1
|
Li Y, Villafuerte-Vega R, Shenoy VM, Jackson HM, Wang Y, Parrish KE, Jenkins GJ, Sarvaiya H. A novel in vitro serum stability assay for antibody therapeutics incorporating internal standards. MAbs 2025; 17:2479529. [PMID: 40097239 PMCID: PMC11917174 DOI: 10.1080/19420862.2025.2479529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Antibody-based therapeutics have demonstrated remarkable therapeutic benefit, but their susceptibility to biotransformation and degradation in the body can affect their safety, efficacy, and pharmacokinetic/pharmacodynamic (PK/PD) profiles. In vitro stability assessments play a pivotal role in proactively identifying potential liabilities of antibody therapeutics prior to animal studies. Liquid chromatography-mass spectrometry (LC-MS)-based in vitro stability assays has been developed and adopted in the biopharmaceutical industry for the characterization of antibody-based therapeutics. However, these methodologies often overlook operational error and random variation during sample preparation and analysis, leading to inaccurate stability estimation. To address this limitation, we have developed an LC-MS-based in vitro serum stability assessment that incorporates two internal standards (ISs), National Institute of Standards and Technology monoclonal antibody (NISTmAb) and its crystallizable fragment (Fc), to improve assay performance. Our method involves three steps: incubation of antibody therapeutics along with an IS in biological matrices, affinity purification, and LC-MS analysis. The stability of 21 monoclonal or bispecific antibodies was assessed in serums of preclinical species using this method. Our results showed improved accuracy and precision of recovery calculations with the incorporation of ISs, enabling a more confident stability assessment even in the absence of biotransformation or aggregation. In vitro stability correlated with in vivo exposure, suggesting that this in vitro assay could serve as a routine screening tool to select and advance stable antibody therapeutic candidates for subsequent in vivo studies.
Collapse
Affiliation(s)
- Yihan Li
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, CA, USA
| | | | - Vikram M. Shenoy
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, CA, USA
| | - Heidi M. Jackson
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, MA, USA
| | - Yuting Wang
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, MA, USA
| | - Karen E. Parrish
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
| | - Gary J. Jenkins
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
| | - Hetal Sarvaiya
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, CA, USA
| |
Collapse
|
2
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Garg R, McCarthy S, Thompson AG, Zhang J, Mattson E, Clabbers A, Acquah A, Xu J, Zhou C, Ali A, Filoti D, Singh R. In vitro Stability Study of a Panel of Commercial Antibodies at Physiological pH and Temperature as a Guide to Screen Biologic Candidate Molecules for the Potential Risk of In vivo Asparagine Deamidation and Activity Loss. Pharm Res 2025; 42:353-363. [PMID: 39979532 PMCID: PMC11880144 DOI: 10.1007/s11095-025-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Biologic drug molecules such as antibodies are exposed to the physiological stress conditions of pH 7.4 and 37°C during their long circulation lifetime in vivo. The stress on biologic molecules in vivo is more severe compared to that under typical storage conditions of low pH formulation and cold temperature. Chemical degradation of critical residues such as asparagine may occur in vivo, leading to potential loss of biological activity. This study describes a physiologically relevant and convenient in vitro PBS stress condition of pH 7.4 and 40°C for pre-clinical stability screening of biologic molecules. METHODS As benchmarks, multiple commercial antibodies (alirocumab, evolocumab, golimumab, ramucirumab, and trastuzumab) were tested in parallel for formulation stability at storage and accelerated temperature conditions and for physiological stability at pH 7.4 and 40°C stress both for 3-4 weeks. The stressed antibodies were monitored for chemical modification and target binding, without requiring affinity purification. RESULTS The major CDR chemical modifications observed in PBS-stressed commercial antibodies were deamidations of asparagine residues. Although slight decreases in target binding were observed for two antibodies, the affinities overall remained strong after PBS stress. CONCLUSIONS This benchmarking study of commercial antibodies would be useful as a guide to screen discovery-stage biologic molecules both for drug product stability at formulation pH under storage and accelerated temperature conditions and for physiological stability under in vivo-mimicking pH and temperature stress condition.
Collapse
Affiliation(s)
- Richa Garg
- Biologics CMC Drug Product Development, Preformulation, AbbVie, Worcester, MA, 01605, USA
| | - Sean McCarthy
- Biologics CMC Analytical Research and Development, Developability, AbbVie, Worcester, MA, 01605, USA
| | - Alayna George Thompson
- Biologics CMC Analytical Research and Development, Developability, AbbVie, North Chicago, IL, 60064, USA
| | - Jiang Zhang
- Analytical Development, Product Development Science & Technology, AbbVie, Worcester, MA, 01605, USA
| | - Emily Mattson
- Biomolecular Interaction Group, Protein Sciences, Biotherapeutics and Genetic Medicine, AbbVie, Worcester, MA, 01605, USA
| | - Anca Clabbers
- Biomolecular Interaction Group, Protein Sciences, Biotherapeutics and Genetic Medicine, AbbVie, Worcester, MA, 01605, USA
| | - Aimalohi Acquah
- Biologics CMC Drug Product Development, Preformulation, AbbVie, Worcester, MA, 01605, USA
| | - Jianwen Xu
- Biologics CMC Drug Product Development, Preformulation, AbbVie, Worcester, MA, 01605, USA
- Kiniksa Pharmaceuticals, Lexington, MA, 02421, USA
| | - Chen Zhou
- Biologics CMC Drug Product Development, Preformulation, AbbVie, Worcester, MA, 01605, USA
| | - Amr Ali
- Analytical Development, Product Development Science & Technology, AbbVie, Worcester, MA, 01605, USA
| | - Dana Filoti
- Biologics CMC Analytical Research and Development, Developability, AbbVie, Worcester, MA, 01605, USA
| | - Rajeeva Singh
- Biologics CMC Drug Product Development, Preformulation, AbbVie, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Fazekas B, Hamon S, De Marco Verissimo C, Cwiklinski K, López Corrales J, Gaughan S, Ryan S, Taggart CC, Weldon S, Griffin MD, Dalton JP, Lalor R. PROTECTION OF MICE AGAINST CECAL LIGATION AND PUNCTURE-INDUCED POLYMICROBIAL SEPSIS BY A FASCIOLA HEPATICA HELMINTH DEFENSE MOLECULE. Shock 2025; 63:132-140. [PMID: 39455069 DOI: 10.1097/shk.0000000000002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
ABSTRACT Sepsis results from a dysregulated host immune response to infection and is responsible for ~11 million deaths each year. In the laboratory, many aspects of sepsis can be replicated using a cecal ligation and puncture model, which is considered the most clinically relevant rodent model of sepsis. In the present study, histological and biomarker multiplex analyses revealed that the cecal ligation and puncture model initiated a large-scale inflammatory response in mice by 24 h, with evidence of acute organ damage by 48-72 h. While many typical proinflammatory cytokine/chemokines were systemically elevated, a specific array including IL-10, eotaxin, MIP-1α, MIP-1β, MCP-1, and RANTES noticeably increased just prior to animals reaching the humane endpoint. Treatment of mice with 10 μg of a synthetic 68-amino acid peptide derived from an immunomodulatory molecule secreted by a parasitic worm of humans and livestock, F. hepatica , termed F. hepatica helminth defense molecule, potently suppressed the systemic inflammatory profile, protected mice against acute kidney injury, and improved survival between 48 and 72 h after procedure. These results suggest that the anti-inflammatory parasite-derived F. hepatica helminth defense molecule peptide has potential as a biotherapeutic treatment for sepsis.
