1
|
Blalock ZN, Wu GWY, Lindqvist D, Trumpff C, Flory JD, Lin J, Reus VI, Rampersaud R, Hammamieh R, Gautam A, Doyle FJ, Marmar CR, Jett M, Yehuda R, Wolkowitz OM, Mellon SH. Circulating cell-free mitochondrial DNA levels and glucocorticoid sensitivity in a cohort of male veterans with and without combat-related PTSD. Transl Psychiatry 2024; 14:22. [PMID: 38200001 PMCID: PMC10781666 DOI: 10.1038/s41398-023-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a biomarker of cellular injury or cellular stress and is a potential novel biomarker of psychological stress and of various brain, somatic, and psychiatric disorders. No studies have yet analyzed ccf-mtDNA levels in post-traumatic stress disorder (PTSD), despite evidence of mitochondrial dysfunction in this condition. In the current study, we compared plasma ccf-mtDNA levels in combat trauma-exposed male veterans with PTSD (n = 111) with those who did not develop PTSD (n = 121) and also investigated the relationship between ccf mt-DNA levels and glucocorticoid sensitivity. In unadjusted analyses, ccf-mtDNA levels did not differ significantly between the PTSD and non-PTSD groups (t = 1.312, p = 0.191, Cohen's d = 0.172). In a sensitivity analysis excluding participants with diabetes and those using antidepressant medication and controlling for age, the PTSD group had lower ccf-mtDNA levels than did the non-PTSD group (F(1, 179) = 5.971, p = 0.016, partial η2 = 0.033). Across the entire sample, ccf-mtDNA levels were negatively correlated with post-dexamethasone adrenocorticotropic hormone (ACTH) decline (r = -0.171, p = 0.020) and cortisol decline (r = -0.149, p = 0.034) (viz., greater ACTH and cortisol suppression was associated with lower ccf-mtDNA levels) both with and without controlling for age, antidepressant status and diabetes status. Ccf-mtDNA levels were also significantly positively associated with IC50-DEX (the concentration of dexamethasone at which 50% of lysozyme activity is inhibited), a measure of lymphocyte glucocorticoid sensitivity, after controlling for age, antidepressant status, and diabetes status (β = 0.142, p = 0.038), suggesting that increased lymphocyte glucocorticoid sensitivity is associated with lower ccf-mtDNA levels. Although no overall group differences were found in unadjusted analyses, excluding subjects with diabetes and those taking antidepressants, which may affect ccf-mtDNA levels, as well as controlling for age, revealed decreased ccf-mtDNA levels in PTSD. In both adjusted and unadjusted analyses, low ccf-mtDNA levels were associated with relatively increased glucocorticoid sensitivity, often reported in PTSD, suggesting a link between mitochondrial and glucocorticoid-related abnormalities in PTSD.
Collapse
Affiliation(s)
- Zachary N Blalock
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Gwyneth W Y Wu
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Janine D Flory
- James J. Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Victor I Reus
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Aarti Gautam
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Rachel Yehuda
- James J. Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Blumenfeld Z, Bera K, Castrén E, Lester HA. Antidepressants enter cells, organelles, and membranes. Neuropsychopharmacology 2024; 49:246-261. [PMID: 37783840 PMCID: PMC10700606 DOI: 10.1038/s41386-023-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
We begin by summarizing several examples of antidepressants whose therapeutic actions begin when they encounter their targets in the cytoplasm or in the lumen of an organelle. These actions contrast with the prevailing view that most neuropharmacological actions begin when drugs engage their therapeutic targets at extracellular binding sites of plasma membrane targets-ion channels, receptors, and transporters. We review the chemical, pharmacokinetic, and pharmacodynamic principles underlying the movements of drugs into subcellular compartments. We note the relationship between protonation-deprotonation events and membrane permeation of antidepressant drugs. The key properties relate to charge and hydrophobicity/lipid solubility, summarized by the parameters LogP, pKa, and LogDpH7.4. The classical metric, volume of distribution (Vd), is unusually large for some antidepressants and has both supracellular and subcellular components. A table gathers structures, LogP, PKa, LogDpH7.4, and Vd data and/or calculations for most antidepressants and antidepressant candidates. The subcellular components, which can now be measured in some cases, are dominated by membrane binding and by trapping in the lumen of acidic organelles. For common antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin/norepinephrine reuptake inhibitors (SNRIs), the target is assumed to be the eponymous reuptake transporter(s), although in fact the compartment of target engagement is unknown. We review special aspects of the pharmacokinetics of ketamine, ketamine metabolites, and other rapidly acting antidepressants (RAADs) including methoxetamine and scopolamine, psychedelics, and neurosteroids. Therefore, the reader can assess properties that markedly affect a drug's ability to enter or cross membranes-and therefore, to interact with target sites that face the cytoplasm, the lumen of organelles, or a membrane. In the current literature, mechanisms involving intracellular targets are termed "location-biased actions" or "inside-out pharmacology". Hopefully, these general terms will eventually acquire additional mechanistic details.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kallol Bera
- Department of Neurosciences and Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA, USA
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Rosell-Hidalgo A, Eakins J, Walker P, Moore AL, Ghafourian T. Risk Assessment of Psychotropic Drugs on Mitochondrial Function Using In Vitro Assays. Biomedicines 2023; 11:3272. [PMID: 38137493 PMCID: PMC10741027 DOI: 10.3390/biomedicines11123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria are potential targets responsible for some drug- and xenobiotic-induced organ toxicities. However, molecular mechanisms of drug-induced mitochondrial toxicities are mostly unknown. Here, multiple in vitro assays were used to investigate the effects of 22 psychotropic drugs on mitochondrial function. The acute extracellular flux assay identified inhibitors of the electron transport chain (ETC), i.e., aripiprazole, phenytoin, and fluoxetine, an uncoupler (reserpine), substrate inhibitors (quetiapine, carbamazepine, buspirone, and tianeptine), and cytotoxic compounds (chlorpromazine and valproic acid) in HepG2 cells. Using permeabilized HepG2 cells revealed minimum effective concentrations of 66.3, 6730, 44.5, and 72.1 µM for the inhibition of complex-I-linked respiration for quetiapine, valproic acid, buspirone, and fluoxetine, respectively. Assessing complex-II-linked respiration in isolated rat liver mitochondria revealed haloperidol is an ETC inhibitor, chlorpromazine is an uncoupler in basal respiration and an ETC inhibitor under uncoupled respiration (IC50 = 135 µM), while olanzapine causes a mild dissipation of the membrane potential at 50 µM. This research elucidates some mechanisms of drug toxicity and provides some insight into their safety profile for clinical drug decisions.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Julie Eakins
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Paul Walker
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
| | - Taravat Ghafourian
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
4
|
Bizerra PFV, Itou da Silva FS, Gilglioni EH, Nanami LF, Klosowski EM, de Souza BTL, Raimundo AFG, Paulino Dos Santos KB, Mewes JM, Constantin RP, Mito MS, Ishii-Iwamoto EL, Constantin J, Mingatto FE, Esquissato GNM, Marchiosi R, Dos Santos WD, Ferrarese-Filho O, Constantin RP. The harmful acute effects of clomipramine in the rat liver: impairments in mitochondrial bioenergetics. Toxicol Lett 2023:S0378-4274(23)00184-4. [PMID: 37217012 DOI: 10.1016/j.toxlet.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Clomipramine, a tricyclic antidepressant used to treat depression and obsessive-compulsive disorder, has been linked to a few cases of acute hepatotoxicity. It is also recognized as a compound that hinders the functioning of mitochondria. Hence, the effects of clomipramine on mitochondria should endanger processes that are somewhat connected to energy metabolism in the liver. For this reason, the primary aim of this study was to examine how the effects of clomipramine on mitochondrial functions manifest in the intact liver. For this purpose, we used the isolated perfused rat liver, but also isolated hepatocytes and isolated mitochondria as experimental systems. According to the findings, clomipramine harmed metabolic processes and the cellular structure of the liver, especially the membrane structure. The considerable decrease in oxygen consumption in perfused livers strongly suggested that the mechanism of clomipramine toxicity involves the disruption of mitochondrial functions. Coherently, it could be observed that clomipramine inhibited both gluconeogenesis and ureagenesis, two processes that rely on ATP production within the mitochondria. Half-maximal inhibitory concentrations for gluconeogenesis and ureagenesis ranged from 36.87μM to 59.64μM. The levels of ATP as well as the ATP/ADP and ATP/AMP ratios were reduced, but distinctly, between the livers of fasted and fed rats. The results obtained from experiments conducted on isolated hepatocytes and isolated mitochondria unambiguously confirmed previous propositions about the effects of clomipramine on mitochondrial functions. These findings revealed at least three distinct mechanisms of action, including uncoupling of oxidative phosphorylation, inhibition of the FoF1-ATP synthase complex, and inhibition of mitochondrial electron flow. The elevation in activity of cytosolic and mitochondrial enzymes detected in the effluent perfusate from perfused livers, coupled with the increase in aminotransferase release and trypan blue uptake observed in isolated hepatocytes, provided further evidence of the hepatotoxicity of clomipramine. It can be concluded that impaired mitochondrial bioenergetics and cellular damage are important factors underlying the hepatotoxicity of clomipramine and that taking excessive amounts of clomipramine can lead to several risks including decreased ATP production, severe hypoglycemia, and potentially fatal outcomes.
