1
|
He P, Qiao R, Liu C, Zhang W, Li H, He F. Neuroprotective Mechanisms of Baicalin in Ischemia Stroke. ACS Chem Neurosci 2025. [PMID: 40402033 DOI: 10.1021/acschemneuro.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Ischemic stroke (IS) remains one of the leading global causes of mortality and disability, imposing a substantial socioeconomic burden on families and healthcare systems. Despite recognition as a critical global health challenge, therapeutic interventions for cerebral ischemia remain severely limited. The current standard treatment for acute ischemic stroke is intravenous thrombolysis using a tissue plasminogen activator (tPA). However, its narrow therapeutic window and elevated risk of hemorrhagic complications restrict thrombolytic therapy to a minority of eligible patients. Baicalin, a bioactive flavonoid derived from Scutellaria baicalensis roots, exhibits neuroprotective properties across diverse neurological conditions, including ischemic and hemorrhagic brain injury. Its neuroprotective mechanisms are multifactorial, encompassing antioxidant activity, antiapoptotic, and antiinflammatory effects, upregulation of neurotrophic factors, mitochondrial protection, and vasodilation of peripheral vasculature. The breadth of baicalin's neuroprotective actions highlights its potential as a promising therapeutic candidate for ischemic stroke. This review synthesizes current evidence on baicalin's neuroprotective effects and molecular mechanisms in ischemic stroke, emphasizing its potential as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Peng He
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Ru Qiao
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Can Liu
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Weilong Zhang
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Haiying Li
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Fuyuan He
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
2
|
Shu H, Liao Q, Chen Z, Liang M, Zhang S, Liu J, Wu Y, Hu P, Luo M, Zhu W, Zhu X, Yang L, Yan T. Flavonoids serve as a promising therapeutic agent for ischemic stroke. Brain Res 2025; 1853:149528. [PMID: 39999903 DOI: 10.1016/j.brainres.2025.149528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemic stroke (IS) continues to be a major public health concern and is characterized by significantly high mortality and disabling rates. Inhibiting nerve cells death and enhancing the repair of ischemic tissue are important treatment concepts for IS. Currently, the mainstream treatment strategies mainly focus on short-term care, which underscores the urgent need for novel therapeutic strategies for long-term care. Emerging data reveal that flavonoids have surfaced as promising candidates for IS patients' long-term care. Flavonoids can alleviate neuroinflammation and anti-apoptosis due to their characteristic pharmacological mechanisms. Clinical evidence suggests that long-term flavonoids intake improves IS patients' long-term outcomes. Though the effect of flavonoids in IS treatment has been explored for decades, the neuroprotective pharmacodynamics have not been well established. Thereby, the aim of current review is to summarize the pathways involved in neuroprotective effect of flavonoids. This review will also advance the potential of flavonoids as a viable clinical candidate for the treatment of IS.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiuye Liao
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhihao Chen
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mingyu Liang
- School of life sciences, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si Zhang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanze Wu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Hu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming Luo
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenping Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li Yang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tengfeng Yan
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
3
|
Li YF, Zhang YF, Huang C, Jiang JM. Baicalin improves neurological outcomes in mice with ischemic stroke by inhibiting astrocyte activation and neuroinflammation. Int Immunopharmacol 2025; 149:114186. [PMID: 39923584 DOI: 10.1016/j.intimp.2025.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE The inflammatory response is integral to all stages of ischemic stroke. Unlike conventional reperfusion therapies, anti-inflammatory strategies offer a broader therapeutic window for treating ischemic stroke due to their capacity to attenuate inflammation. Astrocytes, once activated in ischemic conditions, significantly contribute to the production of inflammatory cytokines and exacerbate brain damage. While the neuroprotective effects of baicalin in post-stroke patients have been recognized, its role in modulating astrocyte activity and reducing inflammation remains under debate. This study aims to evaluate the impact of baicalin on astrocyte activation following ischemic stroke. METHODS A model of ischemia/reperfusion (I/R) injury was induced in wild-type mice through transient middle cerebral artery occlusion (tMCAO). Mice were randomized into groups receiving either baicalin or saline. The expression levels of inflammatory markers-interleukin (IL)-6, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α)-were quantified using enzyme-linked immunosorbent assay (ELISA). Additionally, western blot analysis was employed to assess glial fibrillary acidic protein (GFAP) expression. RESULTS Baicalin administration significantly mitigated neurological deficits in mice post-tMCAO. It reduced the activation of astrocytes and the production of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, and MCP-1, observed both in vivo and in vitro. In vitro studies also indicated a suppression of NF-κB activation. CONCLUSION Baicalin effectively prevents ischemic brain damage by curtailing neuroinflammation and astrocyte activation. These findings advance the understanding of baicalin's mechanistic role in mitigating brain ischemia and support further investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Yi-Fan Li
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230088, Anhui, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230032, Anhui, China.
| | - Yue-Fan Zhang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Can Huang
- Department of Pharmacy, Affiliated Anqing Hospital of Anhui Medical University, Anqing 246003, Anhui, China
| | - Jie-Mei Jiang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230088, Anhui, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230032, Anhui, China
| |
Collapse
|
4
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Hernández D, Kidnapillai S, Gray L, Berk M, Dean OM, Walder K. The potential of baicalin to enhance neuroprotection and mitochondrial function in a human neuronal cell model. Mol Psychiatry 2024; 29:2487-2495. [PMID: 38503930 DOI: 10.1038/s41380-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 μM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 μM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.
Collapse
Affiliation(s)
- Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia.
| | - Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Courtney Swinton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Damián Hernández
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Laura Gray
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| |
Collapse
|
6
|
Liu K, Zhou Y, Song X, Zeng J, Wang Z, Wang Z, Zhang H, Xu J, Li W, Gong Z, Wang M, Liu B, Xiao N, Liu K. Baicalin attenuates neuronal damage associated with SDH activation and PDK2-PDH axis dysfunction in early reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155570. [PMID: 38579645 DOI: 10.1016/j.phymed.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Energy deficiency and oxidative stress are interconnected during ischemia/reperfusion (I/R) and serve as potential targets for the treatment of cerebral ischemic stroke. Baicalin is a neuroprotective antioxidant, but the underlying mechanisms are not fully revealed. PURPOSE This study explored whether and how baicalin rescued neurons against ischemia/reperfusion (I/R) attack by focusing on the regulation of neuronal pyruvate dehydrogenase kinase 2 (PDK2)-pyruvate dehydrogenase (PDH) axis implicated with succinate dehydrogenase (SDH)-mediated oxidative stress. STUDY DESIGN The effect of the tested drug was explored in vitro and in vivo with the model of oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R), respectively. METHODS Neuronal damage was evaluated according to cell viability, infarct area, and Nissl staining. Protein levels were measured by western blotting and immunofluorescence. Gene expression was investigated by RT-qPCR. Mitochondrial status was also estimated by fluorescence probe labeling. RESULTS SDH activation-induced excessive production of reactive oxygen species (ROS) changed the protein expression of Lon protease 1 (LonP1) and hypoxia-inducible factor-1ɑ (HIF-1ɑ) in the early stage of I/R, leading to an upregulation of PDK2 and a decrease in PDH activity in neurons and cerebral cortices. Treatment with baicalin prevented these alterations and ameliorated neuronal ATP production and survival. CONCLUSION Baicalin improves the function of the neuronal PDK2-PDH axis via suppression of SDH-mediated oxidative stress, revealing a new signaling pathway as a promising target under I/R conditions and the potential role of baicalin in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Kaili Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ying Zhou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Xianrui Song
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Jiahan Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zhuqi Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ziqing Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Honglei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Jiaxing Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Wenting Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zixuan Gong
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Min Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Baolin Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Na Xiao
- College of Agronomy, Shandong Agriculture University, Tai'an, Shandong 271018, PR China.
| | - Kang Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
7
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
9
|
Seo HW, Ha TY, Ko G, Jang A, Choi JW, Lee DH, Chang KA. Scutellaria baicalensis Attenuated Neurological Impairment by Regulating Programmed Cell Death Pathway in Ischemic Stroke Mice. Cells 2023; 12:2133. [PMID: 37681864 PMCID: PMC10486384 DOI: 10.3390/cells12172133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery.