Collapse
Affiliation(s)
- Barbara Fazekas
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Siobhán Gaughan
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
6
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Nick C. Streamlining biosimilar development based on 20 years' experience. Expert Opin Biol Ther 2024; 24:571-581. [PMID: 38315062 DOI: 10.1080/14712598.2024.2314612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Biosimilar clinical programs could be streamlined by prudent application of improved methodologies and knowledge accumulated over the past 20 years. This review focuses on whether complex comparative efficacy trials are routinely needed and how to achieve a more tailored approach to biosimilar development. AREAS COVERED Key learnings over the past 20 years are summarized. It is noted that a one size fits all approach to biosimilar development is not appropriate: biological medicines fall within a wide spectrum of complexity, with blurring at the interface between biological products and small molecules. The interrelationship between quality, potency, pharmacokinetics, pharmacology, immunogenicity, efficacy, and safety are reviewed. Current regulatory thinking is reviewed with a look into what future challenges lie ahead. EXPERT OPINION To tailor regulatory requirements for marketing approval of biosimilars, it is proposed that a biosimilarity report be introduced. This report would integrate quality, pharmacology, immunogenicity, efficacy and safety findings and address how the clinical program could be tailored based on the totality of evidence.
Collapse
Affiliation(s)
- Cecil Nick
- Parexel International, Uxbridge, Middlesex, England
| |
Collapse
|
8
|
Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Stability and biological activity enhancement of fucoxanthin through encapsulation in alginate/chitosan nanoparticles. Int J Biol Macromol 2024; 263:130264. [PMID: 38368987 DOI: 10.1016/j.ijbiomac.2024.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
A response surface methodology based on the Box-Behnken design was employed to develop fucoxanthin (FX) delivery nanocarrier from alginate (ALG) and chitosan (CS). The FX-loaded ALG/CS nanoparticles (FX-ALG/CS-NPs) were fabricated using oil-in-water emulsification and ionic gelation. The optimal formulation consisted of an ALG:CS mass ratio of 0.015:1, 0.71 % w/v Tween™ 80, and 5 mg/mL FX concentrations. The resulting FX-ALG/CS-NPs had a size of 227 ± 23 nm, a zeta potential of 35.3 ± 1.7 mV, and an encapsulation efficiency of 81.2 ± 2.8 %. These nanoparticles exhibited enhanced stability under simulated environmental conditions and controlled FX release in simulated gastrointestinal fluids. Furthermore, FX-ALG/CS-NPs showed increased in vitro oral bioaccessibility, gastrointestinal stability, antioxidant activity, anti-inflammatory effect, and cytotoxicity against various cancer cells. The findings suggest that ALG/CS-NPs are effective nanocarriers for the delivery of FX in nutraceuticals, functional foods, and pharmaceuticals.
Collapse
Affiliation(s)
- Feuangthit Niyamissara Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Sreenivasan S, Patil SS, Rathore AS. Does Aggregation of Therapeutic IgGs in PBS Offer a True Picture of What Happens in Models Derived from Human Body Fluids? J Pharm Sci 2024; 113:596-603. [PMID: 37717637 DOI: 10.1016/j.xphs.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Therapeutic proteins such as monoclonal antibodies (mAb) are known to form aggregates due to various factors. Phosphate buffered saline (PBS), human serum, and human serum filtrate (HSF) are some of the models used to analyze mAb stability in physiologically relevant in-vitro conditions. In this study, aggregation of mAb in PBS and models derived from body fluids seeded with mAb samples subjected to various stresses were compared. Samples containing mAb subjected to pH, temperature, UV light, stirring, and interfacial agitation stress were seeded into different models for 2 case studies. In the first case study, %HMW (high molecular weight species) of mAb in PBS and HSF were compared using size exclusion chromatography. It was found that change in %HMW was higher in PBS compared to HSF. For example, PBS containing mAb that was subjected to UV light stress showed change in HMW by >10 % over 72 h, but the change was <5 % in HSF. In second case study, aggregates particles of FITC tagged mAb were monitored in PBS and serum using fluorescence microscope image processing. It was found that PBS and serum containing mAb subjected to stirring and interfacial agitation resulted in aggregates of >2 µm size, and average size and percentage number of particles having >10 µm size was higher in serum compared to PBS at all analysis time point. Overall, it was found that aggregation of mAb in PBS was different from that in human body fluids. Second case study also showed the importance of advanced strategies for further characterization of mAb in serum.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Sanjeet S Patil
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India.
| |
Collapse
|
10
|
Dimmitt N, Lin CC. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions. Macromolecules 2024; 57:1556-1568. [PMID: 38435678 PMCID: PMC10903513 DOI: 10.1021/acs.macromol.3c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reactions are highly efficient click chemistry increasingly utilized in bioconjugation, live cell labeling, and the synthesis and modification of biomaterials. iEDDA click reactions have also been used to cross-link tetrazine (Tz) and norbornene (NB) modified macromers [e.g., multiarm poly(ethylene glycol) or PEG]. In these hydrogels, Tz-NB adducts exhibit stable supramolecular interactions with a high hydrolytic stability. Toward engineering a new class of PEG-based click hydrogels with highly adaptable properties, we previously reported a new group of NB-derivatized PEG macromers via reacting hydroxyl-terminated PEG with carbic anhydride (CA). In this work, we show that hydrogels cross-linked by PEGNBCA or its derivatives exhibited fast and tunable hydrolytic degradation. Here, we show that PEGNBCA (either mono- or octafunctional) and its dopamine or tyramine conjugated derivatives (i.e., PEGNB-D and PEGNB-T) readily cross-link with 4-arm PEG-Tz to form a novel class of multifunctional iEDDA click hydrogels. Through modularly adjusting the macromers with unstable and stable iEDDA click-induced supramolecular interactions (iEDDA-CSI), we achieved highly tunable degradation, with full degradation in less than 2 weeks to over two months. We also show that secondary enzymatic reactions could dynamically stiffen these hydrogels. These hydrogels could also be spatiotemporally photopatterned through visible light-initiated photochemistry. Finally, the iEDDA-CSI hydrogels post ester hydrolysis displayed shear-thinning and self-healing properties, enabling injectable delivery.
