1
|
Fatima J, Siddique YH. Application of Nanocomposites and Nanoparticles in Treating Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1217-1233. [PMID: 38288843 DOI: 10.2174/0118715273283338240104112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 08/28/2024]
Abstract
Neurodegenerative diseases represent a formidable global health challenge, affecting millions and imposing substantial burdens on healthcare systems worldwide. Conditions, like Alzheimer's, Parkinson's, and Huntington's diseases, among others, share common characteristics, such as neuronal loss, misfolded protein aggregation, and nervous system dysfunction. One of the major obstacles in treating these diseases is the presence of the blood-brain barrier, limiting the delivery of therapeutic agents to the central nervous system. Nanotechnology offers promising solutions to overcome these challenges. In Alzheimer's disease, NPs loaded with various compounds have shown remarkable promise in preventing amyloid-beta (Aβ) aggregation and reducing neurotoxicity. Parkinson's disease benefits from improved dopamine delivery and neuroprotection. Huntington's disease poses its own set of challenges, but nanotechnology continues to offer innovative solutions. The promising developments in nanoparticle-based interventions for neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), have offered new avenues for effective treatment. Nanotechnology represents a promising frontier in biomedical research, offering tailored solutions to the complex challenges posed by neurodegenerative diseases. While much progress has been made, ongoing research is essential to optimize nanomaterial designs, improve targeting, and ensure biocompatibility and safety. Nanomaterials possess unique properties that make them excellent candidates for targeted drug delivery and neuroprotection. They can effectively bypass the blood-brain barrier, opening doors to precise drug delivery strategies. This review explores the extensive research on nanoparticles (NPs) and nanocomposites in diagnosing and treating neurodegenerative disorders. These nanomaterials exhibit exceptional abilities to target neurodegenerative processes and halt disease progression.
Collapse
Affiliation(s)
- Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
2
|
Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Int J Mol Sci 2023; 24:10127. [PMID: 37373274 DOI: 10.3390/ijms241210127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have gradually attracted everyone's attention, and they also play an important role in the occurrence and development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necroptosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase 1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the cell contents and the activation of a strong inflammatory response. Neurological disorders remain a clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can aggravate the occurrence and development of neurological diseases. This article reviews the specific mechanisms of these three types of cell death and their relationship with neurological diseases and the evidence for the role of the three types of cell death in neurological diseases; understanding these pathways and their mechanisms is helpful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Sitong Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Shiwei Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Rahmani H, Moloudi MR, Hashemi P, Hassanzadeh K, Izadpanah E. Alpha-Pinene Alleviates Motor Activity in Animal Model of Huntington's Disease via Enhancing Antioxidant Capacity. Neurochem Res 2023; 48:1775-1782. [PMID: 36689085 DOI: 10.1007/s11064-023-03860-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Huntington's disease (HD) is a progressive, neurodegenerative, and inherited disease. Antioxidants have been shown to be effective in slowing disease progression in animal models of HD and are under investigation in human clinical trials. α-pinene, a member of the monoterpene class, has been shown to exert antioxidant activity. Therefore, this study aimed to investigate the impact of α-pinene on animal model of HD. Thirty-two male Wistar rats received 3-Nitropropionic acid (3-NP) for induction of the disease model or treated with α-pinene + 3-NP in different groups. Motor skill, and biochemical evaluations to detect oxidant/antioxidant markers in rat cortex and striatum were performed in all groups. We found that α-pinene significantly improved 3-NP-induced changes in the body weight, rotarod activity, time taken to cross the narrow beam, and locomotor activity. Biochemical analysis revealed that α-pinene significantly decreased the 3NP-induced elevation in oxidant markers, nitrite, and malondialdehyde in both cortex and striatum. In addition, α-pinene counteracted the 3-NP-induced fall in antioxidant enzymes, including superoxide dismutase, catalase, and glutathione in the cortex and striatum. In conclusion, we found that α-pinene prevented the motor dysfunction induced by 3-NP in the animal model of Huntington's disease. Oxidants-antioxidant balance might be involved in the protective effect of α-pinene.
Collapse
Affiliation(s)
- Helia Rahmani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Neurosciences Research Center, research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Paria Hashemi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Pasdaran Avenue, Sanandaj, Kurdistan Province, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Pasdaran Avenue, Sanandaj, Kurdistan Province, Iran. .,Fondazione Pisana per la Scienza, Pisa, Italy.
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Pasdaran Avenue, Sanandaj, Kurdistan Province, Iran.
| |
Collapse
|
4
|
Yao S, Zhang X, Jin X, Yang M, Li Y, Yang L, Xu J, Lei B. Proteomic Profiling Reveals Increased Glycolysis, Decreased Oxidoreductase Activity and Fatty Acid Degradation in Skin Derived Fibroblasts from LHON Patients Bearing m.G11778A. Biomolecules 2022; 12:1568. [PMID: 36358916 PMCID: PMC9687919 DOI: 10.3390/biom12111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 04/28/2024] Open
Abstract
LHON is a common blinding inherited optic neuropathy caused by mutations in mitochondrial genes. In this study, by using skin fibroblasts derived from LHON patients with the most common m.G11778A mutation and healthy objects, we performed proteomic analysis to document changes in molecular proteins, signaling pathways and cellular activities. Furthermore, the results were confirmed by functional studies. A total of 860 differential expression proteins were identified, containing 624 upregulated and 236 downregulated proteins. Bioinformatics analysis revealed increased glycolysis in LHON fibroblasts. A glycolysis stress test showed that ECAR (extra-cellular acidification rate) values increased, indicating an enhanced level of glycolysis in LHON fibroblasts. Downregulated proteins were mainly enriched in oxidoreductase activity. Cellular experiments verified high levels of ROS in LHON fibroblasts, indicating the presence of oxidative damage. KEGG analysis also showed the metabolic disturbance of fatty acid in LHON cells. This study provided a proteomic profile of skin fibroblasts derived from LHON patients bearing m.G11778A. Increased levels of glycolysis, decreased oxidoreductase activity and fatty acid metabolism could represent the in-depth mechanisms of mitochondrial dysfunction mediated by the mutation. The results provided further evidence that LHON fibroblast could be an alternative model for investigating the devastating disease.
