Lin
- Department of General Surgery, Qixia Traditional Chinese Medicine Hospital in Shandong Province, Yantai, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
6
|
Yang ML, Lu C, Fan ZF, Zhao TR, Cheng GG, Wang YD, Cao JX, Liu YP. Hypoglycemic and hypolipidemic effects of Epigynum auritum in high fat diet and streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114986. [PMID: 35032587 DOI: 10.1016/j.jep.2022.114986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epigynum auritum is mainly distributed in Southwest China, and has been used as a "dai" folk medicine with promising Besides, the leaves and barks of E. auritum have detoxifying, analgesic and relieving swelling effects. Previous studies evidenced that E. auritum was rich in pregnanes and their glycosides. However, the hypoglycemic and hypolipidemic effects of the extract from E. auritum (EAE) and its molecular mechanism are still not studied. AIM OF THE STUDY The aim of this study is to investigate the hypoglycemic and hypolipidemic effects of EAE on high-fat diet and streptozocin-induced type 2 diabetic rats. MATERIALS AND METHODS The high-fat diet and streptozocin induced type 2 diabetic model was established. The diabetic rats were treated with 70% ethanol extract of E. auritum (100 and 300 mg/kg/d) or metformin (DMBG, 100 mg/kg/d) every day for 4 weeks. Fasting blood glucose was recorded weekly. The phenotypic changes were evaluated by the measurement of biochemical indexes and immunohistochemical. The expressions of signaling-related proteins were explored by western blotting. RESULTS EAE could effectively regulate the metabolism of glucose and lipids in diabetic rats by increasing insulin sensitivity. In addition, EAE ameliorated the oxidative stress damage and further mitigated the liver, kidney, and pancreatic damage. Mechanism research results show that EAE treatment increased the phosphorylation of Akt, AMPK and GSK-3β, up-regulated the expression of GLUT-2, GLUT-4 and PPAR-α, and reduced PPAR-γ and FAS expressions. CONCLUSION EAE exhibited significant hypoglycemic and hypolipidemic effects in HFD/STZ-induced diabetes rats. The mechanism may be related to the effective upregulation of AMPK/Akt/GSK-3β pathway and the decreased expression of PPAR-γ and FAS. It could be a promising natural product with potential value for the development of drugs to prevent or treat type 2 diabetic.
Collapse
Affiliation(s)
- Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Can Lu
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Teco, People's Republic of China
| | - Zhi-Feng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China.
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
7
|
Effects of air temperature on the physicochemical properties and flavor compounds of roasted red ginseng lateral roots in a jet impingement fluidized bed roaster. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang B, Dong J, Xu J, Qiu Z, Yao F. Ginsenoside CK inhibits obese insulin resistance by activating PPARγ to interfere with macrophage activation. Microb Pathog 2021; 157:105002. [PMID: 34051328 DOI: 10.1016/j.micpath.2021.105002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Obesity is often accompanied by chronic low-grade inflammation, which aggravates the disorder of lipid metabolism and leads to insulin resistance (IR). Macrophage activation plays an important role in inflammation. Ginsenoside Compound K (CK) is an active metabolite of ginsenoside Rb1, which is adopting to an anti-inflammatory effective substance. In order to clarify the mechanism of ginsenoside CK on the regulation of macrophage activation in adipose tissue, the macrophage model was incubated with the supernatant of hypertrophic adipocytes, and the co-culture models of Raw264.7 and 3T3-L1 were established. The levels of related cytokines, macrophage polarization and protein expression in inflammatory signaling pathway were measured. The results showed that ginsenoside CK significantly inhibited the increase of MCP-1 and TNF-α induced by the supernatant of hypertrophic adipocytes, promoted the expression of IL-10, inhibited the activation of inflammatory macrophages and increased the expression of anti-inflammatory macrophages. Similarly, ginsenoside CK inhibited the migration of Raw264.7, blocked the activation of NF-κB, and up-regulated the expression of PPARγ. In addition, ginsenoside CK also promotes the expression of IRS-1 in insulin signal pathway. The experimental results proved that ginsenoside CK plays a crucial role in alleviating inflammation and insulin resistance in obesity, and inhibits macrophage activation through the key protein PPARγ.
Collapse
Affiliation(s)
- Bei Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchum, 130117. China
| | - Jinxiang Dong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchum, 130117. China
| | - Jie Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchum, 130117. China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchum, 130117. China.
| | - Fan Yao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchum, 130117. China.