Collapse
Affiliation(s)
- Nathan
H. Dimmitt
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering,
Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
11
|
Rahban M, Ahmad F, Piatyszek MA, Haertlé T, Saso L, Saboury AA. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Adv 2023; 13:35947-35963. [PMID: 38090079 PMCID: PMC10711991 DOI: 10.1039/d3ra06476j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 04/26/2024] Open
Abstract
Protein-based therapeutics have revolutionized the pharmaceutical industry and become vital components in the development of future therapeutics. They offer several advantages over traditional small molecule drugs, including high affinity, potency and specificity, while demonstrating low toxicity and minimal adverse effects. However, the development and manufacturing processes of protein-based therapeutics presents challenges related to protein folding, purification, stability and immunogenicity that should be addressed. These proteins, like other biological molecules, are prone to chemical and physical instabilities. The stability of protein-based drugs throughout the entire manufacturing, storage and delivery process is essential. The occurrence of structural instability resulting from misfolding, unfolding, and modifications, as well as aggregation, poses a significant risk to the efficacy of these drugs, overshadowing their promising attributes. Gaining insight into structural alterations caused by aggregation and their impact on immunogenicity is vital for the advancement and refinement of protein therapeutics. Hence, in this review, we have discussed some features of protein aggregation during production, formulation and storage as well as stabilization strategies in protein engineering and computational methods to prevent aggregation.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard New Delhi-110062 India
| | | | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University Rome Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran Tehran 1417614335 Iran +9821 66404680 +9821 66956984
| |
Collapse
|
12
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Shi RL, Dillon MA, Compton PD, Sawyer WS, Thorup JR, Kwong M, Chan P, Chiu CPC, Li R, Yadav R, Lee GY, Gober JG, Li Z, ElSohly AM, Ovacik AM, Koerber JT, Spiess C, Josephs JL, Tran JC. High-Throughput Analyses of Therapeutic Antibodies Using High-Field Asymmetric Waveform Ion Mobility Spectrometry Combined with SampleStream and Intact Protein Mass Spectrometry. Anal Chem 2023; 95:17263-17272. [PMID: 37956201 DOI: 10.1021/acs.analchem.3c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody. Generic affinity capture ensures the retention of both intact species 1Fab-IgG1 and the tentative degradation product IgG1. Subsequently, the analytes were directly loaded into SampleStream, where each injection occurs within ∼30 s. By separating ions prior to MS detection, FAIMS further offered improvement in signal-overnoise by ∼30% for denatured protein MS via employing compensation voltages that were optimized for different antibody species. When enhanced FAIMS transmission of 1Fab-IgG1 was employed, a qualified assay was established for spiked-in serum samples between 0.1 and 25 μg/mL, resulting in ∼10% accuracy bias and precision coefficient of variation. Selective FAIMS transmission of IgG1 as the degradation surrogate product enabled more sensitive detection of clipped species for intact 1Fab-IgG1 at 5 μg/mL in serum, generating an assay to measure 1Fab-IgG1 truncation between 2.5 and 50% with accuracy and precision below 20% bias and coefficient of variation. Our results revealed that the SampleStream-FAIMS-MS platform affords high throughput, selectivity, and sensitivity for characterizing therapeutic antibodies from complex biomatrices qualitatively and quantitatively.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Michael A Dillon
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Philip D Compton
- Integrated Protein Technologies, Evanston, Illinois 60201, United States
| | - William S Sawyer
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - John R Thorup
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Mandy Kwong
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Cecilia P C Chiu
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Ran Li
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California 94080, United States
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California 94080, United States
| | - Genee Y Lee
- Department of Molecular Oncology, Genentech Inc., South San Francisco, California 94080, United States
| | - Joshua G Gober
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Zhiyu Li
- The DMPK Service Department, WuXi AppTec Inc., Shanghai 200131, China
| | - Adel M ElSohly
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Ayse Meric Ovacik
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California 94080, United States
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jonathan L Josephs
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - John C Tran
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
14
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
15
|
Schneck NA, Mehl JT, Kellie JF. Protein LC-MS Tools for the Next Generation of Biotherapeutic Analyses from Preclinical and Clinical Serum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1837-1846. [PMID: 37478497 DOI: 10.1021/jasms.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
LC-MS analysis of therapeutic antibodies and other biotherapeutics from in-life studies (e.g., serum/plasma) has evolved from simple peptide digestion to peptide mapping and intact mass monitoring. From more advanced analytical approaches, a deeper understanding as to the fate of the biotherapeutic in vivo is gained. Here, we examine the next generation of approaches to facilitate the most comprehensive understanding of large molecule drug fate in circulation. Three case studies are presented: (1) use of relative and absolute calibration curves for biotherapeutic quantitation from the same sample set; (2) top-down mass spectrometry applied to bioanalytical assays; (3) biotherapeutic protein complexes from serum analyzed by native protein MS. We anticipate that these approaches will be further adapted and applied by other research groups.
Collapse
Affiliation(s)
- Nicole A Schneck
- Analytical Development, GSK, 1250 S. Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| | - John T Mehl
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| | - John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
16
|
Sreenivasan S, Rathore AS. Combined Presence of Ferrous Ions and Hydrogen Peroxide in Normal Saline and In Vitro Models Induces Enhanced Aggregation of Therapeutic IgG due to Hydroxyl Radicals. Mol Pharm 2023. [PMID: 37189260 DOI: 10.1021/acs.molpharmaceut.3c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) are known to form aggregates and fragments upon exposure to hydrogen peroxide (H2O2) and ferrous ions (Fe2+). H2O2 and Fe2+ react to form hydroxyl radicals that are detrimental to protein structures. In this study, aggregation of mAb in the combined presence of Fe2+ and H2O2 was investigated in saline and physiologically relevant in vitro models. In the first case study, forced degradation of mAb in saline (a fluid used for administration of mAb) was carried out at 55 °C in the combined presence of 0.2 mM Fe2+ and 0.1% H2O2. The control and stressed samples were analyzed using an array of techniques including visual observation, size-exclusion chromatography (SEC), dynamic light scattering (DLS), microscopy, UV-vis, fluorescence, Fourier transform infrared spectroscopy, and cell-based toxicity assays. At the end of 1 h, samples having the combined presence of both Fe2+ and H2O2 exhibited more than 20% HMW (high molecular weight species), whereas samples having only Fe2+, H2O2, or neither resulted in less than 3% HMW. Aggregate-rich samples also exhibited altered protein structures and hydrophobicity. Aggregation increased upon increasing the time, temperature, and concentration of Fe2+ and H2O2. Samples having both Fe2+ and H2O2 also showed higher cytotoxicity in red blood cells. Samples of mAb with chlorides of copper and cobalt with H2O2 also resulted in multifold degradation. The first case study showed enhanced aggregation of mAb in the combined presence of Fe2+ and H2O2 in saline. In the second case study, aggregation of mAb was investigated in artificially prepared extracellular saline and in vitro models such as macromolecule free fraction of serum and serum. In the presence of both Fe2+ and H2O2, %HMW was higher in extracellular saline compared to macromolecule free fraction of serum. Further, in vitro models having the combined presence of Fe2+ and H2O2 resulted in enhanced aggregation of mAb compared to models that had neither.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
17
|
Fillion AJ, Bricco AR, Lee HD, Korenchan D, Farrar CT, Gilad AA. Development of a Synthetic Biosensor for Chemical Exchange MRI Utilizing In Silico Optimized Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531737. [PMID: 37016672 PMCID: PMC10071792 DOI: 10.1101/2023.03.08.531737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in-silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide 2.0, was designed to be 198 amino acids. SuperCESTide 2.0 was expressed in E. coli and purified with size-exclusion chromatography. The magnetic transfer ratio asymmetry (MTR asym ) generated by superCESTide 2.0 was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine, SP), Poly-L-Lysine (PLL), and human protamine (hPRM1). This data shows that novel peptides with sequences optimized in silico for CEST contrast that utilizes a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Collapse
Affiliation(s)
- Adam J. Fillion
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - David Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Hughes P, Rivers HM, Bantseev V, Yen CW, Mahler HC, Gupta S. Intraocular delivery considerations of ocular biologic products and key preclinical determinations. Expert Opin Drug Deliv 2023; 20:223-240. [PMID: 36632784 DOI: 10.1080/17425247.2023.2166927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Ophthalmic diseases of the retina are a significant cause of vision loss globally. Despite much progress, there remains an unmet need for durable, long-acting treatment options. While biologic therapies show great promise, they present many challenges, including complexities in biochemical properties, mechanism of action, manufacturing considerations, preclinical evaluation, and delivery mechanism; these are confounded by the unique anatomy and physiology of the eye itself. AREAS COVERED This review describes the current development status of intravitreally administered drugs for the treatment of ophthalmic disease, outlines the range of approaches that can be considered for sustained drug delivery to the eye, and discusses key preclinical considerations for the evaluation of ocular biologics. EXPERT OPINION The required frequency of dosing in the eye results in a great burden on both patients and the health care system, with direct intraocular administration remaining the most reliable and predictable route. Sustained and controlled ophthalmic drug delivery systems will go a long way in reducing this burden. Sustained delivery can directly dose target tissues, improving bioavailability and reducing off-target systemic effects. Maintaining stability and activity of compounds can prevent aggregation and enable extended duration of release, while sustaining dosage and preventing residual polymer after drug depletion.
