1
|
Xiong Q, Ma C, Liu C, Tong F, Huang M, Yan H. ACE2-using merbecoviruses: Further evidence of convergent evolution of ACE2 recognition by NeoCoV and other MERS-CoV related viruses. CELL INSIGHT 2024; 3:100145. [PMID: 38476250 PMCID: PMC10928290 DOI: 10.1016/j.cellin.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 03/14/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) was recognized as an entry receptor shared by coronaviruses from Sarbecovirus and Setracovirus subgenera, including three human coronaviruses: SARS-CoV, SARS-CoV-2, and NL63. We recently disclosed that NeoCoV and three other merbecoviruses (PDF-2180, MOW15-22, PnNL 2018B), which are MERS-CoV relatives found in African and European bats, also utilize ACE2 as their functional receptors through unique receptor binding mechanisms. This unexpected receptor usage assumes significance, particularly in light of the prior recognition of Dipeptidyl peptidase-4 (DPP4) as the only known protein receptor for merbecoviruses. In contrast to other ACE2-using coronaviruses, NeoCoV and PDF-2180 engage a distinct and relatively compact binding surface on ACE2, facilitated by protein-glycan interactions, which is demonstrated by the Cryo-EM structures of the receptor binding domains (RBDs) of these viruses in complex with a bat ACE2 orthologue. These findings further support the hypothesis that phylogenetically distant coronaviruses, characterized by distinct RBD structures, can independently evolve to acquire ACE2 affinity during inter-species transmission and adaptive evolution. To date, these viruses have exhibited limited efficiency in entering human cells, although single mutations like T510F in NeoCoV can overcome the incompatibility with human ACE2. In this review, we present a comprehensive overview of ACE2-using merbecoviruses, summarize our current knowledge regarding receptor usage and host tropism determination, and deliberate on potential strategies for prevention and intervention, with the goal of mitigating potential future outbreaks caused by spillover of these viruses.
Collapse
Affiliation(s)
- Qing Xiong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chengbao Ma
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fei Tong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meiling Huang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
2
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
3
|
Mohammed A, Ahmed M, Osman Ahmed A, Yousof S, Hamad S, Shuaib Y, Ibrahim N. Seroprevalence and risk factors of brucellosis in dromedary camels (
Camelus dromedarius
) in Sudan from 1980 to 2020: a systematic review and meta-analysis. Vet Q 2023; 43:1-15. [DOI: https:/doi.org/10.1080/01652176.2023.2248233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Abdullah Mohammed
- Department of Biomedical Sciences, Faculty of Veterinary Sciences, University of Gadarif, Gadarif, Sudan
- Reproductive Health Sciences Program, Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
| | - Musa Ahmed
- Reproductive Health Sciences Program, Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, AL-Salam University, West Kordofan, Sudan
| | - Ahmed Osman Ahmed
- Department of Microbiology, Pathology, and Parasitology, Faculty of Veterinary Sciences, University of Gadarif, Gadarif, Sudan
| | - Sadam Yousof
- Department of Animal Production, Faculty of Veterinary Science, University of Gadarif, Gadarif, Sudan
| | - Suad Hamad
- Department of Zoonotic Disease and Disease Control, Ministry of Animal Resources, Al-Hamadi, Sudan
| | - Yassir Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Sudan
| | - Nasir Ibrahim
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry and Physiology, Faculty of Veterinary Medicine, University of Al-butana, Ruffaa, Sudan
| |
Collapse
|
4
|
Mohammed A, Ahmed M, Osman Ahmed A, Yousof S, Hamad S, Shuaib Y, Ibrahim N. Seroprevalence and risk factors of brucellosis in dromedary camels ( Camelus dromedarius) in Sudan from 1980 to 2020: a systematic review and meta-analysis. Vet Q 2023; 43:1-15. [PMID: 37584638 PMCID: PMC10472849 DOI: 10.1080/01652176.2023.2248233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Camel brucellosis is a major public health concern in Sudan; however, there is no overall estimation of the prevalence of camel brucellosis in Sudan. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this study aimed to perform a meta-analysis of 30 eligible studies published before December 31, 2022, with a total of 70059 dromedary camels, to estimate the pooled prevalence of camel brucellosis and its risk factors in Sudan. The random effect model was used for the final analysis due to the significantly high heterogeneity among the included studies, and the results showed that the overall pooled prevalence of camel brucellosis was 17%, with a confidence interval (CI) of 12%-21%. The prevalence was higher in males than females (54% vs. 46%) and in adults than youngling (77% vs. 23%). The prevalence also varied by region, with central and northern Sudan having the highest prevalence (24%), compared to other regions of Sudan. Moreover, the prevalence of camel brucellosis appeared to be decreasing over time. The current study concluded that camel brucellosis infection is still endemic in many areas of Sudan, with the disease being especially prevalent in central and northern Sudan. Thus, this study provides valuable information for the prevention and control of camel brucellosis in Sudan. However, the significant heterogeneity among the included studies should be taken into account when interpreting these results. Finally, to provide adequate information, research must be updated, and more research must be conducted in many regions of Sudan.
Collapse
Affiliation(s)
- Abdullah Mohammed
- Department of Biomedical Sciences, Faculty of Veterinary Sciences, University of Gadarif, Gadarif, Sudan
- Reproductive Health Sciences Program, Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
| | - Musa Ahmed
- Reproductive Health Sciences Program, Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, AL-Salam University, West Kordofan, Sudan
| | - Ahmed Osman Ahmed
- Department of Microbiology, Pathology, and Parasitology, Faculty of Veterinary Sciences, University of Gadarif, Gadarif, Sudan
| | - Sadam Yousof
- Department of Animal Production, Faculty of Veterinary Science, University of Gadarif, Gadarif, Sudan
| | - Suad Hamad
- Department of Zoonotic Disease and Disease Control, Ministry of Animal Resources, Al-Hamadi, Sudan
| | - Yassir Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Sudan
| | - Nasir Ibrahim
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry and Physiology, Faculty of Veterinary Medicine, University of Al-butana, Ruffaa, Sudan
| |
Collapse
|
5
|
Islam MM, Khanom H, Farag E, Mim ZT, Naidoo P, Mkhize-Kwitshana ZL, Tibbo M, Islam A, Soares Magalhaes RJ, Hassan MM. Global patterns of Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence and seroprevalence in camels: A systematic review and meta-analysis. One Health 2023; 16:100561. [PMID: 37200564 PMCID: PMC10166617 DOI: 10.1016/j.onehlt.2023.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The Middle East respiratory syndrome Coronavirus (MERS-CoV) is one of the human coronaviruses that causes severe respiratory infection. Bats are considered to be the natural reservoir, where dromedary camels (DC) are the intermediate hosts of the virus. The current study was undertaken to provide an update on global distribution of the virus in camels, and to investigate the pooled prevalence and camel-associated risk factors of infection. After registration of the review protocol in the Open Science Framework, data searches were conducted on 18 April 2023 through Embase, PubMed, Scopus, and Web of Science. Considering only natural MERS-CoV infection in camels, 94 articles were selected for data curation through blind screening by two authors. Meta-analysis was conducted to estimate the pooled prevalence and to evaluate camel-associated risk factors. Finally, the results were presented in forest plots. The reviewed articles tested 34 countries, of which camels of 24 countries were seropositive and in 15 countries they were positive by molecular method. Viral RNA was detected in DC. Non-DC, such as bactrian camels, alpaca, llama, and hybrid camels were only seropositive. The global estimated pooled seroprevalence and viral RNA prevalence in DC were 77.53% and 23.63%, respectively, with the highest prevalence in West Asia (86.04% and 32.37% respectively). In addition, 41.08% of non-DC were seropositive. The estimated pooled prevalence of MERS-CoV RNA significantly varied by sample types with the highest in oral (45.01%) and lowest in rectal (8.42%) samples; the estimated pooled prevalence in nasal (23.10%) and milk (21.21%) samples were comparable. The estimated pooled seroprevalence in <2 years, 2-5 years, and > 5 years age groups were 56.32%, 75.31%, and 86.31%, respectively, while viral RNA prevalence was 33.40%, 15.87%, and 13.74%, respectively. Seroprevalence and viral RNA prevalence were generally higher in females (75.28% and 19.70%, respectively) than in males (69.53% and 18.99%, respectively). Local camels had lower estimated pooled seroprevalence (63.34%) and viral RNA prevalence (17.78%) than those of imported camels (89.17% and 29.41%, respectively). The estimated pooled seroprevalence was higher in camels of free-herds (71.70%) than confined herds (47.77%). Furthermore, estimated pooled seroprevalence was higher in samples from livestock markets, followed by abattoirs, quarantine, and farms but viral RNA prevalence was the highest in samples from abattoirs, followed by livestock markets, quarantine, and farms. Risk factors, such as sample type, young age, female sex, imported camels, and camel management must be considered to control and prevent the spread and emergence of MERS-CoV.
