1
|
Barbosa HE, da Silva AB, Nazar PHO, Bertoloni RR, de Oliveira-Filho AGS, Nikolaou S. Reactivity of trinuclear ruthenium acetates with nitrite and nitric oxide ligands in aqueous media. Dalton Trans 2025; 54:9388-9398. [PMID: 40407811 DOI: 10.1039/d5dt00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The chemical reactivity of nitrosyl- and nitrite-coordinated compounds in an aqueous environment is a vital part of understanding the action of these compounds as potential nitric oxide-releasing molecules (NORMs). This work reports the behaviour of the [Ru3O(CH3COO)6(py)2NO2] (1) complex, which is an isomeric mixture of nitrite-N and nitrite-O, and the nitrosyl complex [Ru3O(CH3COO)6(py)2NO]PF6 (2) in aqueous medium with and without light irradiation. NO release under light irradiation was detected through chronoamperometry, which showed that nitrite complex 1 produces NO but is less effective than nitrosyl complex 2. This difference is due to the mechanism of NO production by complex 1, which depends on the nitrite-O isomer, present in minor proportion in the synthetic sample, as shown by computational and NMR data. The reactivity of these compounds in the dark was investigated under various pH values. The nitrite complex 1 had the coordinated nitrite converted to NO+, with a pK = 4.2. NO+ was readily released, yielding the solvate species [Ru3O(CH3COO)6(py)2S]+. For the nitrosyl complex 2, two successive nucleophilic attacks by hydroxide ions were observed producing the [Ru3O(CH3COO)6(py)2HNO2] (3) and [Ru3O(CH3COO)6(py)2NO2]- (4) compounds, with pK values of 9.8 and 12.3, respectively. In buffered solutions (TRIS.HCl and PBS), the kinetic trace for the conversion of 2 to 3 suggested an induction period followed by the complete conversion to [Ru3O(CH3COO)6(py)2HNO2] at pH values where the nitrosyl [Ru3O(CH3COO)6(py)2NO]+ should be the major species. Based on these observations, our data suggest a sequence of steps in which compound 3 accumulates and then, with the aid of the buffer components, increases the rate of its own formation.
Collapse
Affiliation(s)
- Hugo E Barbosa
- Departamento de Química, LABiQSC2 - Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, ZIPCODE 14040-901, Ribeirão Preto-SP, Brazil.
| | - Amanda B da Silva
- Departamento de Química, LABiQSC2 - Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, ZIPCODE 14040-901, Ribeirão Preto-SP, Brazil.
| | - Pedro H O Nazar
- Departamento de Química, LABiQSC2 - Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, ZIPCODE 14040-901, Ribeirão Preto-SP, Brazil.
| | - Renan R Bertoloni
- Departamento de Química, LABiQSC2 - Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, ZIPCODE 14040-901, Ribeirão Preto-SP, Brazil.
| | - Antonio G S de Oliveira-Filho
- Departamento de Química, LABiQSC2 - Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, ZIPCODE 14040-901, Ribeirão Preto-SP, Brazil.
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590, São Carlos-SP, Brazil
| | - Sofia Nikolaou
- Departamento de Química, LABiQSC2 - Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, ZIPCODE 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
2
|
Li X, Tao AL, Wu N, Zhang X, Xiao F, Wang J, Wang ZB. Calcium-iron crosstalk in epileptogenesis: Unraveling mechanisms and therapeutic opportunities. Neurobiol Dis 2025; 212:106989. [PMID: 40480423 DOI: 10.1016/j.nbd.2025.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/08/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025] Open
Abstract
Epilepsy, a chronic neurological disorder affecting millions globally, remains poorly understood in its etiology and therapeutic management. Emerging evidence highlights the intricate interplay between calcium (Ca2+) and iron (Fe2+/Fe3+) ions in modulating neuronal excitability, oxidative stress, and synaptic plasticity-key processes implicated in epileptogenesis. This review synthesizes current knowledge on the dual roles of Ca2+ and Fe2+/Fe3+ in epilepsy, emphasizing their bidirectional regulatory mechanisms and pathological synergism. Calcium dysregulation, mediated through voltage-gated channels (e.g., Cav1.2, Cav3.2), store-operated calcium entry (SOCE), and mitochondrial calcium uniporters (MCU), exacerbates neuronal hyperexcitability and seizure propagation. Concurrently, iron overload drives ferroptosis via lipid peroxidation and glutathione depletion, while iron deficiency impairs neurodevelopmental processes. Crucially, Ca2+-Fe2+ crosstalk intersects at multiple nodes: TRP channels (e.g., TRPC6, TRPML1) facilitate dual ion transport; mitochondrial dysfunction links Ca2+ overload with Fe2+-dependent ROS generation; and inflammatory cascades disrupt both ion homeostasis. Clinically, antiepileptic drugs targeting Ca2+ channels (e.g., ethosuximide, zonisamide) and emerging ferroptosis inhibitors (e.g., deferoxamine, RTA 408) underscore the therapeutic potential of modulating these pathways. However, drug resistance and incomplete seizure control necessitate novel strategies leveraging ion interaction networks. We propose that combinatorial approaches targeting Ca2+-Fe2+ signaling hubs-such as MCU-TRPML1 axes or redox-sensitive RyR channels-may offer synergistic benefits. Future research must prioritize cross-model validation, advanced neuroimaging biomarkers, and multidisciplinary frameworks to translate mechanistic insights into precision therapies. This comprehensive analysis positions Ca2+-Fe2+ crosstalk as a pivotal frontier in epilepsy research, bridging molecular pathophysiology with innovative treatment paradigms.
Collapse
Affiliation(s)
- Xuan Li
- Cardiopulmonary Function Test Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410000, China
| | - Ao-Long Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410008, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410008, China
| | - Fen Xiao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410008, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha 410008, China.
| | - Zhi-Bin Wang
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410008, China.
| |
Collapse
|
3
|
Gao Y, Song XN, Zhang N, Liu HH, Hu JZ, Du XZ, Song GH, Liu S. Exploring the diagnostic potential of IL1R1 in depression and its association with lipid metabolism. Front Pharmacol 2025; 16:1519287. [PMID: 40343008 PMCID: PMC12058660 DOI: 10.3389/fphar.2025.1519287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Background Depression is a complex mental disorder where oxidative stress and lipid metabolism disorders play crucial roles, yet their connection requires further exploration. This study aims to investigate the roles of oxidative stress and lipid metabolism disorders in depression using bioinformatics methods and Mendelian randomization analysis. Methods A differential gene expression analysis was performed on the GSE76826 dataset, followed by identification of the intersection with genes related to OS. Subsequently, support vector machine (SVM) and random forest algorithms were employed to determine the optimal division of feature variables. The diagnostic performance was evaluated using a ROC diagnostic model and Diagnostic Nomogram. Furthermore, Mendelian randomization (MR) analysis was conducted to explore the causal relationship between the gene and depression. The expression patterns of key genes in brain tissue were analyzed using the Human eFP Browser database, while their associations with metabolism-related genes were investigated using the STRING database. Finally, DrugnomeAI was utilized to assess the drug development potential of these genes, and small molecule compounds targeting them were identified through dgidb and ChEMBL databases; molecular docking studies were then conducted to evaluate their binding affinity. Results By conducting a comprehensive analysis of oxidative stress-related genes and depression-related target genes, we have successfully identified 12 overlapping genes. These 12 genes were selected using support vector machine and random forest algorithms. Upon analyzing the diagnostic model, it was revealed that EPAS1 and IL1R1 serve as key biomarkers for OS in depression, with IL1R1 exhibiting the highest diagnostic potential among them. Additionally, MRfen analysis suggests that IL1R1 may play a protective role against depression. Notably, this gene exhibits high expression levels in crucial brain regions such as the olfactory bulb, corpus callosum, and hippocampus. Furthermore, our findings indicate an association between IL1R1 and lipid-related genes PDGFB, PIK3R1, TNFRSFIAA NOD2, and LYN. DrugnomeAI analysis indicated promising medicinal value for ILIRI with BI 639667 demonstrating superior binding affinity among the selected small molecule drugs. Conclusion This study provides novel insights into the association between OS and dyslipidemia metabolism in depression, offering potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Yao Gao
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Na Song
- Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Nan Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Huang-Hui Liu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Zhen Hu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin-Zhe Du
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Guo-Hua Song
- Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Zhu K, Wang K, Zhang R, Zhu Z, Wang W, Yang B, Zhao J, Shen Y. Iron chelators loaded on myocardiocyte mitochondria-targeted nanozyme system for treating myocardial ischemia-reperfusion injury in mouse models. J Nanobiotechnology 2025; 23:112. [PMID: 39955554 PMCID: PMC11829476 DOI: 10.1186/s12951-025-03197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025] Open
Abstract
Ferroptosis plays a critical role in myocardial ischemia-reperfusion injury (MIRI), posing a significant clinical challenge. Nanoenzymes like cerium oxide (CeO2) hold promise for mitigating oxidative damage and inhibiting ferroptosis, but their delivery efficiency and biological activity require optimization. This study aims to develop a targeted nanozyme delivery system for MIRI treatment by integrating CeO2 with mesoporous polydopamine (mPDA) and dexrazoxane (DXZ) to achieve synergistic therapeutic effects. A biomineralization technique was used to synthesize CeO2 nanoparticles (2-3 nm) within mPDA, forming ~ 130 nm composite nanoparticles (Ce@mPDA). Surface modifications with cardiac homing peptide (CHP) and triphenylphosphine (TPP) enabled hierarchical targeting to injured myocardium and mitochondria. DXZ-loaded Ce@mPDA-C/P nanoparticles (D/Ce@mPDA-C/P) were evaluated in vitro and in a MIRI mouse model for their effects on oxidative stress, ferroptosis, apoptosis, inflammation, and cardiac function. D/Ce@mPDA-C/P nanoparticles exhibited robust ROS scavenging, sustained DXZ release, and efficient myocardial and mitochondrial targeting. The D/Ce@mPDA-C/P system significantly reduced oxidative stress, upregulated GPX4 expression, inhibited ferroptosis, and modulated the inflammatory microenvironment. Long-term studies in a MIRI mouse model demonstrated reductions in myocardial fibrosis and improvements in cardiac function, including enhanced fractional shortening and ejection fraction. This hierarchical targeting delivery system effectively combines the antioxidant properties of CeO2 with the iron-chelating effects of DXZ, providing a promising therapeutic strategy for MIRI. This approach may expand the clinical use of DXZ and advance nanomedicine-based interventions for myocardial repair.