Collapse
Affiliation(s)
- Shun Yao
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xiaoli Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiuxiu Jin
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Mingzhu Yang
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ya Li
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Lin Yang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jin Xu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Lei
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Lopes C, Ferreira IL, Maranga C, Beatriz M, Mota SI, Sereno J, Castelhano J, Abrunhosa A, Oliveira F, De Rosa M, Hayden M, Laço MN, Januário C, Castelo Branco M, Rego AC. Mitochondrial and redox modifications in early stages of Huntington's disease. Redox Biol 2022; 56:102424. [PMID: 35988447 PMCID: PMC9420526 DOI: 10.1016/j.redox.2022.102424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/30/2023] Open
Abstract
Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression. Studies were performed in vivo in human brain by PET using [64Cu]-ATSM and ex vivo in human skin fibroblasts of premanifest and prodromal (Pre-M) and manifest HD carriers. In vivo brain [64Cu]-ATSM PET in YAC128 transgenic mouse and striatal and cortical isolated mitochondria were assessed at presymptomatic (3 month-old, mo) and symptomatic (6–12 mo) stages. Pre-M HD carriers exhibited enhanced whole-brain (with exception of caudate) [64Cu]-ATSM labelling, correlating with CAG repeat number. Fibroblasts from Pre-M showed enhanced basal and maximal respiration, proton leak and increased hydrogen peroxide (H2O2) levels, later progressing in manifest HD. Mitochondria from fibroblasts of Pre-M HD carriers also showed reduced circularity, while higher number of mitochondrial DNA copies correlated with maximal respiratory capacity. In vivo animal PET analysis showed increased accumulation of [64Cu]-ATSM in YAC128 mouse striatum. YAC128 mouse (at 3 months) striatal isolated mitochondria exhibited a rise in basal and maximal mitochondrial respiration and in ATP production, and increased complex II and III activities. YAC128 mouse striatal mitochondria also showed enhanced mitochondrial H2O2 levels and circularity, revealed by brain ultrastructure analysis, and defects in Ca2+ handling, supporting increased striatal susceptibility. Data demonstrate both human and mouse mitochondrial overactivity and altered morphology at early HD stages, facilitating redox unbalance, the latter progressing with manifest disease. Pre-manifest HD carriers and presymptomatic YAC128 mice show increased brain [64Cu]-ATSM labelling. Increased [64Cu]-ATSM brain retention correlates with raised ROS levels in human and mouse samples. Increased [64Cu]-ATSM correlates with enhanced mitochondrial activity and mtDNA copy number. Presymptomatic YAC128 mouse striatal mitochondria show altered morphology and Ca2+ handling.
Collapse
Affiliation(s)
- Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Carina Maranga
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - José Sereno
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - João Castelhano
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Antero Abrunhosa
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Francisco Oliveira
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Maura De Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Michael Hayden
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Mário N Laço
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Medical Genetics Unit, Pediatric Hospital of Coimbra, Coimbra University Hospital (CHUC), Coimbra, Portugal.
| | | | - Miguel Castelo Branco
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
7
|
Fotoohi A, Moloudi MR, Hosseini S, Hassanzadeh K, Feligioni M, Izadpanah E. A Novel Pharmacological Protective Role for Safranal in an Animal Model of Huntington's Disease. Neurochem Res 2021; 46:1372-1379. [PMID: 33611726 DOI: 10.1007/s11064-021-03271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Huntington's disease (HD) is a progressive, neurodegenerative and inherited disease and recent years have witnessed the understanding of the cellular and molecular mechanisms related to HD. Safranal, an organic compound isolated from saffron, has been reported to have anti-apoptotic, anti-inflammatory and antioxidant activity and has studied in chronic and neurodegenerative disease. Therefore, this study was aimed to investigate the effect of safranal on 3-NP induced locomotor activity and biochemical alterations in rats. To this aim, 40 male Wistar rats weighting 250-300 g were divided into 5 groups (n = 8) including sham, 3-NP group (10 mg/kg) as control and treatment groups (3-NP + safranal 0.75, 1.5 and 3 mg/kg) in two weeks duration of treatment. Behavioral/movement assessments in addition to oxidant/antioxidant markers in rat cortex and striatum were evaluated in control and treatment groups. Here, we found that safranal significantly alleviated 3-NP-induced changes of body weight, rotarod activity, number of vacuous chewing movements (VCMs), and locomotor activity. In addition, brain tissue assessments in cortex and striatum revealed that safranal could prevent the elevation of nitrite and malondialdehyde (MDA) levels as well as decrease of superoxide dismutase (SOD), catalase activity and glutathione (GSH) induced by 3-NP. In conclusion our results showed that safranal prevented the motor dysfunction induced by 3-NP in animal model of Huntington's disease. This effect might be due to its modulating effect on oxidants-antioxidant balance.
Collapse
Affiliation(s)
- Ahmad Fotoohi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saed Hosseini
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kudistan Province, Pasdaran Avenue, Sanandaj, Iran
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161, Rome, Italy
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161, Rome, Italy.
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144, Milan, Italy.
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kudistan Province, Pasdaran Avenue, Sanandaj, Iran.
| |
Collapse
|
8
|
Battista T, Pascarella G, Staid DS, Colotti G, Rosati J, Fiorillo A, Casamassa A, Vescovi AL, Giabbai B, Semrau MS, Fanelli S, Storici P, Squitieri F, Morea V, Ilari A. Known Drugs Identified by Structure-Based Virtual Screening Are Able to Bind Sigma-1 Receptor and Increase Growth of Huntington Disease Patient-Derived Cells. Int J Mol Sci 2021; 22:1293. [PMID: 33525510 PMCID: PMC7865886 DOI: 10.3390/ijms22031293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.
Collapse
Affiliation(s)
- Theo Battista
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - Gianmarco Pascarella
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - David Sasah Staid
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.C.); (A.L.V.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.C.); (A.L.V.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Angelo Luigi Vescovi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.C.); (A.L.V.)
| | - Barbara Giabbai
- Protein Facility, Structural Biology Lab, Elettra Sincrotrone Trieste, 34149 Basovizza, Italy; (B.G.); (M.S.S.); (P.S.)
| | - Marta Stefania Semrau
- Protein Facility, Structural Biology Lab, Elettra Sincrotrone Trieste, 34149 Basovizza, Italy; (B.G.); (M.S.S.); (P.S.)
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sergio Fanelli
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (S.F.); (F.S.)
| | - Paola Storici
- Protein Facility, Structural Biology Lab, Elettra Sincrotrone Trieste, 34149 Basovizza, Italy; (B.G.); (M.S.S.); (P.S.)