Collapse
Affiliation(s)
- Ho-won Seo
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Tae-Young Ha
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
| | - Geon Ko
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Aram Jang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ji-Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea;
| | - Dong-hun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Keun-A Chang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
11
|
Li B, Wang M, Chen S, Li M, Zeng J, Wu S, Tu Y, Li Y, Zhang R, Huang F, Tong X. Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF- κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3263446. [PMID: 36408278 PMCID: PMC9668451 DOI: 10.1155/2022/3263446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/22/2022] [Indexed: 09/25/2023]
Abstract
Baicalin (BA) is a major flavone from Scutellaria baicalensis Georgi and has showed significant curative effects in Parkinson's and Alzheimer's diseases. In the present study, we investigated the effects of BA on antineuroinflammation and related signaling cascade in lipopolysaccharide- (LPS-) induced BV-2 microglial model. The results showed that BA significantly attenuated inflammatory mediators (NO, iNOS, IL-1β, COX-2, and PGE2) and suppressed the expression of miR-155. More crucially, BA could regulate the expression of related proteins in Toll-like receptor 4 (TLR4)/myeloid differentiation protein 88 (MyD88)/nuclear factor κB (NF-κB) pathway and suppress the phosphorylation of mitogen-activated protein kinase (MAPK) family. In addition, molecular docking analysis indicated that BA binds to the amino acids Lie 63 and Tyr 65 of TLR4 by π-σ and π-π T-shaped interaction. Thus, BA suppressed the LPS-stimulated neuroinflammation in BV-2 microglia by blocking the TLR4-mediated signal transduction through TLR4/MyD88/NF-κB and MAPK pathways and inhibiting the miR-155 expression. Our findings demonstrated that BA could be a valuable therapeutic for the treatment of neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Baojing Li
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingming Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Shuai Chen
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Manping Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Zeng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Saichun Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuanqing Tu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanping Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongping Zhang
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Feng Huang
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
12
|
Shang Y, Zhang Z, Tian J, Li X. Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia. Front Pharmacol 2022; 13:914630. [PMID: 35795571 PMCID: PMC9251309 DOI: 10.3389/fphar.2022.914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Collapse
|
13
|
Association between chronic kidney disease and open-angle glaucoma in South Korea: a 12-year nationwide retrospective cohort study. Sci Rep 2022; 12:3423. [PMID: 35232992 PMCID: PMC8888748 DOI: 10.1038/s41598-022-07190-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/19/2022] [Indexed: 02/02/2023] Open
Abstract
Various non-intraocular pressure factors have been identified as possible risk factors for open-angle glaucoma (OAG). However, there is still controversy around the association between OAG and chronic kidney disease (CKD). In this study, we used a nationwide cohort to investigate the risk of OAG in the 12 years following a diagnosis of CKD. This retrospective cohort study included 1,103,302 subjects from the Korean National Health Insurance Service National Sample Cohort database. The CKD group (n = 1318) included patients who were initially diagnosed with CKD between 2003 and 2008. The subjects in the comparison group were matched at a 1:5 ratio using propensity scores. In multivariate Cox regression analysis, a diagnosis of CKD was significantly associated with an increased incidence of OAG (hazard ratio [HR] = 1.546, 95% confidence interval [CI] 1.363–1.754, p < 0.001). Further analysis revealed that the risk of OAG increased with the severity of CKD (mild to moderate CKD [CKD stage 1–3]: HR = 1.280, 95% CI 1.077–1.521, p = 0.005; advanced CKD [CKD stage 4–5]: HR = 1.861, 95% CI 1.589–2.180, p < 0.001). In subgroup analysis, female CKD patients had a greater risk of developing OAG than males, and subjects with CKD aged ≥ 40 years were more likely to develop OAG compared with those aged < 40 years. Our study demonstrates that CKD is a significant risk factor for OAG and that severe CKD is associated with an increased risk of developing OAG.
Collapse
|
14
|
Zheng B, Zhou X, Pang L, Che Y, Qi X. Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage. Bioengineered 2021; 12:7794-7804. [PMID: 34704542 PMCID: PMC8806453 DOI: 10.1080/21655979.2021.1975999] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early brain injury, characterized by massive cell apoptosis or death, is identified as a critical pathophysiological process during subarachnoid hemorrhage (SAH). Ferroptosis, a class of autophagy-dependent cell death discovered in 2012, is induced by iron-dependent lipid peroxidation accumulation. The present study was designed to study the role of baicalin in autophagy-dependent ferroptosis in early brain injury after SAH. Neurological scores and brain water content were measured to evaluate brain injury. Measurement of iron ion, malondialdehyde (MDA), lipid reactive oxygen species was conducted for ferroptosis evaluation. Immunofluorescence staining, western blotting, and flow cytometry analysis were used to evaluate autophagy and apoptosis. First, we observed that, compared with sham rats, SAH rats had lower neurobehavioral scores. Next, baicalin was proven to decrease the Fe2+, malondialdehyde, and ROS levels in the brain tissues of rats. Also, baicalin was confirmed to suppress the beclin1, LC3-II, and LC3-I protein levels in rat brain tissues. Moreover, we found that baicalin inhibited neuronal apoptosis. Finally, the effects of baicalin on brain injury in the SAH rats were verified. Overall, our results demonstrated that baicalin suppressed autophagy-dependent ferroptosis in EBI after SAH.