Collapse
Affiliation(s)
- Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Ana Flávia Gatto Raimundo
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Karina Borba Paulino Dos Santos
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Juliana Moraes Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Fábio Ermínio Mingatto
- Laboratory of Metabolic and Toxicological Biochemistry, São Paulo State University, Dracena 17900-000, São Paulo, Brazil.
| | | | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
5
|
Salama RM, Tayel SG. Silymarin attenuates escitalopram (cipralex) induced pancreatic injury in adult male albino rats: a biochemical, histological, and immunohistochemical approach. Anat Cell Biol 2023; 56:122-136. [PMID: 36624692 PMCID: PMC9989791 DOI: 10.5115/acb.22.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 01/11/2023] Open
Abstract
Depression is a prevalent global problem since ages, predominately treated with SSRI. Cipralex, is an antidepressant of the SSRIs class used as a remedy for mood, depression and anxiety. Silymarin (SIL), a natural free radical scavenging, has an antioxidant and anti-inflammatory properties. This hypothesis evaluates, for the first time, the role of cipralex on the structure of the endocrine and exocrine components of the pancreas and assess the beneficial effects of SIL on these changes. Forty-five rats were divided into control, cipralex, and cipralex plus SIL groups. During sacrifice, all rats and pancreases were weighed and the ratio of pancreatic weight (PW) to rat weight (RW) was calculated, blood samples were collected to estimate fasting glucose, insulin and amylase levels, the specimens were prepared for histological, immunohistochemical (inducible nitric oxide synthase [iNOS], tumour necrosis factor-alpha [TNF-α], caspase 3, proliferating cell nuclear antigen [PCNA], and anti-insulin antibody), and morphometrical studies. Cipralex group exhibited marked destruction of the pancreatic architecture of the exocrine and endocrine parts, with a dense collagen fiber deposition. Also, there is highly significant decrease (P<0.001) of PW/RT ratio, insulin, and amylase levels, the number and diameter of islets of Langerhans, the number of PCNA positive immunoreactive cells, and the number of insulin positive β-cells. Furthermore, a highly significant increase of glucose level, iNOS, TNF-α, and caspase-3 positive immunoreactive cells in the islets of Langerhans and acinar cells were observed. SIL improves the pancreatic histological architecture, weight loss, biochemical, and immunohistochemical analyses. Administering SIL is advantageous in managing cipralex induced pancreatic injury via its anti-inflammatory, antioxidant, and anti-apoptotic qualities.
Collapse
Affiliation(s)
- Rasha Mamdouh Salama
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Sara Gamal Tayel
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
6
|
Gardea-Resendez M, Coombes BJ, Veldic M, Tye SJ, Romo-Nava F, Ozerdem A, Prieto ML, Cuellar-Barboza A, Nunez NA, Singh B, Pendegraft RS, Miola A, McElroy SL, Biernacka JM, Morava E, Kozicz T, Frye MA. Antidepressants that increase mitochondrial energetics may elevate risk of treatment-emergent mania. Mol Psychiatry 2023; 28:1020-1026. [PMID: 36513812 PMCID: PMC10005962 DOI: 10.1038/s41380-022-01888-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
Preclinical evidence suggests that antidepressants (ADs) may differentially influence mitochondrial energetics. This study was conducted to investigate the relationship between mitochondrial function and illness vulnerability in bipolar disorder (BD), specifically risk of treatment-emergent mania (TEM). Participants with BD already clinically phenotyped as TEM+ (n = 176) or TEM- (n = 516) were further classified whether the TEM associated AD, based on preclinical studies, increased (Mito+, n = 600) or decreased (Mito-, n = 289) mitochondrial electron transport chain (ETC) activity. Comparison of TEM+ rates between Mito+ and Mito- ADs was performed using generalized estimating equations to account for participants exposed to multiple ADs while adjusting for sex, age at time of enrollment into the biobank and BD type (BD-I/schizoaffective vs. BD-II). A total of 692 subjects (62.7% female, 91.4% White, mean age 43.0 ± 14.0 years) including 176 cases (25.3%) of TEM+ and 516 cases (74.7%) of TEM- with previous exposure to Mito+ and/or Mito- antidepressants were identified. Adjusting for age, sex and BD subtype, TEM+ was more frequent with antidepressants that increased (24.7%), versus decreased (13.5%) mitochondrial energetics (OR = 2.21; p = 0.000009). Our preliminary retrospective data suggests there may be merit in reconceptualizing AD classification, not solely based on monoaminergic conventional drug mechanism of action, but additionally based on mitochondrial energetics. Future prospective clinical studies on specific antidepressants and mitochondrial activity are encouraged. Recognizing pharmacogenomic investigation of drug response may extend or overlap to genomics of disease risk, future studies should investigate potential interactions between mitochondrial mechanisms of disease risk and drug response.
Collapse
Grants
- K23 MH120503 NIMH NIH HHS
- T32 GM008685 NIGMS NIH HHS
- Mark A. Frye M.D. has received research support from Assurex Health and Mayo Foundation; received CME Travel and Honoraria from Carnot Laboratories and has Financial Interest / Stock ownership / Royalties with Chymia LLC.
- - Marriott Family Foundation - Thomas and Elizabeth Grainger Fund in Bipolar Disorder Novel Therapeutics and Advanced Diagnostics - Mayo Clinic Center for Individualized Medicine
- Susannah J. Tye was supported in part by a NHMRC grant (1160472).
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- Miguel L. Prieto was supported in part by CONICYT/ANID grants FONDECYT Regular 1181365, FONDEF ID19I10116 and Basal Funding for Scientific and Technological Center of Excellence, IMPACT, #FB210024. Miguel Prieto reports receiving personal fees for advisory board from Janssen.
- Nicolas A Nunez was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number T32 GM008685.
- Alessandro Miola reports receiving support from the Mayo Foundation during the conduct of the study.
- Susan L McElroy reports receiving personal fees for advisory boards and/or consultation from Idorsia, Levo, Novo Nordisk, Sunovion, and Takeda; receiving grant support from Jazz, Janssen, Novo Nordisk, Otsuka, and Sunovion; and receiving payments from Johnson & Johnson for being an inventor on US Patent 6 323 236 B2.
Collapse
Affiliation(s)
- Manuel Gardea-Resendez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Francisco Romo-Nava
- Lindner Center of HOPE /Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Aysegul Ozerdem
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
| | | | - Nicolas A Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Alessandro Miola
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Susan L McElroy
- Lindner Center of HOPE /Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Kuretu A, Arineitwe C, Mothibe M, Ngubane P, Khathi A, Sibiya N. Drug-induced mitochondrial toxicity: Risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023; 14:1123928. [PMID: 36860368 PMCID: PMC9969099 DOI: 10.3389/fendo.2023.1123928] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial impairment has been associated with the development of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the relationship between mitochondrial impairment and insulin resistance is not fully elucidated due to insufficient evidence to support the hypothesis. Insulin resistance and insulin deficiency are both characterised by excessive production of reactive oxygen species and mitochondrial coupling. Compelling evidence states that improving the function of the mitochondria may provide a positive therapeutic tool for improving insulin sensitivity. There has been a rapid increase in reports of the toxic effects of drugs and pollutants on the mitochondria in recent decades, interestingly correlating with an increase in insulin resistance prevalence. A variety of drug classes have been reported to potentially induce toxicity in the mitochondria leading to skeletal muscle, liver, central nervous system, and kidney injury. With the increase in diabetes prevalence and mitochondrial toxicity, it is therefore imperative to understand how mitochondrial toxicological agents can potentially compromise insulin sensitivity. This review article aims to explore and summarise the correlation between potential mitochondrial dysfunction caused by selected pharmacological agents and its effect on insulin signalling and glucose handling. Additionally, this review highlights the necessity for further studies aimed to understand drug-induced mitochondrial toxicity and the development of insulin resistance.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Charles Arineitwe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
- *Correspondence: Ntethelelo Sibiya,
| |
Collapse
|
8
|
Ľupták M, Fišar Z, Hroudová J. Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study. Int J Mol Sci 2022; 23:ijms232213824. [PMID: 36430306 PMCID: PMC9697131 DOI: 10.3390/ijms232213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Shin EJ, Jeong JH, Nguyen BT, Sharma N, Nah SY, Chung YH, Lee Y, Byun JK, Nabeshima T, Ko SK, Kim HC. Ginsenoside Re Protects against Serotonergic Behaviors Evoked by 2,5-Dimethoxy-4-iodo-amphetamine in Mice via Inhibition of PKCδ-Mediated Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22137219. [PMID: 34281274 PMCID: PMC8268959 DOI: 10.3390/ijms22137219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju 28644, Korea;
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju 12106, Korea;
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan;
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon 27136, Korea
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| |
Collapse
|
10
|
Gumpp AM, Behnke A, Bach AM, Piller S, Boeck C, Rojas R, Kolassa IT. Mitochondrial bioenergetics in leukocytes and oxidative stress in blood serum of mild to moderately depressed women. Mitochondrion 2020; 58:14-23. [PMID: 33383159 DOI: 10.1016/j.mito.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Major depressive disorder (MDD) has been associated with lower mitochondrial energy production and higher oxidative stress. We investigated whether these alterations manifest in patients with current mild to moderate MDD severity. We observed no differences in mitochondrial respiration and density (i.e., citrate-synthase activity) in peripheral blood mononuclear cells and oxidative stress markers (i.e., 8-hydroxy-2'-deoxyguanosine, 8-isoprostane) in blood serum of 20 female MDD patients compared to 24 non-depressed women. Alterations in mitochondrial energy production and oxidative stress did not linearly depend on the current severity of MDD. However, biological alterations might rather manifest with higher MDD severity/chronicity and at higher age.