Collapse
Affiliation(s)
| | - Hamida Khanom
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Zarin Tasnim Mim
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Pragalathan Naidoo
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Markos Tibbo
- Food and Agriculture Organization of the United Nations (FAO), Subregional Office for the Gulf Cooperation Council States and Yemen, Abu Dhabi, United Arab Emirates
| | | | - Ricardo J. Soares Magalhaes
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
- Children Health and Environment Program, UQ Child Health Research Centre, The University of Queensland, QLD 4343, Australia
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
| |
Collapse
|
6
|
Othieno J, Njagi O, Masika S, Apamaku M, Tenge E, Mwasa B, Kimondo P, Gardner E, Von Dobschuetz S, Muriira J, Adul B, Mwongela L, Hambe HA, Nyariki T, Fasina FO. Knowledge, attitudes, and practices on camel respiratory diseases and conditions in Garissa and Isiolo, Kenya. Front Vet Sci 2022; 9:1022146. [DOI: 10.3389/fvets.2022.1022146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundLivestock farmers' attitudes, practices, and behaviors are major factors in infection prevention and control of animal diseases. Kenya has the fourth largest global camel population, and the industry has grown over the last two decades, transforming beyond the traditional camel-keeping areas to include peri-urban camel trade and value chain growth. The dromedary camel is resilient, and it is a preferred species in the arid and semi-arid areas (ASALs) of Kenya. However, it still faces many health and production challenges; to identify infection drivers and risky behaviors for camel respiratory illnesses and conditions in Kenya, we conducted a knowledge, attitudes, and practices (KAP) survey.MethodUsing a set of tools (questionnaires, key informant interviews, and focus group discussions), we interviewed camel owners, herders, agro-veterinary outlets, and other relevant value chain stakeholders in Garissa and Isiolo counties (n = 85). Data were analyzed using descriptive and analytic statistics.ResultsMost camel owners/herders are male and most are relatively uneducated (85.5%). The camels were used primarily for milk and meat production, income generation, and transport. Larger herd sizes (>30 camels) and owner/herder's lack of formal education are risk factors for owner-reported respiratory illnesses in camels. Major clinical signs of respiratory conditions were coughing (85.7%), nasal discharge (59.7%), and fever (23.4%). Diseases, lack of feeds, theft, and marketing challenges are the major constraints to camel production in Kenya. Owners-herders use drugs indiscriminately and this may contribute to antimicrobial resistance challenges.ConclusionPractitioners in the camel value chain want more commitment from the government and animal health officials on support services and access to veterinary services. Watering points, grazing areas, and marketing points are the primary areas for congregating camels and have a significant potential for disease spread. Kenya camels have a massive capacity for rural and ASALs' livelihoods transformation but the identified health challenges, and other issues must be addressed. Further studies on the Kenyan camels' respiratory microbial ecology are important to understand microbial risks and reduce the burden of zoonotic infections. Intensification of risk communication and community engagement, and messaging targeted at behavior change interventions should be directed at camel value chain actors.
Collapse
|
7
|
Kena D. Review on camel production and marketing status in Ethiopia. PASTORALISM 2022; 12:38. [PMID: 36117775 PMCID: PMC9465664 DOI: 10.1186/s13570-022-00248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Pastoralism has been the most productive livelihood option in the dryland of the Horn of Africa although recently its sustainability is becoming challenging. Camel is a livestock species uniquely adapted to the arid and semi-arid areas of the region. Camels are predominantly reared in the drier areas of Ethiopia such as Afar, Ethiopian Somali and the eastern and southern parts of Oromia region. This review is aimed at reviewing the camel population, marketing status, challenges and opportunities related to camel production and marketing in Ethiopia. Official reports on the camel population (1.42 million) underestimate the number of camel populations in Ethiopia while different research reports a higher figure of the camel population up to 4.8 million. However, each report indicated an increasing trend in the camel population. Camel is being adopted by different pastoral groups, in which camel rearing was less customary. The economic importance of the camel over other livestock species is immense, particularly during the harsh seasons due to less decline in its prices and the camel is the most expensive in both pastoral and agro-pastoral areas when compared to other livestock. Camel plays an important role in revenue generation, contributing to the earnings from export. Formal camel export status has shown a flat trend and informal export outweighed the formal one. Despite its ecological and economic importance, the camel has been neglected by researchers and the Ethiopian government. Poor market infrastructure, lack of market information, lack of market-oriented production system, the export ban by many countries and the inconvenience of an export regulatory institutional setting are among the major constraints of camel marketing in Ethiopia. Therefore, policy and development interventions are demanded that recognize the social, economic and ecological importance of camels for pastoral communities and the national economy.