Collapse
Affiliation(s)
- Bao Zheng
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Xiwei Zhou
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Lujun Pang
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Xin Qi
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| |
Collapse
|
15
|
Zhao F, Xing Y, Jiang P, Hu L, Deng S. LncRNA MEG3 inhibits the proliferation of neural stem cells after ischemic stroke via the miR-493-5P/MIF axis. Biochem Biophys Res Commun 2021; 568:186-192. [PMID: 34273844 DOI: 10.1016/j.bbrc.2021.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The proliferation of neural stem cells (NSCs1), or lack thereof, can have profound effects on brain tissue remodeling for ischemic stroke (IS2). In this study, we aimed to reveal the influence of the lncRNA MEG3/miR-493-5p/MIF axis on NSC proliferation after IS. METHODS We established an oxygen glucose-deprivation/reoxygenation (OGD/R3) in vitro model of IS in NSCs. We evaluated NSC isolation efficiency and proliferation by NESTIN, SOX2, and PCNA immunofluorescence staining. MEG3 and miR-493-5P levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR4). Changes in MIF protein expression levels were analyzed using Western blotting. We then evaluated the role of MEG3 and miR-493-5p by transfection of si-MEG3, a miR-493-5p mimic, or miR-493-5p inhibitor. NSC proliferation was quantified using Cell Counting Kit-8 analysis. RESULTS NESTIN and SOX2 were co-expressed in endogenous NSCs. Following OGD/R, MEG3 and miR-493-5P were significantly upregulated in NSCs, while MIF levels decreased and proliferation was inhibited. Knockdown of MEG3 inhibited miR-493-5p and rescued expression of MIF and PCNA, restoring cellular proliferation levels. In NSCs transfected with a miR-493-5p mimic or inhibitor, MIF levels were down- or upregulated, respectively. Consistently, transfection of a miR-493-5p mimic reduced NSC proliferation, while transfection with a miR-493-5p inhibitor or si-MEG3 rescued the inhibitory effect of OGD/R on NSC proliferation. After co-transfection of si-MEG3 and a miR-493-5p mimic of OGD/R-induced NSCs, levels of PCNA, an indicator of cellular proliferation, were significantly reduced. Conclusion MEG3 inhibits NSC proliferation of after IS via positive regulation of miR-493-5p and potential subsequent downregulation of MIF.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Yu Xing
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Pu Jiang
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Lai Hu
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
16
|
Zhang W, Liu Q, Luo L, Song J, Han K, Liu R, Gong Y, Guo X. Use Chou's 5-steps rule to study how Baicalin suppresses the malignant phenotypes and induces the apoptosis of colorectal cancer cells. Arch Biochem Biophys 2021; 705:108919. [PMID: 33992597 DOI: 10.1016/j.abb.2021.108919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/20/2023]
Abstract
Baicalin is a traditional Chinese herb purified from the root of Scutellaria baicalensis Georgi. In this study, we further analyzed the molecular mechanism behind the anti-tumor activity of Baicalin in colorectal cancer (CRC). The establishment of circular RNA (circRNA)/microRNA (miRNA)/messenger RNA (mRNA) axis was predicted by bioinformatic databases and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Baicalin dose-dependently reduced the expression of circRNA myosin heavy chain 9 (circMYH9) in CRC cells. Baicalin exposure suppressed the malignant phenotypes of CRC cells, which were largely reversed by the overexpression of circMYH9. CircMYH9 functioned as a molecular sponge for miR-761. CircMYH9 overexpression protected CRC cells from Baicalin-induced injury partly through down-regulating miR-761. MiR-761 interacted with the 3' untranslated region (3' UTR) of hepatoma-derived growth factor (HDGF) mRNA. CircMYH9 up-regulated HDGF expression partly through sponging miR-761 in CRC cells. MiR-761 silencing counteracted the anti-tumor activity of Baicalin partly through up-regulating HDGF in CRC cells. Baicalin suppresses xenograft tumor growth in vivo, and this suppressive effect was partly reversed by the overexpression of circMYH9. In conclusion, Baicalin exhibited an anti-tumor activity in CRC cells partly through down-regulating circMYH9 and HDGF and up-regulating miR-761.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Quanlin Liu
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China.
| | - Linshan Luo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Jingfeng Song
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Keshun Han
- Department of Constipation, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Ruitao Liu
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Yuesheng Gong
- Department of Large Intestine, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| | - Xiaoran Guo
- Department of Colorectal Surgery, Zhengzhou Anorectal Hospital, Zhengzhou, 450004, China
| |
Collapse
|
17
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
18
|
Cho HK, Han JC, Choi JA, Chae JE, Kim RB. Association Between Chronic Renal Disease and the Risk of Glaucoma Development: A 12-year Nationwide Cohort Study. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34043749 PMCID: PMC8164364 DOI: 10.1167/iovs.62.6.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose The purpose of this study was to present the results of our investigation into the risk of glaucoma development in patients with chronic renal disease (CRD). Methods The present retrospective cohort study used the Korean National Health Insurance Service data, which consisted of 1,025,340 random subjects who were tracked from 2002 to 2013. Newly diagnosed glaucoma and CRD were included on the basis of the Korean Classification of Disease codes. The CRD group consisted of patients who received an initial CRD diagnosis between January 2003 and December 2007 as an index period (n = 3640). The control group (n = 17,971) was selected using 1:5 propensity-score matching using social and demographic factors, along with the year of enrollment. Each group subject was followed until 2013. We used multivariate Cox proportional hazard regression analysis to compare the risk of glaucoma development between the two groups. Results Glaucoma consecutively developed in 4.3% in the CRD group and 2.8% in the control group (P < 0.0001). CRD increased the risk of glaucoma development (hazard ratio [HR] = 1.63, 95% confidence interval [CI] = 1.34–1.98] after adjusting for age, sex, comorbidities, residence, household income, and the year of enrollment. In multivariate Cox regression analysis, patients with comorbidity of hypertension, diabetes mellitus, or aged ≥ 50 years showed a significantly higher risk of glaucoma development (all P < 0.008). Conclusions A significant association between CRD and following development of glaucoma was revealed after adjusting the potential confounding factors.
Collapse
Affiliation(s)
- Hyun-Kyung Cho
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Gyeongsang National University, School of Medicine, Changwon, Republic of Korea.,lnstitute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin A Choi
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Suwon, Republic of Korea
| | - Jae Eun Chae
- STAT Department, LSK Global Pharma Services, Seoul, Republic of Korea
| | - Rock Bum Kim
- Regional Cardiocerebrovascular Disease Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
19
|
Subedi L, Gaire BP. Phytochemicals as regulators of microglia/macrophages activation in cerebral ischemia. Pharmacol Res 2021; 165:105419. [DOI: 10.1016/j.phrs.2021.105419] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
|
20
|
Potential Effects of Nutraceuticals in Retinopathy of Prematurity. Life (Basel) 2021; 11:life11020079. [PMID: 33499180 PMCID: PMC7912639 DOI: 10.3390/life11020079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Retinopathy of prematurity (ROP), the most common cause of childhood blindness, is a hypoxia-induced eye disease characterized by retinal neovascularization. In the normal retina, a well-organized vascular network provides oxygen and nutrients as energy sources to maintain a normal visual function; however, it is disrupted when pathological angiogenesis is induced in ROP patients. Under hypoxia, inadequate oxygen and energy supply lead to oxidative stress and stimulate neovasculature formation as well as affecting the function of photoreceptors. In order to meet the metabolic needs in the developing retina, protection against abnormal vascular formation is one way to manage ROP. Although current treatments provide beneficial effects in reducing the severity of ROP, these invasive therapies may also induce life-long consequences such as systemic structural and functional complications as well as neurodevelopment disruption in the developing infants. Nutritional supplements for the newborns are a novel concept for restoring energy supply by protecting the retinal vasculature and may lead to better ROP management. Nutraceuticals are provided in a non-invasive manner without the developmental side effects associated with current treatments. These nutraceuticals have been investigated through various in vitro and in vivo methods and are indicated to protect retinal vasculature. Here, we reviewed and discussed how the use of these nutraceuticals may be beneficial in ROP prevention and management.
Collapse
|
21
|
Intracisternal administration of tanshinone IIA-loaded nanoparticles leads to reduced tissue injury and functional deficits in a porcine model of ischemic stroke. IBRO Neurosci Rep 2021; 10:18-30. [PMID: 33842909 PMCID: PMC8019951 DOI: 10.1016/j.ibneur.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. Results Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. Conclusion The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.