Collapse
Affiliation(s)
- Anja M Gumpp
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Alexander Behnke
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Alexandra M Bach
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Sophia Piller
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Christina Boeck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| | - Roberto Rojas
- University Psychotherapeutic Outpatient Clinic, Institute of Psychology and Education, Ulm University, Schaffnerstr. 3, DE-89073 Ulm, Germany.
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm, University, Albert-Einstein-Allee 47, DE-89081 Ulm, Germany.
| |
Collapse
|
11
|
Oxidative and apoptotic effects of fluoxetine and its metabolite norfluoxetine in Daphnia magna. Arh Hig Rada Toksikol 2020; 71:211-222. [PMID: 33074175 PMCID: PMC7968500 DOI: 10.2478/aiht-2020-71-3473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to investigate the oxidative and apoptotic potential of fluoxetine, a widely used antidepressant in Turkey and the world, and of its metabolite norfluoxetine on a model non-target organism, Daphnia magna to see how exposure to this group of antidepressants (specific serotonin reuptake inhibitors) could affect the aquatic environment in which they end up. Juvenile D. magna specimens were chronically exposed to fluoxetine and norfluoxetine alone and in combination at concentrations found in the aquatic environment (0.091 and 0.011 μg/L, respectively) and to their 10-fold environmental concentrations for 21 days. Another group of 17-day-old animals were subacutely exposed to 100-fold environmental concentrations for four days. After exposure, we measured their glutathione peroxidase (GPx) and cholinesterase (ChE) activities, thiobarbituric acid-reactive substances (TBARS), and total protein content spectrophotometrically, while mitochondrial membrane potential (MMP) was analysed by fluorescence staining, and cytochrome c and ERK1/2 protein content by Western blotting. This is the first-time cytochrome c and ERK1/2 were determined at the protein level in D. magna. We also measured their carapace length, width, and caudal spine length microscopically. At environmental concentrations fluoxetine and norfluoxetine caused an increase in ChE activity and brood production. They also caused a decrease in juvenile carapace length, width, and caudal spine length and depolarised the mitochondrial membrane. At 10-fold environmental concentrations, GPx activity, lipid peroxidation levels, cytochrome c, and ERK1/2 protein levels rose. The most pronounced effect was observed in D. magna exposed to norfluoxetine. Norfluoxetine also decreased brood production. Similar effects were observed with subacute exposure to 100-fold environmental concentrations. However, total protein content decreased. All this confirms that fluoxetine and norfluoxetine have oxidative and apoptotic potential in D. magna. Daphnia spp. have a great potential to give us precious insight into the mechanisms of environmental toxicants, but there is still a long way to go before they are clarified in these organisms.
Collapse
|
12
|
Solek P, Koszla O, Mytych J, Badura J, Chelminiak Z, Cuprys M, Fraczek J, Tabecka-Lonczynska A, Koziorowski M. Neuronal life or death linked to depression treatment: the interplay between drugs and their stress-related outcomes relate to single or combined drug therapies. Apoptosis 2020; 24:773-784. [PMID: 31278507 PMCID: PMC6711955 DOI: 10.1007/s10495-019-01557-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depression is a serious medical condition, typically treated by antidepressants. Conventional monotherapy can be effective only in 60–80% of patients, thus modern psychiatry deals with the challenge of new methods development. At the same moment, interactions between antidepressants and the occurrence of potential side effects raise serious concerns, which are even more exacerbated by the lack of relevant data on exact molecular mechanisms. Therefore, the aims of the study were to provide up-to-date information on the relative mechanisms of action of single antidepressants and their combinations. In this study, we evaluated the effect of single and combined antidepressants administration on mouse hippocampal neurons after 48 and 96 h in terms of cellular and biochemical features in vitro. We show for the first time that co-treatment with amitriptyline/imipramine + fluoxetine initiates in cells adaptation mechanisms which allow cells to adjust to stress and finally exerts less toxic events than in cells treated with single antidepressants. Antidepressants treatment induces in neuronal cells oxidative and nitrosative stress, which leads to micronuclei and double-strand DNA brakes formation. At this point, two different mechanistic events are initiated in cells treated with single and combined antidepressants. Single antidepressants (amitriptyline, imipramine or fluoxetine) activate cell cycle arrest resulting in proliferation inhibition. On the other hand, treatment with combined antidepressants (amitriptyline/imipramine + fluoxetine) initiates p16-dependent cell cycle arrest, overexpression of telomere maintenance proteins and finally restoration of proliferation. In conclusion, our findings may pave the way to better understanding of the stress-related effects on neurons associated with mono- and combined therapy with antidepressants.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Oliwia Koszla
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Badura
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Zaneta Chelminiak
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Magdalena Cuprys
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Joanna Fraczek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Anna Tabecka-Lonczynska
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
13
|
Yang C, Song G, Lim W. Methiothepin mesylate causes apoptosis of human prostate cancer cells by mediating oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2020; 150:12-22. [PMID: 32035100 DOI: 10.1016/j.freeradbiomed.2020.01.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
Prostate cancer is difficult to treat if it metastasizes to other organs. The development of prostate cancer independent of androgen is closely related to the action of neuroendocrine products. Serotonin promotes cell growth in various cancers, and antagonists for serotonin receptors are known to inhibit proliferation and induce cell death in various carcinomas. However, little is known about how antagonists for serotonin receptor function in prostate cancer. We verified apoptotic cell death in prostate cancer cell lines after treatment with methiothepin mesylate (MET), an antagonist for serotonin receptor 5-HT1. MET induced hydrogen peroxide (H2O2) production and mitochondrial Ca2+ overload. Moreover, MET induced changes in the expression of proteins associated with endoplasmic reticulum stress, autophagy, and mitochondrial membrane potential. MET also promoted phosphorylation of JNK, which induced cell death mediated by oxidant production, as evidenced by the JNK inhibitor and oxidant scavenger. Finally, MET has the potential to prevent metastasis by inhibiting the migration of prostate cancer cells. Thus, we show that MET is a potentially novel anticancer agent that can suppress the development of prostate cancer caused by neuroendocrine differentiation.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
14
|
Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res 2020; 217:136-147. [PMID: 31744750 PMCID: PMC7228833 DOI: 10.1016/j.schres.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Collapse
Affiliation(s)
- Shawna T Chan
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA; School of Medicine University of California, Irvine, USA
| | - Michael J McCarthy
- Psychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of California, San Diego, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA.
| |
Collapse
|
15
|
Stoker ML, Newport E, Hulit JC, West AP, Morten KJ. Impact of pharmacological agents on mitochondrial function: a growing opportunity? Biochem Soc Trans 2019; 47:1757-1772. [PMID: 31696924 PMCID: PMC6925523 DOI: 10.1042/bst20190280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
Present-day drug therapies provide clear beneficial effects as many diseases can be driven into remission and the symptoms of others can be efficiently managed; however, the success of many drugs is limited due to both patient non-compliance and adverse off-target or toxicity-induced effects. There is emerging evidence that many of these side effects are caused by drug-induced impairment of mitochondrial function and eventual mitochondrial dysfunction. It is imperative to understand how and why drug-induced side effects occur and how mitochondrial function is affected. In an aging population, age-associated drug toxicity is another key area of focus as the majority of patients on medication are older. Therefore, with an aging population possessing subtle or even more dramatic individual differences in mitochondrial function, there is a growing necessity to identify and understand early on potentially significant drug-associated off-target effects and toxicity issues. This will not only reduce the number of unwanted side effects linked to mitochondrial toxicity but also identify useful mitochondrial-modulating agents. Mechanistically, many successful drug classes including diabetic treatments, antibiotics, chemotherapies and antiviral agents have been linked to mitochondrial targeted effects. This is a growing area, with research to repurpose current medications affecting mitochondrial function being assessed in cancer, the immune system and neurodegenerative disorders including Parkinson's disease. Here, we review the effects that pharmacological agents have on mitochondrial function and explore the opportunities from these effects as potential disease treatments. Our focus will be on cancer treatment and immune modulation.