| |
Collapse
|
9
|
Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B, Wang X. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet β cells. Pharmacol Res 2021; 165:105416. [PMID: 33412277 DOI: 10.1016/j.phrs.2020.105416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Wacao pentacyclic triterpenoid saponins (WPTS) is a newly discovered insulin sensitivity enhancer. It is a powerful hypoglycemic compound derived from Silene viscidula, which has a hypoglycemic effect similar to that of insulin. It can rapidly reduce blood glucose levels, normalizing them within 3 days of administration. However, its mechanism of action is completely different from that of insulin. Thus, we aimed to determine the pharmacological effects and mechanism of activity of WPTS on type 2 diabetes to elucidate the main reasons for its rapid effects. The results showed that WPTS could effectively improve insulin resistance in KKAy diabetic mice. Comparative transcriptomics showed that WPTS could upregulate the expression of insulin resistance-related genes such as glucose transporter type 4 (Glut4), insulin receptor substrate 1 (Irs1), Akt, and phosphoinositide 3-kinase (PI3K), and downregulate the expression of lipid metabolism-related genes such as monoacylglycerol O-acyltransferase 1 (Moat1), lipase C (Lipc), and sphingomyelin phosphodiesterase 4 (Smpd4). The results indicated that the differentially expressed genes could regulate lipid metabolism via the PI3K/AKT metabolic pathway, and it is noteworthy that WPTS was found to upregulate Glut4 expression, decrease blood glucose levels, and attenuate insulin resistance via the PI3K/AKT pathway. Q-PCR and western blotting further validated the transcriptomics findings at the mRNA and protein levels, respectively. We believe that WPTS can achieve a rapid hypoglycemic effect by improving the lipid metabolism and insulin resistance of the diabetic KKAy mice. WPTS could be a very promising candidate drug for the treatment of diabetes and deserves further research.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, China
| | - Sanyang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baosheng Zhao
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China; Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
10
|
Changhong K, Peng Y, Yuan Z, Cai J. Ginsenoside Rb1 protected PC12 cells from Aβ 25-35-induced cytotoxicity via PPARγ activation and cholesterol reduction. Eur J Pharmacol 2020; 893:173835. [PMID: 33359145 DOI: 10.1016/j.ejphar.2020.173835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Accumulating evidences suggest that amyloid β (Aβ)-peptide plays a key role in pathogenesis of Alzheimer's disease (AD) through aggregation and deposition into plaques in neuronal cells. Membrane components such as cholesterol and gangliosides not only enhance the production of amyloidogenic Aβ fragments, but also appear to strengthen Aβ-membrane interaction. Ginsenoside Rb1 (GRb1) is a major active component of Panax, which is widely used to improve learning and memory. In the present study, whether ginsenoside Rb1 could protect pheochromocytoma cells (PC12 cells) from Aβ25-35-induced cytotoxicity including inhibiting cell growth, inducing apoptosis, producing reactive oxygen species (ROS), destroying the cytoskeleton and bringing about membrane toxicity was investigated. Our results indicated that ginsenoside Rb1 could serve as an agonist of peroxisom proliferator-activated receptor-γ (PPARγ) and reduce the level of cholesterol in AD model cells. Reduction of the Aβ25-35-induced cytotoxicity by lowering cholesterol was evidenced by reduction of ROS production, lipid peroxidation, and protection of cytoskeleton and membrane surface rigidity. Most importantly, the viability of PC12 cells increased from 50.42 ± 5.51% for the AD group to 102.72 ± 4.34% for the 50 μM ginsenoside Rb1 group with cholesterol reduction. Our results suggested that ginsenoside Rb1 might function as an effective candidate to promote reverse cholesterol transport and lower ROS production, therefore providing a new insight into prevention and treatment of AD.
Collapse
Affiliation(s)
- Ke Changhong
- Department of Chemistry, Jinan University, Guangzhou, 510632, China; YZ Health-tech Inc., Hengqin District, Zhuhai, 519000, China
| | - Yuan Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zhengqiang Yuan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother 2020; 132:110915. [DOI: 10.1016/j.biopha.2020.110915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
|
12
|
Ahmad N, Xu K, Wang JN, Li C. Novel catalytic glycosylation of Glycyrrhetinic acid by UDP-glycosyltransferases from Bacillus subtilis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res 2020; 35:223-245. [PMID: 32909364 DOI: 10.1002/ptr.6821] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease of serious concern faced by the health care industry today. Primary diabetes mellitus and its complications are still costly to manage with modern drugs. Extensive research on the screening of anti-diabetic agents in past decades established natural products as one of the major potential sources of drug discovery. However, only a few drugs of plant origin have been scientifically validated. Therefore, the development of new anti-diabetic drugs is of great demand. Hence, natural products could be explored as potential anti-diabetic drugs. Natural plants derived extracts and molecules like berberine, ginsenosides, curcumin, stevioside, gingerols, capsaicin, catechins, simple phenolic compounds, anthocyanins, resveratrol, genistein and hesperidin obtained from different species are used for curing diabetes and found to possess different action mechanisms. In this review, the importance of medicinal plants and their active constituents for anti-diabetic agents are described. The present study also emphasized the importance of diabetes control, reduction in its complications and use of the anti-diabetic agents. The detailed action mechanism of these extracts/compounds for their activities are also described. However, the anti-diabetic drugs from plant origin require scientific validation through animal and clinical studies to exploit in terms of modern commercial medicines.
Collapse
Affiliation(s)
- Arun K Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Srinagar, Uttarakhand, India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Gangtok, Sikkim, India
| | - Hari P Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| | - Ranbeer S Rawal
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
14
|
Xu Q, Qi W, Zhang Y, Wang Q, Ding S, Han X, Zhao Y, Song X, Zhao T, Zhou L, Ye L. DNA methylation of JAK3/STAT5/PPARγ regulated the changes of lipid levels induced by di (2-ethylhexyl) phthalate and high-fat diet in adolescent rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30232-30242. [PMID: 32451896 DOI: 10.1007/s11356-020-08976-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) and high-fat diet (HFD) could induce lipid metabolic disorder. This study was undertaken to identify the effect of DNA methylation of JAK3/STAT5/PPARγ on lipid metabolic disorder induced by DEHP and HFD. Wistar rats were divided into a normal diet (ND) group and HFD group. Each diet group treated with DEHP (0, 5, 50, 500 mg/kg/d) for 8 weeks' gavage. The DNA-methylated levels of PPARγ, JAK3, STAT5a, and STAT5b in rats' livers and adipose were analyzed with MethylTarget. The lipid levels of rats' livers and adipose were detected with ELISA. Results showed in ND group that the DNA methylation levels of PPARγ, JAK3 in livers, and STAT5b in adipose were lower in 500 mg/kg/d group than the control. And the level of total cholesterol (TC) in adipose was higher in 500 mg/kg/d group than the control. In HFD group, the DNA methylation level of JAK3 was the lowest in livers and the highest in adipose in 50 mg/kg/d group. And the level of TC in livers was the lowest in 50 mg/kg/d group. In the 500 mg/kg/d group, the DNA methylation level of STAT5b was lower in livers and higher in adipose in HFD group than that in ND group. And the levels of TC in livers were lower in HFD group than those in ND group. Therefore, DNA methylation of JAK3/STAT5/PPARγ regulated the changes in lipid levels induced by DEHP and HFD in adolescent rats.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
15
|
Ziaei R, Ghavami A, Ghaedi E, Hadi A, Javadian P, Clark CC. The efficacy of ginseng supplementation on plasma lipid concentration in adults: A systematic review and meta-analysis. Complement Ther Med 2020; 48:102239. [DOI: 10.1016/j.ctim.2019.102239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022] Open
|
16
|
Feng Y, Xia W, Ji K, Lai Y, Feng Q, Chen H, Huang Z, Yi X, Tang A. Hemogram study of an artificially feeding tree shrew (Tupaia belangeri chinensis). Exp Anim 2019; 69:80-91. [PMID: 31527336 PMCID: PMC7004801 DOI: 10.1538/expanim.19-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Systematic classification and determination of various cells in normal peripheral blood of artificially feeding Tupaia belangeri chinensis of different ages and genders and evaluation of the effectiveness of an automatic blood cell classification counter for measuring tree shrew blood cells. Child, young and adult tree shrews (forty for each group) were randomly selected, half male and half female. After the animals were stable, the peripheral blood of each group was collected through the femoral vein, and the morphology of various blood cells of the tree shrew was observed and classified by the manual microscopic counting method and by an automatic blood cell classification counter. The Reference intervals of the normal peripheral blood cell absolute count, cell diameter and white blood cell percentage in tree shrews of different ages and genders has been calculated. White blood cell count and neutrophil relative count increased with age, while lymphocyte relative count decreased. The white blood cell count, neutrophil relative count, and lymphocyte relative count in the child group, as well as lymphocyte relative count in the young group, significantly differed according to gender (P<0.05), and the differences in other indicators were not significant. The Bland-Altman plot and the Passing-Bablok scattergram showed that the change trend of each indicator was consistent but exhibited large systematic differences between methods. Differences in peripheral blood cells exist among different age groups and different genders. An automatic blood cell classification counter is not suitable for the absolute count of blood cells in the tree shrew.