Collapse
Key Words
- ADC, Apparent Diffusion Coefficient
- ANOVA, analysis of variance
- AU, arbitrary units
- BBB, blood brain barrier
- Baic, Baicalin
- CNS, central nervous system
- CSF, cerebral spinal fluid
- DAMPS, damaged-associated molecular patterns
- DLS, dynamic light scattering
- DTI, Diffusion Tensor Imaging
- DWI, Diffusion-Weighted Imaging
- Edar, Edaravone
- FA, fractional anisotropy
- FDA, Food and Drug Administration
- GABA, γ-aminobutyric acid
- GM, gray matter
- IC, inhibitory concentration
- ICH, intracerebral hemorrhage
- IL-6, interleukin 6
- IM, intramuscular
- Ischemic stroke
- LPS, lipopolysaccharide
- MCA, middle cerebral artery
- MCAO, middle cerebral artery occlusion
- MLS, midline shift
- NP, nanoparticle
- NSCs, neural stem cells
- Nanomedicine
- PBS, phosphate buffered saline
- PEG–PLGA, polyethyleneglycol–polylactic-co-glycolic acid
- PLGA nanoparticle
- PLGA, Poly (lactic-co-glycolic acid)
- PLGA-b-PEG-OH, poly (lactide-co-glycolide)-b-poly (ethylene glycol)-maleimide
- Pig stroke model
- Piog, Pioglitazone
- Puer, Puerarin
- ROS, reactive oxygen species
- Resv, Resveratrol
- SOD, superoxide dismutase
- STAIR, Stroke Therapy Academic and Industry Roundtable
- T2*, T2Star
- T2FLAIR, T2 Fluid Attenuated Inversion Recovery
- T2W, T2Weighted
- TD, transdermal
- TEM, transmission electron microscopy
- TNF-α, tumor necrosis factor α
- Tan IIA, Tanshinone IIA
- Tan IIA-NPs, Tan IIA PLGA NPs
- Tan IIA-NPs, Tan IIA-loaded nanoparticles
- Tanshinone IIA
- UGA, University of Georgia
- WM, white matter
- ddH2O, double-distilled water
- tPA, Tissue plasminogen activator
Collapse
|
22
|
Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 2020; 133:110917. [PMID: 33217688 DOI: 10.1016/j.biopha.2020.110917] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Res Bull 2020; 164:314-324. [PMID: 32858128 DOI: 10.1016/j.brainresbull.2020.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory responses play an extraordinary role in the pathogenesis of cerebrovascular and neurological disorders. Baicalin is one of the important flavonoids, which is extracted from Scutellaria baicalensis Georgi. Recently, numerous in vivo and in vitro studies have shown that baicalin has salutary effects for anti-inflammatory and immunomodulatory and has been demonstrated to exert beneficial therapeutic properties in cerebrovascular and neurological diseases. In this review, we aim to discuss that baicalin exerts anti-inflammatory effects through multiple pathways and targets, thus affecting the production of a variety of inflammatory cytokines and neuroprotective process of neurological diseases; furthermore, the related targets of the anti-inflammatory effects of baicalin were analyzed via using the tools of network pharmacology, to provide theoretical basis and innovative ideas for the future clinical application of baicalin.
Collapse
|
24
|
Abstract
PRECIS The association between primary open-angle glaucoma (POAG) and subsequent development of chronic kidney disease (CKD) was investigated using a nationwide, population-based, retrospective cohort in South Korea. POAG increases the risk of subsequent CKD development. PURPOSE The purpose of this study was to investigate the risk of subsequent CKD development in patients with POAG. METHODS In this nationwide, population-based longitudinal cohort, 1,025,340 beneficiaries in the 2002-2013 Korean National Health Insurance database were included. We identified patients with incident POAG and evaluated the risk of subsequent CKD development using diagnostic codes from the database after 2-year wash-out periods. We applied time-varying covariate Cox regression analyses to determine the effect of POAG on the development of CKD: Model 1 included only POAG as a time-varying covariate; Model 2 included Model 1 and demographic information; and Model 3 included Model 2, comorbidity, comedication, and the Charlson Comorbidity Index score. RESULTS The fixed cohort included 478,303 eligible subjects, and of these subjects, 1749 suffered incident POAG, and 3157 developed CKD. POAG was associated with an increased risk of CKD development [hazard ratio (HR)=7.63; 95% confidence interval (CI), 5.89-9.87] in Model 1; HR=3.54 (95% CI, 2.73-4.58) in Model 2; and HR=2.90 (95% CI, 2.24-3.76) in Model 3]. CONCLUSION POAG increased the risk of subsequent CKD in the general population, suggesting that POAG and CKD might share a common pathogenic mechanism.
Collapse
|
25
|
Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol 2020; 11:433. [PMID: 32508671 PMCID: PMC7248223 DOI: 10.3389/fphys.2020.00433] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation are two critical pathological processes of cerebral ischemia-reperfusion injury. Myeloperoxidase (MPO) is a critical inflammatory enzyme and therapeutic target triggering both oxidative stress and neuroinflammation in the pathological process of cerebral ischemia-reperfusion injury. MPO is presented in infiltrated neutrophils, activated microglial cells, neurons, and astrocytes in the ischemic brain. Activation of MPO can catalyze the reaction of chloride and H2O2 to produce HOCl. MPO also mediates oxidative stress by promoting the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), modulating the polarization and inflammation-related signaling pathways in microglia and neutrophils. MPO can be a therapeutic target for attenuating oxidative damage and neuroinflammation in ischemic stroke. Targeting MPO with inhibitors or gene deficiency significantly reduced brain infarction and improved neurological outcomes. This article discusses the important roles of MPO in mediating oxidative stress and neuroinflammation during cerebral ischemia-reperfusion injury and reviews the current understanding of the underlying mechanisms. Furthermore, we summarize the active compounds from medicinal herbs with potential as MPO inhibitors for anti-oxidative stress and anti-inflammation to attenuate cerebral ischemia-reperfusion injury, and as adjunct therapeutic agents for extending the window of thrombolytic treatment. We highlight that targeting MPO could be a promising strategy for alleviating ischemic brain injury, which merits further translational study.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
26
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
27
|
Yang B, Bai H, Sa Y, Zhu P, Liu P. Inhibiting EMT, stemness and cell cycle involved in baicalin-induced growth inhibition and apoptosis in colorectal cancer cells. J Cancer 2020; 11:2303-2317. [PMID: 32127957 PMCID: PMC7052934 DOI: 10.7150/jca.37242] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Although baicalin, a flavonoid derived from Scutellaria baicalensis Georgi, has been reported to have anti-tumor activity in various cancers, the molecular mechanism remains imperfect. Here, we show that baicalin inhibits cell growth, migration and invasion and induces cell apoptosis by inhibiting cell cycle, viability, the epithelial-mesenchymal transition (EMT) and cellular stemness in colorectal cancer (CRC) cells. In detail, baicalin treatment in CRC cells induces cell cycle arrest in G1 phase and promotes p53-independent cell apoptosis, inhibits both endogenous and exogenous TGFβ1-induced EMT of colorectal cancer cells by inhibiting TGFβ/Smad pathway. Cell sphere-formation experiments show that baicalin has a strong inhibitory efficacy on the stemness of CRC cells by decreasing the marker proteins of cancer stem cell (CSC) and inhibits the formation of CSC-like cell spheres in CRC cells. In vivo experiments also identify that baicalin has an anti-tumor effect by down-regulating the levels of marker proteins of cell cycle, EMT and stemness in the orthotopic transplantation tumors of CRC cells in BALB/c nude mice. Collectively, our in vitro and in vivo results indicate that multiple inhibition of cell cycle, EMT and stemness is the real molecular mechanism of baicalin in effectively inducing cell growth inhibition and apoptosis in CRC cells.