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (S.F.); (F.S.)
| | - Veronica Morea
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
| |
Collapse
|
9
|
Brandes MS, Gray NE. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro 2020; 12:1759091419899782. [PMID: 31964153 PMCID: PMC6977098 DOI: 10.1177/1759091419899782] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Increased reactive oxygen species production and oxidative stress have been implicated in the pathogenesis of numerous neurodegenerative conditions including among others Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Friedrich’s ataxia, multiple sclerosis, and stroke. The endogenous antioxidant response pathway protects cells from oxidative stress by increasing the expression of cytoprotective enzymes and is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). In addition to regulating the expression of antioxidant genes, NRF2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. This is because mitochondrial dysfunction and neuroinflammation are features of many neurodegenerative diseases as well NRF2 has emerged as a promising therapeutic target. Here, we review evidence for a beneficial role of NRF2 in neurodegenerative conditions and the potential of specific NRF2 activators as therapeutic agents.
Collapse
Affiliation(s)
- Mikah S. Brandes
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
10
|
An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020; 8:8748-8767. [DOI: 10.1039/d0tb01380c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanomaterials with excellent ROS-scavenging ability and biodistribution are considered as promising candidates in alleviating oxidative stress and restoring redox balance in CNS diseases, further facilitating the function recovery of the CNS.
Collapse
Affiliation(s)
- Zhen An
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
11
|
Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein. Int J Mol Sci 2019; 20:ijms20215338. [PMID: 31717806 PMCID: PMC6861992 DOI: 10.3390/ijms20215338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disorder, caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin protein (Htt). Mitochondrial dysfunction and impairment of the ubiquitin-proteasome system (UPS) are hallmarks of HD neurons. The extraneural manifestations of HD are still unclear. We investigated the crosstalk between mitochondria and proteolytic function in skin fibroblasts from juvenile HD patients. We found reduced mitosis, increased cell size, elevated ROS and increased mitochondrial membrane potential in juvenile HD fibroblasts, while cellular viability was maintained. Mitochondrial OXPHOS analysis did not reveal significant differences compared to control. However, the level of mitochondrial fusion and fission proteins was significantly lower and branching in the mitochondria network was reduced. We hypothesized that juvenile HD fibroblasts counterbalance cellular damage and mitochondrial network deficit with altered proteasome activity to promote cell survival. Our data reveal that juvenile HD fibroblasts exhibit higher proteasome activity, which was associated with elevated gene and protein expression of parkin. Moreover, we demonstrate elevated proteasomal degradation of the mitochondrial fusion protein Mfn1 in diseased cells compared to control cells. Our data suggest that juvenile HD fibroblasts respond to mutant polyQ expansion of Htt with enhanced proteasome activity and faster turnover of specific UPS substrates to protect cells.
Collapse
|
12
|
Jędrak P, Mozolewski P, Węgrzyn G, Więckowski MR. Mitochondrial alterations accompanied by oxidative stress conditions in skin fibroblasts of Huntington's disease patients. Metab Brain Dis 2018; 33:2005-2017. [PMID: 30120672 PMCID: PMC6244791 DOI: 10.1007/s11011-018-0308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/12/2018] [Indexed: 01/08/2023]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder manifesting as progressive impairment of motor function and different neuropsychiatric symptoms caused by an expansion of CAG repeats in huntingtin gene (HTT). Mitochondrial dysfunction and bioenergetic defects can contribute to the course of the disease, however, the molecular mechanism underlying this process is still largely unknown. In this study, we aimed to determine several mitochondrial parameters in HD fibroblasts and assess their relevance to the disease progression as well as to value mitochondrial pathology in peripheral cells as disease potential biomarker. We showed that HD fibroblasts demonstrate significantly lower growth rate compared to control fibroblasts despite the lack of cell cycle perturbations. In order to investigate mitochondrial contribution to cell growth differences between HD and healthy cells, we provided insight into various mitochondrial parameters. Conducted experiments have revealed a significant reduction of the ATP level in HD fibroblasts accompanied by a decrease in mitochondrial metabolic activity in relation to the cells from healthy donors. Importantly, there were no differences in the mitochondrial membrane potential (mtΔΨ) and OXPHOS complexes' levels. Slightly increased level of mitochondrial superoxide (mt. O2•-), but not cytosolic reactive oxygen species (cyt. ROS), has been demonstrated. We have also observed significantly elevated levels of some antioxidant enzymes (SOD2 and GR) which may serve as an indicator of antioxidant defense system in HD patients. Thus, we suggest that mitochondrial alterations in skin fibroblasts of Huntington's disease patients might be helpful in searching for novel disease biomarkers.
Collapse
Affiliation(s)
- Paulina Jędrak
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
13
|
Hung CLK, Maiuri T, Bowie LE, Gotesman R, Son S, Falcone M, Giordano JV, Gillis T, Mattis V, Lau T, Kwan V, Wheeler V, Schertzer J, Singh K, Truant R. A patient-derived cellular model for Huntington's disease reveals phenotypes at clinically relevant CAG lengths. Mol Biol Cell 2018; 29:2809-2820. [PMID: 30256717 PMCID: PMC6249865 DOI: 10.1091/mbc.e18-09-0590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The huntingtin protein participates in several cellular processes that are disrupted when the polyglutamine tract is expanded beyond a threshold of 37 CAG DNA repeats in Huntington’s disease (HD). Cellular biology approaches to understand these functional disruptions in HD have primarily focused on cell lines with synthetically long CAG length alleles that clinically represent outliers in this disease and a more severe form of HD that lacks age onset. Patient-derived fibroblasts are limited to a finite number of passages before succumbing to cellular senescence. We used human telomerase reverse transcriptase (hTERT) to immortalize fibroblasts taken from individuals of varying age, sex, disease onset, and CAG repeat length, which we have termed TruHD cells. TruHD cells display classic HD phenotypes of altered morphology, size and growth rate, increased sensitivity to oxidative stress, aberrant adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratios, and hypophosphorylated huntingtin protein. We additionally observed dysregulated reactive oxygen species (ROS)-dependent huntingtin localization to nuclear speckles in HD cells. We report the generation and characterization of a human, clinically relevant cellular model for investigating disease mechanisms in HD at the single-cell level, which, unlike transformed cell lines, maintains functions critical for huntingtin transcriptional regulation and genomic integrity.