Collapse
Affiliation(s)
- Patrick Hughes
- Pharmaceutical Development, Visus Therapeutics, Irvine, CA, USA
| | - Hongwen M Rivers
- Biomaterials and Drug Delivery, Medical Aesthetics, AbbVie Inc, North Chicago, IL, USA
| | - Vladimir Bantseev
- Department of Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Chun-Wan Yen
- Department of Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | | | - Swati Gupta
- Non-clinical Development Immunology, AbbVie Inc, North Chicago, IL, USA
| |
Collapse
|
19
|
Kearns JD, Wassmann P, Olgac U, Fichter M, Christen B, Rubic-Schneider T, Koepke S, Cochin de Billy B, Ledieu D, Andre C, Hawtin S, Fischer B, Moretti F, Hug C, Bepperling A, Brannetti B, Mendez-Garcia C, Littlewood-Evans A, Clemens A, Grosskreutz CL, Mehan P, Schmouder RL, Sasseville V, Brees D, Karle AC. A root cause analysis to identify the mechanistic drivers of immunogenicity against the anti-VEGF biotherapeutic brolucizumab. Sci Transl Med 2023; 15:eabq5068. [PMID: 36724241 DOI: 10.1126/scitranslmed.abq5068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunogenicity against intravitreally administered brolucizumab has been previously described and associated with cases of severe intraocular inflammation, including retinal vasculitis/retinal vascular occlusion (RV/RO). The presence of antidrug antibodies (ADAs) in these patients led to the initial hypothesis that immune complexes could be key mediators. Although the formation of ADAs and immune complexes may be a prerequisite, other factors likely contribute to some patients having RV/RO, whereas the vast majority do not. To identify and characterize the mechanistic drivers underlying the immunogenicity of brolucizumab and the consequence of subsequent ADA-induced immune complex formation, a translational approach was performed to bridge physicochemical characterization, structural modeling, sequence analysis, immunological assays, and a quantitative systems pharmacology model that mimics physiological conditions within the eye. This approach revealed that multiple factors contributed to the increased immunogenic potential of brolucizumab, including a linear epitope shared with bacteria, non-natural surfaces due to the single-chain variable fragment format, and non-native drug species that may form over prolonged time in the eye. Consideration of intraocular drug pharmacology and disease state in a quantitative systems pharmacology model suggested that immune complexes could form at immunologically relevant concentrations modulated by dose intensity. Assays using circulating immune cells from treated patients or treatment-naïve healthy volunteers revealed the capacity of immune complexes to trigger cellular responses such as enhanced antigen presentation, platelet aggregation, endothelial cell activation, and cytokine release. Together, these studies informed a mechanistic understanding of the clinically observed immunogenicity of brolucizumab and associated cases of RV/RO.
Collapse
Affiliation(s)
- Jeffrey D Kearns
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Paul Wassmann
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Ufuk Olgac
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Marie Fichter
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Brigitte Christen
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | | | - Stephan Koepke
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | | | - David Ledieu
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Cedric Andre
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Stuart Hawtin
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Christian Hug
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | | | - Barbara Brannetti
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | | | | | - Andreas Clemens
- Medical Affairs Region Europe, Novartis Pharma AG, Basel CH-4056, Switzerland
| | | | - Pawan Mehan
- TRD Biologics and CGT, Novartis Pharma AG, Basel CH-4056, Switzerland
| | - Robert L Schmouder
- Novartis Institutes for BioMedical Research, East Hanover, NJ 07960, USA
| | - Vito Sasseville
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Anette C Karle
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| |
Collapse
|
20
|
Schuster J, Kamuju V, Mathaes R. Protein Stability After Administration: A Physiologic Consideration. J Pharm Sci 2023; 112:370-376. [PMID: 36202247 DOI: 10.1016/j.xphs.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Regulatory authorities and the scientific community have identified the need to monitor the in vivo stability of therapeutic proteins (TPs). Due to the unique physiologic conditions in patients, the stability of TPs after administration can deviate largely from their stability under drug product (DP) conditions. TPs can degrade at substantial rates once immersed in the in vivo milieu. Changes in protein stability upon administration to patients are critical as they can have implications on patient safety and clinical effectiveness of DPs. Physiologic conditions are challenging to simulate and require dedicated in vitro models for specific routes of administration. Advancements of in vitro models enable to simulate the exposure to physiologic conditions prior to resource demanding pre-clinical and clinical studies. This enables to evaluate the in vivo stability and thus may allow to improve the safety/efficacy profile of DPs. While in vitro-in vivo correlations are challenging, benchmarking DP candidates enables to identify liabilities and optimize molecules. The in vivo stability should be an integral part of holistic stability assessments during early development. Such assessments can accelerate development timelines and lead to more stable DPs for patients.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| |
Collapse
|
21
|
Thorsteinson N, Comeau SR, Kumar S. Structure-Based Optimization of Antibody-Based Biotherapeutics for Improved Developability: A Practical Guide for Molecular Modelers. Methods Mol Biol 2023; 2552:219-235. [PMID: 36346594 DOI: 10.1007/978-1-0716-2609-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A great effort to avoid known developability risks is now more often being made earlier during the lead candidate discovery and optimization phase of biotherapeutic drug development. Predictive computational strategies, used in the early stages of antibody discovery and development, to mitigate the risk of late-stage failure of antibody candidates, are highly valuable. Various structure-based methods exist for accurately predicting properties critical to developability, and, in this chapter, we discuss the history of their development and demonstrate how they can be used to filter large sets of candidates arising from target affinity screening and to optimize lead candidates for developability. Methods for modeling antibody structures from sequence and detecting post-translational modifications and chemical degradation liabilities are also discussed.
Collapse
Affiliation(s)
- Nels Thorsteinson
- Scientific Services Manager, Biologics, Chemical Computing Group ULC, Montreal, QC, Canada
| | - Stephen R Comeau
- Computational Biochemistry and Bioinformatics Group, Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Sandeep Kumar
- Computational Biochemistry and Bioinformatics Group, Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA.
| |
Collapse
|
22
|
Zarzar J, Khan T, Bhagawati M, Weiche B, Sydow-Andersen J, Alavattam S. High concentration formulation developability approaches and considerations. MAbs 2023; 15:2211185. [PMID: 37191233 DOI: 10.1080/19420862.2023.2211185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The growing need for biologics to be administered subcutaneously and ocularly, coupled with certain indications requiring high doses, has resulted in an increase in drug substance (DS) and drug product (DP) protein concentrations. With this increase, more emphasis must be placed on identifying critical physico-chemical liabilities during drug development, including protein aggregation, precipitation, opalescence, particle formation, and high viscosity. Depending on the molecule, liabilities, and administration route, different formulation strategies can be used to overcome these challenges. However, due to the high material requirements, identifying optimal conditions can be slow, costly, and often prevent therapeutics from moving rapidly into the clinic/market. In order to accelerate and derisk development, new experimental and in-silico methods have emerged that can predict high concentration liabilities. Here, we review the challenges in developing high concentration formulations, the advances that have been made in establishing low mass and high-throughput predictive analytics, and advances in in-silico tools and algorithms aimed at identifying risks and understanding high concentration protein behavior.