Collapse
Affiliation(s)
- Ke Zhu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Rongting Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Wenyuan Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Biao Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Zhao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yunli Shen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
5
|
Cardinali CEF, Fabiano de Freitas C, Sonchini Gonçalves R, Amanda Pedroso de Morais F, Nunes de Lima Martins J, Martins YA, Fernando Comar J, de Souza Bonfim-Mendonça P, Tessaro AL, Kimura E, Caetano W, Hioka N, Brunaldi K, Ravanelli MI. "Effects of Redox Status on Immediate Hypericin-Mediated Photodynamic Therapy in Human Glioblastoma T98G Cell Line". ACS OMEGA 2025; 10:1100-1109. [PMID: 39829538 PMCID: PMC11740150 DOI: 10.1021/acsomega.4c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive types of brain tumor. GBM can modulate glutathione (GSH) levels and regulate cellular redox state, which can explain its high resistance to chemotherapeutic agents. Photodynamic therapy (PDT) is a selective, nontoxic, and minimally invasive treatment approved for many types of cancer. PDT leads to cell death mainly by promoting the generation of reactive oxygen species (ROS). Thus, in the current study, PDT with the photosensitizer hypericin (Hyp), formulated in mixed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/biotinylated-pluronic F127 (F127-B) liposomes, in combination with the GSH synthesis inhibitor buthionine sulfoximine (BSO) were tested against T98G cell line of human glioblastoma. The mixed liposome was effective in delivering Hyp to the cells, leading to a dose relationship between Hyp and ROS levels. BSO potentiated Hyp cell uptake, decreased GSH levels regardless of Hyp concentration, and intensified ROS generation for 1.00 and 5.00 μmol L-1 Hyp. Nonetheless, cell death was more pronounced in the groups not treated with BSO, indicating that reduced GSH levels are not a decisive factor in achieving the PDT effects of Hyp. In conclusion, the mixed DPPC/F127-B liposomes were effective as a delivery system for Hyp. However, the combination of BSO and Hyp was not capable of optimizing PDT against T98G cells.
Collapse
Affiliation(s)
| | - Camila Fabiano de Freitas
- Department
of Chemistry, Federal University of Santa
Catarina (UFSC), Florianópolis, Santa Catarina 88040-380, Brazil
| | | | | | | | - Yandara Akamine Martins
- Departament
of Physiological Sciences, State University
of Maringa, Maringa, Parana 87020-900, Brazil
| | | | | | - André Luiz Tessaro
- Chemistry
Graduation (COLIQ), Federal Technological
University of Parana, Apucarana, Parana 86800-000, Brazil
| | - Elza Kimura
- Department
of Pharmacy and Pharmacology, State University
of Maringa, Maringa, Parana 87020-900, Brazil
| | - Wilker Caetano
- Departament
of Chemistry, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | - Noboru Hioka
- Departament
of Chemistry, State University of Maringa, Maringa, Parana 87020-900, Brazil
| | - Kellen Brunaldi
- Departament
of Physiological Sciences, State University
of Maringa, Maringa, Parana 87020-900, Brazil
| | - Maria Ida Ravanelli
- Departament
of Physiological Sciences, State University
of Maringa, Maringa, Parana 87020-900, Brazil
| |
Collapse
|
6
|
Donato A, Ritchie FK, Lu L, Wadia M, Martinez-Marmol R, Kaulich E, Sankorrakul K, Lu H, Coakley S, Coulson EJ, Hilliard MA. OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress. Nat Commun 2025; 16:300. [PMID: 39746999 PMCID: PMC11696186 DOI: 10.1038/s41467-024-55105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C. elegans neurons from oxidative damage. Using rodent and human cell cultures, we also show that the protective effect of OSP-1 extends to mammalian cells. Moreover, we demonstrate that OSP-1 functions in a strictly cell-autonomous fashion, and that it localizes to the endoplasmic reticulum (ER) where it has an ER-remodeling function. Finally, we present evidence suggesting that OSP-1 may exert its neuroprotective function by influencing autophagy. Our results point to a potential role of OSP-1 in modulating autophagy, and suggest that overactivation of this cellular process could contribute to neuronal death triggered by oxidative damage.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Lu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mehershad Wadia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Kaulich
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean Coakley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Yadav S, Bukke SPN, Prajapati S, Singh AP, Chettupalli AK, Nicholas B. Nanobiosensors in neurodegenerative disease diagnosis: A promising pathway for early detection. Digit Health 2025; 11:20552076251342457. [PMID: 40376568 PMCID: PMC12078979 DOI: 10.1177/20552076251342457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's, are characterized by progressive neuronal loss, leading to cognitive and motor impairments. Early diagnosis remains a challenge due to the slow progression of symptoms and the limitations of current diagnostic methods. Nanobiosensors, leveraging the high sensitivity and specificity of nanotechnology, offer a promising, noninvasive, and cost-effective approach for detecting disease biomarkers at ultra-low concentrations. This review highlights recent advancements in nanobiosensor technology, including the integration of gold nanoparticles, quantum dots, and carbon nanotubes, which have significantly enhanced biomarker detection precision. Furthermore, it examines the advantages of nanobiosensors over traditional diagnostic techniques, such as improved sensitivity, rapid detection, and minimal invasiveness. The potential of these innovative sensors to revolutionize early disease detection and improve patient outcomes is discussed, along with existing challenges in clinical translation, including stability, reproducibility, and regulatory considerations. Addressing these limitations will be crucial for integrating nanobiosensors into routine clinical practice and advancing personalized medicine for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmaceutical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Ishaka-Bushenyi, Uganda
| | | | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ananda Kumar Chettupalli
- Department of Pharmaceutical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Buyinza Nicholas
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Ishaka-Bushenyi, Uganda
| |
Collapse
|
8
|
Liu J, Han C, Shen J, Lin Y, Shen H, Wang G. Acrylamide exposure promotes the progression of depression-like behavior in mice with CUMS via GSDMD-mediated pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117443. [PMID: 39622127 DOI: 10.1016/j.ecoenv.2024.117443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025]
Abstract
AIM We investigated the mechanism by which the environmental toxin acrylamide (AM) promotes depression. METHODS A depression mouse model was constructed using the chronic unpredictable mild stress method, AM was administered orally to simulate the exposure state. Depressive-like behavioral changes were assessed by open field test, elevated plus maze test, swimming test, and sucrose preference test. Enzyme-linked immunosorbent assay (ELISA) was used to detect tissue inflammatory factor levels, hematoxylin and eosin (H&E) and Nissl staining to detect neuronal damage, immunohistochemical staining to detect IBA-1 expression, and Western-blotting to detect protein levels. GSDMD knockout (KO) mice and the GSDMD inhibitor LDC7559 were used to inhibit GSDMD. In vitro, primary microglia were used, and AM intervention was applied to detect the levels of cellular inflammatory factors, and fluorescence staining was used to detect GSDMD-NT, and propidium iodide (PI) was used to detect the level of pyroptosis. RESULTS AM can exacerbate CUMS-like depression in mice, increase the levels of inflammatory factors in brain tissue, and worsen neuronal damage, with upregulation of IBA-1 expression, and can increase the expression of NLRP3, GSDMD, and GSDMD-NT. When GSDMD-KO or LDC7559 intervention was applied, it could antagonize the effects of AM and improve CUMS-like depression. In microglial cell experiments, AM could promote pyroptosis in microglial cells, increase the expression of inflammatory factors, and when GSDMD-KO was applied, it could inhibit the effects of AM. CONCLUSION AM can promote the progression of depression in CUMS-like mice via GSDMD-mediated pyroptosis, while also increasing tissue inflammatory levels. GSDMD is an important target for the neurotoxicity of AM.