Collapse
Affiliation(s)
- Yiwei Feng
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Wei Xia
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Ketong Ji
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Yongjing Lai
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Qingyuan Feng
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Honglin Chen
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Zongjian Huang
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Xiang Yi
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| | - Anzhou Tang
- First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530000, P.R.China
| |
Collapse
|
17
|
Zhang TT, Gong T, Hu ZF, Gu AD, Yang JL, Zhu P. Enzymatic Synthesis of Unnatural Ginsenosides Using a Promiscuous UDP-Glucosyltransferase from Bacillus subtilis. Molecules 2018; 23:E2797. [PMID: 30373312 PMCID: PMC6278262 DOI: 10.3390/molecules23112797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
Glycosylation, which is catalyzed by UDP-glycosyltransferases (UGTs), is an important biological modification for the structural and functional diversity of ginsenosides. In this study, the promiscuous UGT109A1 from Bacillus subtilis was used to synthesize unnatural ginsenosides from natural ginsenosides. UGT109A1 was heterologously expressed in Escherichia coli and then purified by Ni-NTA affinity chromatography. Ginsenosides Re, Rf, Rh1, and R1 were selected as the substrates to produce the corresponding derivatives by the recombinant UGT109A1. The results showed that UGT109A1 could transfer a glucosyl moiety to C3-OH of ginsenosides Re and R1, and C3-OH and C12-OH of ginsenosides Rf and Rh1, respectively, to produce unnatural ginsenosides 3,20-di-O-β-d-glucopyranosyl-6-O-[α-l-rhamnopyrano-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (1), 3,20-di-O-β-d-glucopyranosyl-6-O-[β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (6), 3-O-β-d-glucopyranosyl-6-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (3), 3,12-di-O-β-d-glucopyranosyl-6-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-dammar-24-ene-3β,6α,12β,20S-tetraol (2), 3,6-di-O-β-d-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (5), and 3,6,12-tri-O-β-d-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (4). Among the above products, 1, 2, 3, and 6 are new compounds. The maximal activity of UGT109A1 was achieved at the temperature of 40 °C, in the pH range of 8.0⁻10.0. The activity of UGT109A1 was considerably enhanced by Mg2+, Mn2+, and Ca2+, but was obviously reduced by Cu2+, Co2+, and Zn2+. The study demonstrated that UGT109A1 was effective in producing a series of unnatural ginsenosides through enzymatic reactions, which could pave a way to generate promising leads for new drug discovery.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Zong-Feng Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - An-Di Gu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
18
|
Kim YS, Kim DY, Kang DW, Park CS. Hydrolysis of the outer β-(1,2)-d-glucose linkage at the C-3 position of ginsenosides by a commercial β-galactosidase and its use in the production of minor ginsenosides. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1483348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yeong-Su Kim
- Plant Resource Industry Division, Baekdudaegan National Arboretum, Bonghwa, Republic of Korea
| | - Do-Yeon Kim
- International Ginseng & Herb Research Institute, Geumsan, Republic of Korea
| | - Dong Wook Kang
- Department of Pharmaceutical Science and Technology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
19
|
Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic Potential of Ginsenosides as an Adjuvant Treatment for Diabetes. Front Pharmacol 2018; 9:423. [PMID: 29765322 PMCID: PMC5938666 DOI: 10.3389/fphar.2018.00423] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Ginseng, one of the oldest traditional Chinese medicinal herbs, has been used widely in China and Asia for thousands of years. Ginsenosides extracted from ginseng, which is derived from the roots and rhizomes of Panax ginseng C. A. Meyer, have been used in China as an adjuvant in the treatment of diabetes mellitus. Owing to the technical complexity of ginsenoside production, the total ginsenosides are generally extracted. Accumulating evidence has shown that ginsenosides exert antidiabetic effects. In vivo and in vitro tests revealed the potential of ginsenoside Rg1, Rg3, Rg5, Rb1, Rb2, Rb3, compound K, Rk1, Re, ginseng total saponins, malonyl ginsenosides, Rd, Rh2, F2, protopanaxadiol (PPD) and protopanaxatriol (PPT)-type saponins to treat diabetes and its complications, including type 1 diabetes mellitus, type 2 diabetes mellitus, diabetic nephropathy, diabetic cognitive dysfunction, type 2 diabetes mellitus with fatty liver disease, diabetic cerebral infarction, diabetic cardiomyopathy, and diabetic erectile dysfunction. Many effects are attributed to ginsenosides, including gluconeogenesis reduction, improvement of insulin resistance, glucose transport, insulinotropic action, islet cell protection, hepatoprotective activity, anti-inflammatory effect, myocardial protection, lipid regulation, improvement of glucose tolerance, antioxidation, improvement of erectile dysfunction, regulation of gut flora metabolism, neuroprotection, anti-angiopathy, anti-neurotoxic effects, immunosuppression, and renoprotection effect. The molecular targets of these effects mainly contains GLUTs, SGLT1, GLP-1, FoxO1, TNF-α, IL-6, caspase-3, bcl-2, MDA, SOD, STAT5-PPAR gamma pathway, PI3K/Akt pathway, AMPK-JNK pathway, NF-κB pathway, and endoplasmic reticulum stress. Rg1, Rg3, Rb1, and compound K demonstrated the most promising therapeutic prospects as potential adjuvant medicines for the treatment of diabetes. This paper highlights the underlying pharmacological mechanisms of the anti-diabetic effects of ginsenosides.