Collapse
|
8
|
El-Alfy ES, Abbas I, Baghdadi HB, El-Sayed SAES, Ji S, Rizk MA. Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11080912. [PMID: 36015033 PMCID: PMC9416077 DOI: 10.3390/pathogens11080912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Ticks and tick-borne pathogens (TTBPs) are listed among the most serious concerns harming Egyptian livestock’s productivity. Several reports on tick-borne pathogens (TBPs) from various geographical regions in the country were published. However, data on the molecular characterization of TBPs are the most beneficial for understanding the epidemiology of this important group of pathogens. In this study, we present the first meta-analysis on the molecular epidemiology and species diversity of TBPs infecting animals in Egypt. All published studies on TBPs were systematically collected from various databases (PubMed, Scopus, ScienceDirect, the Egyptian Knowledge Bank, and Google Scholar). Data from eligible papers were extracted and subjected to various analyses. Seventy-eight studies were found to be eligible for inclusion. Furthermore, ticks infesting animals that were molecularly screened for their associated pathogens were also included in this study to display high species diversity and underline the high infection risk to animals. Theileria annulata was used as parasite model of TBPs to study the genetic diversity and transmission dynamics across different governorates of Egypt. This study extends cross-comparisons between all published molecular data on TBPs in Egypt and provides resources from Egyptian data in order to better understand parasite epidemiology, species diversity, and disease outcome as well as the development and implementation of prevention and control methods for public health, veterinary care practitioners, and animal owners all over the country.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31113, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam 31113, Saudi Arabia
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro 080-8555, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro 080-8555, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
9
|
Schindell BG, Allardice M, McBride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.875213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of SARS-CoV-2 in 2019 has resulted in a global pandemic with devastating human health and economic consequences. The development of multiple vaccines, antivirals and supportive care modalities have aided in our efforts to gain control of the pandemic. However, the emergence of multiple variants of concern and spillover into numerous nonhuman animal species could protract the pandemic. Further, these events also increase the difficulty in simultaneously monitoring viral evolution across multiple species and predicting future spillback potential into the human population. Here, we provide historic context regarding the roles of reservoir and intermediate hosts in coronavirus circulation and discuss current knowledge of these for SARS-CoV-2. Increased understanding of SARS-CoV-2 zoonoses are fundamental for efforts to control the global health and economic impacts of COVID-19.
Collapse
|
10
|
El-Kafrawy SA, Hassan AM, El-Daly MM, Al-Hajri M, Farag E, Elnour FA, Khan A, Tolah AM, Alandijany TA, Othman NA, Memish ZA, Corman VM, Drosten C, Zumla A, Azhar EI. Genetic diversity of hepatitis E virus (HEV) in imported and domestic camels in Saudi Arabia. Sci Rep 2022; 12:7005. [PMID: 35487943 PMCID: PMC9054814 DOI: 10.1038/s41598-022-11208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | - Anas Khan
- The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia
| | - Ahmed M Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura A Othman
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia.,Al-Faisal University, Riyadh, Saudi Arabia.,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.,Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.,Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, UK.,NIHR Biomedical Research Centre, University College London Hospitals, London, UK
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global Investigations. Viruses 2021; 13:v13050936. [PMID: 34070175 PMCID: PMC8158508 DOI: 10.3390/v13050936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/13/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has had devastating health and socio-economic impacts. Human activities, especially at the wildlife interphase, are at the core of forces driving the emergence of new viral agents. Global surveillance activities have identified bats as the natural hosts of diverse coronaviruses, with other domestic and wildlife animal species possibly acting as intermediate or spillover hosts. The African continent is confronted by several factors that challenge prevention and response to novel disease emergences, such as high species diversity, inadequate health systems, and drastic social and ecosystem changes. We reviewed published animal coronavirus surveillance studies conducted in Africa, specifically summarizing surveillance approaches, species numbers tested, and findings. Far more surveillance has been initiated among bat populations than other wildlife and domestic animals, with nearly 26,000 bat individuals tested. Though coronaviruses have been identified from approximately 7% of the total bats tested, surveillance among other animals identified coronaviruses in less than 1%. In addition to a large undescribed diversity, sequences related to four of the seven human coronaviruses have been reported from African bats. The review highlights research gaps and the disparity in surveillance efforts between different animal groups (particularly potential spillover hosts) and concludes with proposed strategies for improved future biosurveillance.
Collapse
|
12
|
Frutos R, Serra-Cobo J, Pinault L, Lopez Roig M, Devaux CA. Emergence of Bat-Related Betacoronaviruses: Hazard and Risks. Front Microbiol 2021; 12:591535. [PMID: 33790874 PMCID: PMC8005542 DOI: 10.3389/fmicb.2021.591535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111 million reported cases and 2,500,000 deaths worldwide (mortality rate currently estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus (β-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which causes the winter common cold (fatality rate 0.5%), were already a source of public health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks of β-CoV-induced diseases raise the question of the dynamic of propagation of this group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot for emergence. However, there might be other regional hot spots, as seen with MERS-CoV, which emerged in the Arabian Peninsula. β-CoVs responsible for human respiratory infections are closely related to bat-borne viruses. Bats are present worldwide and their level of infection with CoVs is very high on all continents. However, there is as yet no evidence of direct bat-to-human coronavirus infection. Transmission of β-CoV to humans is considered to occur accidentally through contact with susceptible intermediate animal species. This zoonotic emergence is a complex process involving not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal aspects. Here, we try to understand why only few hot spots of β-CoV emergence have been identified despite worldwide bats and bat-borne β-CoV distribution. In this work, we analyze and compare the natural and anthropogenic environments associated with the emergence of β-CoV and outline conserved features likely to create favorable conditions for a new epidemic. We suggest monitoring South and East Africa as well as South America as these regions bring together many of the conditions that could make them future hot spots.