Collapse
Affiliation(s)
- Claudia Lin-Kar Hung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura Erin Bowie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ryan Gotesman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Susie Son
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mina Falcone
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - James Victor Giordano
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Tammy Gillis
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Virginia Mattis
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Trevor Lau
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.,Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vanessa Wheeler
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jonathan Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Karun Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
14
|
Mollica PA, Zamponi M, Reid JA, Sharma DK, White AE, Ogle RC, Bruno RD, Sachs PC. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells. J Cell Sci 2018; 131:jcs.215343. [PMID: 29898922 DOI: 10.1242/jcs.215343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction in pluripotency and neurodevelopment are poorly understood. We had previously identified downregulation of selected DNA repair genes in HD fibroblasts relative to wild-type fibroblasts, as a result of promoter hypermethylation. Here, we tested the hypothesis that hypomethylation during cellular reprogramming to the induced pluripotent stem cell (iPSC) state leads to upregulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early stage HD-affected neural stem cells (HD-NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced in iPSCs, and maintained in HD-NSCs. We also identify that upregulation of 5-hmC increases ten-eleven translocation 1 and 2 (TET1/2) protein levels, and show their knockdown leads to a corresponding decrease in the expression of select DNA repair genes. We further confirm decreased expression of TET1/2-regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms associated with pluripotency induction lead to a recovery in the expression of select DNA repair gene and stabilize pathogenic TNRs in HD.
Collapse
Affiliation(s)
- Peter A Mollica
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Molecular Diagnostics Laboratory, Sentara Norfolk General Hospital, Norfolk, VA 23507, USA
| | - Martina Zamponi
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA 23529, USA
| | - John A Reid
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA 23529, USA
| | - Deepak K Sharma
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Alyson E White
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Roy C Ogle
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Robert D Bruno
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Patrick C Sachs
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
15
|
Shefa U, Kim MS, Jeong NY, Jung J. Antioxidant and Cell-Signaling Functions of Hydrogen Sulfide in the Central Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1873962. [PMID: 29507650 PMCID: PMC5817206 DOI: 10.1155/2018/1873962] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S), a toxic gaseous molecule, plays a physiological role in regulating homeostasis and cell signaling. H2S is produced from cysteine by enzymes, such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), cysteine aminotransferase (CAT), and 3-mercaptopyruvate sulfurtransferase (3MST). These enzymes regulate the overall production of H2S in the body. H2S has a cell-signaling function in the CNS and plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body. H2S is crucial for maintaining balanced amounts of antioxidants to protect the body from oxidative stress, and appropriate amounts of H2S are required to protect the CNS in particular. The body regulates CBS, 3MST, and CSE levels in the CNS, and higher or lower levels of these enzymes cause various neurodegenerative diseases. This review discusses how H2S protects the CNS by acting as an antioxidant that reduces excessive amounts of ROS and RNS. Additionally, H2S regulates cell signaling to combat neuroinflammation and protect against central neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Jędrak P, Krygier M, Tońska K, Drozd M, Kaliszewska M, Bartnik E, Sołtan W, Sitek EJ, Stanisławska-Sachadyn A, Limon J, Sławek J, Węgrzyn G, Barańska S. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metab Brain Dis 2017; 32:1237-1247. [PMID: 28508341 PMCID: PMC5504138 DOI: 10.1007/s11011-017-0026-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by mutations in the huntingtin gene. Involvement of mitochondrial dysfunctions in, and especially influence of the level of mitochondrial DNA (mtDNA) on, development of this disease is unclear. Here, samples of blood from 84 HD patients and 79 controls, and dermal fibroblasts from 10 HD patients and 9 controls were analysed for mtDNA levels. Although the type of mitochondrial haplogroup had no influence on the mtDNA level, and there was no correlation between mtDNA level in leukocytes in HD patients and various parameters of HD severity, some considerable differences between HD patients and controls were identified. The average mtDNA/nDNA relative copy number was significantly higher in leukocytes, but lower in fibroblasts, of symptomatic HD patients relative to the control group. Moreover, HD women displayed higher mtDNA levels in leukocytes than HD men. Because this is the largest population analysed to date, these results might contribute to explanation of discrepancies between previously published studies concerning levels of mtDNA in cells of HD patients. We suggest that the size of the investigated population and type of cells from which DNA is isolated could significantly affect results of mtDNA copy number estimation in HD. Hence, these parameters should be taken into consideration in studies on mtDNA in HD, and perhaps also in other diseases where mitochondrial dysfunction occurs.
Collapse
Affiliation(s)
- Paulina Jędrak
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Krygier
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Drozd
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Kaliszewska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Witold Sołtan
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
| | - Emilia J Sitek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jarosław Sławek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
17
|
Lewis EA, Smith GA. Using Drosophila models of Huntington's disease as a translatable tool. J Neurosci Methods 2015; 265:89-98. [PMID: 26241927 DOI: 10.1016/j.jneumeth.2015.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/17/2022]
Abstract
The Huntingtin (Htt) protein is essential for a wealth of intracellular signaling cascades and when mutated, causes multifactorial dysregulation of basic cellular processes. Understanding the contribution to each of these intracellular pathways is essential for the elucidation of mechanisms that drive pathophysiology. Using appropriate models of Huntington's disease (HD) is key to finding the molecular mechanisms that contribute to neurodegeneration. While mouse models and cell lines expressing mutant Htt have been instrumental to HD research, there has been a significant contribution to our understating of the disease from studies utilizing Drosophila melanogaster. Flies have an Htt protein, so the endogenous pathways with which it interacts are likely conserved. Transgenic flies engineered to overexpress the human mutant HTT gene display protein aggregation, neurodegeneration, behavioral deficits and a reduced lifespan. The short life span of flies, low cost of maintaining stocks and genetic tools available for in vivo manipulation make them ideal for the discovery of new genes that are involved in HD pathology. It is possible to do rapid genome wide screens for enhancers or suppressors of the mutant Htt-mediated phenotype, expressed in specific tissues or neuronal subtypes. However, there likely remain many yet unknown genes that modify disease progression, which could be found through additional screening approaches using the fly. Importantly, there have been instances where genes discovered in Drosophila have been translated to HD mouse models.