Collapse
Affiliation(s)
- Bolin Yang
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P R China
| | - Huiru Bai
- Jiangsu Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P R China
| | - Yunli Sa
- Jiangsu Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P R China
| | - Ping Zhu
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P R China
| | - Ping Liu
- Jiangsu Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P R China
| |
Collapse
|
28
|
Zhang HB, Tu XK, Song SW, Liang RS, Shi SS. Baicalin Reduces Early Brain Injury after Subarachnoid Hemorrhage in Rats. Chin J Integr Med 2020; 26:510-518. [DOI: 10.1007/s11655-020-3183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 10/25/2022]
|
29
|
Baicalin protects against ethanol-induced chronic gastritis in rats by inhibiting Akt/NF-κB pathway. Life Sci 2019; 239:117064. [DOI: 10.1016/j.lfs.2019.117064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
30
|
Fang J, Zhu Y, Wang H, Cao B, Fei M, Niu W, Zhou Y, Wang X, Li X, Zhou M. Baicalin Protects Mice Brain From Apoptosis in Traumatic Brain Injury Model Through Activation of Autophagy. Front Neurosci 2019; 12:1006. [PMID: 30686973 PMCID: PMC6334745 DOI: 10.3389/fnins.2018.01006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Autophagy is associated with secondary injury following traumatic brain injury (TBI) and is expected to be a therapeutic target. Baicalin, a neuroprotective agent, has been proven to exert multi-functional bioactive effects in brain injury diseases. However, it is unknown if Baicalin influences autophagy after TBI. In the present study, we aimed to explore the effects that Baicalin had on TBI in a mice model, focusing on autophagy as a potential mechanism. We found that Baicalin administration significantly improved motor function, reduced cerebral edema, and alleviated disruption of the blood-brain barrier (BBB) after TBI in mice. Besides, TBI-induced apoptosis was reversed by Baicalin evidenced by Nissl staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and the level of cleaved caspase-3. More importantly, Baicalin enhanced autophagy by detecting the autophagy markers (LC3, Beclin 1, and p62) using western blot and LC3 immunofluorescence staining, ameliorating mitochondrial apoptotic pathway evidenced by restoration of the TBI-induced translocation of Bax and cytochrome C. However, simultaneous treatment with 3-MA inhibited Baicalin-induced autophagy and abolished its protective effects on mitochondrial apoptotic pathway. In conclusion, we demonstrated that Baicalin enhanced autophagy, ameliorated mitochondrial apoptosis and protected mice brain in TBI mice model.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Bailu Cao
- Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Endocrinology, Jinling Hospital, Nanjing, China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Xiang Li
- Department of Neurosurgery, Jiangsu Provincial Second Chinese Medicine Hospital, Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Ahmad A, Fauzia E, Kumar M, Mishra RK, Kumar A, Khan MA, Raza SS, Khan R. Gelatin-Coated Polycaprolactone Nanoparticle-Mediated Naringenin Delivery Rescue Human Mesenchymal Stem Cells from Oxygen Glucose Deprivation-Induced Inflammatory Stress. ACS Biomater Sci Eng 2018; 5:683-695. [PMID: 33405831 DOI: 10.1021/acsbiomaterials.8b01081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ischemic stroke involves pro-inflammatory species, which implicates inflammation in the disease mechanism. Recent studies indicate that the prevalence of therapeutic choice such as stem cell transplantation has seen an upsurge in ischemic stroke. However, after transplantation the fate of transplanted cells is largely unknown. Human mesenchymal stem cells (MSCs), due to their robust survival rate upon transplantation in brain tissue, are being widely employed to treat ischemic stroke. In the present study, we have evaluated naringenin-loaded gelatin-coated polycaprolactone nanoparticles (nar-gel-c-PCL NPs) to rescue MSCs against oxygen glucose deprived insult. Naringenin, due to its strong anti-inflammatory effects, remains a therapeutic choice in neurological disorders. Though, the low solubility and inefficient delivery remain challenges in using naringenin as a therapeutic drug. The present study showed that inflammation occurred in MSCs during their treatment with oxygen glucose deprivation (OGD) and was well overturned by treatment with nar-gel-c-PCL NPs. In brief, the results indicated that nar-gel-c-PCL NPs were able to protect the loss of cell membrane integrity and restored neuronal morphology. Then nar-gel-c-PCL NPs successfully protected the human MSCs against OGD-induced inflammation as evident by reduced level of pro-inflammatory cytokine (TNF-α, IFN-γ, and IL-1β) and other inflammatory biomarkers (COX2, iNOS, and MPO activity). Therefore, the modulation of inflammation by treatment with nar-gel-c-PCL NPs in MSCs could provide a novel strategy to improve MSC-based therapy, and thus, our nanoformulation may find a wide therapeutic application in ischemic stroke and other neuro-inflammatory diseases.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Eram Fauzia
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Manish Kumar
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Mohsin Ali Khan
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India.,Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow-226003, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
32
|
Baicalin alleviates 6-hydroxydopamine-induced neurotoxicity in PC12 cells by down-regulation of microRNA-192-5p. Brain Res 2018; 1708:84-92. [PMID: 30552896 DOI: 10.1016/j.brainres.2018.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD), which is caused by neurodegenerative disorder, has no effective treatment until now. Baicalin was reported to have neuroprotective effects. Hence, we investigated the effects of baicalin on PD in an in vitro cell model by using 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma PC12 cells. PC12 cells were stimulated by 6-OHDA and were treated with baicalin and/or transfected with miR-192-5p mimic or negative control (NC). Cell viability and apoptosis were examined by Cell Counting Kit-8 assay and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) analysis, respectively. The expression of p62, ratio of light chain (LC)3-II/LC3-I, miR-192-5p was detected by qRT-PCR. All protein expression levels were analyzed by western blot. We found that 6-OHDA significantly inhibited cell viability, induced apoptosis and autophagy, while baicalin reversed the results led by 6-OHDA. Moreover, baicalin negatively regulated expression of miR-192-5p. Under baicalin treatment, transfection with miR-192-5p mimic decreased cell viability and induced apoptosis and autophagy in 6-OHDA-treated cells compared with NC. In addition, the phosphorylation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (AKT) was statistically down-regulated by baicalin then thereafter reversed by miR-192-5p mimic. Baicalin reduced 6-OHDA-induced cell injury through down-regulation of miR-192-5p, as well as regulation of PI3K/AKT and MDM-2/p53 signal pathways.
Collapse
|
33
|
Soares TB, Loureiro L, Carvalho A, Oliveira MECR, Dias A, Sarmento B, Lúcio M. Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases? Prog Neurobiol 2018; 168:21-41. [DOI: 10.1016/j.pneurobio.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
|
34
|
Fang J, Wang H, Zhou J, Dai W, Zhu Y, Zhou Y, Wang X, Zhou M. Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2497-2508. [PMID: 30127597 PMCID: PMC6089097 DOI: 10.2147/dddt.s163951] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The neuroprotective effects of Baicalin have been confirmed in several central nervous system (CNS) diseases. However, its possible effect on traumatic brain injury (TBI) model is still not clear. The present study is aimed to investigate the role and the underling mechanisms of 7-D-glucuronic acid-5,6-dihydroxyflavone (Baicalin) on TBI model. Methods The weight-drop model of TBI in Institute of Cancer Research mice was treated with Baicalin intraperitoneally at 30 minutes after TBI. LY294002 (LY) (a commonly used PI3K/Akt pathway inhibitor) was injected into the left ventricle at 30 minutes before TBI. All mice were euthanized at 24 hours after TBI to collect the brain tissue for a series of tests except for neurological function, which was measured at 2 hours and 1 and 3 days post-TBI. Results Baicalin administration significantly improved neurobehavioral function, alleviated brain edema, and reduced apoptosis-positive cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay accompanied with the upregulation of B-cell lymphoma 2 (Bcl-2) and downregulation of Bcl-2-associated X protein (Bax) and cleaved-caspase 3 by Western blot. Besides, TBI-induced oxidant stress status was also restored in the Baicalin group by measuring malondialdehyde (MDA) content, glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels in the injured brain cortex. Furthermore, translocation of Nrf2 to the nucleus was dramatically enhanced by Baicalin verified by immunofluorescence and Western blot analyses. Accordingly, its downstream antioxidative enzymes nicotinamide adenine dinucleotide phosphate:quinine oxidoreductase 1 (NQO-1) and heme oxygenase 1 (HO-1) were also activated by Baicalin confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. However, cotreatment with Baicalin and LY could partly abolish Baicalin-induced activation of Nrf2 and its neuroprotective effects in TBI. Conclusion This study demonstrates that Baicalin provides a neuroprotective effect in TBI mice model via activating the Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China,
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China,
| | - Jian Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Wei Dai
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci 2018; 8:brainsci8060104. [PMID: 29891783 PMCID: PMC6025220 DOI: 10.3390/brainsci8060104] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.