Collapse
Affiliation(s)
- JianFeng Liu
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an 710100, China.
| | - Chenyang Han
- Department of neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Jian Shen
- Department of neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Yingcong Lin
- Department of neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Heping Shen
- Department of neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Genghuan Wang
- Department of neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
9
|
White AL, Talkington GM, Ouvrier B, Ismael S, Solch-Ottaiano RJ, Bix G. Reactive Oxygen Species, a Potential Therapeutic Target for Vascular Dementia. Biomolecules 2024; 15:6. [PMID: 39858401 PMCID: PMC11761268 DOI: 10.3390/biom15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative condition prevalent among elderly adults marked by cognitive decline resulting from injured and/or improperly functioning cerebrovasculature with resultant disruptions in cerebral blood flow. Currently, VaD has no specific therapeutics and the exact pathobiology is still being investigated. VaD has been shown to develop when reactive oxygen species (ROS) form from damaged targets at different levels of organization-mitochondria, endothelial cells, or cerebrovasculature. In this review, we highlight how specific ROS molecules may be important in the development of VaD and how they can be targeted as a potential therapeutic for VaD.
Collapse
Affiliation(s)
- Amanda Louise White
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grant M. Talkington
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Blake Ouvrier
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rebecca J. Solch-Ottaiano
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
| |
Collapse
|
10
|
Zhao K, Zhang Y, Yin Z, Tan L, Juario M, Zhang H, Liu Y, Xu P, Zhang Q, Zhao G, Wang S, Mao H, Xu X, Hu C. GCRV-II major outer capsid protein VP4 promotes cell apoptosis by VDAC2-mediated calcium pathway facilitation. Int J Biol Macromol 2024; 285:138273. [PMID: 39631593 DOI: 10.1016/j.ijbiomac.2024.138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Grass Carp Reovirus (GCRV) is widely concerned because of its widespread prevalence and high mortality to grass carp (Ctenopharyngodon idellus). Viral protein 4 (VP4) is an important major outer capsid protein of GCRV and is involved in the regulation of cell cycle and cycle of GCRV replication. However, the elaborate function of VP4 remains to be explicated. To understand its function, we screened the transcriptome of Ctenopharyngodon idellus kidney (CIK) cells transfected with VP4 and found that VP4 may be involved in regulation of ion transmembrane transporter activity and calcium signaling pathway. It was observed through transmission electron microscopy and confocal microscopy. VP4 causes endoplasmic reticulum (ER) stress and leads to abnormal Calcium ions (Ca2+) concentration in cells. Also, VP4 promoted the loss of mitochondrial membrane potential, which allowed a large amount of Ca2+ to enter mitochondria and led to mitochondrial damage and apoptosis. In this transcriptome, we found that voltage-dependent anion channel 2 (VDAC2) was significantly upregulated. Moreover, the results also showed that the expression of C.idellus voltage-dependent anion channel 2 (CiVDAC2) and the degree of cell apoptosis were increased along with the increase of VP4 transfection. In contrast, knockdown of CiVDAC2 can reduce the concentration of Ca2+ and the occurrence of apoptosis caused by VP4 transfection. In conclusion, the results demonstrated that VP4 can induce cell apoptosis through VDAC2-mediated calcium pathway facilitation. This study provides some insights for the prevention and treatment of GCRV infection in grass carp.
Collapse
Affiliation(s)
- Kaiwen Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yansong Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zijia Yin
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Libo Tan
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ming Juario
- Food & Nutrition Department, HCA Florida West Marion Hospital, Ocala, Florida 34474, USA
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengxia Xu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Qin Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Guannan Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, 402660, China.
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
11
|
Dhahi TS, Yousif Dafhalla AK, Al-Mufti AW, Elobaid ME, Adam T, Gopinath SC. Application of Nanobiosensor engineering in the diagnosis of neurodegenerative disorders. RESULTS IN ENGINEERING 2024; 24:102790. [DOI: 10.1016/j.rineng.2024.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zeng K, Lin Y, Liu S, Wang Z, Guo L. Applications of piezoelectric biomaterials in dental treatments: A review of recent advancements and future prospects. Mater Today Bio 2024; 29:101288. [PMID: 40018432 PMCID: PMC11866170 DOI: 10.1016/j.mtbio.2024.101288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 03/01/2025] Open
Abstract
Piezoelectric biomaterials have attracted considerable attention in dental medicine due to their unique ability to convert mechanical force into electricity and catalyze reactions. These materials demonstrate biocompatibility, high bioactivity, and stability, making them suitable for applications such as tissue regeneration, caries prevention, and periodontal disease treatment. Despite their significant potential, the clinical application of these materials in treating oral diseases remains limited, facing numerous challenges in clinical translation. Therefore, further research and data are crucial to advance their application in dentistry. The review emphasizes the transformative impact of multifunctional piezoelectric biomaterials on enhancing dental therapies and outlines future directions for their integration into oral healthcare practices.
Collapse
Affiliation(s)
- Kaichen Zeng
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifan Lin
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shirong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyan Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Ren M, Liang S, Lin S, Huang R, Chen Y, Zhang Y, Xu Y. Design, synthesis and biological evaluation of artesunate-Se derivatives as anticancer agents by inducing GPX4-mediated ferroptosis. Bioorg Chem 2024; 152:107733. [PMID: 39180865 DOI: 10.1016/j.bioorg.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
A series of organoselenium compounds based on the hybridization of artesunate (ART) scaffolds and Se functionalities (-SeCN and -SeCF3) were synthesized. The redox properties of artesunate-SeCN and artesunate-SeCF3 derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), and the results showed that compounds 2c, 2f and 3e have a good free radical scavenging activity. Their cytotoxicity was evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HCT116 (human colorectal adenocarcinoma cells), HepG2 (human hepatocellular carcinoma cells), MCF-7 (human breast cancer cells). The MTT results showed that compared with ART and 5-FU, compound 2c exhibited potent in vitro antiproliferative activity in SW480, HCT116, and MCF-7 cancer cell lines, and was thus chose for further antitumor mechanism investigation. The antitumor mechanism study revealed that compound 2c induced ferroptosis in HCT116 cells by inhibiting the expression of GPX4 protein, accompanying by the up-regulation of intracellular ROS levels. Mitochondria in HCT116 cells exhibit depolarization of mitochondrial membrane potential (MMP) and ultrastructural changes in morphology, which indicated that 2c resulted in mitochondrial dysfunction and ferroptosis. Moreover, 2c could increase the levels of lipid peroxidation and ferrous ion, which further confirm that compound 2c may exert its antitumor effect through ferroptosis. Overall, these results suggest that the artesunate-Se candidates could provide promising new lead derivatives for further potential anticancer drug development.
Collapse
Affiliation(s)
- Meilin Ren
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Simin Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Sitong Lin
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanyan Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Yanli Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
14
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
15
|
Chen P, Fang Z, Chen J, Hu B, Huang X, Zhang M, Guo J. Preparation, structural characterization, and antioxidant activity of polysaccharide chitosan films from Porphyra haitanensis. Int J Biol Macromol 2024; 282:137041. [PMID: 39476903 DOI: 10.1016/j.ijbiomac.2024.137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Porphyra haitanensis polysaccharide-chitosan (PHP-CS) films were prepared by combining PHP and CS used the casting method with CaCl2; the structure, and physical and chemical properties of the film were studied by rheometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), light transmittance, scanning electron microscopy (SEM) and other means. The results indicated that the tensile strength of the PHP-CS film after formation was 5.63 ± 0.11 MPa, which was due to the interaction between the negative group in PHP and the positive group of CS under the action of hydrogen bonding and van der Waals forces. XRD and SEM results showed that there was a crystal structure in PHP-CS films, which was due to the combination of sulfuric acid group, amino group of CS and CaCl2 in PHP. Importantly, PHP-CS films had strong UV-blocking properties and high thermal stability. In addition, PHP-CS films had stronger oxidation resistance than PHP and CS. Therefore, PHP-CS film has wide application potential in food preservation and packaging.