Collapse
Affiliation(s)
- Elizabeth A Lewis
- Neurobiology Department, Aaron Lazare Research Building, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gaynor A Smith
- Neurobiology Department, Aaron Lazare Research Building, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Chakraborty J, Rajamma U, Jana N, Mohanakumar K. Quercetin improves the activity of the ubiquitin-proteasomal system in 150Q mutated huntingtin-expressing cells but exerts detrimental effects on neuronal survivability. J Neurosci Res 2015; 93:1581-91. [DOI: 10.1002/jnr.23618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Affiliation(s)
- J. Chakraborty
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - U. Rajamma
- Manovikas Biomedical Research and Diagnostic Centre; Kolkata India
| | - N. Jana
- National Brain Research Centre; Gurgaon Haryana India
| | - K.P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
19
|
Fernandez-Estevez MA, Casarejos MJ, López Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, Perucho J, de Yebenes JG, Mena MA. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS One 2014; 9:e90202. [PMID: 24587280 PMCID: PMC3934989 DOI: 10.1371/journal.pone.0090202] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/26/2014] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive and psychiatric deficits, associated with predominant loss of striatal neurons and is caused by polyglutamine expansion in the huntingtin protein. Mutant huntingtin protein and its fragments are resistant to protein degradation and produce a blockade of the ubiquitin proteasome system (UPS). In HD models, the proteasome inhibitor epoxomicin aggravates protein accumulation and the inductor of autophagy, trehalose, diminishes it. We have investigated the effects of epoxomicin and trehalose in skin fibroblasts of control and HD patients. Untreated HD fibroblasts have increased the levels of ubiquitinized proteins and higher levels of reactive oxygen species (ROS), huntingtin and the autophagy marker LAMP2A. Baseline replication rates were higher in HD than in controls fibroblasts but that was reverted after 12 passages. Epoxomicin increases the activated caspase-3, HSP70, huntingtin, ubiquitinated proteins and ROS levels in both HD and controls. Treatment with trehalose counteracts the increase in ROS, ubiquitinated proteins, huntingtin and activated caspase-3 levels induced by epoxomicin, and also increases the LC3 levels more in HD fibroblast than controls. These results suggest that trehalose could revert protein processing abnormalities in patients with Huntington's Disease.
Collapse
Affiliation(s)
| | - Maria Jose Casarejos
- Department of Neurobiology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose López Sendon
- Department of Neurology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carolina Ruiz
- Department of Neurology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Gomez
- Department of Neurobiology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Perucho
- Department of Neurobiology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Justo García de Yebenes
- Department of Neurology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Mena
- Department of Neurobiology, Ramón y Cajal Hospital, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Chakraborty J, Singh R, Dutta D, Naskar A, Rajamma U, Mohanakumar KP. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington's Disease. CNS Neurosci Ther 2014; 20:10-9. [PMID: 24188794 PMCID: PMC6493046 DOI: 10.1111/cns.12189] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/18/2023] Open
Abstract
AIM Huntington's disease (HD) is an autosomal dominant disorder, for which clinically available drugs offer only symptomatic relief. These prescription drugs are not free of side effects, and the patients usually suffer from anxiety and depression. We investigated quercetin, a dietary flavonoid with free radical scavenging properties, for its beneficial potential if any, in 3-nitropropionic acid (3-NP)-induced HD in rats where both drugs were administered simultaneously. METHODS Performance of rats on beam balancing, elevated plus maze and gait traits were investigated following 3-NP and/or quercetin treatments for 4 days. Striatal biogenic amine levels and monoamine oxidase activity were assayed. Striatal sections were examined for Cd11B and glial fibrillary acidic protein immunoreactivity, and for evidences of neuronal lesion. RESULTS Quercetin significantly attenuated 3-NP-induced anxiety, motor coordination deficits, and gait despair. While the dopaminergic hyper-metabolism was unaffected, quercetin provided a significant reduction of 3-NP mediated increase in serotonin metabolism. Quercetin failed to affect 3-NP-induced striatal neuronal lesion, but decreased microglial proliferation, and increased astrocyte numbers in the lesion core. CONCLUSION These results taken together suggest that quercetin could be of potential use not only for correcting movement disturbances and anxiety in HD, but also for addressing inflammatory damages.
Collapse
Affiliation(s)
- Joy Chakraborty
- Laboratory of Clinical and Experimental NeuroscienceDivision of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Raghavendra Singh
- Laboratory of Clinical and Experimental NeuroscienceDivision of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Debashis Dutta
- Laboratory of Clinical and Experimental NeuroscienceDivision of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Amit Naskar
- Laboratory of Clinical and Experimental NeuroscienceDivision of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic CentreManovikas KendraKolkataIndia
| | - Kochupurackal P. Mohanakumar
- Laboratory of Clinical and Experimental NeuroscienceDivision of Cell Biology and PhysiologyCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| |
Collapse
|
21
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|
22
|
Marchina E, Misasi S, Bozzato A, Ferraboli S, Agosti C, Rozzini L, Borsani G, Barlati S, Padovani A. Gene expression profile in fibroblasts of Huntington's disease patients and controls. J Neurol Sci 2013; 337:42-6. [PMID: 24296361 DOI: 10.1016/j.jns.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/19/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023]
Abstract
Huntington's disease is an inherited disorder caused by expanded stretch of consecutive trinucleotides (cytosine-adenosine-guanine, CAG) within the first exon of the huntingtin (HTT) gene on chromosome 4 (p16.3). The mutated huntingtin (mHTT) gains toxic function, probably through mechanisms that involve aberrant interactions in several pathways, causing cytotoxicity. Pathophysiology of disease involves several tissues; indeed it has been shown that there is a broad toxic effect of mHTT in the peripheral tissue of patients with HD, not only in the central nervous system. In this study we compared gene expression profiles (GEP) of HD fibroblasts and matched controls using microarray technology. We used RT-PCR to test the consistency of the microarray data and we found four genes up-regulated in HD patients with respect to control individuals. The genes appear to be involved in different pathways that have been shown to be perturbed even in HD models and patients. Although our study is preliminary and has to be extended to a larger cohort of HD patients and controls, nevertheless it shows that gene expression profiles seem to be altered in the fibroblasts of HD patients. Validation of the differential expressions at the protein level is required to ascertain if this cell type can be considered a suitable model for the identification of HD biomarkers.
Collapse
Affiliation(s)
- Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Silvia Misasi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Bozzato
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sergio Ferraboli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Agosti
- Division of Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luca Rozzini
- Division of Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sergio Barlati
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Division of Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Ayala-Peña S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis. Free Radic Biol Med 2013; 62:102-110. [PMID: 23602907 PMCID: PMC3722255 DOI: 10.1016/j.freeradbiomed.2013.04.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/21/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder with an autosomal dominant expression pattern and typically a late-onset appearance. HD is a movement disorder with a heterogeneous phenotype characterized by involuntary dance-like gait, bioenergetic deficits, motor impairment, and cognitive and psychiatric deficits. Compelling evidence suggests that increased oxidative stress and mitochondrial dysfunction may underlie HD pathogenesis. However, the exact mechanisms underlying mutant huntingtin-induced neurological toxicity remain unclear. The objective of this paper is to review recent literature regarding the role of oxidative DNA damage in mitochondrial dysfunction and HD pathogenesis.