Collapse
Affiliation(s)
- Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
MIN JY, AHN SI, LEE YK, KWAK HS, CHANG YH. Optimized conditions to produce water-in-oil-in-water nanoemulsion and spray-dried nanocapsule of red ginseng extract. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.09517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
22
|
New Insights into the Mechanisms of Chinese Herbal Products on Diabetes: A Focus on the "Bacteria-Mucosal Immunity-Inflammation-Diabetes" Axis. J Immunol Res 2017; 2017:1813086. [PMID: 29164155 PMCID: PMC5661076 DOI: 10.1155/2017/1813086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes, especially type 2, has been rapidly increasing all over the world. Although many drugs have been developed and used to treat diabetes, side effects and long-term efficacy are of great challenge. Therefore, natural health product and dietary supplements have been of increasing interest alternatively. In this regard, Chinese herbs and herbal products have been considered a rich resource of product development. Although increasing evidence has been produced from various scientific studies, the mechanisms of action are lacking. Here, we have proposed that many herbal monomers and formulae improve glucose homeostasis and diabetes through the BMID axis; B represents gut microbiota, M means mucosal immunity, I represents inflammation, and D represents diabetes. Chinese herbs have been traditionally used to treat diabetes, with minimal side and toxic effects. Here, we reviewed monomers such as berberine, ginsenoside, M. charantia extract, and curcumin and herbal formulae such as Gegen Qinlian Decoction, Danggui Liuhuang Decoction, and Huanglian Wendan Decoction. This review was intended to provide new perspectives and strategies for future diabetes research and product.
Collapse
|
23
|
Lee YK, Choi KH, Kwak HS, Chang YH. The preventive effects of nanopowdered red ginseng on collagen-induced arthritic mice. Int J Food Sci Nutr 2017; 69:308-317. [PMID: 28770639 DOI: 10.1080/09637486.2017.1358359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was carried out to investigate the efficiency of red ginseng nanopowder in preventing collagen-induced arthritis (CIA) in mice. The mice were divided into five groups: normal group (no immunisation), control (CIA), powdered red ginseng (PRG), nanopowdered red ginseng (NRG) and methotrexate (MTX). Administering MTX, PRG and NRG to arthritic mice significantly decreased spleen indexes, clinical and histological scores compared to control group. Serum analysis of NRG and MTX groups showed a reduction in the cytokines such as the levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β) in comparison to PRG group. The levels of immunoglobulin M (IgM) and immunoglobulin G1 (IgG1) in the NRG group were significantly lower than those of the PRG group. In summary, the present study indicated that NRG can be effective in preventing type II collagen-induced rheumatoid arthritis in mice.
Collapse
Affiliation(s)
- Yun-Kyung Lee
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| | - Kyung-Hoon Choi
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Hae-Soo Kwak
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Yoon Hyuk Chang
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
24
|
Neuroprotective Effect of the Ginsenoside Rg1 on Cerebral Ischemic Injury In Vivo and In Vitro Is Mediated by PPAR γ-Regulated Antioxidative and Anti-Inflammatory Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7842082. [PMID: 28656054 PMCID: PMC5471560 DOI: 10.1155/2017/7842082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
The ginsenoside Rg1 exerts a neuroprotective effect during cerebral ischemia/reperfusion injury. Rg1 has been previously reported to improve PPARγ expression and signaling, consequently enhancing its regulatory processes. Due to PPARγ's role in the suppression of oxidative stress and inflammation, Rg1's PPARγ-normalizing capacity may play a role in the observed neuroprotective action of Rg1 during ischemic brain injury. We utilized a middle cerebral artery ischemia/reperfusion injury model in rats in addition to an oxygen glucose deprivation model in cortical neurons to elucidate the mechanisms underlying the neuroprotective effects of Rg1. We found that Rg1 significantly increased PPARγ expression and reduced multiple indicators of oxidative stress and inflammation. Ultimately, Rg1 treatment improved neurological function and diminished brain edema, indicating that Rg1 may exert its neuroprotective action on cerebral ischemia/reperfusion injury through the activation of PPARγ signaling. In addition, the present findings suggested that Rg1 was a potent PPARγ agonist in that it upregulated PPARγ expression and was inhibited by GW9662, a selective PPARγ antagonist. These findings expand our previous understanding of the molecular basis of the therapeutic action of Rg1 in cerebral ischemic injury, laying the ground work for expanded study and clinical optimization of the compound.