Collapse
Affiliation(s)
- Peilin Chen
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China..
| | - Zongmu Fang
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, Guangdong, China
| | - Jurong Chen
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Bei Hu
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Xiaozhou Huang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Min Zhang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Juanjuan Guo
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China..
| |
Collapse
|
16
|
Zhang J, Zhao J, Wu M, Liu J, Qian C, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Release kinetics and protective effect of novel curcumin-based nanoliposome modified with pectin, whey protein isolates and hyaluronic acid against oxidative stress. Int J Biol Macromol 2024; 282:136890. [PMID: 39490488 DOI: 10.1016/j.ijbiomac.2024.136890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
In the present study, a novel nanoliposome loaded with curcumin (Cur) (NNLs-Cur) was established to overcome the gastrointestinal digestive barrier and enhance mitochondrial targeting capacity, exerting the antioxidant capacity of Cur. Noteworthy, NNLs-Cur was modified by pectin, whey protein isolates and hyaluronic acid. The results showed that the structure of traditional nanoliposomes loaded with Cur (NLs-Cur) was destroyed during digestion. However, NNLs-Cur maintained intact structural morphology, and the release of Cur in the stomach and intestines was consistent with zero-order and first-order kinetic models, respectively. Interestingly, the survival rate of HL-7702 cells after being damaged by H2O2 was 40.53 %, while the survival rate after treated with NNLs-Cur reached 99.87 %. Besides, the fluorescence localization indicated Cur in NNLs-Cur could escape lysosomal and achieve mitochondria targeting. Compared with NLs-Cur, the damaged cells treated with NNLs-Cur increased activities of catalase (CAT), glutathione peroxide (GSH-Px) and superoxide dismutase (SOD) from 16.16 ± 0.52, 16.92 ± 2.28 and 30.10 ± 0.93 U/mgprot to 19.09 ± 0.52, 20.41 ± 1.79 and 33.81 ± 0.29 U/mgprot, respectively. Malondialdehyde (MDA) content and reactive oxygen species (ROS) level of the oxidative damaged cells were reduced, mitochondrial membrane potential was restored, and cell apoptosis was reduced. This study provides theoretical guidance for realizing the industrial application of efficient targeted delivery Cur.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
17
|
Dai H, Chen Z. Association between dietary vitamin K and telomere length: Based on NHANES 2001 to 2002. Medicine (Baltimore) 2024; 103:e40157. [PMID: 39432594 PMCID: PMC11495779 DOI: 10.1097/md.0000000000040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 10/23/2024] Open
Abstract
As an anti-inflammatory and antioxidant, vitamin K has the potential to reduce telomere attrition. However, the correlation between dietary vitamin K and telomere length (TL) has not been reported. We aimed to investigate the association between these 2 variables. This study included 3754 participants from the National Health and Nutrition Examination Survey 2001-2002 database. We used multivariate linear regression and restricted cubic splines to assess the relationship between dietary vitamin K intake and TL. Subgroup analyses and interaction tests were utilized to examine the stability of the results. After adjusting for all variables, each unit increase in daily dietary intake of vitamin K lengthened telomeres by 0.22 base pairs (β = 0.22, 95% CI: 0.09-0.36, P = .001). Individuals with the highest dietary vitamin K intake had significantly longer TL (β = 80.27, 95% CI: 20.83-139.71, P = .008). Subgroup analyses suggested that this association persisted in populations stratified by gender, age, diabetes, cardiovascular disease (CVD), body mass index and total energy intake (P for interaction > .05). A linear relationship between dietary vitamin K intake and TL was observed in restricted cubic splines (P for nonlinear = .554). In conclusion, our findings suggest that dietary vitamin K intake is positively associated with TL, providing recent evidence to guide the management of healthy diets.
Collapse
Affiliation(s)
- Heng Dai
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziyi Chen
- Third Clinical Medical College and Rehabilitation Medicine College of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Ni C, Huang B, Huang Y, Wen Z, Luo S. Keap1-independent GSK-3β/Nrf2 signaling mediates electroacupuncture inhibition of oxidative stress to induce cerebral ischemia-reperfusion tolerance. Brain Res Bull 2024; 217:111071. [PMID: 39241893 DOI: 10.1016/j.brainresbull.2024.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE Cerebral ischemia-reperfusion (CIR) injury is a devastating consequence of stroke characterized by oxidative stress-induced neuronal damage. Electroacupuncture (EA) has emerged as a potential therapeutic intervention for ischemic stroke, but its underlying mechanisms remain incompletely understood. This study aimed to elucidate whether EA exerts anti-oxidative stress effects against CIR injury by modulating the GSK-3β/Nrf2 pathway. METHODS CIR mouse models were established using the suture-occluded method and underwent EA pretreatment. Cognitive and neurologic function, cerebral infarct volume, and neuronal damage were assessed in mice. Oxidative stress levels and the expression of components of the GSK-3β/Nrf2 pathway in the cerebral cortex were measured. The regulatory effect of GSK-3β on Nrf2 and its role in electroacupuncture to alleviate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury were investigated by modulating GSK-3β expression in HT22 hippocampal neuronal cells and electroacupuncture serum intervention. Ultimately, Nrf2 knockout mice, GSK-3β knockout mice, and wild-type mice treated with TBHQ (an Nrf2 activator) were utilized for further validation. RESULTS EA pretreatment improved cognitive impairment and neuronal damage induced by CIR injury. Mechanistically, EA inhibited oxidative stress in the cerebral cortex, manifested by reduced levels of reactive oxygen species and malondialdehyde, along with increased superoxide dismutase activity. Furthermore, EA upregulated the expression of Nrf2 and its downstream antioxidant enzymes HO-1 and NQO1, while Keap1 expression remained unaffected. In vitro, GSK-3β overexpression inhibited the protective effects of EA serum on OGD/R-induced neuronal damage. In vivo, knockout of either Nrf2 or Gsk-3β genes abolished the neuroprotective effects of EA, and TBHQ exerted effects similar to EA, confirming the significant role of GSK-3β/Nrf2 in mediating EA antioxidative effects. CONCLUSION EA exerts antioxidative stress effects against CIR injury by activating the GSK-3β/Nrf2 signaling pathway, independent of Keap1 regulation.
Collapse
Affiliation(s)
- Chunjue Ni
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baojun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yufan Huang
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengde Wen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shan Luo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Fu W, Liu G, Kim SH, Kim B, Kim OS, Ma G, Yang Y, Liu D, Zhu S, Kang JS, Kim O. Effects of 625 nm light-emitting diode irradiation on preventing ER stress-induced apoptosis via GSK-3β phosphorylation in MC3T3-E1. Photochem Photobiol 2024; 100:1408-1418. [PMID: 38214077 DOI: 10.1111/php.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
20
|
Li F, Jia Y, Fang J, Gong L, Zhang Y, Wei S, Wu L, Jiang P. Neuroprotective Mechanism of MOTS-c in TBI Mice: Insights from Integrated Transcriptomic and Metabolomic Analyses. Drug Des Devel Ther 2024; 18:2971-2987. [PMID: 39050800 PMCID: PMC11268520 DOI: 10.2147/dddt.s460265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a condition characterized by structural and physiological disruptions in brain function caused by external forces. However, as the highly complex and heterogenous nature of TBI, effective treatments are currently lacking. Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) has shown notable antinociceptive and anti-inflammatory effects, yet its detailed neuroprotective effects and mode of action remain incompletely understood. This study investigated the neuroprotective effects and the underlying mechanisms of MOTS-c. Methods Adult male C57BL/6 mice were randomly divided into three groups: control (CON) group, MOTS-c group and TBI group. Enzyme-linked immunosorbent assay (ELISA) kit method was used to measure the expression levels of MOTS-c in different groups. Behavioral tests were conducted to assess the effects of MOTS-c. Then, transcriptomics and metabolomics were performed to search Differentially Expressed Genes (DEGs) and Differentially Expressed Metabolites (DEMs), respectively. Moreover, the integrated transcriptomics and metabolomics analysis were employed using R packages and online Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results ELISA kit method showed that TBI resulted in a decrease in the expression of MOTS-c. and peripheral administration of MOTS-c could enter the brain tissue after TBI. Behavioral tests revealed that MOTS-c improved memory, learning, and motor function impairments in TBI mice. Additionally, transcriptomic analysis screened 159 differentially expressed genes. Metabolomic analysis identified 491 metabolites with significant differences. Integrated analysis found 14 KEGG pathways, primarily related to metabolic pathways. Besides, several signaling pathways were enriched, including neuroactive ligand-receptor interaction and retrograde endocannabinoid signaling. Conclusion TBI reduced the expression of MOTS-c. MOTS-c reduced inflammatory responses, molecular damage, and cell death by down-regulating macrophage migration inhibitory factor (MIF) expression and activating the retrograde endocannabinoid signaling pathway. In addition, MOTS-c alleviated the response to hypoxic stress and enhanced lipid β-oxidation to provide energy for the body following TBI. Overall, our study offered new insights into the neuroprotective mechanisms of MOTS-c in TBI mice.