Collapse
Affiliation(s)
- Megan L. Stoker
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
| | - Emma Newport
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, U.K
| | | | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Byran, TX, U.S.A
| | - Karl J. Morten
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
| |
Collapse
|
16
|
Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:797-811. [PMID: 31858154 DOI: 10.1007/s00210-019-01791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
The evaluation of drug-induced mitochondrial impairment may be important in drug development as well as in the comprehension of molecular mechanisms of the therapeutic and adverse effects of drugs. The primary aim of this study was to investigate the effects of four drugs for treatment of depression (bupropion, fluoxetine, amitriptyline, and imipramine) and five drugs for bipolar disorder treatment (lithium, valproate, valpromide, lamotrigine, and carbamazepine) on cell energy metabolism. The in vitro effects of the selected psychopharmaca were measured in isolated pig brain mitochondria; the activities of citrate synthase (CS) and electron transport chain (ETC) complexes (I, II + III, and IV) and mitochondrial respiration rates linked to complex I and complex II were measured. Complex I was significantly inhibited by lithium, carbamazepine, fluoxetine, amitriptyline, and imipramine. The activity of complex IV was decreased after exposure to carbamazepine. The activities of complex II + III and CS were not affected by any tested drug. Complex I-linked respiration was significantly inhibited by bupropion, fluoxetine, amitriptyline, imipramine, valpromide, carbamazepine, and lamotrigine. Significant inhibition of complex II-linked respiration was observed after mitochondria were exposed to amitriptyline, fluoxetine, and carbamazepine. Our outcomes confirm the need to investigate the effects of drugs on both the total respiration rate and the activities of individual enzymes of the ETC to reveal the risk of adverse effects as well as to understand the molecular mechanisms leading to drug-induced changes in the respiratory rate. Our approach can be further replicated to study the mechanisms of action of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
17
|
Modulation of Monoaminergic Systems by Antidepressants in the Frontal Cortex of Rats After Chronic Mild Stress Exposure. Mol Neurobiol 2019; 56:7522-7533. [DOI: 10.1007/s12035-019-1619-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
|
18
|
Medvedev A, Moeser M, Medvedeva L, Martsen E, Granick A, Raines L, Zeng M, Makarov S, Houck KA, Makarov SS. Evaluating biological activity of compounds by transcription factor activity profiling. SCIENCE ADVANCES 2018; 4:eaar4666. [PMID: 30263952 PMCID: PMC6157966 DOI: 10.1126/sciadv.aar4666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/21/2018] [Indexed: 05/30/2023]
Abstract
Assessing the biological activity of compounds is an essential objective of biomedical research. We show that one can infer the bioactivity of compounds by assessing the activity of transcription factors (TFs) that regulate gene expression. Using a multiplex reporter system, the FACTORIAL, we characterized cell response to a compound by a quantitative signature, the TF activity profile (TFAP). We found that perturbagens of biological pathways elicited distinct TFAP signatures in human cells. Unexpectedly, perturbagens of the same pathway all produced identical TFAPs, regardless of where or how they interfered. We found invariant TFAPs for mitochondrial, histone deacetylase, and ubiquitin/proteasome pathway inhibitors; cytoskeleton disruptors; and DNA-damaging agents. Using these invariant signatures permitted straightforward identification of compounds with specified bioactivities among uncharacterized chemicals. Furthermore, this approach allowed us to assess the multiple bioactivities of polypharmacological drugs. Thus, TF activity profiling affords straightforward assessment of the bioactivity of compounds through the identification of perturbed biological pathways.
Collapse
Affiliation(s)
| | - Matt Moeser
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Liubov Medvedeva
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Elena Martsen
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Alexander Granick
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Lydia Raines
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Ming Zeng
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Sergei Makarov
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Keith A. Houck
- U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, D343-03, Research Triangle Park, NC 27711, USA
| | - Sergei S. Makarov
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Elmorsy E, Al-Ghafari A, Helaly ANM, Hisab AS, Oehrle B, Smith PA. Editor's Highlight: Therapeutic Concentrations of Antidepressants Inhibit Pancreatic Beta-Cell Function via Mitochondrial Complex Inhibition. Toxicol Sci 2018; 158:286-301. [PMID: 28482088 DOI: 10.1093/toxsci/kfx090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diabetes mellitus risk is increased by prolonged usage of antidepressants (ADs). Although various mechanisms are suggested for their diabetogenic potential, whether a direct effect of ADs on pancreatic β-cells is involved is unclear. We examined this idea for 3 ADs: paroxetine, clomipramine and, with particular emphasis, fluoxetine, on insulin secretion, mitochondrial function, cellular bioenergetics, KATP channel activity, and caspase activity in murine and human cell-line models of pancreatic β-cells. Metabolic assays showed that these ADs decreased the redox, oxidative respiration, and energetic potential of β-cells in a time and concentration dependent manner, even at a concentration of 100 nM, well within the therapeutic window. These effects were related to inhibition of mitochondrial complex I and III. Consistent with impaired mitochondrial function, lactate output was increased and insulin secretion decreased. Neither fluoxetine, antimycin nor rotenone could reactivate KATP channel activity blocked by glucose unlike the mitochondrial uncoupler, FCCP. Chronic, but not acute, AD increased oxidative stress and activated caspases, 3, 8, and 9. A close agreement was found for the rates of oxidative respiration, lactate output and modulation of KATP channel activity in MIN6 cells with those of primary murine cells; data that supports MIN6 as a valid model to study beta-cell bioenergetics. To conclude, paroxetine, clomipramine and fluoxetine were all cytotoxic at therapeutic concentrations on pancreatic beta-cells; an action suggested to arise by inhibition of mitochondrial bioenergetics, oxidative stress and induction of apoptosis. These actions help explain the diabetogenic potential of these ADs in humans.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Kingdom of Saudi Arabia
| | - Ahmed N M Helaly
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S Hisab
- University of Nottingham Medical School, University of Nottingham, Nottinghamshire, UK
| | - Bettina Oehrle
- University of Nottingham Medical School, University of Nottingham, Nottinghamshire, UK
| | - Paul A Smith
- University of Nottingham Medical School, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
20
|
Perić I, Costina V, Stanisavljević A, Findeisen P, Filipović D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology 2018; 135:268-283. [DOI: 10.1016/j.neuropharm.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
|
21
|
Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, Westrin Å, Hough CM, Lin J, Reus VI, Epel ES, Mellon SH. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 2018; 43:1557-1564. [PMID: 29453441 PMCID: PMC5983469 DOI: 10.1038/s41386-017-0001-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) has been linked to mitochondrial defects, which could manifest in mitochondrial DNA (mtDNA) polymorphisms or mutations. Additionally, copy number of mtDNA (mtDNA-cn) can be quantified in peripheral blood mononuclear cells (PBMC)s, indirectly reflecting cellular energetics, or in the circulating cell-free mtDNA (ccf-mtDNA) levels, which may reflect a fraction of the mitochondrial genome released during cellular stress. Few studies have examined ccf-mtDNA in MDD, and no studies have tested its relationship with intracellular mtDNA-cn or with antidepressant treatment response. Here, mtDNA levels were quantified in parallel from: (i) PBMCs and (ii) cell-free plasma of 50 unmedicated MDD subjects and 55 controls, in parallel with PBMC telomere length (TL) and antioxidant enzyme glutathione peroxidase (GpX) activity. MtDNA measures were repeated in 19 MDD subjects after 8 weeks of open-label SSRI treatment. In analyses adjusted for age, sex, BMI, and smoking, MDD subjects had significantly elevated levels of ccf-mtDNA (F = 20.6, p = 0.00002). PBMC mtDNA-cn did not differ between groups (p > 0.4). In preliminary analyses, we found that changes in ccf-mtDNA with SSRI treatment differed between SSRI responders and non-responders (F = 6.47, p = 0.02), with the non-responders showing an increase in ccf-mtDNA and responders not changing. Baseline ccf-mtDNA was positively correlated with GpX (r = 0.32, p = 0.001), and PBMC mtDNA correlated positively with PBMC TL (r = 0.38, p = 0.0001). These data suggest that plasma ccf-mtDNA and PBMC mtDNA-cn reflect different cellular processes and that the former may be more reflective of certain aspects of MDD pathophysiology and of the response to SSRI antidepressants.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden. .,Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA. .,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden.
| | - Owen M. Wolkowitz
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Martin Picard
- 0000 0001 2285 2675grid.239585.0Division of Behavioral Medicine, Department of Psychiatry, Columbia University Medical Center, New York, NY USA ,0000 0001 2285 2675grid.239585.0Department of Neurology and Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY USA ,0000 0001 2285 2675grid.239585.0Columbia Aging Center, Columbia University Medical Center, New York, NY USA
| | - Lars Ohlsson
- 0000 0000 9961 9487grid.32995.34Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Francesco S. Bersani
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA ,grid.7841.aDepartment of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Johan Fernström
- 0000 0001 0930 2361grid.4514.4Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden ,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Åsa Westrin
- 0000 0001 0930 2361grid.4514.4Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden ,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Christina M. Hough
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA ,0000 0000 9632 6718grid.19006.3ePresent Address: Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jue Lin
- 0000 0001 2297 6811grid.266102.1Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Victor I. Reus
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Elissa S. Epel
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Synthia H. Mellon
- 0000 0001 2297 6811grid.266102.1Department of OB/GYN and Reproductive Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| |
Collapse
|
22
|
Jimenez AG, Winward JD, Smith DM, Ragan CM. Effects of short-term clomipramine on anxiety-like behavior, cellular metabolism, and oxidative stress in primary fibroblast cells of male and female rats. Physiol Rep 2018; 6:e13615. [PMID: 29745454 PMCID: PMC5943669 DOI: 10.14814/phy2.13615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/21/2023] Open
Abstract
Anxiety is the most prevalent mental disorder among adults in the United States and females tend to have significantly higher rates of anxiety compared with men. Common treatments for anxiety include usage of selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants, however, sex differences in the efficacy of these drugs exist. In this study, we were interested in determining if acutely manipulating serotonin mechanisms at the whole-animal level affects cellular metabolism and oxidative stress in primary fibroblast cells from clomipramine-treated Sprague-Dawley rats. Our groups included a female and male control group that was injected with a saline solution, a female and male group that was injected with a low dosage of clomipramine, and a female and male group of rats that were injected with a high dosage of clomipramine. We then compared cellular oxygen consumption rates, rates of glycolysis and oxidative stress parameters in primary fibroblasts grown from each of the groups described above. We found that clomipramine-treated rats had significantly lower rates of glycolysis and glycolytic capacity, regardless of sex. Coupling efficiency was significantly higher in male rats compared with female rats across treatment groups. Our data suggest that in female rats reduced glutathione (GSH) is nonsignificantly reduced, yet lipid peroxidation (LPO) damage still accumulates, meaning that enzymatic antioxidants may be acting to reduce any continual increases in LPO damage. This is a metabolically costly process that may be happening because of our drug treatments. Our results provide further evidence of sex differences in the behavioral and metabolic responses to short-term clomipramine treatment. Continued investigation into these sex differences may reveal their potential for improving our understanding of how different therapeutic interventions may be better suited for treating males and females.