Collapse
|
25
|
Igami K, Shimojo Y, Ito H, Miyazaki T, Nakano F, Kashiwada Y. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ. J Med Food 2017; 19:817-22. [PMID: 27627700 DOI: 10.1089/jmf.2016.3673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator activated receptor (PPAR) is a nuclear receptor that is one of the transcription factors regulating lipid and glucose metabolism. Fermented ginseng (FG) is a ginseng fermented by Lactobacillus paracasei A221 containing minor ginsenosides and metabolites of fermentation. DNA microarray analysis of rat liver treated with FG indicated that FG affects on lipid metabolism are mediated by PPAR-α. To identify a PPAR-α agonist in FG, PPAR-α transcription reporter assay-guided fractionation was performed. The fraction obtained from the MeOH extract of FG, which showed potent transcription activity of PPAR-α, was fractionated by silica gel column chromatography into 16 subfractions, and further separation and crystallization gave compound 1 together with four known constituents of ginseng, including 20(R)- and 20(S)-protopanaxadiol, and 20(R)- and 20(S)-ginsenoside Rh1. The structure of compound 1 was identified as 10-hydroxy-octadecanoic acid by (1)H- and (13)C-NMR spectra and by EI-MS analysis of the methyl ester of 1. Compound 1 demonstrated much higher transcription activity of PPAR-α than the other isolated compounds. In addition, compound 1 also showed 5.5-fold higher transcription activity of PPAR-γ than vehicle at the dose of 20 μg/mL. In the present study, we identified 10-hydroxy-octadecanoic acid as a dual PPAR-α/γ agonist in FG. Our study suggested that metabolites of fermentation, in addition to ginsenosides, contribute to the health benefits of FG.
Collapse
Affiliation(s)
- Kentaro Igami
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan .,2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| | - Yosuke Shimojo
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan
| | - Hisatomi Ito
- 1 Research & Development Center, Nagase and Co., Ltd. , Kobe, Japan
| | | | - Fusako Nakano
- 2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| | - Yoshiki Kashiwada
- 2 Graduate School of Pharmaceutical Sciences, Tokushima University , Tokushima, Japan
| |
Collapse
|
26
|
Wang DD, Jin Y, Wang C, Kim YJ, Perez ZEJ, Baek NI, Mathiyalagan R, Markus J, Yang DC. Rare ginsenoside Ia synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene from Bacillus subtilis: synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells. J Ginseng Res 2016; 42:42-49. [PMID: 29348721 PMCID: PMC5766694 DOI: 10.1016/j.jgr.2016.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background Ginsenoside F1 has been described to possess skin-whitening effects on humans. We aimed to synthesize a new ginsenoside derivative from F1 and investigate its cytotoxicity and melanogenesis inhibitory activity in B16BL6 cells using recombinant glycosyltransferase enzyme. Glycosylation has the advantage of synthesizing rare chemical compounds from common compounds with great ease. Methods UDP-glycosyltransferase (BSGT1) gene from Bacillus subtilis was selected for cloning. The recombinant glycosyltransferase enzyme was purified, characterized, and utilized to enzymatically transform F1 into its derivative. The new product was characterized by NMR techniques and evaluated by MTT, melanin count, and tyrosinase inhibition assay. Results The new derivative was identified as (20S)-3β,6α,12β,20-tetrahydroxydammar-24-ene-20-O-β-D-glucopyranosyl-3-O-β-D-glucopyranoside (ginsenoside Ia), which possesses an additional glucose linked into the C-3 position of substrate F1. Ia had been previously reported; however, no in vitro biological activity was further examined. This study focused on the mass production of arduous ginsenoside Ia from accessible F1 and its inhibitory effect of melanogenesis in B16BL6 cells. Ia showed greater inhibition of melanin and tyrosinase at 100 μmol/L than F1 and arbutin. These results suggested that Ia decreased cellular melanin synthesis in B16BL6 cells through downregulation of tyrosinase activity. Conclusion To our knowledge, this is the first study to report on the mass production of rare ginsenoside Ia from F1 using recombinant UDP-glycosyltransferase isolated from B. subtillis and its superior melanogenesis inhibitory activity in B16BL6 cells as compared to its precursor. In brief, ginsenoside Ia can be applied for further study in cosmetics.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Replubic of Korea
| | - Yan Jin
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Replubic of Korea
| | - Chao Wang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Replubic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Replubic of Korea
| | | | - Nam In Baek
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Replubic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Replubic of Korea
| | - Josua Markus
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Replubic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Replubic of Korea.,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Replubic of Korea
| |
Collapse
|
27
|
Effect of High Glucose Concentration on Human Preadipocytes and Their Response to Macrophage-Conditioned Medium. Can J Diabetes 2016; 40:411-418. [DOI: 10.1016/j.jcjd.2016.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
|
28
|
Ha BG, Park JE, Shon YH. Stimulatory Effect of Balanced Deep-Sea Water Containing Chitosan Oligosaccharides on Glucose Uptake in C2C12 Myotubes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:475-484. [PMID: 27215753 DOI: 10.1007/s10126-016-9709-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Deep-sea water (DSW) and chitosan oligosaccharides (COS) have recently drawn much attention because of their potential medical and pharmaceutical applications. Balanced DSW (BDSW) was prepared by mixing DSW mineral extracts and desalinated water. This study investigated the effects of BDSW, COS, and BDSW containing COS on glucose uptake and their mode of action in mature C2C12 myotubes. BDSW and COS increased glucose uptake in a dose-dependent manner. BDSW containing COS synergistically increased glucose uptake; this was dependent on the activation of insulin receptor substrate 1 and protein kinase C in insulin-dependent signaling pathways as well as liver kinase B1, AMP-activated protein kinase, and mammalian target of rapamycin in insulin-independent signaling pathways. Quantitative real-time polymerase chain reaction revealed that the expressions of the following genes related to glucose uptake were elevated: glucose transporter 4 (GLUT4), insulin-responsive aminopeptidase, and vesicle-associated membrane protein 2 for abundant proteins of GLUT4 storage vesicles (GSVs); syntaxin 4 and soluble N-ethylmaleimide-sensitive factor attachment protein 23 for trafficking between the plasma membrane and GSVs; and syntaxin 6 and syntaxin 16 for trafficking between GSVs and the trans-Golgi network. Taken together, these results suggest BDSW containing COS has a greater stimulatory effect on glucose uptake than BDSW or COS alone. Moreover, this effect is mediated by the stimulation of diverse signaling pathways via the activation of main signaling molecules related to GSV trafficking.