Collapse
Affiliation(s)
- Roger Frutos
- Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR 17, Intertryp, Montpellier, France.,Institut d'Électronique et des Systèmes, UMR 5214, Université de Montpellier-CNRS, Montpellier, France
| | - Jordi Serra-Cobo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Lucile Pinault
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marc Lopez Roig
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Christian A Devaux
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
13
|
Hemida MG, Alhammadi M, Almathen F, Alnaeem A. Lack of detection of the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleic acids in some Hyalomma dromedarii infesting some Camelus dromedary naturally infected with MERS-CoV. BMC Res Notes 2021; 14:96. [PMID: 33691761 PMCID: PMC7945619 DOI: 10.1186/s13104-021-05496-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Objective The Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the zoonotic coronaviruses [Hemida Peer J 7:e7556, 2019; Hemida et al. One Health 8:100102, 2019]. The dromedary camels remained the only known animal reservoir for this virus. Several aspects of the transmission cycle of the virus between animals, including arthropod-borne infection, is still largely unknown. The main objective of the current work was to study the possibility of MERS-CoV transmission through some arthropod vectors, particularly the hard ticks. To achieve this objective, we identified a positive MERS-CoV dromedary camel herd using the commercial available real-time PCR kits. We collected some arthropods, particularly the ticks from these positive animals as well as from the animal habitats. We tested these arthropods for the presence of MERS-CoV viral RNAs. Results Our results showing the absence of any detectable MERS-CoV-RNAs in these arthropods despite these animals were actively shedding the virus in their nasal secretions. Our results are confirming for the first the failure of detection of the MERS-CoV in ticks infesting dromedary camels. Failure of the detection of MERS-CoV in ticks infesting positive naturally infected MERS-CoV camels is strongly suggesting that ticks do not play roles in the transmission of the virus among the animals and close contact humans.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Ahasa, Saudi Arabia. .,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mohammed Alhammadi
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Ahasa, Saudi Arabia
| | - Faisal Almathen
- Department of Public Health and Animal Husbandry, Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia
| | - Abdelmohsen Alnaeem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia
| |
Collapse
|
14
|
High MERS-CoV seropositivity associated with camel herd profile, husbandry practices and household socio-demographic characteristics in Northern Kenya. Epidemiol Infect 2020; 148:e292. [PMID: 33256863 PMCID: PMC7737118 DOI: 10.1017/s0950268820002939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite high exposure to Middle East respiratory syndrome coronavirus (MERS-CoV), the predictors for seropositivity in the context of husbandry practices for camels in Eastern Africa are not well understood. We conducted a cross-sectional survey to describe the camel herd profile and determine the factors associated with MERS-CoV seropositivity in Northern Kenya. We enrolled 29 camel-owning households and administered questionnaires to collect herd and household data. Serum samples collected from 493 randomly selected camels were tested for anti-MERS-CoV antibodies using a microneutralisation assay, and regression analysis used to correlate herd and household characteristics with camel seropositivity. Households reared camels (median = 23 camels and IQR 16–56), and at least one other livestock species in two distinct herds; a home herd kept near homesteads, and a range/fora herd that resided far from the homestead. The overall MERS-CoV IgG seropositivity was 76.3%, with no statistically significant difference between home and fora herds. Significant predictors for seropositivity (P ⩽ 0.05) included camels 6–10 years old (aOR 2.3, 95% CI 1.0–5.2), herds with ⩾25 camels (aOR 2.0, 95% CI 1.2–3.4) and camels from Gabra community (aOR 2.3, 95% CI 1.2–4.2). These results suggest high levels of virus transmission among camels, with potential for human infection.
Collapse
|
15
|
Bold D, van Doremalen N, Myagmarsuren O, Zayat B, Munster VJ, Richt JA. Middle East Respiratory Syndrome-Coronavirus Seropositive Bactrian Camels, Mongolia. Vector Borne Zoonotic Dis 2020; 21:128-131. [PMID: 33197370 DOI: 10.1089/vbz.2020.2669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease that was first identified in humans in 2012 in Saudi Arabia. MERS-CoV causes acute and severe respiratory disease in humans. The mortality rate of MERS in humans is ∼35% and >800 deaths have been reported globally as of August 2020. Dromedary camels are a natural host of the virus and the source of zoonotic human infection. In experimental studies, Bactrian camels are susceptible to MERS-CoV infection similar to dromedary camels; however, neither the virus, viral RNA, nor virus-specific antibodies were detected in Bactrian camel field samples so far. The aim of our study was to survey Mongolian camels for MERS-CoV-specific antibodies. A total of 180 camel sera, collected in 2016 and 2017, were involved in this survey: 17 of 180 sera were seropositive with an initial enzyme-linked immunosorbent assay (ELISA) test performed at the State Central Veterinary Laboratory in Mongolia. These 17 positive sera plus 53 additional negative sera were sent to the Rocky Mountain Laboratories, NIAID/NIH, and tested for the presence of antibodies with a similar ELISA, an indirect immunofluorescence assay (IFA), and a virus neutralization test (VNT). In these additional tests, a total of 21 of 70 sera were positive with ELISA and 10 sera were positive with IFA; however, none was positive in the VNT. Based on these results, we hypothesize that the ELISA/IFA-positive antibodies are (1) non-neutralizing antibodies or (2) directed against a MERS-CoV-like virus circulating in Bactrian camels in Mongolia.
Collapse
Affiliation(s)
- Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Batsukh Zayat
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Vincent J Munster
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
16
|
Frutos R, Serra-Cobo J, Chen T, Devaux CA. COVID-19: Time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104493. [PMID: 32768565 PMCID: PMC7405773 DOI: 10.1016/j.meegid.2020.104493] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
Abstract
The emergence of COVID-19 has triggered many works aiming at identifying the animal intermediate potentially involved in the transmission of SARS-CoV-2 to humans. The presence of SARS-CoV-2-related viruses in Malayan pangolins, in silico analysis of the ACE2 receptor polymorphism and sequence similarities between the Receptor Binding Domain (RBD) of the spike proteins of pangolin and human Sarbecoviruses led to the proposal of pangolin as intermediary. However, the binding affinity of the pangolin ACE2 receptor for SARS-CoV-2 RBD was later on reported to be low. Here, we provide evidence that the pangolin is not the intermediate animal at the origin of the human pandemic. Moreover, data available do not fit with the spillover model currently proposed for zoonotic emergence which is thus unlikely to account for this outbreak. We propose a different model to explain how SARS-CoV-2 related coronaviruses could have circulated in different species, including humans, before the emergence of COVID-19.
Collapse
Affiliation(s)
- Roger Frutos
- Cirad, UMR 17, Intertryp, Montpellier, France; IES, UMR 5214 Univ. Montpellier-CNRS, Montpellier, France.
| | - Jordi Serra-Cobo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, PR China
| | | |
Collapse
|
17
|
Ahmed AE. Limited transmissibility of coronavirus (SARS‐1, MERS, and SARS‐2) in certain regions of Africa. J Med Virol 2020; 92:1753-1754. [PMID: 32270498 PMCID: PMC7262248 DOI: 10.1002/jmv.25852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Anwar E. Ahmed
- Henry M Jackson Foundation for the Advancement of Military Medicine Bethesda Maryland
| |
Collapse
|
18
|
Alnaeem A, Kasem S, Qasim I, Al-Doweriej A, Al-Houfufi A, Alwazan A, Albadrani A, Alshaammari K, Refaat M, Al-Shabebi A, Hemida MG. Some pathological observations on the naturally infected dromedary camels (Camelus dromedarius) with the Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia 2018-2019. Vet Q 2020; 40:190-197. [PMID: 32543343 PMCID: PMC7734115 DOI: 10.1080/01652176.2020.1781350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The natural MERS-CoV infection in dromedary camels is understudied. Recent experimental studies showed no obvious clinical signs in the infected dromedary camels. Aim To study the pathological changes associated with natural MERS-CoV infection in dromedary camels. Methods Tissues from three MERS-CoV positive animals as well as two negative animals were collected and examined for the presence of pathological changes. The screening of the animals was carried out first by the rapid agglutination test and then confirmed by the RT-PCR. The selected animals ranged from six to twelve months in age. The sensitivity of the latter technique was much higher in the detection of MERS-CoV than the Rapid test (14 out of 75 animals positive or 18% versus 31 out of 75 positive or 41%). Results MERS-CoV induced marked desquamation of the respiratory epithelium accompanied by lamina propria and submucosal mononuclear cells infiltration, epithelial hyperplasia in the respiratory tract, and interstitial pneumonia. Ciliary cell loss was seen in the trachea and turbinate. In addition, degeneration of glomerular capillaries with the complete destruction of glomerular tufts that were replaced with fibrinous exudate in renal corpuscles in the renal cortex were noticed. Expression of the MERS-CoV-S1 and MERS-CoV-N proteins was revealed in respiratory tract, and kidneys. Conclusion To our knowledge, this is the first study describing the pathological changes of MERS-CoV infection in dromedary camels under natural conditions. In contrast to experimental infection in case of spontaneous infection interstitial pneumonea is evident at least in some affected animals.