Collapse
|
36
|
Wang PQ, Liu Q, Xu WJ, Yu YN, Zhang YY, Li B, Liu J, Wang Z. Pure mechanistic analysis of additive neuroprotective effects between baicalin and jasminoidin in ischemic stroke mice. Acta Pharmacol Sin 2018; 39:961-974. [PMID: 29345255 PMCID: PMC6256271 DOI: 10.1038/aps.2017.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
Both baicalin (BA) and jasminoidin (JA) are active ingredients in Chinese herb medicine Scutellaria baicalensis and Fructus gardeniae, respectively. They have been shown to exert additive neuroprotective action in ischemic stroke models. In this study we used transcriptome analysis to explore the pure therapeutic mechanisms of BA, JA and their combination (BJ) contributing to phenotype variation and reversal of pathological processes. Mice with middle cerebral artery obstruction were treated with BA, JA, their combination (BJ), or concha margaritifera (CM). Cerebral infarct volume was examined to determine the effect of these compounds on phenotype. Using the hippocampus microarray and ingenuity pathway analysis (IPA) software, we exacted the differentially expressed genes, networks, pathways, and functions in positive-phenotype groups (BA, JA and BJ) by comparing with the negative-phenotype group (CM). In the BA, JA, and BJ groups, a total of 7, 4, and 11 specific target molecules, 1, 1, and 4 networks, 51, 59, and 18 canonical pathways and 70, 53, and 64 biological functions, respectively, were identified. Pure therapeutic mechanisms of BA and JA were mainly overlapped in specific target molecules, functions and pathways, which were related to the nervous system, inflammation and immune response. The specific mechanisms of BA and JA were associated with apoptosis and cancer-related signaling and endocrine and hormone regulation, respectively. In the BJ group, novel target profiles distinct from mono-therapies were revealed, including 11 specific target molecules, 10 functions, and 10 pathways, the majority of which were related to a virus-mediated immune response. The pure additive effects between BA and JA were based on enhanced action in virus-mediated immune response. This pure mechanistic analysis may provide a clearer outline of the target profiles of multi-target compounds and combination therapies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Flavonoids/pharmacology
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Gene Regulatory Networks/drug effects
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/metabolism
- Hippocampus/pathology
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Iridoids/pharmacology
- Male
- Mice
- Neuroprotective Agents/pharmacology
- Oligonucleotide Array Sequence Analysis
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Systems Biology/methods
- Transcriptome/drug effects
Collapse
Affiliation(s)
- Peng-qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen-juan Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ya-nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying-ying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
37
|
Chen H, Guan B, Chen X, Chen X, Li C, Qiu J, Yang D, Liu KJ, Qi S, Shen J. Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO --MMP-9 Pathway. Transl Stroke Res 2017; 9:515-529. [PMID: 29275501 DOI: 10.1007/s12975-017-0598-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Tissue plasminogen activator (t-PA) has a restrictive therapeutic window within 4.5 h after ischemic stroke with the risk of hemorrhagic transformation (HT) and neurotoxicity when it is used beyond the time window. In the present study, we tested the hypothesis that baicalin, an active compound of medicinal plant, could attenuate HT in cerebral ischemia stroke with delayed t-PA treatment. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 4.5 h and then continuously received t-PA infusion (10 mg/kg) for 0.5 h and followed by 19-h reperfusion. Baicalin (50, 100, 150 mg/kg) was administrated via femoral vein at 4.5 h after MCAO cerebral ischemia. Delayed t-PA infusion significantly increased the mortality rate, induced HT, blood-brain barrier (BBB) damage, and apoptotic cell death in the ischemic brains and exacerbated neurological outcomes in cerebral ischemia-reperfusion rats at 24 h after MCAO cerebral ischemia. Co-treatment of baicalin significantly reduced the mortality rates, ameliorated the t-PA-mediated BBB disruption and HT. Furthermore, baicalin showed to directly scavenge peroxynitrite and inhibit MMP-9 expression and activity in the ischemic brains with the delayed t-PA treatment. Baicalin had no effect on the t-PA fibrinolytic function indicated by t-PA activity assay. Taken together, baicalin could attenuate t-PA-mediated HT and improve the outcomes of ischemic stroke treatment possibly via inhibiting peroxynitrite-mediated MMP-9 activation.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China
| | - Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen Shi, China.,The 8th People's Hospital of Shenzhen, The Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, 518000, China
| | - Xingmiao Chen
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China
| | - Caiming Li
- Department of Neurology, Huizhou First Hospital, Huizhou, Guangdong Province, China
| | - Jinhua Qiu
- Department of Neurology, Huizhou First Hospital, Huizhou, Guangdong Province, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China. .,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China.