Collapse
Affiliation(s)
| | | | - Dana M. Smith
- Department of PsychologyNeuroscience ProgramColgate UniversityHamiltonNew York
| | - Christina M. Ragan
- Department of PsychologyNeuroscience ProgramColgate UniversityHamiltonNew York
- Present address:
Psychology DepartmentPurdue University NorthwestWestvilleIndiana
| |
Collapse
|
23
|
Quayle LA, Pereira MG, Scheper G, Wiltshire T, Peake RE, Hussain I, Rea CA, Bates TE. Anti-angiogenic drugs: direct anti-cancer agents with mitochondrial mechanisms of action. Oncotarget 2017; 8:88670-88688. [PMID: 29179466 PMCID: PMC5687636 DOI: 10.18632/oncotarget.20858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/17/2017] [Indexed: 12/15/2022] Open
Abstract
Components of the mitochondrial electron transport chain have recently gained much interest as potential therapeutic targets. Since mitochondria are essential for the supply of energy that is required for both angiogenic and tumourigenic activity, targeting the mitochondria represents a promising potential therapeutic approach for treating cancer. Here we investigate the established anti-angiogenesis drugs combretastatin A4, thalidomide, OGT 2115 and tranilast that we hypothesise are able to exert a direct anti-cancer effect in the absence of vasculature by targeting the mitochondria. Drug cytotoxicity was measured using the MTT assay. Mitochondrial function was measured in intact isolated mitochondria using polarography, fluorimetry and enzymatic assays to measure mitochondrial oxygen consumption, membrane potential and complex I-IV activities respectively. Combretastatin A4, OGT 2115 and tranilast were both shown to decrease mitochondrial oxygen consumption. OGT 2115 and tranilast decreased mitochondrial membrane potential and reduced complex I activity while combretastatin A4 and thalidomide did not. OGT 2115 inhibited mitochondrial complex II-III activity while combretastatin A4, thalidomide and tranilast did not. Combretastatin A4, thalidomide and OGT 2115 induced bi-phasic concentration-dependent increases and decreases in mitochondrial complex IV activity while tranilast had no evident effect. These data demonstrate that combretastatin A4, thalidomide, OGT 2115 and tranilast are all mitochondrial modulators. OGT 2115 and tranilast are both mitochondrial inhibitors capable of eliciting concentration-dependent reductions in cell viability by decreasing mitochondrial membrane potential and oxygen consumption.
Collapse
Affiliation(s)
- Lewis A Quayle
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, S10 2RX, U.K
| | - Maria G Pereira
- School of Pharmacy, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Gerjan Scheper
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Tammy Wiltshire
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Ria E Peake
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Issam Hussain
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Carol A Rea
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Timothy E Bates
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Drugs With A Difference Limited, BioCity Nottingham, Nottingham, NG1 1GF, U.K.,Marlin Therapeutics Limited, Nottingham Science Park, Nottingham, NG7 2RF, U.K
| |
Collapse
|
24
|
Rosebush PI, Anglin RE, Rasmussen S, Mazurek MF. Mental illness in patients with inherited mitochondrial disorders. Schizophr Res 2017; 187:33-37. [PMID: 28545943 DOI: 10.1016/j.schres.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P I Rosebush
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada.
| | - R E Anglin
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; Department of Medicine, Division of Neurology, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada
| | - S Rasmussen
- MiNDS Graduate Programme, McMaster University, Canada
| | - M F Mazurek
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; Department of Medicine, Division of Neurology, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada
| |
Collapse
|
25
|
Villa RF, Ferrari F, Bagini L, Gorini A, Brunello N, Tascedda F. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine. Neuropharmacology 2017; 121:30-38. [DOI: 10.1016/j.neuropharm.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023]
|
26
|
Głombik K, Stachowicz A, Olszanecki R, Ślusarczyk J, Trojan E, Lasoń W, Kubera M, Budziszewska B, Spedding M, Basta-Kaim A. The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression. Mol Neurobiol 2016; 53:7351-7362. [PMID: 26934888 PMCID: PMC5104776 DOI: 10.1007/s12035-016-9807-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022]
Abstract
A growing body of evidence has focused on the impact of mitochondrial disturbances in the development of depression, but little data exist regarding the effects of chronic administration of antidepressant drugs on the brain's mitochondrial protein profile. The aim of this study was to investigate the impact of chronic treatment with an atypical antidepressant drug-tianeptine-on the mitochondria-enriched subproteome profile in the hippocampus and the frontal cortex of 3-month-old male rats following a prenatal stress procedure. Rats that were exposed to a prenatal stress procedure displayed depressive- and anxiety-like disturbances based on the elevated plus-maze and Porsolt tests. Moreover, two-dimensional electrophoresis coupled with mass spectrometry showed structure-dependent mitoproteome changes in brains of prenatally stressed rats after chronic tianeptine administration. A component of 2-oxoglutarate and succinate flavoprotein subunit dehydrogenases, isocitrate subunit alpha, was upregulated in the hippocampus. In the frontal cortex, there was a striking increase in the expression of glutamate dehydrogenase and cytochrome bc1 complex subunit 2. These findings suggest that mitochondria are underappreciated targets for therapeutic interventions, and mitochondrial function may be crucial for the effective treatment of stress-related diseases.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531, Kraków, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531, Kraków, Poland
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Michael Spedding
- Physiopathogie des Maladies Psychiatriques, INSERM UMR_S 894, Centre de Psychiatrie et Neurosciences, 2ter rue d'Alesia, 75014, Paris, France
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|
27
|
Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 2016; 31:63-74. [PMID: 27771494 DOI: 10.1016/j.mito.2016.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/24/2016] [Accepted: 10/17/2016] [Indexed: 01/12/2023]
Abstract
Several commonly used medications impair mitochondrial function resulting in adverse effects or toxicities. Drug induced mitochondrial dysfunction may be a consequence of increased production of reactive oxygen species, altered mitochondrial permeability transition, impaired mitochondrial respiration, mitochondrial DNA damage or inhibition of beta-oxidation of fatty acids. The clinical manifestation depends on the specific drug and its effect on mitochondria. Given the ubiquitous presence of mitochondria and its central role in cellular metabolism, drug-mitochondrial interactions may manifest clinically as hepatotoxicity, enteropathy, myelosuppression, lipodystrophy syndrome or neuropsychiatric adverse effects, to name a few. The current review focuses on specific drug groups which adversely affect mitochondria, the mechanisms involved and the clinical consequences based on the data available from experimental and clinical studies. Knowledge of these adverse drug-mitochondrial interactions may help the clinicians foresee potential issues in individual patients, prevent adverse drug reactions or alter drug regimens to enhance patient safety.
Collapse
Affiliation(s)
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, India.
| |
Collapse
|
28
|
Ferrari F, Villa RF. The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Mol Neurobiol 2016; 54:4847-4865. [DOI: 10.1007/s12035-016-0032-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|
29
|
de Oliveira MR. Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicol Lett 2016; 258:185-191. [PMID: 27392437 DOI: 10.1016/j.toxlet.2016.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Fluoxetine (a selective serotonin reuptake inhibitor (SSRI)) is used as an antidepressant by modulating the levels of serotonin in the synaptic cleft. Nevertheless, fluoxetine also induces undesirable effects, such as anxiety, sexual dysfunction, sleep disturbances, and gastrointestinal impairments. Fluoxetine has been viewed as an agent that may interfere with cell fate by triggering apoptosis. On the other hand, fluoxetine intake has been associated with increased cancer risk. Nonetheless, data remain contradictory and no conclusions were taken. Several studies demonstrated that fluoxetine interacts with mitochondria triggering apoptosis and/or altering mitochondrial function by modulating the activity of respiratory chain components and enzymes of the Krebs cycle. Furthermore, fluoxetine affects mitochondria-related redox parameters in different experimental models. In this review, data demonstrating the effects of fluoxetine upon mammalian mitochondria are described and discussed, as well as several unsolved questions in this field of research are addressed. A separate section deals with future needs regarding the research involving the impact of fluoxetine treatment upon mitochondria and mitochondria-related signaling.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiaba, MT, Brazil.