Collapse
Affiliation(s)
- Abdelmohsen Alnaeem
- Department of clinical studies, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Samy Kasem
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ibrahim Qasim
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ali Al-Doweriej
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ali Al-Houfufi
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Abdulatif Alwazan
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Abdalaziz Albadrani
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Khuzayyim Alshaammari
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Mohamed Refaat
- Department of Pathology, Animal Health Research Institute, Dokki, Cairo, Egypt.,Department of Pathology, Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hasa, Saudi Arabia
| | - Abdulkareem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.,Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
19
|
Tolah AM, AL Masaudi SB, El-Kafrawy SA, Mirza AA, Harakeh SM, Hassan AM, Alsaadi MA, Alzahrani AA, Alsaaidi GA, Amor NMS, Alagaili AN, Hashem AM, Azhar EI. Cross-sectional prevalence study of MERS-CoV in local and imported dromedary camels in Saudi Arabia, 2016-2018. PLoS One 2020; 15:e0232790. [PMID: 32453746 PMCID: PMC7250453 DOI: 10.1371/journal.pone.0232790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
The Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is an endemic virus in dromedaries. Annually, Saudi Arabia imports thousands of camels from the Horn of Africa, yet the epidemiology of MERS-CoV in these animals is largely unknown. Here, MERS-CoV prevalence was compared in imported African camels and their local counterparts. A total of 1399 paired sera and nasal swabs were collected from camels between 2016 and 2018. Imported animals from Sudan (n = 829) and Djibouti (n = 328) were sampled on incoming ships at Jeddah Islamic seaport before unloading, and local camels were sampled from Jeddah (n = 242). Samples were screened for neutralizing antibodies (nAbs) and MERS-CoV viral RNA. The overall seroprevalence was 92.7% and RNA detection rate was 17.2%. Imported camels had higher seroprevalence compared to resident herds (93.8% vs 87.6%, p <0.01) in contrast to RNA detection (13.3% vs 35.5%, p <0.0001). Seroprevalence significantly increased with age (p<0.0001) and viral RNA detection rate was ~2-folds higher in camels <2-year-old compared to older animals. RNA detection was higher in males verses females (24.3% vs 12.6%, p<0.0001) but seroprevalence was similar. Concurrent positivity for viral RNA and nAbs was found in >87% of the RNA positive animals, increased with age and was sex-dependent. Importantly, reduced viral RNA load was positively correlated with nAb titers. Our data confirm the widespread of MERS-CoV in imported and domestic camels in Saudi Arabia and highlight the need for continuous active surveillance and better prevention measures. Further studies are also warranted to understand camels correlates of protection for proper vaccine development.
Collapse
Affiliation(s)
- Ahmed M. Tolah
- King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Microbiology, Department of Biological Science, Faculty of science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad B. AL Masaudi
- Division of Microbiology, Department of Biological Science, Faculty of science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif A. El-Kafrawy
- King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Mirza
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve M. Harakeh
- King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Hassan
- King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Alsaadi
- King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman A. Alzahrani
- Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia
| | - Ghaleb A. Alsaaidi
- Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia
| | - Nabil M. S. Amor
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz N. Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anwar M. Hashem
- King Fahd Medical Research Center, Vaccines and Immunotherapy Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (AH); (EA)
| | - Esam I. Azhar
- King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (AH); (EA)
| |
Collapse
|
20
|
El-Kafrawy SA, Hassan AM, El-Daly MM, Qadri I, Tolah AM, Al-Subhi TL, Alzahrani AA, Alsaaidi GA, Al-Abdullah N, Kaki RM, Li TC, Azhar EI. Seroprevalence of Dromedary Camel HEV in Domestic and Imported Camels from Saudi Arabia. Viruses 2020; 12:553. [PMID: 32443401 PMCID: PMC7290434 DOI: 10.3390/v12050553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E Virus (HEV) imposes a major health concern in areas with very poor sanitation in Africa and Asia. The pathogen is transmitted mainly through ingesting contaminated water or food, coming into contact with affected people, and blood transfusions. Very few reports including old reports are available on the prevalence of HEV in Saudi Arabia in humans and no reports exist on HEV prevalence in camels. Dromedary camel trade and farming are increasing in Saudi Arabia with importation occurring unidirectionally from Africa to Saudi Arabia. DcHEV transmission to humans has been reported in one case from the United Arab Emeritus (UAE). This instigated us to perform this investigation of the seroprevalence of HEV in imported and domestic camels in Saudi Arabia. Serum samples were collected from imported and domestic camels. DcHEV-Abs were detected in collected sera using ELISA. The prevalence of DcHEV in the collected samples was 23.1% with slightly lower prevalence in imported camels than domestic camels (22.4% vs. 25.4%, p value = 0.3). Gender was significantly associated with the prevalence of HEV in the collected camels (p value = 0.015) where males (31.6%) were more infected than females (13.4%). This study is the first study to investigate the prevalence of HEV in dromedary camels from Saudi Arabia. The high seroprevalence of DcHEV in dromedaries might indicate their role as a zoonotic reservoir for viral infection to humans. Future HEV seroprevalence studies in humans are needed to investigate the role of DcHEV in the Saudi human population.
Collapse
Affiliation(s)
- Sherif Aly El-Kafrawy
- Department of Biological Science, Division of Microbiology, Faculty of science, King Abdulaziz University, PO Box 80216, Jeddah 21859, Saudi Arabia; (S.A.E.-K.); (A.M.H.); (I.Q.)
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia
| | - Ahmed Mohamed Hassan
- Department of Biological Science, Division of Microbiology, Faculty of science, King Abdulaziz University, PO Box 80216, Jeddah 21859, Saudi Arabia; (S.A.E.-K.); (A.M.H.); (I.Q.)
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
| | - Mai Mohamed El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Division of Microbiology, Faculty of science, King Abdulaziz University, PO Box 80216, Jeddah 21859, Saudi Arabia; (S.A.E.-K.); (A.M.H.); (I.Q.)
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
| | - Tagreed Lafi Al-Subhi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
| | - Abdulrahman A. Alzahrani
- Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia; (A.A.A.); (G.A.A.)
| | - Ghaleb A. Alsaaidi
- Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia; (A.A.A.); (G.A.A.)
| | - Nabeela Al-Abdullah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
- Department of Public Health, College of Nursing, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Infection Control and Environmental Health, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Reham Mohammed Kaki
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
- Department of Infection Control and Environmental Health, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Infectious Diseases, Internal Medicine, Faculty of Medicine King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan;
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (M.M.E.-D.); (A.M.T.); (T.L.A.-S.); (N.A.-A.); (R.M.K.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review. Epidemiol Infect 2020; 147:e84. [PMID: 30869000 PMCID: PMC6518605 DOI: 10.1017/s095026881800345x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.