Collapse
Affiliation(s)
- Jonathan Zarzar
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Tarik Khan
- Pharma Technical Development Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Maniraj Bhagawati
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Benjamin Weiche
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Jasmin Sydow-Andersen
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | | |
Collapse
|
23
|
Impact of N-Linked Glycosylation on Therapeutic Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248859. [PMID: 36557993 PMCID: PMC9781892 DOI: 10.3390/molecules27248859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Therapeutic proteins have unique advantages over small-molecule drugs in the treatment of various diseases, such as higher target specificity, stronger pharmacological efficacy and relatively low side effects. These advantages make them increasingly valued in drug development and clinical practice. However, although highly valued, the intrinsic limitations in their physical, chemical and pharmacological properties often restrict their wider applications. As one of the most important post-translational modifications, glycosylation has been shown to exert positive effects on many properties of proteins, including molecular stability, and pharmacodynamic and pharmacokinetic characteristics. Glycoengineering, which involves changing the glycosylation patterns of proteins, is therefore expected to be an effective means of overcoming the problems of therapeutic proteins. In this review, we summarize recent efforts and advances in the glycoengineering of erythropoietin and IgG monoclonal antibodies, with the goals of illustrating the importance of this strategy in improving the performance of therapeutic proteins and providing a brief overview of how glycoengineering is applied to protein-based drugs.
Collapse
|
24
|
Kusmierz CD, Callmann CE, Kudruk S, Distler ME, Mirkin CA. Transferrin Aptamers Increase the In Vivo Blood-Brain Barrier Targeting of Protein Spherical Nucleic Acids. Bioconjug Chem 2022; 33:1803-1810. [PMID: 36194889 PMCID: PMC10424462 DOI: 10.1021/acs.bioconjchem.2c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The systemic delivery of exogenous proteins to cells within the brain and central nervous system (CNS) is challenging due to the selective impermeability of the blood-brain barrier (BBB). Herein, we hypothesized that protein delivery to the brain could be improved via functionalization with DNA aptamers designed to bind transferrin (TfR) receptors present on the endothelial cells that line the BBB. Using β-galactosidase (β-Gal) as a model protein, we synthesized protein spherical nucleic acids (ProSNAs) comprised of β-Gal decorated with TfR aptamers (Transferrin-ProSNAs). The TfR aptamer motif significantly increases the accumulation of β-Gal in brain tissue in vivo following intravenous injection over both the native protein and ProSNAs containing nontargeting DNA sequences. Furthermore, the widespread distribution of β-Gal throughout the brain is only observed for Transferrin-ProSNAs. Together, this work shows that the SNA architecture can be used to selectively deliver protein cargo to the brain and CNS if the appropriate aptamer sequence is employed as the DNA shell. Moreover, this highlights the importance of DNA sequence design and provides a potential new avenue for designing highly targeted protein delivery systems by combining the power of DNA aptamers together with the SNA platform.
Collapse
Affiliation(s)
- Caroline D. Kusmierz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sergej Kudruk
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Max E. Distler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Yu M, Wang D, Zhong D, Xie W, Luo J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37330-37344. [PMID: 35951354 DOI: 10.1021/acsami.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetes complication mainly caused by lipid toxicity characterized by oxidative stress. Studies have shown that adropin (Ad) regulates energy metabolism and may be an effective target to improve DKD. This study investigated the effect of exogenous Ad encapsulated in reactive oxygen species (ROS)-responsive nanocapsules (Ad@Gel) on DKD. HK2 cells were induced with high glucose (HG) and intervened with Ad@Gel. A diabetes mouse model was established using HG and high-fat diet combined with streptozotocin and treated with Ad@Gel to observe its effects on renal function, pathological damage, lipid metabolism, and oxidative stress. Results showed that Ad@Gel could protect HK2 from HG stimulation in vitro. It also effectively controls blood glucose and lipid levels, improves renal function, inhibits excessive production of ROS, protects mitochondria from damage, improves lipid deposition in renal tissues, and downregulates the expression of lipogenic proteins SEBP-1 and ADRP in DKD mice. In HG-induced HK2 cells or the kidney of DKD patients, the low expression of neuronatin (Nnat) and high expression of translocator protein (TSPO) were observed. Knockdown Nnat or overexpression of TSPO significantly reversed the effect of Ad@Gel on improving mitochondrial damage. In addition, knockdown Nnat also significantly reversed the effect of Ad@Gel on lipid metabolism. The results suggest that the effect of Ad on DKD may be achieved by activating Nnat to improve lipid metabolism and inhibit TSPO activity, thereby enhancing mitochondrial function.
Collapse
Affiliation(s)
- Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Di Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Da Zhong
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Weichang Xie
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
26
|
Mass spectrometry-based multi-attribute method for mutation analysis in the early development of therapeutic proteins. J Pharm Biomed Anal 2022; 220:115018. [PMID: 36030755 DOI: 10.1016/j.jpba.2022.115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
The early intervention is essential, and later development cannot compensate for this initial generation of an antibody drug. Especially for sequence variants (SVs), should cause concern during the early bioprocess development. The advancement of bioprocess development is paralleled by development of state-of-the-art analytical methods that will provide further information. In the present study, a mass spectrometry (MS)-based multi-attribute method (MAM) was used to simultaneously monitor the SVs and other quality attributes in the early bioprocess development of ofatumumab, and a sequence variant (SV) was detected by a subunit-based MAM. Subsequently, the variant was further identified by MS/MS and confirmed by adding a synthetic peptide. Furthermore, the content of the SV was detected via DNA sequencing. The levels of the variant (T175A mutant) in the light chain were demonstrate to be nearly consistent at the DNA and protein levels, suggesting that the mutation may have negligible effect on both the transcriptional and translational levels. Collectively, these results indicate that broad-spectrum, rapid, and accurate platform such as MS-based MAM should be implemented to quality control for the early development of therapeutic proteins, it will also be important to establish an effective and integrated MAM to control SVs during therapeutic proteins development.
Collapse
|
27
|
Moncalvo F, Lacroce E, Franzoni G, Altomare A, Fasoli E, Aldini G, Sacchetti A, Cellesi F. Selective Protein Conjugation of Poly(glycerol monomethacrylate) and Poly(polyethylene glycol methacrylate) with Tunable Topology via Reductive Amination with Multifunctional ATRP Initiators for Activity Preservation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Moncalvo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giulia Franzoni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
28
|
Pre-Clinical In-Vitro Studies on Parameters Governing Immune Complex Formation. Pharmaceutics 2022; 14:pharmaceutics14061254. [PMID: 35745826 PMCID: PMC9227392 DOI: 10.3390/pharmaceutics14061254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile—from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.
Collapse
|
29
|
Ferreira ML, Vieira NSM, Oliveira ALS, Araújo JMM, Pereiro AB. Disclosing the Potential of Fluorinated Ionic Liquids as Interferon-Alpha 2b Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1851. [PMID: 35683707 PMCID: PMC9181987 DOI: 10.3390/nano12111851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Interferon-alpha 2b (IFN-α 2b) is a therapeutic protein used for the treatment of cancer, viral infections, and auto-immune diseases. Its application is hindered by a low bioavailability and instability in the bloodstream, and the search for new strategies for a target delivery and stabilization of IFN-α 2b to improve its therapeutic efficacy is crucial. Fluorinated ionic liquids (FILs) are promising biomaterials that: (i) can form self-assembled structures; (ii) have complete miscibility in water; and (iii) can be designed to have reduced toxicity. The influence of IFN-α 2b in the aggregation behaviour of FILs and the interactions between them were investigated through conductivity and surface tension measurements, and using electron microscopic and spectroscopy techniques to study FILs feasibility as an interferon-alpha 2b delivery system. The results show that the presence of IFN-α 2b influences the aggregation behaviour of FILs and that strong interaction between the two compounds occurs. The protein might not be fully encapsulated by FILs. However, the FIL can be tailored in the future to carry IFN-α 2b by the formation of a conjugate, which prevents the aggregation of this protein. This work constitutes a first step toward the design and development of FIL-based IFN-α 2b delivery systems.