Collapse
Affiliation(s)
- Fengfeng Li
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yang Jia
- Neurosurgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Jun Fang
- Anesthesiology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Linqiang Gong
- Gastroenterology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Yazhou Zhang
- Foot and Ankle Surgery Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Shanshan Wei
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People’s Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong, 277500, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
21
|
Wang R, Liu X, Sun C, Hu B, Yang L, Liu Y, Geng D, Lin J, Li Y. Altered Neurovascular Coupling in Patients With Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes (MELAS): A Combined Resting-State fMRI and Arterial Spin Labeling Study. J Magn Reson Imaging 2024; 60:327-336. [PMID: 37795920 DOI: 10.1002/jmri.29035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Coupling between neuronal activity and blood perfusion is termed neurovascular coupling (NVC), and it provides a potentially new mechanistic perspective into understanding numerous brain diseases. Although abnormal brain activity and blood supply have been separately reported in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), whether anomalous NVC would be present is unclear. PURPOSE To investigate NVC changes and potential neural basis in MELAS by combining resting-state functional MRI (rs-fMRI) and arterial spin labeling (ASL). STUDY TYPE Prospective. SUBJECTS Twenty-four patients with MELAS (age: 29.8 ± 7.3 years) in the acute stage and 24 healthy controls (HCs, age: 26.4 ± 8.1 years). Additionally, 12 patients in the chronic stage were followed up. FIELD STRENGTH/SEQUENCE 3.0 T, resting-state gradient-recalled echo-planar imaging and pseudo-continuous 3D ASL sequences. ASSESSMENT Amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and functional connectivity strength (FCS) were calculated from rs-fMRI, and cerebral blood flow (CBF) was computed from ASL. Global NVC was assessed by correlation coefficients of CBF-ALFF, CBF-fALFF, CBF-ReHo, and CBF-FCS. Regional NVC was also evaluated by voxel-wise and lesion-wise ratios of CBF/ALFF, CBF/fALFF, CBF/ReHo, and CBF/FCS. STATISTICAL TESTS Two-sample t-test, paired-sample t-test, Gaussian random fields correction. A P value <0.05 was considered statistically significant. RESULTS Compared with HC, MELAS patients in acute stage showed significantly reduced global CBF-ALFF, CBF-fALFF, CBF-ReHo, and CBF-FCS coupling (P < 0.001). Altered CBF/ALFF, CBF/fALFF, CBF/ReHo, and CBF/FCS ratios were found mainly distributed in the middle cerebral artery territory in MELAS patients. In addition, significantly increased NVC ratios were found in the acute stroke-like lesions in acute stage (P < 0.001), with a recovery trend in chronic stage. DATA CONCLUSIONS This study showed dynamic alterations in NVC in MELAS patients from acute to chronic stage, which may provide a novel insight for understanding the pathogenesis of MELAS. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Xueling Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yiru Liu
- Luhang High School, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
23
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Benemei S, Mattia C, Di Minno MND. The good, the bad and the ugly of pain in haemophilia: Recent evidence on the epidemiology, molecular mechanisms and knowledge gaps preventing optimal treatment. Haemophilia 2024; 30:589-597. [PMID: 38545868 DOI: 10.1111/hae.15002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 05/15/2024]
Abstract
INTRODUCTION Haemophilia is an inherited, X-linked blood clotting disorder caused by the deficiency of coagulation factors VIII (FVIII, haemophilia A) or IX (FIX, haemophilia B). Spontaneous bleeds are common in severe forms of haemophilia and can also occur in moderate and mild haemophilia. Severe or repeated bleeding at a joint can evolve into chronic haemophilic arthropathy, with functional damage of the joint, disability, and intense chronic articular pain. Nonetheless, acute and chronic pain may emerge due to secondary conditions related to bleedings. AIM This narrative review aims to critically discuss the most recent evidence about pain in haemophilia to give healthcare professionals a clear picture of current knowledge hence favouring the optimisation of clinical management of pain. METHODS Extensive literature search with the terms 'hemophilia' AND 'pain', focusing on the time window 2021-2023. RESULTS Acute and chronic pain is a critical aspect of haemophilia at all ages. It should be considered a multifaceted phenomenon, with a positive role as an early emergency signal of a clinical event (haemarthrosis), and numerous detrimental aspects linked to its burden that heavily affects the health-related quality of life, with psychological and social consequences. CONCLUSION Despite its prevalence and frequency in people with haemophilia, pain is often underestimated by healthcare professionals, leading to insufficient and inadequate treatment, also due to uncertainty linked to the presence of the coagulation disorder or arthritic flares.
Collapse
Affiliation(s)
| | - Consalvo Mattia
- Department of Medical and Surgical Sciences and Biotechnologies, Unit of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Faculty of Pharmacy and Medicine, 'ICOT-Polo Pontino, Sapienza' University of Rome, Rome, Italy
| | | |
Collapse
|
25
|
Islam F, Khan J, Zehravi M, Das R, Haque MA, Banu A, Parwaiz S, Nainu F, Nafady MH, Shahriar SMS, Hossain MJ, Muzammil K, Emran TB. Synergistic effects of carotenoids: Therapeutic benefits on human health. Process Biochem 2024; 136:254-272. [DOI: 10.1016/j.procbio.2023.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
26
|
Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. CHEMOSPHERE 2024; 347:140702. [PMID: 37979799 DOI: 10.1016/j.chemosphere.2023.140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Excessive exposure to sunlight, especially UV irradiation, causes skin photodamage. Sunscreens, such as TiO2 and ZnO, can potentially prevent UV via scattering, reflection, and absorption. Topical antioxidants are another means of skin photoprotection. Developing nanoparticles for sunscreens and antioxidants is recommended for photoaging prevention and treatment as it can improve uncomfortable skin appearance, stability, penetration, and safety. This study reviewed the effects of nano-sized sunscreens and antioxidants on skin photoprevention by examining published studies and articles from PubMed, Scopus, and Google Scholar, which explore the topics of skin photoaging, skin senescence, UV radiation, keratinocyte, dermal fibroblast, sunscreen, antioxidant, and nanoparticle. The researchers of this study also summarized the nano-based UV filters and therapeutics for mitigating skin photoaging. The skin photodamage mechanisms are presented, followed by the introduction of current skin photoaging treatment. The different nanoparticle types used for topical delivery were also explored in this study. This is followed by the mechanisms of how nanoparticles improve the UV filters and antioxidant performance. Lastly, recent investigations were reviewed on nanoparticulate sunscreens and antioxidants in skin photoaging management. Sunscreens and antioxidants for topical application have different concepts. Topical antioxidants are ideal for permeating into the skin to exhibit free radical scavenging activity, while UV filters are prescribed to remain on the skin surface without absorption to exert the UV-blocking effect without causing toxicity. The nanoparticle design strategy for meeting the different needs of sunscreens and antioxidants is also explored in this study. Although the benefits of using nanoparticles for alleviating photodamage are well-established, more animal-based and clinical studies are necessary.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Xiong P, Zheng YY, Ouyang JM. Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles. Biomed Pharmacother 2023; 169:115865. [PMID: 37972469 DOI: 10.1016/j.biopha.2023.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-α, IL-6, IL-1β and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.