Collapse
Affiliation(s)
- Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, P.O. Box 365067, San Juan, Puerto Rico 00936-5067.
| |
Collapse
|
24
|
Muratore M. Raman spectroscopy and partial least squares analysis in discrimination of peripheral cells affected by Huntington's disease. Anal Chim Acta 2013; 793:1-10. [DOI: 10.1016/j.aca.2013.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
|
25
|
Kovacic P, Somanathan R. Redox processes in neurodegenerative disease involving reactive oxygen species. Curr Neuropharmacol 2013; 10:289-302. [PMID: 23730253 PMCID: PMC3520039 DOI: 10.2174/157015912804143487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022] Open
Abstract
Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego CA 92182 USA
| | | |
Collapse
|
26
|
Jin YN, Yu YV, Gundemir S, Jo C, Cui M, Tieu K, Johnson GVW. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One 2013; 8:e57932. [PMID: 23469253 PMCID: PMC3585875 DOI: 10.1371/journal.pone.0057932] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdh(Q111/Q111) cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdh(Q7/Q7) cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdh(Q111/Q111) cells. Oxidative stress leads to dramatic increases in the number of STHdh(Q111/Q111) cells containing swollen mitochondria, while STHdh(Q7/Q7) cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdh(Q111/Q111) cells. Nrf2 expression does not differ between the two cell types, but STHdh(Q111/Q111) cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdh(Q111/Q111) cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdh(Q7/Q7) cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdh(Q111/Q111) cells.
Collapse
Affiliation(s)
- Youngnam N. Jin
- Departmentsof Pharmacology and Physiology, University of Rochester, Rochester, New York, United States of America
| | - Yanxun V. Yu
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Chulman Jo
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Mei Cui
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| | - Kim Tieu
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| | - Gail V. W. Johnson
- Departmentsof Pharmacology and Physiology, University of Rochester, Rochester, New York, United States of America
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Melone MAB, Calarco A, Petillo O, Margarucci S, Colucci-D'Amato L, Galderisi U, Koverech G, Peluso G. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:105-113. [PMID: 22974559 DOI: 10.1016/j.bbadis.2012.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/10/2012] [Accepted: 09/04/2012] [Indexed: 12/30/2022]
Abstract
Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.
Collapse
Affiliation(s)
- Mariarosa A B Melone
- Department of Clinical and Experimental Medicine, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Valencia A, Sapp E, Kimm JS, McClory H, Reeves PB, Alexander J, Ansong KA, Masso N, Frosch MP, Kegel KB, Li X, DiFiglia M. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease. Hum Mol Genet 2012; 22:1112-31. [PMID: 23223017 DOI: 10.1093/hmg/dds516] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A mutation in the huntingtin (Htt) gene produces mutant Htt and Huntington's disease (HD), a neurodegenerative disorder. HD patients have oxidative damage in the brain, but the causes are unclear. Compared with controls, we found brain levels of NADPH oxidase (NOX) activity, which produces reactive oxygen species (ROS), elevated in human HD postmortem cortex and striatum and highest in striatum of presymptomatic individuals. Synaptosome fractions from cortex and striatum of HD(140Q/140Q) mice had elevated NOX activity at 3 months of age and a further rise at 6 and 12 months compared with synaptosomes of age-matched wild-type (WT) mice. High NOX activity in primary cortical and striatal neurons of HD(140Q/140Q) mice correlated with more ROS and neurite swellings. These features and neuronal cell death were markedly reduced by treatment with NOX inhibitors such as diphenyleneiodonium (DPI), apocynin (APO) and VAS2870. The rise in ROS levels in mitochondria of HD(140Q/140Q) neurons followed the rise in NOX activity and inhibiting only mitochondrial ROS was not neuroprotective. Mutant Htt colocalized at plasma membrane lipid rafts with gp91-phox, a catalytic subunit for the NOX2 isoform. Assembly of NOX2 components at lipid rafts requires activation of Rac1 which was also elevated in HD(140Q/140Q) neurons. HD(140Q/140Q) mice bred to gp91-phox knock-out mice had lower NOX activity in the brain and in primary neurons, and neurons had normal ROS levels and significantly improved survival. These findings suggest that increased NOX2 activity at lipid rafts is an early and major source of oxidative stress and cell death in HD(140Q/140Q) neurons.
Collapse
Affiliation(s)
- Antonio Valencia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.
Collapse
|
30
|
Gibson SA, Korade Ž, Shelton RC. Oxidative stress and glutathione response in tissue cultures from persons with major depression. J Psychiatr Res 2012; 46:1326-32. [PMID: 22841833 PMCID: PMC3480727 DOI: 10.1016/j.jpsychires.2012.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 12/27/2022]
Abstract
There is evidence that major depressive disorder (MDD) is associated with increased peripheral markers of oxidative stress. To explore oxidation and antioxidant response in MDD, we assayed human dermal fibroblast cultures derived from skin biopsies of age-, race-, and sex-matched individuals in depressed and normal control groups (n = 16 each group), cultured in glucose and galactose conditions, for relative protein carbonylation (a measure of oxidative stress), glutathione reductase (GR) expression, and total glutathione concentration. In control-group fibroblasts, galactose induced a significant increase from the glucose condition in both protein carbonylation and GR. The cells from the MDD group showed total protein carbonylation and GR expression in the glucose condition that was significantly higher than control cells in glucose and equivalent to controls in galactose. There was a small decrease in protein carbonylation in MDD cells from glucose to galactose and no significant change in GR. There was no difference in total glutathione among any of the groups. Increased protein carbonylation and GR expression, cellular responses to oxidative stress induced by galactose in control fibroblasts, are present in fibroblasts derived from MDD patients and are not explainable by reduced GR or total glutathione in the depressed patients. These studies support the role of oxidative stress in the pathophysiology of MDD. Further confirmation of these findings could lead to the development of novel antioxidant approaches for the treatment of depression.
Collapse
Affiliation(s)
- Sara A. Gibson
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37212
| | - Željka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37212
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
31
|
Ajayi A, Yu X, Lindberg S, Langel U, Ström AL. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci 2012; 13:86. [PMID: 22827889 PMCID: PMC3412756 DOI: 10.1186/1471-2202-13-86] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 7 (SCA7) is one of nine inherited neurodegenerative disorders caused by polyglutamine (polyQ) expansions. Common mechanisms of disease pathogenesis suggested for polyQ disorders include aggregation of the polyQ protein and induction of oxidative stress. However, the exact mechanism(s) of toxicity is still unclear. RESULTS In this study we show that expression of polyQ expanded ATXN7 in a novel stable inducible cell model first results in a concomitant increase in ROS levels and aggregation of the disease protein and later cellular toxicity. The increase in ROS could be completely prevented by inhibition of NADPH oxidase (NOX) complexes suggesting that ATXN7 directly or indirectly causes oxidative stress by increasing superoxide anion production from these complexes. Moreover, we could observe that induction of mutant ATXN7 leads to a decrease in the levels of catalase, a key enzyme in detoxifying hydrogen peroxide produced from dismutation of superoxide anions. This could also contribute to the generation of oxidative stress. Most importantly, we found that treatment with a general anti-oxidant or inhibitors of NOX complexes reduced both the aggregation and toxicity of mutant ATXN7. In contrast, ATXN7 aggregation was aggravated by treatments promoting oxidative stress. CONCLUSION Our results demonstrates that oxidative stress contributes to ATXN7 aggregation as well as toxicity and show that anti-oxidants or NOX inhibition can ameliorate mutant ATXN7 toxicity.