Collapse
Affiliation(s)
| | | | | | - João M. M. Araújo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.L.F.); (N.S.M.V.); (A.L.S.O.)
| | - Ana B. Pereiro
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.L.F.); (N.S.M.V.); (A.L.S.O.)
| |
Collapse
|
30
|
Muntimadugu E, Silva-Abreu M, Vives G, Loeck M, Pham V, del Moral M, Solomon M, Muro S. Comparison between Nanoparticle Encapsulation and Surface Loading for Lysosomal Enzyme Replacement Therapy. Int J Mol Sci 2022; 23:ijms23074034. [PMID: 35409394 PMCID: PMC8999373 DOI: 10.3390/ijms23074034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) enhance the delivery of therapeutic enzymes for replacement therapy of lysosomal storage disorders. Previous studies examined NPs encapsulating or coated with enzymes, but these formulations have never been compared. We examined this using hyaluronidase (HAse), deficient in mucopolysaccharidosis IX, and acid sphingomyelinase (ASM), deficient in types A−B Niemann−Pick disease. Initial screening of size, PDI, ζ potential, and loading resulted in the selection of the Lactel II co-polymer vs. Lactel I or Resomer, and Pluronic F68 surfactant vs. PVA or DMAB. Enzyme input and addition of carrier protein were evaluated, rendering NPs having, e.g., 181 nm diameter, 0.15 PDI, −36 mV ζ potential, and 538 HAse molecules encapsulated per NP. Similar NPs were coated with enzyme, which reduced loading (e.g., 292 HAse molecules/NP). NPs were coated with targeting antibodies (> 122 molecules/NP), lyophilized for storage without alterations, and acceptably stable at physiological conditions. NPs were internalized, trafficked to lysosomes, released active enzyme at lysosomal conditions, and targeted both peripheral organs and the brain after i.v. administration in mice. While both formulations enhanced enzyme delivery compared to free enzyme, encapsulating NPs surpassed coated counterparts (18.4- vs. 4.3-fold enhancement in cells and 6.2- vs. 3-fold enhancement in brains), providing guidance for future applications.
Collapse
Affiliation(s)
- Eameema Muntimadugu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
| | - Marcelle Silva-Abreu
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Guillem Vives
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Vy Pham
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Maria del Moral
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (E.M.); (V.P.); (M.S.)
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; (M.S.-A.); (G.V.); (M.L.); (M.d.M.)
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
31
|
Carbajo D, Pérez Y, Guerra-Rebollo M, Prats E, Bujons J, Alfonso I. Dynamic Combinatorial Optimization of In Vitro and In Vivo Heparin Antidotes. J Med Chem 2022; 65:4865-4877. [PMID: 35235323 PMCID: PMC8958503 DOI: 10.1021/acs.jmedchem.1c02054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heparin-like macromolecules
are widely used in clinics as anticoagulant,
antiviral, and anticancer drugs. However, the search of heparin antidotes
based on small synthetic molecules to control blood coagulation still
remains a challenging task due to the physicochemical properties of
this anionic polysaccharide. Here, we use a dynamic combinatorial
chemistry approach to optimize heparin binders with submicromolar
affinity. The recognition of heparin by the most amplified members
of the dynamic library has been studied with different experimental
(SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed
interaction model. The enzymatic assays with selected library members
confirm the correlation between the dynamic covalent screening and
the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays
with mice show that the optimized molecules are potent antidotes with
potential use as heparin reversal drugs. Overall, these results underscore
the power of dynamic combinatorial chemistry targeting complex and
elusive biopolymers.
Collapse
Affiliation(s)
| | | | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
32
|
ElGamacy M. Accelerating therapeutic protein design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:85-118. [PMID: 35534117 DOI: 10.1016/bs.apcsb.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein structures provide for defined microenvironments that can support complex pharmacological functions, otherwise unachievable by small molecules. The advent of therapeutic proteins has thus greatly broadened the range of manageable disorders. Leveraging the knowledge and recent advances in de novo protein design methods has the prospect of revolutionizing how protein drugs are discovered and developed. This review lays out the main challenges facing therapeutic proteins discovery and development, and how present and future advancements of protein design can accelerate the protein drug pipelines.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- University Hospital Tübingen, Division of Translational Oncology, Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
33
|
Schuster J, Kamuju V, Mathaes R. Fate of Antibody and Polysorbate Particles in a Human Serum Model. Eur J Pharm Biopharm 2021; 171:72-79. [PMID: 34920132 DOI: 10.1016/j.ejpb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (mAbs) and excipients can degrade owing to different stress factors they encounter during their life cycle or after administration in human body. This can result in the formation of aggregates and particulates. As particles can evoke an immune response in patients, it becomes increasingly important to monitor their fate after administration. In this study, we used a protein-free serum model to assess the fate of mAb and polysorbate (PS) particles under physiologic conditions. Commonly encountered stress conditions such as pH, temperature, extrusion, and shaking were chosen to generate mAb particles. Alkaline hydrolysis was used to generate PS particles. The fate of aggregates and particles was evaluated in serum and histidine buffer. We observed that depending on the nature of stress and the environment particles are subjected to, the fate of particles can differ substantially. The mAb aggregates generated by pH stress, showed reduction in HMWS from 26% to 6% over 14days in human serum filtrate. PS particles dissolved at 37°C but remained unaltered in Histidine at 5°C. Our results reinforce the need to track the fate of particles generated during drug product development upon exposure to physiologic conditions.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
34
|
Xu H, Tang B, Huang W, Luo S, Zhang T, Yuan J, Zheng Q, Zan X. Deliver protein across bio-barriers via hexa-histidine metal assemblies for therapy: a case in corneal neovascularization model. Mater Today Bio 2021; 12:100143. [PMID: 34765961 PMCID: PMC8569714 DOI: 10.1016/j.mtbio.2021.100143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 01/26/2023] Open
Abstract
Because of their high specificity and low side effects, protein drugs possess a substantial global market. However, the low bioavailability of protein is still a major obstacle to their expanded applications, which is expected to be answered with proper protein formulations. Taking corneal neovascularization (CNV) as an example, we demonstrated a co-assembled system of hexa-histidine and Ava (Avastin) with metal ions (HmA@Ava) could cross the cornea, the most important bio-barrier during the treatment of most diseases of the anterior segment in clinics. We found that the nanosized HmA@Ava efficiently encapsulated Ava with impressive loading capacity without destroying the bioactivity of Ava and assisted Ava penetration through the corneal barriers to effectively inhibit CNV development in an alkali burn rat model with sustained and pH-dependent Ava release. Our results suggested that the co-assembled strategy of protein and HmA is a proper formulation to protein drugs, with promising penetration ability to deliver protein across bio-barriers, which could open a path for topical administration of protein drugs for treatment of various ocular diseases and hold enormous potential for delivery of therapeutic proteins not only for ocular diseases but also for other diseases that require protein treatment. HmA@Ava can bring protein drug, Ava, across over the primary bio-barrier of the anterior segment and efficiently treat CNV. HmA@Ava was nanoparticles, with impressive loading capacity without destroying bioactivity of Ava and strong pH-dependent release. HmA can open a path for the treatment of eye diseases and hold huge potential to protein drugs to other diseases.