| |
Collapse
|
30
|
Ahmadian E, Eftekhari A, Fard JK, Babaei H, Nayebi AM, Mohammadnejad D, Eghbal MA. In vitro and in vivo evaluation of the mechanisms of citalopram-induced hepatotoxicity. Arch Pharm Res 2016; 40:1296-1313. [PMID: 27271269 DOI: 10.1007/s12272-016-0766-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
Even though citalopram is commonly used in psychiatry, there are several reports on its toxic effects. So, the current study was designed to elucidate the mechanisms of cytotoxic effects of in vitro and in vivo citalopram treatment on liver and the following cytolethal events. For in vitro experiments, freshly isolated rat hepatocytes were exposed to citalopram along with/without various agents. To do in vivo studies liver function enzyme assays and histological examination were performed. In the in vitro experiments, citalopram (500 µM) exposure demonstrated cell death, a marked elevation in ROS formation, mitochondrial potential collapse, lysosomal membrane leakiness, glutathione (GSH) depletion and lipid peroxidation. In vivo biochemistry panel assays for liver enzymes function (AST, ALT and GGTP) and histological examination confirmed citalopram (20 mg/kg)-induced damage. citalopram-induced oxidative stress cytotoxicity markers were significantly prevented by antioxidants, ROS scavengers, MPT pore sealing agents, endocytosis inhibitors, ATP generators and CYP inhibitors. Either enzyme induction or GSH depletion were concomitant with augmented citalopram-induced damage both in vivo and in vitro which were considerably ameliorated with antioxidants and CYP inhibitors. In conclusion, it is suggested that citalopram hepatotoxicity might be a result of oxidative hazard leading to mitochondrial/lysosomal toxic connection and disorders in biochemical markers which were supported by histomorphological studies.
Collapse
Affiliation(s)
- Elham Ahmadian
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Postal Code 51664-14766, Tabriz, Iran.,Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Postal Code 51664-14766, Tabriz, Iran.,Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Postal Code 51664-14766, Tabriz, Iran.,Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Postal Code 51664-14766, Tabriz, Iran
| | - Alireza Mohajjel Nayebi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Postal Code 51664-14766, Tabriz, Iran
| | | | - Mohammad Ali Eghbal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Postal Code 51664-14766, Tabriz, Iran.
| |
Collapse
|
31
|
Kim Y, McGee S, Czeczor JK, Walker AJ, Kale RP, Kouzani AZ, Walder K, Berk M, Tye SJ. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects. Transl Psychiatry 2016; 6:e842. [PMID: 27327257 PMCID: PMC4931612 DOI: 10.1038/tp.2016.84] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P<0.05). NAc DBS effectively improved FST mobility in ACTH-treated animals (P<0.05). No improvement in mobility was observed for sham control animals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation.
Collapse
Affiliation(s)
- Y Kim
- School of Psychology, Faculty of Health, Deakin University, Melbourne, VIC, Australia,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - S McGee
- Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, Melbourne, VIC, Australia,Metabolism and Inflammation Program, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - J K Czeczor
- Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - A J Walker
- School of Psychology, Faculty of Health, Deakin University, Melbourne, VIC, Australia,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - R P Kale
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,School of Engineering, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - A Z Kouzani
- School of Engineering, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - M Berk
- Deakin University IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, VIC, Australia
| | - S J Tye
- School of Psychology, Faculty of Health, Deakin University, Melbourne, VIC, Australia,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA,Department of Psychiatry, University of Minnesota, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
32
|
Kao CY, He Z, Henes K, Asara JM, Webhofer C, Filiou MD, Khaitovich P, Wotjak CT, Turck CW. Fluoxetine Treatment Rescues Energy Metabolism Pathway Alterations in a Posttraumatic Stress Disorder Mouse Model. MOLECULAR NEUROPSYCHIATRY 2016; 2:46-59. [PMID: 27606320 DOI: 10.1159/000445377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock-induced PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo (15)N metabolic labeling combined with mass spectrometry in the prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of the amygdala and CA1 of the hippocampus between shocked and nonshocked (control) mice, with and without fluoxetine treatment. In silico pathway analyses revealed an upregulation of the citric acid cycle pathway in PrL, and downregulation in ACC and nucleus accumbens (NAc). Chronic fluoxetine treatment prevented decreased citric acid cycle activity in NAc and ACC and ameliorated conditioned fear response in shocked mice. Our results shed light on the role of energy metabolism in PTSD pathogenesis and suggest potential therapy through mitochondrial targeting.
Collapse
Affiliation(s)
- Chi-Ya Kao
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Zhisong He
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Kathrin Henes
- Departments of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Mass., USA
| | - Christian Webhofer
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Philipp Khaitovich
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Carsten T Wotjak
- Departments of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christoph W Turck
- Departments of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
33
|
Hargreaves IP, Al Shahrani M, Wainwright L, Heales SJR. Drug-Induced Mitochondrial Toxicity. Drug Saf 2016; 39:661-74. [DOI: 10.1007/s40264-016-0417-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Braz GRF, Freitas CM, Nascimento L, Pedroza AA, da Silva AI, Lagranha C. Neonatal SSRI exposure improves mitochondrial function and antioxidant defense in rat heart. Appl Physiol Nutr Metab 2015; 41:362-9. [PMID: 26939042 DOI: 10.1139/apnm-2015-0494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein restriction during prenatal, postnatal, or in both periods has a close relationship with subsequent development of cardiovascular disease in adulthood. Elevated brain levels of serotonin and its metabolites have been found in malnourished states. The aim in the present study was to investigate whether treatment with fluoxetine (Fx), a selective serotonin reuptake inhibitor, mimics the detrimental effect of low-protein diet during the perinatal period on the male rat heart. Our hypothesis is that increased circulating serotonin as a result of pharmacologic treatment with Fx leads to cardiac dysfunction similar to that observed in protein-restricted rats. Male Wistar rat pups received daily subcutaneous injection of Fx or vehicle from postnatal day 1 to postnatal day 21. Male rats were euthanized at 60 days of age and the following parameters were evaluated in the cardiac tissue: mitochondrial respiratory capacity, respiratory control ratio, reactive oxygen species (ROS) production, mitochondrial membrane potential, and biomarkers of oxidative stress and antioxidant defense. We found that Fx treatment increased mitochondrial respiratory capacity (123%) and membrane potential (212%) and decreased ROS production (55%). In addition we observed an increase in the antioxidant capacity (elevation in catalase activity (5-fold) and glutathione peroxidase (4.6-fold)). Taken together, our results suggest that Fx treatment in the developmental period positively affects the mitochondrial bioenergetics and antioxidant defense in the cardiac tissue.
Collapse
Affiliation(s)
- Glauber Ruda F Braz
- a Laboratory of Biochemistry and Exercise Biochemistry, Centro Acadêmico de Vitoria (CAV)-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Cristiane M Freitas
- a Laboratory of Biochemistry and Exercise Biochemistry, Centro Acadêmico de Vitoria (CAV)-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Luciana Nascimento
- a Laboratory of Biochemistry and Exercise Biochemistry, Centro Acadêmico de Vitoria (CAV)-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Anderson A Pedroza
- b Laboratory of Biochemistry and Exercise Biochemistry; CAV-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil
| | - Aline Isabel da Silva
- b Laboratory of Biochemistry and Exercise Biochemistry; CAV-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,d Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Claudia Lagranha
- b Laboratory of Biochemistry and Exercise Biochemistry; CAV-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil.,d Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
35
|
Singh N, Hroudová J, Fišar Z. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria. J Mol Neurosci 2015; 56:926-931. [PMID: 25820672 DOI: 10.1007/s12031-015-0545-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|
36
|
Chen J, Lin D, Zhang C, Li G, Zhang N, Ruan L, Yan Q, Li J, Yu X, Xie X, Pang C, Cao L, Pan J, Xu Y. Antidepressant-like effects of ferulic acid: involvement of serotonergic and norepinergic systems. Metab Brain Dis 2015; 30:129-36. [PMID: 25483788 DOI: 10.1007/s11011-014-9635-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Ferulic acid is a polyphenol that has antioxidant, anti-inflammatory and anticancer properties. The present study analyzed the antidepressant-like potential of ferulic acid using two well-validated mouse models of despair test, tail suspension and forced swim tests. The results suggested that ferulic acid treatment at doses of 10, 20, 40 and 80 mg/kg (p.o.) significantly reduced the immobility time in both of these two tests. These doses that affected the depressive-like behaviors did now show any effect on locomotion counts. The further neurochemical assays suggested that ferulic acid increased monoamine neurotransmitter levels in the brain regions that are relative to mood disorders: the hippocampus and frontal cortex. The increased tend to serotonin and norepinephrine was also found in the hypothalamus after higher dose of ferulic acid treatment. The subsequent study suggested that monoamine oxidase A (MAO-A) activity was inhibited in the frontal cortex and hippocampus when treatment with 40 and 80 mg/kg ferulic acid; while MAO-B activity did not change significantly. The current study provides the first lines of evidence that serotonin and norepinephrine, but not dopamine levels were elevated in mouse hippocampus and frontal cortex after ferulic acid treatment. These changes may be attributable to the inhibition of MAO-A activities in the same brain regions.