Collapse
Affiliation(s)
- Abiodun Ajayi
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 21A, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
32
|
Mischley LK, Allen J, Bradley R. Coenzyme Q10 deficiency in patients with Parkinson's disease. J Neurol Sci 2012; 318:72-5. [PMID: 22542608 DOI: 10.1016/j.jns.2012.03.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2012] [Accepted: 03/28/2012] [Indexed: 11/17/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) are well known to contribute to the pathophysiology of Parkinson's disease (PD). Clinical trials of antioxidants are currently underway in PD patients, however, antioxidant research has been hindered by a lack of peripheral biomarkers. METHODS Twenty-two patients with PD elected to have a novel antioxidant assessment (Functional Intracellular Assay (FIA), SpectraCell Lab, Houston, TX) performed between 2004 and 2008. Each PD case was compared to four age- and gender-matched controls (n=88) in four separate, random iterations using laboratory data submitted during the same time period. Logistic regression was used to determine the odds of functional deficiency in antioxidant nutrients (i.e., glutathione, coenzyme Q10, selenium, vitamin E and alpha-lipoic acid) by case-control status. The proportion of cases with functional deficiency was also compared to that for controls by chi(2) test. RESULTS Compared to cases, PD patients had a significantly greater odds of deficiency in coenzyme Q10 status (OR: 4.7-5.4; 95% CI: 1.5-17.7; P=0.003-0.009) based on FIA results, but not of vitamin E, selenium, lipoic acid, or glutathione (all P>0.05). The proportion of cases with coenzyme Q10 deficiency was also significantly greater in cases than in controls (32-36% vs. 8-9%; P=0.0012-0.006). CONCLUSIONS Deficiency of coenzyme Q10 assessed via FIA should be explored as a potential peripheral biomarker of antioxidant status in PD.
Collapse
|
33
|
Clinical and cellular consequences of the mutation m.12300G>A in the mitochondrial tRNA(Leu(CUN)) gene. Mitochondrion 2011; 12:288-93. [PMID: 22094595 DOI: 10.1016/j.mito.2011.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/22/2022]
Abstract
We report, for the first time, a patient with an overlap MERRF-NARP syndrome who carries the mutation m.12300G>A in the mitochondrial tRNA(Leu(CUN)) gene. The mutation was heteroplamic and more abundant in her muscle and fibroblast than in blood from her oligosymptomatic mother. Single muscle fiber analysis revealed that the proportion of mutant mtDNA in ragged red fibers was higher than that in normal fibers. Combined defects of mitochondrial respiratory chain complexes were detected in muscle, fibroblasts and transmitochondrial hybrid cells. Significant reduction of total ATP and mitochondrial membrane potential and an increased production of reactive oxygen species were observed.
Collapse
|
34
|
Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011; 2011:572634. [PMID: 21941533 PMCID: PMC3177364 DOI: 10.1155/2011/572634] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022] Open
Abstract
It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS) is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5) hyperactivity associated with neurodegeneration.
Collapse
Affiliation(s)
- Varsha Shukla
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Santosh K. Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Sorolla MA, Nierga C, Rodríguez-Colman MJ, Reverter-Branchat G, Arenas A, Tamarit J, Ros J, Cabiscol E. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation. Arch Biochem Biophys 2011; 510:27-34. [PMID: 21513696 DOI: 10.1016/j.abb.2011.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 01/27/2023]
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG trinucleotide repeats, leading to an elongated polyglutamine sequence (polyQ) in the huntingtin protein. Misfolding of mutant polyQ proteins with expanded tracts results in aggregation, causing cytotoxicity. Oxidative stress in HD has been documented in humans as important to disease progression. Using yeast cells as a model of HD, we report that when grown at high glucose concentration, cells expressing mutant polyQ do not show apparent oxidative stress. At higher cell densities, when glucose becomes limiting and cells are metabolically shifting from fermentation to respiration, protein oxidation and catalase activity increases in relation to the length of the polyQ tract. Oxidative stress, either endogenous as a result of mutant polyQ expression or exogenously generated, increases Sir2 levels. Δ sir2 cells expressing expanded polyQ lengths show signs of oxidative stress even at the early exponential phase. In a wild-type background, isonicotinamide, a Sir2 activator, decreases mutant polyQ aggregation and the stress generated by expanded polyQ. Taken together, these results describe mutant polyQ proteins as being more toxic in respiring cells, causing oxidative stress and an increase in Sir2 levels. Activation of Sir2 would play a protective role against this toxicity.
Collapse
Affiliation(s)
- M Alba Sorolla
- Departament de Ciències Mèdiques Bàsiques, IRBLLeida, Universitat de Lleida, Facultat de Medicina, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pandey M, Mohanakumar KP, Usha R. Mitochondrial functional alterations in relation to pathophysiology of Huntington’s disease. J Bioenerg Biomembr 2010; 42:217-26. [DOI: 10.1007/s10863-010-9288-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Ferreira IL, Nascimento MV, Ribeiro M, Almeida S, Cardoso SM, Grazina M, Pratas J, Santos MJ, Januário C, Oliveira CR, Rego AC. Mitochondrial-dependent apoptosis in Huntington's disease human cybrids. Exp Neurol 2010; 222:243-55. [DOI: 10.1016/j.expneurol.2010.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/26/2009] [Accepted: 01/05/2010] [Indexed: 12/23/2022]
|
38
|
Mutant huntingtin impairs vesicle formation from recycling endosomes by interfering with Rab11 activity. Mol Cell Biol 2009; 29:6106-16. [PMID: 19752198 DOI: 10.1128/mcb.00420-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Huntingtin (Htt) localizes to endosomes, but its role in the endocytic pathway is not established. Recently, we found that Htt is important for the activation of Rab11, a GTPase involved in endosomal recycling. Here we studied fibroblasts of healthy individuals and patients with Huntington's disease (HD), which is a movement disorder caused by polyglutamine expansion in Htt. The formation of endocytic vesicles containing transferrin at plasma membranes was the same in control and HD patient fibroblasts. However, HD fibroblasts were delayed in recycling biotin-transferrin back to the plasma membrane. Membranes of HD fibroblasts supported less nucleotide exchange on Rab11 than did control membranes. Rab11-positive vesicular and tubular structures in HD fibroblasts were abnormally large, suggesting that they were impaired in forming vesicles. We used total internal reflection fluorescence imaging of living fibroblasts to monitor fluorescence-labeled transferrin-carrying transport intermediates that emerged from recycling endosomes. HD fibroblasts had fewer small vesicles and more large vesicles and long tubules than did control fibroblasts. Dominant active Rab11 expressed in HD fibroblasts normalized the recycling of biotin-transferrin. We propose a novel mechanism for cellular dysfunction by the HD mutation arising from the inhibition of Rab11 activity and a deficit in vesicle formation at recycling endosomes.