Collapse
Affiliation(s)
- Peng Xiong
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Yu-Yun Zheng
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China.
| |
Collapse
|
28
|
UshaVipinachandran V, Bhunia SK. Spectroscopic/colorimetric dual-mode rapid and ultrasensitive detection of reactive oxygen species based on shape-dependent silver nanostructures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6687-6697. [PMID: 38047429 DOI: 10.1039/d3ay01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Excessive production of reactive oxygen species (ROS) from endogenous and exogenous pathways is linked to oxidative stress and various diseases. Although a variety of ROS probes have been developed, their multistep synthesis strategies and complicated instrumental operating procedures limit their frequent use. In this work, different shaped silver nanostructures including nanoparticles, nanoprisms, and nanocubes were utilized to demonstrate simple spectroscopic and colorimetric techniques for sensitive ROS detection. The nanostructures displayed different sensing behaviours recorded via plasmon tuning with morphological changes upon exposure to ROS. Among the nanostructures, silver nanocubes were found to be extremely efficient in recognising a particular ROS, namely hypochlorite ions. The detection limits of this ROS were calculated to be 23.76 nM, 85.71 nM, and 36.37 nM for silver nanoparticles, nanoprisms, and nanocubes, respectively. A time-dependent microscopic examination was carried out and revealed that the presence of hypochlorite ions deteriorates structural morphologies. The formation of highly reactive chlorite, chlorate, and chloride ions in hypochlorite ion solution was ascribed to the significant spectroscopic and microscopic changes in all the nanostructures. The attenuation of plasmonic peaks and etching of nanostructures by ROS were supported by the increment of the oxidation state of silver. In addition, silver nanocubes were successfully applied to recognize ROS in Spinacia oleracea and real water samples. The results confirm the potentiality of silver nanostructures for sensitive detection of ROS in biological and environmental systems.
Collapse
Affiliation(s)
- Varsha UshaVipinachandran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
29
|
Kang H, Kim SC, Oh Y. Fucoxanthin Abrogates Ionizing Radiation-Induced Inflammatory Responses by Modulating Sirtuin 1 in Macrophages. Mar Drugs 2023; 21:635. [PMID: 38132956 PMCID: PMC10744970 DOI: 10.3390/md21120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Ionizing radiation (IR) triggers an overproduction of reactive oxygen species (ROS), disrupting the normal function of both immune and metabolic systems, leading to inflammation and metabolic disturbances. To address the pressing requirement for protection against IR, fucoxanthin (FX), a naturally occurring compound extracted from algae, was utilized as an efficient radioprotective agent in macrophages. In this study, we cultured murine RAW 264.7 macrophages and treated them with FX, along with agents influencing the activity of sirtuin 1 (SIRT1) and estrogen receptor α (ERα), to investigate their impact on IR-induced cellular responses. FX significantly attenuated IR-induced upregulation of pro-inflammatory genes (Il1b, Tnf, and Ccl2) and inhibited macrophage polarization toward the pro-inflammatory M1 phenotype. Additionally, FX regulated IR-induced metabolic genes mediating glycolysis and mitochondrial biogenesis. The ability of FX to mitigate IR-induced inflammation and glycolysis was ascribed to the expression and activity of SIRT1 and ERα in macrophages. This study not only uncovers the underlying mechanisms of FX's radioprotective properties but also highlights its potential as a protective agent against the detrimental effects of IR, thus offering new opportunities for enhancing radiation protection in the future.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea;
| | - Seon-Chil Kim
- Department of Biomedical Engineering, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea
- Department of Medical Informatics, School of Medicine, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea
| | - Youngkee Oh
- Department of Radiation Oncology, School of Medicine, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea;
| |
Collapse
|
30
|
Gao W, Liu W, Dong X, Sun Y. Albumin-manganese dioxide nanocomposites: a potent inhibitor and ROS scavenger against Alzheimer's β-amyloid fibrillogenesis and neuroinflammation. J Mater Chem B 2023; 11:10482-10496. [PMID: 37909060 DOI: 10.1039/d3tb01763j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease pathologically caused by amyloid-β protein (Aβ) aggregation, oxidative stress, and neuroinflammation. The pathogenesis of AD is still uncertain and intricate, and helpful therapy has rarely been recorded. So, discovering amyloid modulators is deemed a promising avenue for preventing and treating AD. In this study, human serum albumin (HSA), a protein-based Aβ inhibitor, was utilized as a template to guide the synthesis of HSA-manganese dioxide nanocomposites (HMn NCs) through biomineralization. The in situ formed MnO2 in HSA endows this nano-platform with outstanding reactive oxygen species (ROS) scavenging capability, including superoxide dismutase-mimetic and catalase-mimetic activities, which could scavenge the plethora of superoxide anion radicals and hydrogen peroxide. More importantly, the HMn NCs show enhanced potency in suppressing Aβ fibrillization compared with HSA, which further alleviates Aβ-mediated SH-SY5Y neurotoxicity by scavenging excessive ROS. Moreover, it is demonstrated that HMn NCs reduce Aβ-related inflammation in BV-2 cells by lowering tumor necrosis factor-α and interleukin-6. Furthermore, transgenic C. elegans studies showed that HMn NCs could remove Aβ plaques, reduce ROS in CL2006 worms, and promote the lifespan extension of worms. Thus, HMn NCs provide a promising tactic to facilitate the application of multifunctional nanocomposites in AD treatment.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
31
|
Draper M, Bester MJ, Van Rooy MJ, Oberholzer HM. Adverse neurological effects after exposure to copper, manganese, and mercury mixtures in a Spraque-Dawley rat model: an ultrastructural investigation. Ultrastruct Pathol 2023; 47:509-528. [PMID: 37849276 DOI: 10.1080/01913123.2023.2270580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Exposure to environmental metal pollutants is linked to oxidative stress and the subsequent development of neurological disease. In this study, the effects of copper, manganese, and mercury, were evaluated at X100 the World Health Organization safety limits for drinking water. Using a Sprague-Dawley rat model, following exposure for 28 days, the effects of these metals on biochemical blood parameters and tissue and cellular structure of the brain were determined. Biochemical analysis revealed no hepatocellular injury with minor changes associated with the hepatobiliary system. Minimal changes were found for renal function and the Na+/K+ ratio was reduced in the copper and manganese (Cu + Mn) and copper, manganese, and mercury (Cu, Mn + Hg) groups that could affect neurological function. Light microscopy of the brain revealed abnormal histopathology of Purkinje cells in the cerebellum and pyramidal cells in the cerebrum as well as tissue damage and fibrosis of the surface blood vessels. Transmission electron microscopy of the cerebral neurons showed microscopic signs of axonal damage, chromatin condensation, the presence of indistinct nucleoli and mitochondrial damage. Together these cellular features suggest the presence and influence of oxidative stress. Exposure to these metals at X100 the safety limits, as part of mixtures, induces changes to neurological tissue that could adversely influence neurological functioning in the central nervous system.
Collapse
Affiliation(s)
- Maxine Draper
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Mia-Jeanne Van Rooy
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | | |
Collapse
|
32
|
Sun D, Li S, Huang H, Xu L. Neurotoxicity of melittin: Role of mitochondrial oxidative phosphorylation system in synaptic plasticity dysfunction. Toxicology 2023; 497-498:153628. [PMID: 37678661 DOI: 10.1016/j.tox.2023.153628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Melittin (Mel), a main active peptide component of bee venom, has been proven to possess strong antitumor activity. Previous studies have shown that Mel caused severe cell membrane lysis and acted on the central nervous system (CNS). Here, this study was designed to investigate the effects of Mel on CNS and explore the potential mechanism. We confirmed the neurotoxic effect of melittin by in vivo and in vitro experiments. After subcutaneous administration of Mel (4 mg/kg, 8 mg/kg) for 14 days, the mice exhibited obvious depression-like behavior in a dose dependent manner. Besides, RNA-sequencing analysis revealed that oxidative phosphorylation (OXPHOS) signaling pathway was mostly enriched in hippocampus. Consistently, we found that Mel distinctly inhibited the activity of OXPHOS complex I and induced oxidative stress injury. Moreover, Mel significantly induced synaptic plasticity dysfunction in hippocampus via BDNF/TrkB/CREB signaling pathway. Taken together, the neurotoxic effect of Mel was involved in impairing OXPHOS system and hippocampal synaptic plasticity. These novel findings provide new insights into fully understanding the health risks of Mel and are conducive to the development of Mel related drugs.