Collapse
Affiliation(s)
- Byung Geun Ha
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea
| | - Jung-Eun Park
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea
| | - Yun Hee Shon
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea.
| |
Collapse
|
29
|
Wang J, Cui C, Fu L, Xiao Z, Xie N, Liu Y, Yu L, Wang H, Luo B. Genomic expression profiling and bioinformatics analysis on diabetic nephrology with ginsenoside Rg3. Mol Med Rep 2016; 14:1162-72. [PMID: 27279428 PMCID: PMC4940079 DOI: 10.3892/mmr.2016.5349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 04/19/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN), a common diabetes-related complication, is the leading cause of progressive chronic kidney disease (CKD) and end‑stage renal disease. Despite the rapid development in the treatment of DN, currently available therapies used in early DN cannot prevent progressive CKD. The exact pathogenic mechanisms and the molecular events underlying DN development remain unclear. Ginsenoside Rg3 is a herbal medicine with numerous pharmacological effects. To gain a greater understanding of the molecular mechanism and signaling pathway underlying the effect of ginsenoside Rg3 in DN therapy, an RNA sequencing approach was performed to screen differential gene expression in a rat model of DN treated with ginsenoside Rg3. A combined bioinformatics analysis was then conducted to obtain insights into the underlying molecular mechanisms of the disease development, in order to identify potential novel targets for the treatment of DN. Six Sprague‑Dawley male rats were randomly divided into 3 groups: Normal control group, DN group and ginsenoside‑Rg3 treatment group, with two rats in each group. RNA sequencing was adopted for transcriptome profiling of cells from the renal cortex of DN rat model. Differentially expressed genes were screened out. Cluster analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to analyze the differentially expressed genes. In total, 78 differentially expressed genes in the DN control group were identified when compared with the normal control group, of which 52 genes were upregulated and 26 genes were downregulated. Differential expression of 43 genes was observed in the ginsenoside‑Rg3 treatment group when compared with the DN control group, consisting of 10 upregulated genes and 33 downregulated genes. Notably, 21 that were downregulated in the DN control group compared with the control were then shown to be upregulated in the ginsenoside‑Rg3 treatment group compared with the DN control group. In addition, 7 upregulated genes in the DN control group compared with the control were then shown to be downregulated in the ginsenoside‑Rg3 treatment group compared with the DN control group. Cluster analysis based on differentially expressed genes indicated that the transcriptomes are quite different among the samples. Distinct GO terms associated with these groups of genes were shown to be enriched. KEGG pathway analysis demonstrated that differentially expressed genes were predominantly involved in the fatty acid metabolism pathway and peroxisome proliferator‑activated receptor (PPAR) signaling pathway. To the best of our knowledge, this study was the first to present whole genome expression profiling in DN with ginsenoside‑Rg3 treatment by RNA‑Seq. A set of differentially expressed genes and pathways were identified. These data provided an insight into understanding the molecular mechanisms underlying the effect of ginsenoside‑Rg3 treatment of DN.
Collapse
Affiliation(s)
- Juan Wang
- Department of Geriatric, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Chunli Cui
- Department of Nephrology, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Li Fu
- Dalian Fusheng Natural Pharmaceutical Development Co. Ltd., Dalian, Liaoning 116600, P.R. China
| | - Zili Xiao
- Shanghai Jinfang Biotechnology Co. Ltd., Shanghai 201210, P.R. China
| | - Nanzi Xie
- Department of Geriatric, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Yang Liu
- Department of Geriatric, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Lu Yu
- Department of Geriatric, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Haifeng Wang
- Department of Geriatric, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Bangzhen Luo
- Department of Geriatric, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
30
|
Wang WN, Yan BX, Xu WD, Qiu Y, Guo YL, Qiu ZD. Highly Selective Bioconversion of Ginsenoside Rb1 to Compound K by the Mycelium of Cordyceps sinensis under Optimized Conditions. Molecules 2015; 20:19291-309. [PMID: 26512632 PMCID: PMC6332142 DOI: 10.3390/molecules201019291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
Compound K (CK), a highly active and bioavailable derivative obtained from protopanaxadiol ginsenosides, displays a wide variety of pharmacological properties, especially antitumor activity. However, the inadequacy of natural sources limits its application in the pharmaceutical industry. In this study, we firstly discovered that Cordyceps sinensis was a potent biocatalyst for the biotransformation of ginsenoside Rb1 into CK. After a series of investigations on the biotransformation parameters, an optimal composition of the biotransformation culture was found to be lactose, soybean powder and MgSO₄ without controlling the pH. Also, an optimum temperature of 30 °C for the biotransformation process was suggested in a range of 25 °C-50 °C. Then, a biotransformation pathway of Rb1→Rd→F2→CK was established using high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Our results demonstrated that the molar bioconversion rate of Rb1 to CK was more than 82% and the purity of CK produced by C. sinensis under the optimized conditions was more than 91%. In conclusion, the combination of C. sinensis and the optimized conditions is applicable for the industrial preparation of CK for medicinal purposes.
Collapse
Affiliation(s)
- Wei-Nan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bing-Xiong Yan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wen-Di Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yun-Long Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhi-Dong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
31
|
Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res 2015; 39:299-303. [PMID: 26869821 PMCID: PMC4593783 DOI: 10.1016/j.jgr.2015.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/08/2015] [Indexed: 01/05/2023] Open
Abstract
Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Balearic Islands, Spain
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:752610. [PMID: 26089946 PMCID: PMC4451781 DOI: 10.1155/2015/752610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of disability and death worldwide. Research into the disease has led to many compelling hypotheses regarding the pathophysiology of atherosclerotic lesion formation and the resulting complications such as myocardial infarction and stroke. Herbal medicine has been widely used in China as well as other Asian countries for the treatment of cardiovascular diseases for hundreds of years; however, the mechanisms of action of Chinese herbal medicine in the prevention and treatment of atherosclerosis have not been well studied. In this review, we briefly describe the mechanisms of atherogenesis and then summarize the research that has been performed in recent years regarding the effectiveness and mechanisms of antiatherogenic Chinese herbal compounds in an attempt to build a bridge between traditional Chinese medicine and cellular and molecular cardiovascular medicine.