| |
Collapse
|
38
|
Liu Y, Ma Y, Xu J, Chen Y, Xie J, Yue P, Zheng Q, Yang M. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf B Biointerfaces 2017; 160:619-627. [PMID: 29031222 DOI: 10.1016/j.colsurfb.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 01/14/2023]
Abstract
To help baicalin pass across BBB and improve its targeting in brain, we designed a novel formulation strategy of baicalin nanocrystals that preferentially adsorbing apolipoprotein E (ApoE) and repelling protein adsorption of opsonins. Intravenous baicalin nanocrystals suspensions (BCL-NS) modified by different surfactant were prepared by high-pressure homogenization. The targeting potential of surface-modified BCL-NS with mean particles size of about 250nm was assessed by in vitro protein adsorption studies using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), and further evaluated in vivo pharmacokinetics. The protein adsorption results showed that BCL-NS/TPGS, BCL-NS/TW80 and BCL-NS/TPGS+TW80 adsorbed very high amounts of apolipoproteins (ApoA-I, ApoA-Ⅱ, ApoA-IV, ApoC-III, ApoE, ApoJ) and relative low amounts of opsonins (fibrinogen, immunoglobulin heavy chain gamma, immunoglobulin light chain). The pharmacokinetics results demonstrated the AUC (0-∞) in brain of the BCL-NS/TW80+TPGS was 6.67 times as high as that of the BCL solution, and 2.59 times as high as that of the BCL-NS/TW80. It could be attributed to the most ApoE and Apo J adsorption indicative of strong BBB penetration, and least IgG γ and fibrinogen loading minimizing the risk of hepatic uptake. Combination of TW80 and TPGS can be rational choice of surfactants of baicalin nanocrystals for brain-targeting mediated by ApoE adsorption.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yueqin Ma
- Departments of Pharmacy, 94th Hospital of People's Liberation Army, Nanchang, China
| | - Junnan Xu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jin Xie
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
39
|
Zuo W, Wu H, Zhang K, Lv P, Xu F, Jiang W, Zheng L, Zhao J. Baicalin promotes the viability of Schwann cells in vitro by regulating neurotrophic factors. Exp Ther Med 2017; 14:507-514. [PMID: 28672960 DOI: 10.3892/etm.2017.4524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/14/2017] [Indexed: 01/26/2023] Open
Abstract
The proliferation and migration of Schwann cells (SCs) are key events in the process of peripheral nerve repair. This is required to promote the growth of SCs and is a challenge during the treatment of peripheral nerve injury. Baicalin is a natural herb-derived flavonoid compound, which has been reported to possess neuroprotective effects on rats with permanent brain ischemia and neuronal differentiation of neural stem cells. The association of baicalin with neuroprotection leads to the suggestion that baicalin may exert effects on the growth of SCs. In the present study, the effects of baicalin on SCs of RSC96 were investigated. RSC96 SCs were treated with various concentrations of baicalin (0, 5, 10 or 20 µM) for 2, 4 and 6 days. Cell attachment, viability and gene expression were monitored via the MTT assay and reverse transcription-quantitative polymerase chain reaction. The gene expression levels of several neurotrophic factors, such as glial cell-derived neurotrophic factor, brain-derived neurotrophic factor and ciliary neurotrophic factor, which are considered important factors in the process of never cell regeneration, were detected. The results indicated that baicalin was able to promote the viability of RSC96 SCs in a dose-dependent manner and the concentration of 20 µM of baicalin exhibited the greatest cell viability and gene expression of the studied neurotrophic factors. The present findings suggested that baicalin likely affects SCs metabolism, through modulating the expression of neurotrophic factors. To conclude, the present study indicates that baicalin may be potential therapeutic agent for treating peripheral nerve regeneration.
Collapse
Affiliation(s)
- Wenpu Zuo
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kun Zhang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peizhen Lv
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuben Xu
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weizhe Jiang
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Zheng
- Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of Regenerative Medicine of Guangxi High School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
40
|
Metabolic Factors and Adult Neurogenesis: Impacts of Chinese Herbal Medicine on Brain Repair in Neurological Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:117-147. [PMID: 28807156 DOI: 10.1016/bs.irn.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adult neurogenesis plays the important roles in animal cognitive and emotional behaviors. Abnormal proliferation and differentiation of neural stem cells (NSCs) usually associate with the neural dysfunctions induced by different brain disorders. Therefore, targeting neurogenic factors could be a promoting strategy for neural regeneration and brain repair. Importantly, epidemiological studies suggest metabolism disorders like diabetes and obesity significantly increase the risk of neurological and psychiatric diseases. A large number of studies indicate that metabolic factors could serve as the modulators to adult neurogenesis, providing the potentials of metabolic factors to regulate NSCs growth and neural regeneration therapy. This chapter reviews the current studies on the roles of metabolic factors in modulating adult neurogenesis and evaluates the potentials of Chinese Herbal Medicine (CHM) for the treatment of neurological or psychiatric disorders by targeting the metabolic factors. Traditional Chinese Medicine (TCM) including CHM and acupuncture is now widely applied for the treatment of metabolic diseases, and neurological diseases in Asia, because its' therapeutic principles meet the multiple targets and complexity characteristics of most neurological disorders. Different studies indicate that there are many active compounds perform the regulations to metabolic factors and promoting neurogenesis. This chapter systematically summarizes the current progress and understanding of the active compounds and their underlying mechanisms of CHM formulas for promoting neurogenesis. Many CHM formulas and their active ingredients that originally used for metabolic disorders show the promising effects on mediating neurogenesis and brain repair for the treatments of neurodegenerative diseases. Therefore, further investigations about the relationship between neurogenesis and metabolic regulations of CHM will bring new insights into understanding the mechanisms of adult neurogenesis and provide great opportunities to develop new therapeutic strategies for neurological diseases. Those studies will provide scientific guidance to develop the drugs from TCM resource.
Collapse
|
41
|
Sun JY, Li DL, Dong Y, Zhu CH, Liu J, Li JD, Zhou T, Gou JZ, Li A, Zang WJ. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis. Int Immunopharmacol 2016; 36:86-93. [DOI: 10.1016/j.intimp.2016.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 01/07/2023]
|
42
|
Liao ZJ, Liang RS, Shi SS, Wang CH, Yang WZ. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice. Exp Ther Med 2016; 12:1405-1411. [PMID: 27588062 PMCID: PMC4998122 DOI: 10.3892/etm.2016.3461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2.
Collapse
Affiliation(s)
- Zheng-Jian Liao
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Song-Sheng Shi
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Chun-Hua Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wei-Zhong Yang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
43
|
Wang P, Cao Y, Yu J, Liu R, Bai B, Qi H, Zhang Q, Guo W, Zhu H, Qu L. Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus. Brain Res 2016; 1642:95-103. [PMID: 27016057 DOI: 10.1016/j.brainres.2016.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
Baicalin has a significant neuroprotective effect in stroke. However, the mechanism remains unclear. This study was to reveal the mechanisms by which baicalin protected hippocampal neurons and improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbil. In the present study, the Morris water maze test showed that baicalin significantly improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbils. Laser scanning confocal fluorescence microscope examination showed that baicalin suppressed OGD-induced augmentation of intracellular calcium concentration. Western blotting analysis indicated that baicalin suppressed ischemia-caused elevated phosphorylation level of CaMKII in vivo, in hippocampal neurons in culture, and in SH-SY5Y cells in culture. Western blotting, TUNEL and RNA interference technology were applied to detect effects of baicalin on neuronal apoptosis. We found that baicalin, a CaMKII inhibitor and knocking down the CaMKII prevented OGD-induced apoptosis of hippocampal or SH-SY5Y cells in culture. Therefore, these results suggested that baicalin improves learning and memory impairment induced by global cerebral ischemia/reperfusion in gerbils via attenuating the phosphorylation level of CaMKII and further preventing hippocampal neuronal apoptosis.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China; Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yonggang Cao
- Department of Pharmacology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Juan Yu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Ruxia Liu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Bing Bai
- Department of genetics, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hanping Qi
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Wenguang Guo
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hui Zhu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
44
|
Liu LF, Song JX, Lu JH, Huang YY, Zeng Y, Chen LL, Durairajan SSK, Han QB, Li M. Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson's disease. Sci Rep 2015; 5:16862. [PMID: 26578166 PMCID: PMC4649620 DOI: 10.1038/srep16862] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Tianma Gouteng Yin (TGY) is a traditional Chinese medicine (TCM) decoction widely used to treat symptoms associated with typical Parkinson's disease (PD). In this study, the neuroprotective effects of water extract of TGY were tested on rotenone-intoxicated and human α-synuclein transgenic Drosophila PD models. In addition, the neuroprotective effect of TGY was also evaluated in the human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone and the rotenone intoxicated hemi-parkinsonian rats. In rotenone-induced PD models, TGY improved survival rate, alleviated impaired locomotor function of Drosophila, mitigated the loss of dopaminergic neurons in hemi-parkinsonian rats and alleviated apoptotic cell death in SH-SY5Y cells; in α-synuclein transgenic Drosophila, TGY reduced the level of α-synuclein and prevented degeneration of dopaminergic neurons. Conclusively, TGY is neuroprotective in PD models both in vivo and in vitro.