Collapse
Affiliation(s)
- Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
33
|
Kang M, Jeong S, Park S, Nam S, Chung JW, Kim KO, An J, Kim JH. Significance of 8-OHdG Expression as a Predictor of Survival in Colorectal Cancer. Cancers (Basel) 2023; 15:4613. [PMID: 37760582 PMCID: PMC10526191 DOI: 10.3390/cancers15184613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The incidence of colorectal cancer (CRC) is increasing worldwide. 8-hydroxy-2'-deoxyguanosine (8-OHdG), one of the most prevalent DNA alterations, is known to be upregulated in several carcinomas; however, 8-OHdG has not been used to predict the prognosis of patients with CRC. We aimed to determine 8-OHdG levels in patients with CRC using immunohistochemistry and conducted a survival analysis according to the pathological stage. The 5-year event-free survival (EFS) and disease-specific survival (DSS) hazard ratios (HRs) of the low 8-OHdG subgroup were 1.41 (95% confidence interval (CI): 1.01-1.98, p = 0.04) and 1.60 (95% CI: 1.12-2.28, p = 0.01), respectively. When tumor node metastasis (TNM) staging and 8-OHdG expression were combined, the 5-year EFS and DSS HRs of patients with CRC with low 8-OHdG expression cancer at the same TNM stage (stage Ⅲ/Ⅳ) were 1.51 (95% CI: 1.02-2.22, p = 0.04) and 1.64 (95% CI: 1.09-2.48, p = 0.02), respectively, compared to those with high 8-OHdG expression cancer, indicating a poor prognosis. Therefore, low 8-OHdG expression is a significant predictive factor for 5-year EFS and DSS in patients with CRC, and it can serve as an essential biomarker of CRC.
Collapse
Affiliation(s)
- Myunghee Kang
- Department of Pathology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| | - Soyeon Jeong
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| | - Sungjin Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; (S.P.); (S.N.)
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; (S.P.); (S.N.)
- Department of Genome Medicine and Science, AI Convergence Center for Genome Medicine, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Jun-Won Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (J.-W.C.); (K.O.K.)
| | - Kyoung Oh Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (J.-W.C.); (K.O.K.)
| | - Jungsuk An
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jung Ho Kim
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
- Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (J.-W.C.); (K.O.K.)
- Department of Translational-Clinical Medicine, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
34
|
Mehrani Y, Knapp JP, Kakish JE, Tieu S, Javadi H, Chan L, Stegelmeier AA, Napoleoni C, Bridle BW, Karimi K. Murine Mast Cells That Are Deficient in IFNAR-Signaling Respond to Viral Infection by Producing a Large Amount of Inflammatory Cytokines, a Low Level of Reactive Oxygen Species, and a High Rate of Cell Death. Int J Mol Sci 2023; 24:14141. [PMID: 37762443 PMCID: PMC10531704 DOI: 10.3390/ijms241814141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong to a family of cytokines recognized for their antiviral properties. Previously, we reported that MCs produced proinflammatory cytokines in response to a recombinant vesicular stomatitis virus (rVSVΔm51) and that IFNAR signaling was required to down-modulate these responses. Here, we have demonstrated that UV-irradiated rVSVΔm51 did not cause any inflammatory cytokines in either in vitro cultured mouse IFNAR-intact (IFNAR+/+), or in IFNAR-knockout (IFNAR-/-) MCs. However, the non-irradiated virus was able to replicate more effectively in IFNAR-/- MCs and produced a higher level of inflammatory cytokines compared with the IFNAR+/+ MCs. Interestingly, MCs lacking IFNAR expression displayed reduced levels of reactive oxygen species (ROS) compared with IFNAR+/+ MCs. Additionally, upon the viral infection, these IFNAR-/- MCs were found to coexist with many dying cells within the cell population. Based on our findings, IFNAR-intact MCs exhibit a lower rate of rVSVΔm51 infectivity and lower levels of cytokines while demonstrating higher levels of ROS. This suggests that MCs with intact IFNAR signaling may survive viral infections by producing cell-protective ROS mechanisms and are less likely to die than IFNAR-/- cells.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran
| | - Jason P. Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Sophie Tieu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Ashley A. Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Christina Napoleoni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (J.P.K.); (J.E.K.); (S.T.); (L.C.); (A.A.S.); (C.N.)
| |
Collapse
|
35
|
Blagov AV, Orekhova VA, Sukhorukov VN, Melnichenko AA, Orekhov AN. Potential Use of Antioxidant Compounds for the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:1150. [PMID: 37631065 PMCID: PMC10458684 DOI: 10.3390/ph16081150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Since inflammatory bowel diseases (IBDs) are chronic, the development of new effective therapeutics to combat them does not lose relevance. Oxidative stress is one of the main pathological processes that determines the progression of IBD. In this regard, antioxidant therapy seems to be a promising approach. The role of oxidative stress in the development and progression of IBD is considered in detail in this review. The main cause of oxidative stress in IBD is an inadequate response of leukocytes to dysbiosis and food components in the intestine. Passage of immune cells through the intestinal barrier leads to increased ROS concentration and the pathological consequences of exposure to oxidative stress based on the development of inflammation and impaired intestinal permeability. To combat oxidative stress in IBD, several promising natural (curcumin, resveratrol, quercetin, and melatonin) and artificial antioxidants (N-acetylcysteine (NAC) and artificial superoxide dismutase (aSOD)) that had been shown to be effective in a number of clinical trials have been proposed. Their mechanisms of action on pathological events in IBD and clinical manifestations from their impact have been determined. The prospects for the use of other antioxidants that have not yet been tested in the treatment of IBD, but have the properties of potential therapeutic candidates, have been also considered.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Varvara A. Orekhova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| |
Collapse
|
36
|
Kakae M, Nakajima H, Tobori S, Kawashita A, Miyanohara J, Morishima M, Nagayasu K, Nakagawa T, Shigetomi E, Koizumi S, Mori Y, Kaneko S, Shirakawa H. The astrocytic TRPA1 channel mediates an intrinsic protective response to vascular cognitive impairment via LIF production. SCIENCE ADVANCES 2023; 9:eadh0102. [PMID: 37478173 PMCID: PMC10361588 DOI: 10.1126/sciadv.adh0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI.
Collapse
Affiliation(s)
- Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Nakajima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ayaka Kawashita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Miyanohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Misa Morishima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Malagoli D, Franchi N, Sacchi S. The Eco-Immunological Relevance of the Anti-Oxidant Response in Invasive Molluscs. Antioxidants (Basel) 2023; 12:1266. [PMID: 37371996 DOI: 10.3390/antiox12061266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are volatile and short-lived molecules playing important roles in several physiological functions, including immunity and physiological adaptation to unsuitable environmental conditions. In an eco-immunological view, the energetic costs associated with an advantageous metabolic apparatus able to cope with wide changes in environmental parameters, e.g., temperature range, water salinity or drought, could be further balanced by the advantages that this apparatus may also represent in other situations, e.g., during the immune response. This review provides an overview of molluscs included in the IUCN list of the worst invasive species, highlighting how their relevant capacity to manage ROS production during physiologically challenging situations can also be advantageously employed during the immune response. Current evidence suggests that a relevant capacity to buffer ROS action and their damaging consequences is advantageous in the face of both environmental and immunological challenges, and this may represent a trait for potential invasiveness. This should be considered in order to obtain or update information when investigating the potential of the invasiveness of emerging alien species, and also in view of ongoing climate changes.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
38
|
Fu W, Im YG, Kim B, Kim OS, Yang Y, Song J, Liu D, Zhu S, Kang JS, Kim O. 625 nm Light Irradiation Prevented MC3T3-E1 Cells from Accumulation of Misfolded Proteins via ROS and ATP Production. Int J Mol Sci 2023; 24:ijms24119257. [PMID: 37298212 DOI: 10.3390/ijms24119257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Osteoblasts must acquire a considerable capacity for folding unfolded and misfolded proteins (MPs) to produce large amounts of extracellular matrix proteins and maintain bone homeostasis. MP accumulation contributes to cellular apoptosis and bone disorders. Photobiomodulation therapy has been used to treat bone diseases, but the effects of decreasing MPs with photobiomodulation remain unclear. In this study, we explored the efficacy of 625 nm light-emitting diode irradiation (LEDI) to reduce MPs in tunicamycin (TM) induced-MC3T3-E1 cells. Binding immunoglobulin protein (BiP), an adenosine triphosphate (ATP)-dependent chaperone, is used to evaluate the capacity of folding MPs. The results revealed that pretreatment with 625 nm LEDI (Pre-IR) induced reactive oxygen species (ROS) production, leading to the increased chaperone BiP through the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1s (XBP-1s) pathway, and then restoration of collagen type I (COL-I) and osteopontin (OPN) expression relieving cell apoptosis. Furthermore, the translocation of BiP into the endoplasmic reticulum (ER) lumen might be followed by a high level of ATP production. Taken together, these results suggest that Pre-IR could be beneficial to prevent MP accumulation through ROS and ATP in TM-induced MC3T3-E1cells.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeong-Gwan Im