Collapse
Affiliation(s)
- H Xu
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - B Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - W Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, 317000, PR China
| | - S Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - T Zhang
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - J Yuan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Q Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - X Zan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
35
|
Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Proc Natl Acad Sci U S A 2021; 118:2020577118. [PMID: 34504010 PMCID: PMC8449350 DOI: 10.1073/pnas.2020577118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/28/2023] Open
Abstract
Successful biologic drug discovery and development involves finding functional as well as developable candidates. Once a candidate has been demonstrated to be functional, the next step is to determine whether it can be translated into a drug product. This requires that the candidate can withstand stresses encountered during manufacturing, shipping, and storage. Additionally, it must be safe, efficacious, and possess good pharmacology. In silico analyses of the variable regions of 77 marketed antibody-based biotherapeutics have revealed five nonredundant physicochemical descriptors. Distributions of these descriptors, observed for marketed biotherapeutics, can help prioritize a drug candidate for experimental testing at early discovery stages, guide engineering efforts to further optimize it, and help increase the productivity of biologic drug discovery and development. Feeding biopharma pipelines with biotherapeutic candidates that possess desirable developability profiles can help improve the productivity of biologic drug discovery and development. Here, we have derived an in silico profile by analyzing computed physicochemical descriptors for the variable regions (Fv) found in 77 marketed antibody-based biotherapeutics. Fv regions of these biotherapeutics demonstrate significant diversities in their germlines, complementarity determining region loop lengths, hydrophobicity, and charge distributions. Furthermore, an analysis of 24 physicochemical descriptors, calculated using homology-based molecular models, has yielded five nonredundant descriptors whose distributions represent stability, isoelectric point, and molecular surface characteristics of their Fv regions. Fv regions of candidates from our internal discovery campaigns, human next-generation sequencing repertoires, and those in clinical-stages (CST) were assessed for similarity with the physicochemical profile derived here. The Fv regions in 33% of CST antibodies show physicochemical properties that are dissimilar to currently marketed biotherapeutics. In comparison, physicochemical characteristics of ∼29% of the Fv regions in human antibodies and ∼27% of our internal hits deviated significantly from those of marketed biotherapeutics. The early availability of this information can help guide hit selection, lead identification, and optimization of biotherapeutic candidates. Insights from this work can also help support portfolio risk assessment, in-licensing, and biopharma collaborations.
Collapse
|
36
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 647] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
37
|
Kellie JF, Tran JC, Jian W, Jones B, Mehl JT, Ge Y, Henion J, Bateman KP. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1886-1900. [PMID: 32869982 DOI: 10.1021/jasms.0c00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.
Collapse
Affiliation(s)
- John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John C Tran
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, California 94080, United States
| | - Wenying Jian
- DMPK, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Barry Jones
- Q Squared Solutions, 19 Brown Road, Ithaca, New York 14850, United States
| | - John T Mehl
- Bioanalytical Research, Bristol-Myers Squibb, Princeton, New Jersey 08648, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jack Henion
- Advion, Inc., 61 Brown Road, Ithaca, New York 14850, United States
| | - Kevin P Bateman
- PPDM, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
38
|
Protein nanogels with enhanced pH-responsive dynamics triggered by remote NIR for systemic protein delivery and programmable controlled release. Int J Pharm 2021; 605:120833. [PMID: 34175378 DOI: 10.1016/j.ijpharm.2021.120833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Therapeutic proteins represent promising treatments in medical applications; however, direct administration of native proteins frequently suffers from in vivo enzymatic degradation or denaturation in hostile environments. Engineering proteins into biocompatible formulations can be used to solve these problems. Despite years of effort, efficient systemic delivery followed by successful release from the formulation remains a challenge. Herein, we describe a pH-responsive nanogel (PI825@PDC/protein NGs) formed by host-guest recognition of 6-arm PEGylated crystalline β-cyclodextrin (β-CD) and near-infrared IR825 dye, which affords highly efficient encapsulation of proteins during their self-assembly. PI825@PDC/protein NGs are robust enough to withstand hostile physiological conditions both in vitro and in vivo and could be slightly disassociated from protein release in acidic environments due to the anchored pH-responsive 2,3-dimethylmaleic anhydride (DMA) linker. Furthermore, the pH-responsive dynamics can be greatly enhanced by elevated temperature upon remote (Near-infrared spectroscopy) NIR irradiation of the IR825 within NGs, generating programmable release of loaded proteins for enhanced cancer treatment. This study describes a general method to load proteins with high efficiency for systemic delivery, followed by programmable protein release by remote NIR irradiation and offers new insights for protein engineering and potential medical applications.
Collapse
|
39
|
Assessment of Antibody Stability in a Novel Protein-Free Serum Model. Pharmaceutics 2021; 13:pharmaceutics13060774. [PMID: 34067269 PMCID: PMC8224624 DOI: 10.3390/pharmaceutics13060774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Therapeutic proteins can degrade upon administration as they are subjected to a variety of stresses in human body compartments. In vivo degradation may cause undesirable pharmacokinetic/pharmacodynamic profiles. Pre-clinical in vitro models have gained scientific interest as they enable one to evaluate the in vivo stability of monoclonal antibodies (mAbs) and ultimately can improve patient safety. We used a novel approach by stripping serum of endogenous proteins, which interfere with analytical test methods. This enabled the direct analysis of the target protein without laborious sample work-up procedures. The developed model retained the osmolality, conductivity, temperature, and pH of serum. We compared the impact of human, bovine, and artificial serum to accelerated stability conditions in histidine buffer. Target mAbs were assessed in regard to visible and sub-visible particles, as well as protein aggregation and fragmentation. Both mAbs degraded to a higher extent under physiological conditions compared to accelerated stability conditions. No relevant stability differences between the tested mAbs were observed. Our results reinforced the importance of monitoring protein stability in biological fluids or fluids emulating these conditions closely. Models enabling analysis in fluids directly allow high throughput testing in early pre-clinical stages and help in selecting molecules with increased in vivo stability.
Collapse
|
40
|
Schuster J, Mahler HC, Joerg S, Huwyler J, Mathaes R. Analytical Challenges Assessing Protein Aggregation and Fragmentation Under Physiologic Conditions. J Pharm Sci 2021; 110:3103-3110. [PMID: 33933436 DOI: 10.1016/j.xphs.2021.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Therapeutic proteins are administered by injection or infusion. After administration, the physiologic environment in the desired body compartment - fluid or tissue - can impact protein stability and lead to changes in the safety and/or efficacy profile. For example, protein aggregation and fragmentation are critical quality attributes of the drug product and can occur after administration to patients. In this context, the in vivo stability of therapeutic proteins has gained increasing attention. However, in vivo protein aggregation and fragmentation are difficult to assess and have been rarely investigated. This mini-review summarizes analytical approaches to assess the stability of therapeutic proteins using simulated physiologic conditions. Furthermore, we discuss factors potentially causing in vivo protein aggregation, precipitation, and fragmentation in complex biological fluids. Different analytical approaches are evaluated with respect to their applicability and possible shortcomings when it comes to these degradation events in biological fluids. Tracking protein stability in biological fluids typically requires purifying or labeling the protein of interest to circumvent matrix interference of biological fluids. Improved analytical methods are strongly needed to gain knowledge on in vivo protein aggregation and fragmentation. In vitro models can support the selection of lead candidates and accelerate the pre-clinical development of therapeutic proteins.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland; University of Basel, Pharmacenter, Division of Pharmaceutical Technology, Basel, Switzerland
| | | | - Susanne Joerg
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Joerg Huwyler
- University of Basel, Pharmacenter, Division of Pharmaceutical Technology, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
41
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
42
|
Schuster J, Mahler HC, Joerg S, Kamuju V, Huwyler J, Mathaes R. Stability of monoclonal antibodies after simulated subcutaneous administration. J Pharm Sci 2021; 110:2386-2394. [PMID: 33722546 DOI: 10.1016/j.xphs.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the environment from the drug product to the human physiology might lead to physical and/or chemical modifications of the protein drug, such as in vivo aggregation and fragmentation. Although subcutaneous (SC) injection is a common route of administration for therapeutic proteins, knowledge on in vivo stability in the SC tissue is limited. In this study, we developed a physiologic in vitro model simulating the SC environment in patients. We assessed the stability of two monoclonal antibodies (mAbs) in four different protein-free fluids under physiologic conditions. We monitored protein stability over two weeks using a range of analytical methods, in analogy to testing purposes of a drug product. Both mAbs showed an increase of protein aggregates, fragments, and acidic species. mAb1 was consistently more stable in this in vitro model than mAb2, highlighting the importance of comparing the stability of different mAbs under physiologic conditions. Throughout the study, both mAbs were substantially less stable in bicarbonate buffers as compared to phosphate-buffered saline. In summary, our developed model was able to differentiate stability between molecules. Bicarbonate buffers were more suitable compared to phosphate-buffered saline in regards to simulating the in vivo conditions and evaluating protein liabilities.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Hochbergerstr. 60A, 4057 Basel, Switzerland; Division of Pharmaceutical Technology, University of Basel, Pharmacenter, Basel, Switzerland
| | - Hanns-Christian Mahler
- Lonza Pharma and Biotech, Drug Product Services, Hochbergerstr. 60A, 4057 Basel, Switzerland
| | - Susanne Joerg
- Lonza Pharma and Biotech, Drug Product Services, Hochbergerstr. 60A, 4057 Basel, Switzerland
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Hochbergerstr. 60A, 4057 Basel, Switzerland
| | - Joerg Huwyler
- Division of Pharmaceutical Technology, University of Basel, Pharmacenter, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Hochbergerstr. 60A, 4057 Basel, Switzerland.