Collapse
|
22
|
Egeru A, Dejene SW, Siya A. Short report on implications of Covid-19 and emerging zoonotic infectious diseases for pastoralists and Africa. PASTORALISM : RESEARCH, POLICY AND PRACTICE 2020; 10:12. [PMID: 32537120 PMCID: PMC7281698 DOI: 10.1186/s13570-020-00173-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 04/17/2023]
Abstract
Many emerging and re-emerging zoonotic infectious diseases occur in Africa. These are projected to increase as human-animal host contact increases owing to increasing environmental degradation that shrinks nature habitats for wildlife over the continent. The current outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) responsible for causing coronavirus disease in 2019 (COVID-19) has reinvigorated discourse on the disruptiveness of the zoonotic emerging infectious diseases, owing to their transboundary character. Even as the world focuses on the COVID-19 sweeping pandemic, the Middle East respiratory syndrome coronavirus (MERS)-CoV re-emerged in Saudi Arabia infecting 18 people with five deaths; this has barely received any attention. This outbreak is particularly of concern to the pastoralists in the Horn of Africa, a region that has in recent past seen an increase in camel trade with the Gulf States, especially Yemen and Saudi Arabia. Emerging and re-emerging zoonotic infectious diseases are complex, depend on human-animal-environment interaction and pose a strain on public health systems. There is a need to address these diseases dynamically through a synergistic approach, drawing on expertise from diverse sectors. One Health approach has distinguished itself as an integrative action able to bring together multiple actors on a global, national and local scale to advance the attainment of optimal health outcomes for people, animals and the environment. One Health works by strengthening the preparedness, response, mitigation and monitoring of zoonotic infectious disease risks collaboratively. We opine that as zoonotic emerging and re-emerging infectious diseases continue to rise over pastoral Africa, comprehensive implementation of the One Health approach will be urgently required.
Collapse
Affiliation(s)
- Anthony Egeru
- Department of Environmental Management, College of Agricultural and Environmental Science, Makerere University, P.O. Box 7062, Kampala, Uganda
- Training and Community Development, Regional Universities Forum for Capacity Building in Agriculture, P.O. Box 16811, Wandegeya, Kampala, Uganda
| | - Sintayehu W. Dejene
- College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 282, Dire Dawa, Ethiopia
| | - Aggrey Siya
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
23
|
El-Kafrawy SA, Corman VM, Tolah AM, Al Masaudi SB, Hassan AM, Müller MA, Bleicker T, Harakeh SM, Alzahrani AA, Alsaaidi GA, Alagili AN, Hashem AM, Zumla A, Drosten C, Azhar EI. Enzootic patterns of Middle East respiratory syndrome coronavirus in imported African and local Arabian dromedary camels: a prospective genomic study. Lancet Planet Health 2019; 3:e521-e528. [PMID: 31843456 PMCID: PMC6926486 DOI: 10.1016/s2542-5196(19)30243-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonotic pathogen endemic to the Arabian Peninsula. Dromedary camels are a likely source of infection and the virus probably originated in Africa. We studied the genetic diversity, geographical structure, infection prevalence, and age-associated prevalence among camels at the largest entry port of camels from Africa into the Arabian Peninsula. METHODS In this prospective genomic study, we took nasal samples from camels imported from Sudan and Djibouti into the Port of Jeddah in Jeddah, Saudi Arabia, over an almost 2-year period and local Arabian camels over 2 months in the year after surveillance of the port. We determined the prevalence of MERS-CoV infection, age-associated patterns of infection, and undertook phylogeographical and migration analyses to determine intercountry virus transmission after local lineage establishment. We compared all virological characteristics between the local and imported cohorts. We compared major gene deletions between African and Arabian strains of the virus. Reproductive numbers were inferred with Bayesian birth death skyline analyses. FINDINGS Between Aug 10, 2016, and May 3, 2018, we collected samples from 1196 imported camels, of which 868 originated from Sudan and 328 from Djibouti, and between May 1, and June 25, 2018, we collected samples from 472 local camels, of which 189 were from Riyadh and 283 were from Jeddah, Saudi Arabia. Virus prevalence was higher in local camels than in imported camels (224 [47·5%] of 472 vs 157 [13·1%] of 1196; p<0·0001). Infection prevalence peaked among camels older than 1 year and aged up to 2 years in both groups, with 255 (66·9%) of 381 positive cases in this age group. Although the overall geographical distribution of the virus corresponded with the phylogenetic tree topology, some virus exchange was observed between countries corresponding with trade routes in the region. East and west African strains of the virus appear to be geographically separated, with an origin of west African strains in east Africa. African strains of the virus were not re-sampled in Saudi Arabia despite sampling approximately 1 year after importation from Africa. All local Arabian samples contained strains of the virus that belong to a novel recombinant clade (NRC) first detected in 2014 in Saudi Arabia. Reproduction number estimates informed by the sequences suggest sustained endemicity of NRC, with a mean Re of 1·16. INTERPRETATION Despite frequent imports of MERS-CoV with camels from Africa, African lineages of MERS-CoV do not establish themselves in Saudi Arabia. Arabian strains of the virus should be tested for changes in virulence and transmissibility. FUNDING German Ministry of Research and Education, EU Horizon 2020, and Emerging Diseases Clinical Trials Partnership.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Ahmed M Tolah
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Science, Division of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad B Al Masaudi
- Department of Biological Science, Division of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marcel A Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Tobias Bleicker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Steve M Harakeh
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman A Alzahrani
- Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia
| | - Ghaleb A Alsaaidi
- Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia
| | - Abdulaziz N Alagili
- Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anwar M Hashem
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, UK; NIHR Biomedical Research Centre, University College London Hospitals, London, UK
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany.
| | - Esam I Azhar
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Kardjadj M, Diallo A, Lancelot R. TADs in the Dromedary. TRANSBOUNDARY ANIMAL DISEASES IN SAHELIAN AFRICA AND CONNECTED REGIONS 2019. [PMCID: PMC7122668 DOI: 10.1007/978-3-030-25385-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moustafa Kardjadj
- Ecole Supérieure en Science de l’Aliment et des Industries Agro-Alimentaire, Algiers, Algeria; Laboratoire de Recherche «Santé et Productions Animales», Ecole Nationale Supérieure Vétérinaire d’Alger (ENSV), El-Alia, Algiers, Algeria
| | - Adama Diallo
- UMR ASTRE, CIRAD, Montpellier, France; ASTRE, Montpellier University, CIRAD, INRA, Montpellier, France, ISRA-LNERV, Dakar-Hann, Senegal
| | - Renaud Lancelot
- UMR ASTRE, CIRAD, Montpellier, France; ASTRE, Montpellier University, CIRAD, INRA, Montpellier, France
| |
Collapse
|
25
|
Dighe A, Jombart T, Van Kerkhove MD, Ferguson N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination. Epidemics 2019; 29:100350. [PMID: 31201040 PMCID: PMC6899506 DOI: 10.1016/j.epidem.2019.100350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Most adult dromedaries in Africa and the Middle East have been infected with MERS-CoV. Seroprevalence increases with age, while active infection is more common in calves. Prevalence is higher at sites where different dromedary populations mix. Further study is needed to determine if prevalence of infection varies seasonally.