Collapse
|
33
|
Shao X, Li N, Zhan J, Sun H, An L, Du P. Protective Effect of Compound K on Diabetic Rats. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose Compound K (CK), the metabolic product of protopanaxadiol saponin in vivo, has many pharmacological activities. In this study, we discuss the preparation of CK, and its protective effect on kidneys of diabetic rats. CK was prepared from ginsenoside Rb1 after transformation by β-glucosidase, separation and purification by silica gel column chromatography. In the present study, we established a rat model of diabetes mellitus using high-fat diet and streptozotocin (STZ). After seven weeks of treatment, the levels of fasting blood glucose (FBG), total cholesterol (TC), total glycerin (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), blood urea nitrogen (BUN), uric acid (UA), serum creatinine (Scr), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) were evaluated in normal and diabetic rats. Also, renal pathomorphism changes were observed by HE stain, and TGF-β1 protein expression in the renal tissue was measured by Western blot. The yield of CK was 14.55 mg/mL, which was higher than that of other methods. After seven weeks, CK could decrease FBG, TC, TG, LDL-C, BUN, UA, Scr and MDA of diabetic rats, while CK also enhanced HDL-C and GSH, SOD and GSH-PX. Additionally, CK improved the pathological changes and decreased TGF-β1 protein expression in the renal tissue. CK improved the pathological changes in the renal tissue, enhanced the antioxidant capacity, reduced the damage of TGF-β1 to renal tissue, and protected the diabetic rats.
Collapse
Affiliation(s)
- Xiaotong Shao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Na Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Jinzhuo Zhan
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Hui Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | | | | |
Collapse
|
34
|
Production of aglycone protopanaxatriol from ginseng root extract using Dictyoglomus turgidum β-glycosidase that specifically hydrolyzes the xylose at the C-6 position and the glucose in protopanaxatriol-type ginsenosides. Appl Microbiol Biotechnol 2013; 98:3659-67. [DOI: 10.1007/s00253-013-5302-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
35
|
Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2013; 36:27-39. [PMID: 23717101 PMCID: PMC3659569 DOI: 10.5142/jgr.2012.36.1.27] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 01/09/2023] Open
Abstract
Panax ginseng exhibits pleiotropic beneficial effects on cardiovascular system, central nervous system, and immune system. In the last decade, numerous preclinical findings suggest ginseng as a promising therapeutic agent for diabetes prevention and treatment. The mechanism of ginseng and its active components is complex and is demonstrated to either modulate insulin production/secretion, glucose metabolism and uptake, or inflammatory pathway in both insulin-dependent and insulin-independent manners. However, human studies are remained obscure because of contradictory results. While more studies are warranted to further understand these contradictions, ginseng holds promise as a therapeutic agent for diabetes prevention and treatment. This review summarizes the evidences for the therapeutic potential of ginseng and ginsenosides from in vitro studies, animal studies and human clinical trials with a focus on diverse molecular targets including an AMP-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Hai-Dan Yuan
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
36
|
Quan LH, Wang C, Jin Y, Wang TR, Kim YJ, Yang DC. Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3. Antonie Van Leeuwenhoek 2013; 104:129-37. [PMID: 23670791 DOI: 10.1007/s10482-013-9933-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/03/2013] [Indexed: 11/27/2022]
Abstract
Ginsenoside Rb2 was transformed by recombinant glycosidase (Bgp2) into ginsenosides Rd and 20(S)-Rg3. The bgp2 gene consists of 2,430 bp that encode 809 amino acids, and this gene has homology to the glycosyl hydrolase family 2 protein domain. SDS-PAGE was used to determine that the molecular mass of purified Bgp2 was 87 kDa. Using 0.1 mg ml(-1) of enzyme in 20 mM sodium phosphate buffer at 40 °C and pH 7.0, 1.0 mg ml(-1) ginsenoside Rb2 was transformed into 0.47 mg ml(-1) ginsenoside 20(S)-Rg3 within 120 min, with a corresponding molar conversion yield of 65 %. Bgp2 hydrolyzed the ginsenoside Rb2 along the following pathway: Rb2 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb2 to ginsenoside 20(S)-Rg3 using the recombinant glycosidase.
Collapse
Affiliation(s)
- Lin-Hu Quan
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung-Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
37
|
Optimization of enzymatic treatment for compound K production from white ginseng extract by response surface methodology. Biosci Biotechnol Biochem 2013; 77:1138-40. [PMID: 23649233 DOI: 10.1271/bbb.120823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ginsenoside 20-O-β-D glucopyranosyl-20(S)-protopanaxadiol (compound K), a minor ginsenoside, is not found in white raw ginseng, but has better bioavailability than the major ginsenosides in ginseng. Employing commercial enzyme packages for industrial applications, the optimum conditions for enzymatic transformation for the highest content of compound K was explored to enhance the health benefits of ginseng extract. Cytolase PCL 5 was selected from commercial enzyme packages nominated for high β-glucosidase activity. By response surface methodology, the optimal conditions were identified as 78 h of treatment at pH 4.3 at 55.4 °C for 2.068 mg/mL of compound K, showing good agreement with the experimental value.