Collapse
|
39
|
Du Y, Wooten MC, Wooten MW. Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol Dis 2009; 35:302-10. [PMID: 19481605 DOI: 10.1016/j.nbd.2009.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/11/2009] [Accepted: 05/17/2009] [Indexed: 01/21/2023] Open
Abstract
Recently we reported that declined SQSTM1/p62 expression in Alzheimer disease brain was age-correlated with oxidative damage to the p62 promoter. The objective of this study was to examine whether oxidative damage to the p62 promoter is common to DNA recovered from brain of individuals with neurodegenerative disease. Increased 8-OHdG staining was observed in brain sections from Alzheimer's disease (AD), Parkinson disease (PD), Huntington disease (HD), Frontotemporal dementia (FTD), and Pick's disease compared to control subjects. In parallel, the p62 promoter exhibited elevated oxidative damage in samples from various diseases compared to normal brain, and damage was negatively correlated with p62 expression in FTD samples. Oxidative damage to the p62 promoter induced by H2O2 treatment decreased its transcriptional activity. In keeping with this observation, the transcriptional activity of a Sp-1 element deletion mutant displayed reduced stimulus-induced activity. These findings reveal that oxidative damage to the p62 promoter decreased its transcriptional activity and might therefore account for decreased expression of p62. Altogether these results suggest that pharmacological means to increase p62 expression may be beneficial in delaying the onset of neurodegeneration.
Collapse
Affiliation(s)
- Yifeng Du
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, 331 Funchess Hall, Auburn University, AL 38849, USA
| | | | | |
Collapse
|
40
|
Spindler M, Beal MF, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 2009; 5:597-610. [PMID: 19966907 PMCID: PMC2785862 DOI: 10.2147/ndt.s5212] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson's disease and atypical Parkinson's syndromes, Huntington's disease, Alzheimer disease, Friedreich's ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Meredith Spindler
- Department of Neurology, Weill Medical, College of Cornell University, 525 east 68th Street, Suite F610, New York, NY, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Affiliation(s)
- Lawrence M. Sayre
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - George Perry
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Mark A. Smith
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
43
|
Klepac N, Relja M, Klepac R, Hećimović S, Babić T, Trkulja V. Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington's disease gene carriers and healthy subjects : a cross-sectional study. J Neurol 2007; 254:1676-1683. [PMID: 17990062 DOI: 10.1007/s00415-007-0611-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/09/2007] [Accepted: 03/23/2007] [Indexed: 01/10/2023]
Abstract
BACKGROUND Animal data and postmortem studies suggest a role of oxidative stress in the Huntington's disease (HD), but in vivo human studies have been scarce. AIM To assess the presence of oxidative stress in HD patients and its occurrence relative to clinical symptoms. METHODS Oxidative stress markers were determined in plasma of HD patients (n = 19), asymptomatic HD gene carriers (with > 38 CAG repeats) (n = 11) and their respective sex and agematched healthy controls (n = 47 and n = 22) in a cross-sectional study. RESULTS With adjustment for age and sex, HD patients had higher plasma lipid peroxidation (LP) levels (ratio 1.20, 95% CI 1.09 to 1.32, p < 0.001) and lower reduced glutathione (GSH) levels (ratio 0.72, CI 0.55 to 0.94, p = 0.011) than their age and sex-matched controls. Although considerably younger, HD gene carriers did not differ from HD patients regarding LP and GSH levels, and had higher plasma LP (ratio 1.16, CI 1.02 to 1.32, p = 0.016) and lower GSH than their matched controls (ratio 0.73, CI 0.5 to 1.05). They had higher LP (ratio 1.18, CI 1.02 to 1.34, p = 0.019) and lower GSH (ratio 0.75, CI 0.51 to 1.11) than the healthy subjects matched to HD patients. CONCLUSIONS Oxidative stress is more pronounced in HD patients and asymptomatic HD gene carriers than in healthy subjects. Differences in plasma LP and GSH are in line with the brain findings in animal models of HD. Data suggest that oxidative stress occurs before the onset of the HD symptoms.
Collapse
Affiliation(s)
- N Klepac
- Dept. of Neurology, University Clinical Hospital Center Zagreb, Zagreb University School of Medicine, Kispatićeva, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
44
|
Zourlidou A, Gidalevitz T, Kristiansen M, Landles C, Woodman B, Wells DJ, Latchman DS, de Belleroche J, Tabrizi SJ, Morimoto RI, Bates GP. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 2007; 16:1078-90. [PMID: 17360721 DOI: 10.1093/hmg/ddm057] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death. To investigate this in vivo, we conducted an extensive phenotypic characterization of mice arising from a cross between R6/2 mice and Hsp27 transgenic mice but did not observe an improvement of the R6/2 phenotype. Hsp27 overexpression had no effect in reducing oxidative stress in the R6/2 brain, assessed by measuring striatal aconitase activity and protein carbonylation levels. Native protein gel analysis revealed that transgenic Hsp27 forms active, large oligomeric species in heat-shocked brain lysates, demonstrating that it is efficiently activated upon stress. In contrast, Hsp27 in double transgenic brains exists predominantly as a low molecular weight, inactive species. This suggests that Hsp27, which is otherwise activatable upon heat shock, remains inactive in the R6/2 model of chronic neurodegeneration. Hsp27 transgenics had been previously shown to be protected from acute stresses such as kainate administration, ischemia/reperfusion heart injury and neonatal nerve injury. Our study is the first to suggest a differential modulation of Hsp27 activation in vivo and, importantly, it illustrates the diverse effect of Hsp27 on acute versus chronic models of disease.
Collapse
Affiliation(s)
- Alexandra Zourlidou
- Department of Medical and Molecular Genetics, King's College London, School of Medicine, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|