Human infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is driven by recurring dromedary-to-human spill-over events, leading decision-makers to consider dromedary vaccination. Dromedary vaccine candidates in the development pipeline are showing hopeful results, but gaps in our understanding of the epidemiology of MERS-CoV in dromedaries must be addressed to design and evaluate potential vaccination strategies. We aim to bring together existing measures of MERS-CoV infection in dromedary camels to assess the distribution of infection, highlighting knowledge gaps and implications for animal vaccination. We systematically reviewed the published literature on MEDLINE, EMBASE and Web of Science that reported seroprevalence and/or prevalence of active MERS-CoV infection in dromedary camels from both cross-sectional and longitudinal studies. 60 studies met our eligibility criteria. Qualitative syntheses determined that MERS-CoV seroprevalence increased with age up to 80–100% in adult dromedaries supporting geographically widespread endemicity of MERS-CoV in dromedaries in both the Arabian Peninsula and countries exporting dromedaries from Africa. The high prevalence of active infection measured in juveniles and at sites where dromedary populations mix should guide further investigation – particularly of dromedary movement – and inform vaccination strategy design and evaluation through mathematical modelling.
Collapse
Affiliation(s)
- Amy Dighe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Thibaut Jombart
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, United Kingdom; UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| | - Maria D Van Kerkhove
- Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, CH-1211, Geneva, Switzerland.
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| |
Collapse
|
26
|
Zhu S, Zimmerman D, Deem SL. A Review of Zoonotic Pathogens of Dromedary Camels. ECOHEALTH 2019; 16:356-377. [PMID: 31140075 PMCID: PMC7087575 DOI: 10.1007/s10393-019-01413-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Dromedary, or one-humped, camels Camelus dromedarius are an almost exclusively domesticated species that are common in arid areas as both beasts of burden and production animals for meat and milk. Currently, there are approximately 30 million dromedary camels, with highest numbers in Africa and the Middle East. The hardiness of camels in arid regions has made humans more dependent on them, especially as a stable protein source. Camels also carry and may transmit disease-causing agents to humans and other animals. The ability for camels to act as a point source or vector for disease is a concern due to increasing human demands for meat, lack of biosafety and biosecurity protocols in many regions, and a growth in the interface with wildlife as camel herds become sympatric with non-domestic species. We conducted a literature review of camel-borne zoonotic diseases and found that the majority of publications (65%) focused on Middle East respiratory syndrome (MERS), brucellosis, Echinococcus granulosus, and Rift Valley fever. The high fatality from MERS outbreaks during 2012-2016 elicited an immediate response from the research community as demonstrated by a surge of MERS-related publications. However, we contend that other camel-borne diseases such as Yersinia pestis, Coxiella burnetii, and Crimean-Congo hemorrhagic fever are just as important to include in surveillance efforts. Camel populations, particularly in sub-Saharan Africa, are increasing exponentially in response to prolonged droughts, and thus, the risk of zoonoses increases as well. In this review, we provide an overview of the major zoonotic diseases present in dromedary camels, their risk to humans, and recommendations to minimize spillover events.
Collapse
Affiliation(s)
- Sophie Zhu
- Graduate Group in Epidemiology, University of California, Davis, CA, 95616, USA.
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, 20008, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO, 63110, USA
| |
Collapse
|
27
|
Islam A, Epstein JH, Rostal MK, Islam S, Rahman MZ, Hossain ME, Uzzaman MS, Munster VJ, Peiris M, Flora MS, Rahman M, Daszak P. Middle East Respiratory Syndrome Coronavirus Antibodies in Dromedary Camels, Bangladesh, 2015. Emerg Infect Dis 2019; 24:926-928. [PMID: 29664373 PMCID: PMC5938793 DOI: 10.3201/eid2405.171192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dromedary camels are bred domestically and imported into Bangladesh. In 2015, of 55 camels tested for Middle East respiratory syndrome coronavirus in Dhaka, 17 (31%) were seropositive, including 1 bred locally. None were PCR positive. The potential for infected camels in urban markets could have public health implications and warrants further investigation.
Collapse
|
28
|
Kiambi S, Corman VM, Sitawa R, Githinji J, Ngoci J, Ozomata AS, Gardner E, von Dobschuetz S, Morzaria S, Kimutai J, Schroeder S, Njagi O, Simpkin P, Rugalema G, Tadesse Z, Lubroth J, Makonnen Y, Drosten C, Müller MA, Fasina FO. Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017. Emerg Microbes Infect 2018; 7:195. [PMID: 30482895 PMCID: PMC6258726 DOI: 10.1038/s41426-018-0193-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Stella Kiambi
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Rina Sitawa
- Directorate of Veterinary Services, Nairobi, Kenya
| | | | - James Ngoci
- Directorate of Veterinary Services, Nairobi, Kenya
| | | | - Emma Gardner
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | | | - Subhash Morzaria
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Joshua Kimutai
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Simon Schroeder
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | | - Piers Simpkin
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Gabriel Rugalema
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Zelalem Tadesse
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Juan Lubroth
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Centre for Infection Research, associated partner Charité, Berlin, Germany
| | - Marcel A Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.
- German Centre for Infection Research, associated partner Charité, Berlin, Germany.