Collapse
|
38
|
Quan Q, Wang J, Li X, Wang Y. Ginsenoside Rg1 decreases Aβ(1-42) level by upregulating PPARγ and IDE expression in the hippocampus of a rat model of Alzheimer's disease. PLoS One 2013; 8:e59155. [PMID: 23520555 PMCID: PMC3592813 DOI: 10.1371/journal.pone.0059155] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/11/2013] [Indexed: 02/03/2023] Open
Abstract
Background and Purpose The present study was designed to examine the effects of ginsenoside Rg1 on expression of peroxisome proliferator-activated receptor γ (PPARγ) and insulin-degrading enzyme (IDE) in the hippocampus of rat model of Alzheimer's disease (AD) to determine how ginsenoside Rg1 (Rg1) decreases Aβ levels in AD. Experimental Approach Experimental AD was induced in rats by a bilateral injection of 10 µg soluble beta-amyloid peptide 1–42 (Aβ1–42) into the CA1 region of the hippocampus, and the rats were treated with Rg1 (10 mg·kg−1, intraperitoneally) for 28 days. The Morris water maze was used to test spatial learning and memory performance. Hematoxylin-eosin staining was performed to analyze the hippocampal histopathological damage. Immunohistochemistry, western blotting, and real-time PCR were used to detect Aβ1–42, PPARγ, and insulin-degrading enzyme (IDE) expression in the hippocampus. Key Results Injection of soluble Aβ1–42 into the hippocampus led to significant dysfunction of learning and memory, hippocampal histopathological abnormalities and increased Aβ1–42 levels in the hippocampus. Rg1 treatment significantly improved learning and memory function, attenuated hippocampal histopathological abnormalities, reduced Aβ1–42 levels and increased PPARγ and IDE expression in the hippocampus; these effects of Rg1 could be effectively inhibited by GW9662, a PPARγ antagonist. Conclusions and Implications Given that PPARγ can upregulate IDE expression and IDE can degrade Aβ1–42, these results indicate that Rg1 can increase IDE expression in the hippocampus by upregulating PPARγ, leading to decreased Aβ levels, attenuated hippocampal histopathological abnormalities and improved learning and memory in a rat model of AD.
Collapse
Affiliation(s)
- QianKun Quan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an, China
- * E-mail:
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Yi Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an, China
| |
Collapse
|
39
|
Quan LH, Kim YJ, Li GH, Choi KT, Yang DC. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius. World J Microbiol Biotechnol 2013; 29:1001-7. [DOI: 10.1007/s11274-013-1260-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
|
40
|
Nutritional supplements and their effect on glucose control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:381-95. [PMID: 23393691 DOI: 10.1007/978-1-4614-5441-0_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As diabetes mellitus (DM) continues to be a growing health concern, many people have been turning to natural health products (NHPs) in order to manage this condition, adjunctive to, or even in place of conventional therapies. In order to keep up with this trend, research focussing on the efficacy and mechanisms behind the most common NHPs has been growing amongst the scientific community. The purpose of this chapter is to search and compile scientific literature focussing on the most commonly used NHPs in diabetes treatment, so to educate health professionals on the efficacy, safety and dosage of these products. From our findings, it is apparent that there are promising results from many studies on the potential benefit of NHPs in the treatment of diabetes. Nonetheless, many of the herbs and single nutraceuticals still require further studies in order to confirm safety, dosage and potential interactions with standard conventional therapies. Soluble fibre, alpha lipoic acid, milk thistle, prickly pear cactus and pycnogenol appear to be the most beneficial in the treatment of diabetes.
Collapse
|
41
|
Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenoside-hydrolyzing β-glycosidase from Microbacterium esteraromaticum. ACTA ACUST UNITED AC 2012; 39:1557-62. [DOI: 10.1007/s10295-012-1158-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Abstract
The ginsenoside-hydrolyzing β-glycosidase (Bgp3) derived from Microbacterium esteraromaticum transformed the major ginsenoside Rb2 to more pharmacologically active minor ginsenosides including compounds Y and K. The bgp3 gene consists of 2,271 bp encoding 756 amino acids which have homology to the glycosyl hydrolase family 3 protein domain. Bgp3 is capable of hydrolyzing beta-glucose links and arabinose links. HPLC analysis of the time course of ginsenoside Rb2 hydrolysis by Bgp3 (0.1 mg enzyme ml−1 in 20 mM sodium phosphate buffer at 40 °C and pH 7.0) showed that the glycosidase first hydrolyzed the inner glucose moiety attached to the C-3 position and then the arabinopyranose moiety attached to the C-20 position. Thus, Bgp3 hydrolyzed the ginsenoside Rb2 via the following pathway: Rb2 → compound Y → compound K.
Collapse
|
42
|
Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 2011; 34:1201-8. [PMID: 21811928 DOI: 10.1007/s12272-011-0719-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/29/2011] [Accepted: 04/12/2011] [Indexed: 01/26/2023]
Abstract
Ginsenosides, which are active compounds found in ginseng (Panax ginseng), are used as antidiabetic treatments. The aim of this study was to determine whether Rb2, a type of ginsenoside, regulates hepatic gluconeogenesis through AMP-activated protein kinase (AMPK) and the orphan nuclear receptor small heterodimer partner (SHP) in hyperlipidemic conditions used as an in vitro model of type 2 diabetes. Considering these results, we concluded that Rb2 may inhibit palmitate-induced gluconeogenesis via AMPK-induced SHP by relieving ER stress, a cause of gluconeogenesis.
Collapse
Affiliation(s)
- Kyoung-Tae Lee
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Effects of farnesoid X receptor on the expression of the fatty acid synthetase and hepatic lipase. Mol Biol Rep 2010; 38:553-9. [PMID: 20373033 DOI: 10.1007/s11033-010-0140-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays an important role in the homeostasis of bile acid, cholesterol, lipoprotein and triglyceride. In this report, we identified fatty acid synthase (FAS) and hepatic lipase (HL) genes as novel target genes of FXR. Human hepatoma HepG2 cells were treated with chenodeoxycholic acid, the natural FXR ligand, and the messenger RNA and protein levels of FAS and HL were determined by RT-PCR and Western blot analysis, respectively. Chenodeoxycholic acid (CDCA) down-regulated the expression of FAS and HL genes in a dose and time-dependent manner in human hepatoma HepG2 cells. In addition, treatment of mice with CDCA significantly decreased the expression of FAS and HL in mouse liver and the activity of HL. These results demonstrated that FAS and HL might be FXR-regulated genes in liver cells. In view of the role of FAS and HL in lipogenesis and plasma lipoprotein metabolism, our results further support the central role of FXR in the homeostasis of fatty acid and lipid.
Collapse
|