Collapse
Affiliation(s)
- Jianliang Chen
- Department of Otolaryngology, Jiangsu University Affiliated Yixing People's Hospital, Yixing, Jiangsu Province, 214200, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jayasooriya RGPT, Dilshara MG, Choi YH, Moon SK, Kim WJ, Kim GY. Tianeptine sodium salt suppresses TNF-α-induced expression of matrix metalloproteinase-9 in human carcinoma cells via suppression of the PI3K/Akt-mediated NF-κB pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:502-9. [PMID: 25168152 DOI: 10.1016/j.etap.2014.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/18/2014] [Accepted: 07/31/2014] [Indexed: 05/12/2023]
Abstract
Tianeptine sodium salt (TSS) is a selective facilitator of serotonin, but there are no reports regarding anti-invasive effects of TSS. Therefore, we investigated the effect of TSS on the expression of matrix metalloproteinase-9 (MMP-9) and invasion in three different human carcinoma cell lines. Our findings showed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α), and that TSS reduced TNF-α-induced MMP-9 activity in a dose-dependent manner. TSS also downregulated both MMP-9 expression and TNF-α-induced MMP-9 promoter activity. Using a matrigel invasion assay, we showed that TSS significantly attenuated invasive rates in TNF-α-stimulated LNCaP prostate carcinoma cells. Furthermore, TSS suppressed TNF-α-induced NF-κB activity, which is a potential transcriptional factor for regulating many invasive genes, including MMP-9, by suppressing IκB degradation and nuclear translocation of NF-κB subunits in LNCaP prostate carcinoma cells. TSS also downregulated TNF-α-induced phosphorylation of phosphatidyl-inositol 3 kinase (PI3K) and Akt, and a selective PI3K/Akt inhibitor, LY294002, diminished TNF-α-induced NF-κB activation followed by levels of MMP-9, suggesting that TSS also reduces MMP-9 expression by inhibiting the PI3K/Akt-mediated NF-κB pathway. These results indicate that TSS is a potential anti-invasive agent by suppression of TNF-α-induced MMP-9 expression via inhibition of PI3K/Akt-mediated NF-κB activity.
Collapse
Affiliation(s)
| | - Matharage Gayani Dilshara
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-051, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
38
|
De Long NE, Hyslop JR, Raha S, Hardy DB, Holloway AC. Fluoxetine-induced pancreatic beta cell dysfunction: New insight into the benefits of folic acid in the treatment of depression. J Affect Disord 2014; 166:6-13. [PMID: 25012404 DOI: 10.1016/j.jad.2014.04.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Major depressive disorder is a common psychiatric illness with reported prevalence rates of 12-16% in persons aged 12 and over. Depression is also associated with a high risk of new onset of type 2 diabetes (T2D). This relationship between depression and diabetes may be related to depression itself and/or drugs prescribed. Importantly, the use of selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed class of antidepressants, increases the risk of developing T2D. However, the mechanism(s) underlying this association remains elusive. METHODS Here we examine the effects of the SSRI fluoxetine (Prozac®) on beta cell function utilizing INS-1E cells, a rat beta cell line, to elucidate the underlying molecular mechanisms. RESULTS Fluoxetine treatment significantly reduced glucose stimulated insulin secretion (GSIS). This decreased beta cell function was concomitant with an increased production of reactive oxygen species and oxidative damage which may contribute to decreased mitochondrial electron transport chain enzyme (ETC) activity. Importantly the fluoxetine-induced deficits in beta cell function were prevented by the addition of the antioxidant folic acid. LIMITATIONS These studies were conducted in vitro; the in vivo relevance remains to be determined. CONCLUSIONS These findings suggest that use of SSRI antidepressants may increase the risk of new-onset T2D by causing oxidative stress in pancreatic beta cells. However, folic acid supplementation in patients taking SSRIs may reduce the risk of new onset diabetes via protection of normal beta cell function.
Collapse
Affiliation(s)
- Nicole E De Long
- Department of Obstetrics and Gynecology, McMaster University, RM HSC-3N52 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Jillian R Hyslop
- Department of Obstetrics and Gynecology, McMaster University, RM HSC-3N52 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Daniel B Hardy
- Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Western University, London, ON, Canada N6A5C1
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, RM HSC-3N52 1280 Main Street West, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|
39
|
Ferreira GK, Cardoso MR, Jeremias IC, Gonçalves CL, Freitas KV, Antonini R, Scaini G, Rezin GT, Quevedo J, Streck EL. Fluvoxamine alters the activity of energy metabolism enzymes in the brain. ACTA ACUST UNITED AC 2014; 36:220-6. [PMID: 24676049 DOI: 10.1590/1516-4446-2013-1202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. METHODS Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. RESULTS The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. CONCLUSIONS Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.
Collapse
Affiliation(s)
- Gabriela K Ferreira
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Mariane R Cardoso
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Isabela C Jeremias
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Karolina V Freitas
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Rafaela Antonini
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Clinical and Experimental Pathophysiology Laboratory, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - João Quevedo
- National Science and Technology Institute for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| | - Emilio L Streck
- Bioenergetics Laboratory, Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
40
|
Long-term curcumin treatment antagonizes masseter muscle alterations induced by chronic unpredictable mild stress in rats. Arch Oral Biol 2014; 59:258-67. [DOI: 10.1016/j.archoralbio.2013.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
|
41
|
Bielecka AM, Obuchowicz E. Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp Biol Med (Maywood) 2014; 238:849-58. [PMID: 23970405 DOI: 10.1177/1535370213493721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the last decade, it has been increasingly recognized that antidepressant drugs may exert a range of effects, in addition to their well-documented ability to modulate neurotransmission. Although as a group they act on monoaminergic systems and receptors in different ways, a number of studies have demonstrated that at least some antidepressants might have other properties in common, including immunomodulatory, cyto/neuroprotective, analgesic and anti-inflammatory activities. These properties are partly related to the influence of antidepressants on glial cell function. Recently, emerging information about the possible anticancer properties of antidepressants has sparked increased interest within scientific community, and there is now evidence that these drugs affect the key cellular mechanisms of carcinogenesis. This review examines the putative cellular targets for the anticancer action of antidepressant drugs, and presents examples of the interaction between antidepressants and anticancer drugs. By reviewing the current state of research in this area, we hope to focus the attention of oncologists and researchers engaged in the study of cancer on the role that antidepressant drugs could play in the complementary therapy of cancer.
Collapse
Affiliation(s)
- Anna M Bielecka
- Medical University of Silesia, Department of Pharmacology, Medyków 18, 40-752 Katowice, Poland.
| | | |
Collapse
|
42
|
Fonseca-Berzal C, Rojas Ruiz FA, Escario JA, Kouznetsov VV, Gómez-Barrio A. In vitro phenotypic screening of 7-chloro-4-amino(oxy)quinoline derivatives as putative anti- Trypanosoma cruzi agents. Bioorg Med Chem Lett 2014; 24:1209-13. [DOI: 10.1016/j.bmcl.2013.12.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 01/15/2023]
|
43
|
Adzic M, Lukic I, Mitic M, Djordjevic J, Elaković I, Djordjevic A, Krstic-Demonacos M, Matić G, Radojcic M. Brain region- and sex-specific modulation of mitochondrial glucocorticoid receptor phosphorylation in fluoxetine treated stressed rats: effects on energy metabolism. Psychoneuroendocrinology 2013; 38:2914-24. [PMID: 23969420 DOI: 10.1016/j.psyneuen.2013.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022]
Abstract
Antidepressants affect glucocorticoid receptor (GR) functioning partly through modulation of its phosphorylation but their effects on mitochondrial GR have remained undefined. We investigated the ability of chronic fluoxetine treatment to affect chronic stress-induced changes of mitochondrial GR and its phosphoisoforms (pGRs) in the prefrontal cortex and hippocampus of female and male rats. Since mitochondrial GR regulates oxidative phosphorylation, expression of mitochondrial-encoded subunits of cytochrome (cyt) c oxidase and its activity were also investigated. Chronic stress caused accumulation of the GR in mitochondria of female prefrontal cortex, while the changes in the hippocampus were sex-specific at the levels of pGRs. Expression of mitochondrial COXs genes corresponded to chronic stress-modulated mitochondrial GR in both tissues of both genders and to cyt c oxidase activity in females. Moreover, the metabolic parameters in stressed animals were affected by fluoxetine therapy only in the hippocampus. Namely, fluoxetine effects on mitochondrial COXs and cyt c oxidase activity in the hippocampus seem to be conveyed through pGR232 in females, while in males this likely occurs through other mechanisms. In summary, sex-specific regulation of cyt c oxidase by the stress and antidepressant treatment and its differential convergence with mitochondrial GR signaling in the prefrontal cortex and hippocampus could contribute to clarification of sex-dependent vulnerability to stress-related disorders and sex-specific clinical impact of antidepressants.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 2013; 13:795-800. [DOI: 10.1016/j.mito.2013.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/26/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022]
|
45
|
Jantas D, Krawczyk S, Lason W. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways. Neurotox Res 2013; 25:208-25. [PMID: 24105645 PMCID: PMC3889694 DOI: 10.1007/s12640-013-9430-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/24/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
Abstract
Tianeptine (Tian) possesses neuroprotective potential, however, little is known about the effect of this drug in models of neuronal apoptosis. In the present study, we aimed (1) to compare the neuroprotective capacities of some antidepressants (ADs) in the models of staurosporine (St)- and doxorubicin (Dox)-evoked cell death, activating the intracellular and the extracellular apoptotic pathway, respectively; (2) to identify the Tian-modulated steps underlying its neuroprotective action; (3) to test the effect of various ADs against Dox-evoked cell damage in glia cells. Primary neuronal and glia cell cultures and retinoic acid-differentiated human neuroblastoma SH-SY5Y (RA-SH-SY5Y) cells were co-treated with imipramine, fluoxetine, citalopram, reboxetine, mirtazapine or Tian and St or Dox. The data showed the predominant neuroprotective effect of Tian over other tested ADs against St- and Dox-induced cell damage in primary neurons and in RA-SH-SY5Y cells. This effect was shown to be caspase-3-independent but connected with attenuation of DNA fragmentation. Moreover, neuroprotection elicited by Tian was blocked by pharmacological inhibitors of MAPK/ERK1/2 and PI3-K/Akt signaling pathways as well by inhibitor of necroptosis, necrostatin-1. Interestingly, the protective effects of all tested ADs were demonstrated in primary glia cells against the Dox-evoked cell damage. The obtained data suggests the glial cells as a common target for protective action of various ADs whereas in relation to neuronal cells only Tian possesses such properties, at least against St- and Dox-induced cell damage. Moreover, this neuroprotective effect of Tian is caspase-3-independent and engages the regulation of survival pathways (MAPK/ERK1/2 and PI3-K/Akt).