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jianan Song
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
39
|
Niewiadomska J, Kasztura M, Janus I, Chełmecka E, Stygar DM, Frydrychowski P, Wojdyło A, Noszczyk-Nowak A. Punica granatum L. Extract Shows Cardioprotective Effects Measured by Oxidative Stress Markers and Biomarkers of Heart Failure in an Animal Model of Metabolic Syndrome. Antioxidants (Basel) 2023; 12:1152. [PMID: 37371882 PMCID: PMC10295190 DOI: 10.3390/antiox12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic syndrome (MetS) significantly increases the risk of cardiovascular diseases (CVD), a leading cause of death globally. The presented study investigated the cardioprotective role of dietary polyphenols found in pomegranate peels in an animal model of metabolic syndrome. Zucker diabetic fatty rats (ZDF, MetS rats, fa/fa) were supplemented with polyphenol-rich pomegranate peel extract (EPP) at two dosages: 100 mg/kg BW and 200 mg/kg BW. The extract was administered for 8 weeks. The effect of ethanolic peel extract on the concentration of oxidative stress markers (CAT, SOD, MnSOD, GR, GST, GPx, TOS, SH, and MDA), biomarkers of heart failure (cTnI, GAL-3), and alternations in tissue architecture was assessed. The results showed a significant increase in SH concentration mediated via EPP supplementation (p < 0.001). Treatment with a 100 mg/kg BW dosage reduced the TOS level more efficiently than the higher dose. Interestingly, the CAT and GST activities were relevantly higher in the MetS 100 group (p < 0.001) compared to the MetS control. The rats administered EPP at a dose of 200 mg/kg BW did not follow a similar trend. No differences in the GR (p = 0.063), SOD (p = 0.455), MnSOD (p = 0.155), and MDA (p = 0.790) concentration were observed after exposure to the pomegranate peel extract. The administration of EPP did not influence the cTnI and GAL-3 levels. Histology analysis of the heart and aorta sections revealed no toxic changes in phenolic-treated rats. The findings of this study prove that the extract from pomegranate peels possesses free radical scavenging properties in the myocardium. The effect on alleviating ventricular remodeling and cardiomyocyte necrosis was not confirmed and requires further investigation.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, 40-751 Katowice, Poland;
| | - Dominika Marta Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-751 Katowice, Poland;
| | - Piotr Frydrychowski
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
40
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
41
|
Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y, Yang H, Li H. Rose essential oil diminishes dopaminergic neuron degenerations and reduces α-synuclein aggregation in Caenorhabditis elegans models of Parkinson's disease. Phytother Res 2023. [PMID: 36920348 DOI: 10.1002/ptr.7783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/10/2022] [Accepted: 01/29/2023] [Indexed: 03/16/2023]
Abstract
Parkinson's disease (P.D.) is the second most progressive neurodegenerative disorder in the elderly. Degeneration of dopaminergic (DA) neurons and α-synuclein (α-Syn) accumulated toxicity is the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop the disease progression in P.D. patients. Screening novel and effective drugs in P.D. animal models is time- and cost-consuming. Rose Essential Oil (REO) extracted from Rosa Rugosa species (R. Setate × R. Rugosa). REO contains Citronellol, Geraniol, and Octadiene that possess anti-Aβ, anti-oxidative, and anti-depression-like properties, but no reports have defined the REO effect on P.D. yet. The present study examines the REO neuroprotective potential in transgenic Caenorhabditis elegans P.D. models. We observed that REO reduced α-Syn aggregations and diminished DA neuron degenerations induced by 6-OHDA, reduced food-sensing behavioural disabilities, and prolonged the lifespan of the nematode. Moreover, REO augmented the chymotrypsin-like proteasome and SOD-3 activities. Further, we observed the anti-oxidative role of REO by reducing internal cells ROS. Together, these findings supported REO as an anti-PD drug and may exert its effects by lowering oxidative stress via the anti-oxidative pathway.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ningbo Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yangtao Zhou
- Department of Neurology, Clinical Center for Parkinson's Disease, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hui Yang
- Institute of Biology Gansu Academy of Sciences, Lanzhou, China
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
42
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
43
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
44
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
45
|
Chen L, Hu T, Wu R, Wang H, Wu H, Wen P. In vivo antioxidant activity of Cinnamomum cassia leaf residues and their effect on gut microbiota of d-galactose-induced aging model mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:590-598. [PMID: 36054514 DOI: 10.1002/jsfa.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND To thoroughly explore the values of Cinnamomum cassia leaf residues (CcLR), their antioxidant activity in vivo and the relationship with gut microbiota were investigated using d-galactose-induced aging mice. RESULTS Results showed that CcLR extract treatment exerted antioxidant activity by increasing the levels of superoxide dismutase (P < 0.01) and glutathione peroxidase (P < 0.05), as well as inhibiting the formation of malondialdehyde (P < 0.01). Meanwhile, the inflammatory response was also alleviated as the ratio of pro-inflammatory tumor necrosis factor-α (P < 0.01) and interleukin-1β (P < 0.01))/anti-inflammatory cytokines (interleukin-10; P < 0.05) in serum was decreased and the contents of inflammatory markers (induced nitrogen monoxide synthase and nitric oxide) in brain and liver tissues (P < 0.01) were reduced. Moreover, through inhibiting acetylcholinesterase activity and improving choline acetyltransferase activity, the cholinergic system in aging mice recovered to levels comparable to the normal control group. In addition, 16S rRNA sequencing results demonstrated that CcLR extract promoted the growth of beneficial bacteria. In particular, Spearman correlation analysis revealed that the abundance of Colidextribacter was negatively correlated with serum superoxide dismutase (P < 0.05, R = -0.943), and Helicobacter displayed a positive correlation with the content of brain nitric oxide (P < 0.05, R = 0.899), suggesting that regulating gut microbiota might be one of the mechanisms for reducing oxidative stress, thus postponing the aging process. CONCLUSION It is suggested that CcLR extract could be used as a novel antioxidant and anti-aging resource in the pharmaceutical and food industries. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingqi Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Tenggen Hu
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruiqing Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
47
|
Martynov MY, Zhuravleva MV, Vasyukova NS, Kuznetsova EV, Kameneva TR. [Oxidative stress in the pathogenesis of stroke and its correction]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:16-27. [PMID: 36719115 DOI: 10.17116/jnevro202312301116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We reviewed the role of oxidative stress (OS) in the pathogenesis of ischemic (IS) and hemorrhagic stroke (HS). OS plays a major role in programmed cell death, increased permeability of the blood-brain barrier, astroglial and microglial activation, and local inflammatory response. We also reviewed the current state of neuro- and cytoprotection studies and their translation in clinical practice. With respect to experimental and clinical data the efficacy of long term administration of multimodal cytoprotective drug with antioxidant effect - ethylmethylhydroxypyridine succinate (Mexidol) is discussed during the acute and early recovery period after stroke.
Collapse
Affiliation(s)
- M Yu Martynov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - M V Zhuravleva
- Research Center for Examination of Medical Devices, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N S Vasyukova
- Skriabin and Kovalenko Institute of Experimental Veterinary Medicine, Moscow, Russia
| | - E V Kuznetsova
- Research Institute for Healthcare and Medical Management, Moscow, Russia
| | - T R Kameneva
- Konchalovsky City Clinical Hospital, Moscow, Russia
| |
Collapse
|
48
|
Homeostasis of carbohydrates and reactive oxygen species is critically changed in the brain of middle-aged mice: molecular mechanisms and functional reasons. BBA ADVANCES 2023; 3:100077. [PMID: 37082254 PMCID: PMC10074963 DOI: 10.1016/j.bbadva.2023.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
The brain is an organ that consumes a lot of energy. In the brain, energy is required for synaptic transmission, numerous biosynthetic processes and axonal transport in neurons, and for many supportive functions of glial cells. The main source of energy in the brain is glucose and to a lesser extent lactate and ketone bodies. ATP is formed at glucose catabolism via glycolysis and oxidative phosphorylation in mitochondrial electron transport chain (ETC) within mitochondria being the main source of ATP. With age, brain's energy metabolism is disturbed, involving a decrease in glycolysis and mitochondrial dysfunction. The latter is accompanied by intensified generation of reactive oxygen species (ROS) in ETC leading to oxidative stress. Recently, we have found that crucial changes in energy metabolism and intensity of oxidative stress in the mouse brain occur in middle age with minor progression in old age. In this review, we analyze the metabolic changes and functional causes that lead to these changes in the aging brain.
Collapse
|
49
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
50
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|