| |
Collapse
|
43
|
Schuster J, Probst CE, Mahler HC, Joerg S, Huwyler J, Mathaes R. Assessing Particle Formation of Biotherapeutics in Biological Fluids. J Pharm Sci 2021; 110:1527-1532. [PMID: 33421437 DOI: 10.1016/j.xphs.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The stability of therapeutic proteins can be impacted in vivo after administration, which may affect patient safety or treatment efficacy, or both. Stability testing of therapeutic proteins using models representing physiologic conditions may guide preclinical development strategy; however, to date only a few studies assessing the physical stability are available in the public domain. In this manuscript, the stability of seven fluorescently labeled monoclonal antibodies (mAbs) was evaluated in human serum and phosphate-buffered saline, two models often discussed to be representative of the situation in humans after intravenous administration. Subvisible particles were analyzed using light obscuration, flow imaging, and imaging flow cytometry. All methods showed that serum itself formed particles under in vitro conditions. Imaging flow cytometry demonstrated that mean particle size and counts of mAbs increased substantially in serum over five days; however, particle formation in phosphate-buffered saline was comparably low. Stability differences were observed across the mAbs evaluated, and imaging flow cytometry data indicated that fluorescently labeled mAbs primarily interacted with serum components. The results indicate that serum may be more suitable as in vitro model to simulate physiologic intravenous conditions in patients closely and evaluate the in vivo stability of therapeutic proteins. Fluorescence labeling and detection methods may be applied to differentiate particles containing therapeutic protein from high amounts of serum particles that form over time.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland; Division of Pharmaceutical Technology, University of Basel, Pharmacenter, Basel, Switzerland
| | | | | | - Susanne Joerg
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Joerg Huwyler
- Division of Pharmaceutical Technology, University of Basel, Pharmacenter, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
44
|
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 2020; 19:315-329. [PMID: 33425259 PMCID: PMC7779837 DOI: 10.1016/j.csbj.2020.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.
Collapse
Key Words
- ABR, Antigen-binding region
- ADA, Anti-drug antibody
- ANN, Artificial neural network
- APC, Antigen-presenting cell
- Anti-drug-antibody
- B cell epitope
- BCR, B cell receptor
- Bab, Binding antibody
- CDR, Complementarity determining region
- CRISPR, Clustered regularly interspaced short palindromic repeats
- DC, Dendritic cell
- ELP, Elastin-like polypeptide
- EPO, Erythropoietin
- ER, Endoplasmatic reticulum
- GLK, Gelatin-like protein
- HAP, Homo-amino-acid polymer
- HLA, Human leukocyte antigen
- HMM, Hidden Markov model
- IL, Interleukin
- Ig, Immunoglobulin
- Immunogenicity
- LPS, Lipopolysaccharide
- MHC, Major histocompatibility complex
- NMR, Nuclear magnetic resonance
- Nab, Neutralizing antibody
- PAMP, Pathogen-associated molecular pattern
- PAS, Polypeptide composed of proline, alanine, and/or serine
- PBMC, Peripheral blood mononuclear cell
- PD, Pharmacodynamics
- PEG, Polyethylene glycol
- PK, Pharmacokinetics
- PRR, Pattern recognition receptor
- PSA, Sialic acid polymers
- Protein therapeutic
- RNN, Recurrent artificial neural network
- SVM, Support vector machine
- T cell epitope
- TAP, Transporter associated with antigen processing
- TCR, T cell receptor
- TLR, Toll-like receptor
- XTEN, “Xtended” recombinant polypeptide
Collapse
Affiliation(s)
- Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Noël Stierlin
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Collins M, Awwad S, Ibeanu N, Khaw PT, Guiliano D, Brocchini S, Khalili H. Dual-acting therapeutic proteins for intraocular use. Drug Discov Today 2020; 26:44-55. [PMID: 33137484 DOI: 10.1016/j.drudis.2020.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/22/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Intravitreally injected antibody-based medicines have revolutionised the treatment of retinal disease. Bispecific and dual-functional antibodies and therapeutic proteins have the potential to further increase the efficacy of intraocular medicines.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK; School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Sahar Awwad
- School of Pharmacy, University College London, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - David Guiliano
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Steve Brocchini
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Hanieh Khalili
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK; School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
46
|
Intact mAb LC–MS for drug concentration from pre-clinical studies: bioanalytical method performance and in-life samples. Bioanalysis 2020; 12:1389-1403. [DOI: 10.4155/bio-2020-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Antibody biotherapeutic measurement from pharmacokinetic studies has not been traditionally based on intact molecular mass as is the case for small molecules. However, recent advancements in protein capture and mass spectrometer technology have enabled intact mass detection and quantitation for dosed biotherapeutics. A bioanalytical method validation is part of the regulatory requirement for sample analysis to determine drug concentration from in-life study samples. Results/methodology: Here, an intact protein LC–MS assay is subjected to mock bioanalytical method validation, and unknown samples are compared between intact protein LC–MS and established bioanalytical assay formats: Ligand-binding assay and peptide LC–MS/MS. Discussion/conclusion: Results are presented from the intact and traditional bioanalytical method evaluations, where the in-life sample concentrations were comparable across method types with associated data analyses presented. Furthermore, for intact protein LC–MS, modification monitoring and evaluation of data processing parameters is demonstrated.
Collapse
|
47
|
Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm 2020; 153:130-149. [DOI: 10.1016/j.ejpb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
48
|
Kellie JF, Pannullo KE, Li Y, Fraley K, Mayer A, Sychterz CJ, Szapacs ME, Karlinsey MZ. Antibody Subunit LC-MS Analysis for Pharmacokinetic and Biotransformation Determination from In-Life Studies for Complex Biotherapeutics. Anal Chem 2020; 92:8268-8277. [DOI: 10.1021/acs.analchem.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Schuster J, Koulov A, Mahler HC, Joerg S, Huwyler J, Schleicher K, Detampel P, Mathaes R. Particle Analysis of Biotherapeutics in Human Serum Using Machine Learning. J Pharm Sci 2020; 109:1827-1832. [DOI: 10.1016/j.xphs.2020.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
|