| | - Folorunso O Fasina
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| |
Collapse
|
29
|
Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 2018; 93:265-285. [PMID: 30413355 PMCID: PMC7127703 DOI: 10.1016/j.diagmicrobio.2018.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. 2220 laboratory-confirmed cases of MERS-CoV resulting in at least 790 deaths since 2012 MERS-CoV is on the WHO list of priority blueprint diseases Zoonotic and human-to-human transmission modes need further clarification. No specific therapy has yet been approved. There is a need for well-controlled clinical trials on potential direct therapies.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, and Al-Faisal University, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Samer Salih
- Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Ahmed AE, Al-Jahdali H, Alshukairi AN, Alaqeel M, Siddiq SS, Alsaab H, Sakr EA, Alyahya HA, Alandonisi MM, Subedar AT, Aloudah NM, Baharoon S, Alsalamah MA, Al Johani S, Alghamdi MG. Early identification of pneumonia patients at increased risk of Middle East respiratory syndrome coronavirus infection in Saudi Arabia. Int J Infect Dis 2018; 70:51-56. [PMID: 29550445 PMCID: PMC7110544 DOI: 10.1016/j.ijid.2018.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 01/13/2023] Open
Abstract
Background The rapid and accurate identification of individuals who are at high risk of Middle East respiratory syndrome coronavirus (MERS-CoV) infection remains a major challenge for the medical and scientific communities. The aim of this study was to develop and validate a risk prediction model for the screening of suspected cases of MERS-CoV infection in patients who have developed pneumonia. Methods A two-center, retrospective case–control study was performed. A total of 360 patients with confirmed pneumonia who were evaluated for MERS-CoV infection by real-time reverse transcription polymerase chain reaction (rRT-PCR) between September 1, 2012 and June 1, 2016 at King Abdulaziz Medical City in Riyadh and King Fahad General Hospital in Jeddah, were included. According to the rRT-PCR results, 135 patients were positive for MERS-CoV and 225 were negative. Demographic characteristics, clinical presentations, and radiological and laboratory findings were collected for each subject. Results A risk prediction model to identify pneumonia patients at increased risk of MERS-CoV was developed. The model included male sex, contact with a sick patient or camel, diabetes, severe illness, low white blood cell (WBC) count, low alanine aminotransferase (ALT), and high aspartate aminotransferase (AST). The model performed well in predicting MERS-CoV infection (area under the receiver operating characteristics curves (AUC) 0.8162), on internal validation (AUC 0.8037), and on a goodness-of-fit test (p = 0.592). The risk prediction model, which produced an optimal probability cut-off of 0.33, had a sensitivity of 0.716 and specificity of 0.783. Conclusions This study provides a simple, practical, and valid algorithm to identify pneumonia patients at increased risk of MERS-CoV infection. This risk prediction model could be useful for the early identification of patients at the highest risk of MERS-CoV infection. Further validation of the prediction model on a large prospective cohort of representative patients with pneumonia is necessary.
Collapse
Affiliation(s)
- Anwar E Ahmed
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Hamdan Al-Jahdali
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Abeer N Alshukairi
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| | - Mody Alaqeel
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh 11426, Saudi Arabia.
| | | | - Hanan Alsaab
- King Fahad General Hospital, Jeddah, Saudi Arabia.
| | | | | | | | | | | | - Salim Baharoon
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Majid A Alsalamah
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Sameera Al Johani
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh 11426, Saudi Arabia.
| | | |
Collapse
|
31
|
Abstract
New world (NW) camelids, alpaca, llama, vicuña, and guanaco, and old world (OW) camelids, Bactrian and dromedary camels are related and have many of the same anatomical features and disease susceptibilities though they are also very different. Only the free-ranging population of wild Bactrian camel is endangered. Bactrian camels held in zoos are generally of domestic origin. Vicuña are listed as vulnerable. In addition to those camelids held in captivity, there are domesticated populations of camelids (except vicuña and guanaco) maintained throughout the world. Most are fairly hardy animals, but there are some specific disease concerns. Domesticated llamas and alpacas have become hobby pets and thus management and genetic issues are an increasing source of disease. These include obesity, vitamin and mineral deficiencies and intoxications, metabolic derangements, and congenital malformations (particularly in the young). Domesticated animals are also more prone to degenerative arthropathy and dental disease as they age than wild camelids. Ovarian hydrobursitis is an important source of infertility in dromedaries. Important infectious diseases include coccidiosis, bovine viral diarrhea virus, alpaca fever, and meningeal worm of NW camelids, trypanosomiasis and camelpox in OW camels, and foot and mouth disease in Bactrian camels and NW camelids. These and other disease processes are discussed in this chapter.
Collapse
|
32
|
An Opportunistic Pathogen Afforded Ample Opportunities: Middle East Respiratory Syndrome Coronavirus. Viruses 2017; 9:v9120369. [PMID: 29207494 PMCID: PMC5744144 DOI: 10.3390/v9120369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023] Open
Abstract
The human coronaviruses (CoV) include HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, some of which have been known for decades. The severe acute respiratory syndrome (SARS) CoV briefly emerged into the human population but was controlled. In 2012, another novel severely human pathogenic CoV—the Middle East Respiratory Syndrome (MERS)-CoV—was identified in the Kingdom of Saudi Arabia; 80% of over 2000 human cases have been recorded over five years. Targeted research remains key to developing control strategies for MERS-CoV, a cause of mild illness in its camel reservoir. A new therapeutic toolbox being developed in response to MERS is also teaching us more about how CoVs cause disease. Travel-related cases continue to challenge the world’s surveillance and response capabilities, and more data are needed to understand unexplained primary transmission. Signs of genetic change have been recorded, but it remains unclear whether there is any impact on clinical disease. How camels came to carry the virus remains academic to the control of MERS. To date, human-to-human transmission has been inefficient, but virus surveillance, characterisation, and reporting are key to responding to any future change. MERS-CoV is not currently a pandemic threat; it is spread mainly with the aid of human habit and error.
Collapse
|
33
|
Rezza G, Ippolito G. The Middle East Respiratory Syndrome Coronavirus - A Continuing Risk to Global Health Security. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 972:49-60. [PMID: 27966107 PMCID: PMC7119928 DOI: 10.1007/5584_2016_133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two new zoonotic coronaviruses causing disease in humans (Zumla et al. 2015a; Hui and Zumla 2015; Peiris et al. 2003; Yu et al. 2014) have been the focus of international attention for the past 14 years due to their epidemic potential; (1) The Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) (Peiris et al. 2003) first discovered in China in 2001 caused a major global epidemic of the Severe Acute Respiratory Syndrome (SARS). (2) The Middle East respiratory syndrome coronavirus (MERS-CoV) is a new corona virus isolated for the first time in a patients who died of severe lower respiratory tract infection in Jeddah (Saudi Arabia) in June 2012 (Zaki et al. 2012). The disease has been named Middle East Respiratory Syndrome (MERS) and it has remained on the radar of global public health authorities because of recurrent nosocomial and community outbreaks, and its association with severe disease and high mortality rates (Assiri et al. 2013a; Al-Abdallat et al. 2014; Memish et al. 2013a; Oboho et al. 2015; The WHO MERS-CoV Research Group 2013; Cotten et al. 2013a; Assiri et al. 2013b; Memish et al. 2013b; Azhar et al. 2014; Kim et al. 2015; Wang et al. 2015; Hui et al. 2015a). Cases of MERS have been reported from all continents and have been linked with travel to the Middle East (Hui et al. 2015a; WHO 2015c). The World Health Organization (WHO) have held nine meetings of the Emergency Committee (EC) convened by the Director-General under the International Health Regulations (IHR 2005) regarding MERS-CoV (WHO 2015c). There is wishful anticipation in the political and scientific communities that MERS-CoV like SARS-CoV will disappear with time. However it's been nearly 4 years since the first discovery of MERS-CoV, and MERS cases continue to be reported throughout the year from the Middle East (WHO 2015c). There is a large MERS-CoV camel reservoir, and there is no specific treatment or vaccine (Zumla et al. 2015a). With 10 million people visiting Saudi Arabia every year for Umrah and/or Hajj, the potential risk of global spread is ever present (Memish et al. 2014a; McCloskey et al. 2014; Al-Tawfiq et al. 2014a).
Collapse
|