Collapse
Affiliation(s)
- Liang-Feng Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ying-Yu Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Yu Zeng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Lei-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Siva Sundara Kumar Durairajan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
45
|
Dang H, Li K, Yu Y, Zhang Y, Liu J, Wang P, Li B, Wang H, Li H, Wang Z, Wang Y. Variation of pathways and network profiles reveals the differential pharmacological mechanisms of each effective component to treat middle cerebral artery ischemia-reperfusion mice. Exp Biol Med (Maywood) 2015; 241:79-89. [PMID: 26168995 DOI: 10.1177/1535370215594584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/12/2015] [Indexed: 12/25/2022] Open
Abstract
Using a system pharmacology strategy, this study evaluated the unique pharmacological characteristics of three different neuroprotective compounds for the treatment of cerebral ischemia-reperfusion. A microarray including 374 brain ischemia-related genes was used to identify the differentially expressed genes among five treatment groups: baicalin, jasminoidin, ursodeoxycholic acid, sham, and vehicle, and MetaCore analysis software was applied to identify the significantly altered pathways, processes and interaction network parameters. At pathway level, 46, 25, and 31 pathways were activated in the baicalin, jasminoidin, and ursodeoxycholic acid groups, respectively. Thirteen pathways mainly related with apoptosis and development were commonly altered in the three groups. Additionally, baicalin also targeted pathways related with development, neurophysiologic process and cytoskeleton remodeling, while jasminoidin targeted pathways related with cell cycle and ursodeoxycholic acid targeted those related with apoptosis and development. At process level, three processes were commonly regulated by the three groups in the top 10 processes. Further interaction network analysis revealed that baicalin, jasminoidin, and ursodeoxycholic acid displayed unique features either on network topological parameters or network structure. Additional overlapping analysis demonstrated that compared with ursodeoxycholic acid, the pharmacological mechanism of baicalin was more similar with that of jasminoidin in treating brain ischemia. The data presented in this study may contribute toward the understanding of the common and differential pharmacological mechanisms of these three compounds.
Collapse
Affiliation(s)
- HaiXia Dang
- China Academy of Chinese Medical Sciences, Beijing 100700, China Shanxi Buchang Pharmaceutical Co., Ltd, Shaanxi 710075
| | - KangNing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - YaNan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - YingYing Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - PengQian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - HaiNan Wang
- China Food and Drug Administration, Beijing 100053, China
| | - Haixia Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - YongYan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
46
|
Liu Z, Zhang L, He Q, Liu X, Chukwunweike Ikechukwu O, Tong L, Guo L, Yang H, Zhang Q, Zhao H, Gu X. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia–reperfusion in rats. Int J Pharm 2015; 489:131-8. [DOI: 10.1016/j.ijpharm.2015.04.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 01/31/2023]
|
47
|
Chen C, Li X, Gao P, Tu Y, Zhao M, Li J, Zhang S, Liang H. Baicalin attenuates alzheimer-like pathological changes and memory deficits induced by amyloid β1-42 protein. Metab Brain Dis 2015; 30:537-44. [PMID: 25108596 DOI: 10.1007/s11011-014-9601-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Baicalin is one bioactive flavone with anti-inflammatory and neuroprotective activities. The neuroprotective effects of baicalin on pathological changes and behavioral deficits were explored in a mouse model of amyloid β (Aβ)(1-42) protein-induced Alzheimer's disease (AD). Mice received a bilateral injection of Aβ(1-42) protein into the hippocampus, then they were treated with baicalin (30, 50 and 100 mg/kg body weight, orally) or Tween 80. The therapeutic effects of baicalin were monitored by Morris water maze trial and probe test. Then mice were sacrificed for immunohistochemistry and western blot analysis. After a relatively short-term treatment of 14 days, 100 mg/kg of baicalin significantly ameliorated memory impairment in the Morris water maze test and probe test, and also attenuated glial cell activations and increase of TNF-α and IL-6 expressions induced by Aβ(1-42) protein. These results suggest that baicalin ameliorated Aβ(1-42) protein-related pathology and cognitive dysfunction via its anti-neuroinflammatory activity, and may be a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chong Chen
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tu XK, Yang WZ, Chen JP, Chen Y, Chen Q, Chen PP, Shi SS. Repetitive ischemic preconditioning attenuates inflammatory reaction and brain damage after focal cerebral ischemia in rats: involvement of PI3K/Akt and ERK1/2 signaling pathway. J Mol Neurosci 2014; 55:912-22. [PMID: 25338292 DOI: 10.1007/s12031-014-0446-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/13/2014] [Indexed: 12/29/2022]
Abstract
Ischemic preconditioning (IPC) has been demonstrated to provide a neuroprotection against brain damage produced by focal cerebral ischemia. However, it is elusive whether ischemic preconditioning attenuates ischemic brain damage through modulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. In the present study, we first explored the best scheme of repetitive ischemic preconditioning (RIPC) to protect rat brain against ischemic damage and then further investigated the underlying mechanisms in RIPC's neuroprotection. Adult male Sprague-Dawley rats underwent ischemic preconditioning or (and) middle cerebral artery occlusion (MCAO). LY294002 or (and) PD98059 were injected intracerebroventricularly to selectively inhibit the activation of PI3K/Akt or ERK1/2. Neurological deficit scores, cerebral infarct volume, and morphological characteristic were detected at corresponding time after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after cerebral ischemia. Expressions of p-Akt, t-Akt, p-ERK1/2, t-ERK1/2, nuclear factor-kappa B (NF-κB) p65, and cyclooxygenase-2 (COX-2) in ischemic brain were determined by Western blot. The release of tumor necrosis factor-α (TNF-α) in blood was examined by ELISA. In the various schemes of RIPC, IPC2 × 5 min causes less neuronal damage in the cortex and subcortex of ischemic brain and provides an obvious alleviation of cerebral infarction and neurological deficit after lethal ischemia. IPC2 × 5 min significantly reduces cerebral infarct volume, neurological deficit scores, and MPO activity; all of which were diminished by LY294002 or (and) PD98059. IPC2 × 5 min significantly upregulates the expressions of p-Akt and p-ERK1/2, which were inhibited by LY294002 or (and) PD98059. IPC2 × 5 min significantly downregulates the expressions of NF-κB p65 and COX-2 and attenuates the release of TNF-α; all of which were abolished by LY294002 or (and) PD98059. IPC2 × 5 min is the best scheme of RIPC to protect rat brain against cerebral ischemia. IPC2 × 5 min attenuates brain damage in rats subjected to lethal ischemia, and this neuroprotection is associated with inhibition of neuroinflammation through modulating PI3K/Akt and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xian-kun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, Fujian, 350001, China,
| | | | | | | | | | | | | |
Collapse
|
49
|
Shi S, Yang W, Tu X, Chen C, Wang C. Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis. Neural Regen Res 2014; 8:633-8. [PMID: 25206708 PMCID: PMC4145988 DOI: 10.3969/j.issn.1673-5374.2013.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.
Collapse
Affiliation(s)
- Songsheng Shi
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Weizhong Yang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Xiankun Tu
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
50
|
YANG YF, LI Z, XIN WF, WANG YY, ZHANG WS. Pharmacokinetics and brain distribution differences of baicalin in rat underlying the effect of Panax notoginsenosides after intravenous administration. Chin J Nat Med 2014; 12:632-40. [DOI: 10.1016/s1875-5364(14)60097-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Indexed: 10/24/2022]
|