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, PL, Poland,
| | | | | |
Collapse
|
46
|
Roman A, Kuśmierczyk J, Klimek E, Rogóż Z, Nalepa I. Effects of co-administration of fluoxetine and risperidone on properties of peritoneal and pleural macrophages in rats subjected to the forced swimming test. Pharmacol Rep 2013; 64:1368-80. [PMID: 23406747 DOI: 10.1016/s1734-1140(12)70934-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/27/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Literature data show that administration of atypical antipsychotic drug, risperidone (RIS), enhances antidepressive action of fluoxetine (FLU). As antidepressive treatments also regulate immune functions, we examined whether combined administration of FLU and RIS to rats subsequently subjected to a forced swimming test (FST) modifies parameters of macrophage activity that are directly related to their immunomodulatory functions, i.e., arginase (ARG) activity and nitric oxide (NO) synthesis. METHODS Antidepressive action of the drugs was assessed with FST. Peritoneal and pleural cells were eluted and selected parameters of immunoreactivity were assessed colorimetrically. RESULTS We found that the concomitant administration of FLU (10 mg/kg) and RIS (0.1 mg/kg) produced antidepressive-like effects in the FST,whereas the drugs were ineffective if administered separately. Stress related to the FST affected immune cell redistribution and changed some of the metabolic and immunomodulatory properties of macrophages. FLU administered to rats at a suboptimal dose for antidepressive action potently influenced macrophage immunomodulatory properties and redirected their activity toward anti-inflammatory M2 functional phenotype, as manifested by changes in the ARG/NO ratio. These effects resulted from a direct cellular influence of the drug, as well as its action via neuroendocrine pathways, as evidenced in peritoneal and pleural cells. Addition of RIS did not augment immunomodulatory action of FLU, though the combination showed antidepressant-like activity in the FST. CONCLUSIONS Our results suggest that when the drugs were administered together, FLU was potent enough to redirect macrophages toward M2 activity. It is also postulated that drug-induced changes in the immune system are not so closely related to antidepressant-like effects or might be secondary to those produced in the neuroendocrine system.
Collapse
Affiliation(s)
- Adam Roman
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
47
|
Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B. Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis. CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0022-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Webhofer C, Gormanns P, Reckow S, Lebar M, Maccarrone G, Ludwig T, Pütz B, Asara JM, Holsboer F, Sillaber I, Zieglgänsberger W, Turck CW. Proteomic and metabolomic profiling reveals time-dependent changes in hippocampal metabolism upon paroxetine treatment and biomarker candidates. J Psychiatr Res 2013. [PMID: 23207114 DOI: 10.1016/j.jpsychires.2012.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Most of the commonly used antidepressants block monoamine reuptake transporters to enhance serotonergic or noradrenergic neurotransmission. Effects besides or downstream of monoamine reuptake inhibition are poorly understood and yet presumably important for the drugs' mode of action. In the present study we aimed at identifying hippocampal cellular pathway alterations in DBA/2 mice using paroxetine as a representative Selective Serotonin Reuptake Inhibitor (SSRI). Furthermore we identified biomarker candidates for the assessment of antidepressant treatment effects in plasma. Hippocampal protein levels were compared between chronic paroxetine- and vehicle-treated animals using in vivo(15)N metabolic labeling combined with mass spectrometry. We also studied the time course of metabolite level changes in hippocampus and plasma using a targeted polar metabolomics profiling platform. In silico pathway analyses revealed profound alterations related to hippocampal energy metabolism. Glycolytic metabolite levels acutely increased while Krebs cycle metabolite levels decreased upon chronic treatment. Changes in energy metabolism were influenced by altered glycogen metabolism rather than by altered glycolytic or Krebs cycle enzyme levels. Increased energy levels were reflected by an increased ATP/ADP ratio and by increased ratios of high-to-low energy purines and pyrimidines. In the course of our analyses we also identified myo-inositol as a biomarker candidate for the assessment of antidepressant treatment effects in the periphery. This study defines the cellular response to paroxetine treatment at the proteome and metabolome levels in the hippocampus of DBA/2 mice and suggests novel SSRI modes of action that warrant consideration in antidepressant development efforts.
Collapse
Affiliation(s)
- Christian Webhofer
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang D, Xi Y, Coccimiglio ML, Mennigen JA, Jonz MG, Ekker M, Trudeau VL. Functional prediction and physiological characterization of a novel short trans-membrane protein 1 as a subunit of mitochondrial respiratory complexes. Physiol Genomics 2012; 44:1133-40. [PMID: 23073385 DOI: 10.1152/physiolgenomics.00079.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial respiration is mediated by a set of multisubunit assemblies of proteins that are embedded in the mitochondrial inner membranes. Respiratory complexes do not only contain central catalytic subunits essential for the bioenergetic transformation, but also many short trans-membrane subunits (sTMs) that are implicated in the proper assembly of complexes. Defects in sTMs have been discovered in some human neurodegenerative diseases. Here we identify a new subunit that we named Stmp1 and have characterized its function using both computational and experimental approaches. Stmp1 is a short trans-membrane protein, and sequence/structure analysis revealed that it shares common features like the small size, presence of a single or two TM region, and a COOH-terminal charged region, as many typical sTMs of respiratory complexes. In situ hybridization and RT-PCR assays showed that the Stmp1 expression is ubiquitous throughout zebrafish embryogenesis. In adults, Stmp1 expression was highest in the brain compared with muscle and liver. In zebrafish larvae (3-5 days postfertilization), antisense morpholino oligonucleotide-mediated knockdown of the Stmp1 gene (Stmp1-MO) resulted in a series of mild morphological defects, including abnormal shape of head and jaw and cardiac edema. Larvae injected with the Stmp1-MO had negligible responses to touch stimuli. By ventilation frequency analysis we found that Stmp1-MO-injected zebrafish displayed a severe dysfunction of ventilatory activities when exposed to hypoxic conditions, suggesting a defective mitochondrial activity induced by the loss of Stmp1. Phylogenetic profiling of known respiratory sTMs compared with Stmp1 revealed that all defined sTMs from four respiratory complexes have restricted or variable phyletic distribution, indicating that they are products of evolutionary innovations to fulfill lineage-related functional requirements for respiratory complexes. Thus, being present in animals, filasterea, choanoflagellida, amoebozoa, and plants, Stmp1 may have evolved to confer a new or complementary regulation of respiratory activities.
Collapse
Affiliation(s)
- Dapeng Zhang
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Hroudová J, Fišar Z. In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol Lett 2012; 213:345-52. [PMID: 22842584 DOI: 10.1016/j.toxlet.2012.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/04/2012] [Accepted: 07/19/2012] [Indexed: 12/11/2022]
Abstract
Mitochondria represent a possible drug target with unexplored therapeutic and toxicological potential. The possibility was suggested that antidepressants, mood stabilizers and other drugs may show some therapeutic and/or toxic effects through their action on mitochondrial functions. There are no sufficient data about the effect of these drugs on mitochondrial respiration in the brain. We investigated the in vitro effects of amitriptyline, fluoxetine, tianeptine, ketamine, lithium, valproate, olanzapine, chlorpromazine and propranolol on mitochondrial respiration in crude mitochondrial fractions of pig brains. Respiration was energized using substrates of complex I or complex II and dose dependent drug-induced changes in mitochondrial respiratory rate were measured by high-resolution respirometry. Antidepressants, but not mood stabilizers, ketamine and propranolol were found to inhibit mitochondrial respiratory rate. The effective dose of antidepressants reaching half the maximal respiratory rate was in the range of 0.07-0.46 mmol/L. Partial inhibition was found for all inhibitors. Differences between individual drugs with similar physicochemical properties indicate selectivity of drug-induced changes in mitochondrial respiratory rate. Our findings suggest that mood stabilizers do not interfere with brain mitochondrial respiration, whereas direct mitochondrial targeting is involved in mechanisms of action of pharmacologically different antidepressants.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | | |
Collapse
|