1
|
Gao YY, Wang Q, Li HW, Zhang S, Zhao J, Bao D, Zhao H, Wang K, Hu GX, Gao FS. Genomic composition and pathomechanisms of porcine circoviruses: A review. Virulence 2024; 15:2439524. [PMID: 39662970 PMCID: PMC11639455 DOI: 10.1080/21505594.2024.2439524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Porcine circovirus (PCV) belongs to the genus Circovirus within the family Circoviridae; it has the smallest genome and a complicated classification system comprising PCV1, PCV2, PCV3, and PCV4. Most types of these viruses can cause animals to develop serious diseases; in pigs in particular, it may manifest as postweaning multisystemic wasting syndrome (PMWS), reproductive failure, porcine dermatitis and nephropathy syndrome (PDNS), congenital tremors (CTs), proliferative and necrotizing pneumonia (PNP), lymphoid injury, and immunosuppression. Different types of PCVs cause different types of diseases and sometimes feature no pathogenicity; these various PCV types are associated with different pathomechanisms in animals. In this review, the genomic composition and systemic pathomechanisms of porcine circoviruses are introduced, and future research prospects are discussed.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Qian Wang
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Han-Wen Li
- College of Life Sciences, Nankai University, Tianjing, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Jian Zhao
- ChangChun Sino Biotechnology CO. LTD, Changchun, Jilin, China
| | - Di Bao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Feng-Shan Gao
- College of Life and Health, Dalian University, Dalian, China
- The Dalian Animal Virus Antigen Epitope Screening and Protein Engineering Drug Developing Key Laboratory, Dalian, China
| |
Collapse
|
2
|
Franzo G, Tucciarone CM, Legnardi M, Drigo M, Segalés J. An updated phylogeography and population dynamics of porcine circovirus 2 genotypes: are they reaching an equilibrium? Front Microbiol 2024; 15:1500498. [PMID: 39534503 PMCID: PMC11554664 DOI: 10.3389/fmicb.2024.1500498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Porcine circovirus 2 (PCV2) emerged more than three decades ago as one of the most impactful pathogens in the swine industry. Despite being a DNA virus, one of the hallmarks of PCV2 is its high evolutionary rate, which has led to the emergence of different genotypes, each exhibiting varying degrees of evolutionary success. Current knowledge suggests the occurrence of three main waves of genotype dominance, alternating over time (i.e., PCV2a, PCV2b, and PCV2d), alongside less prevalent genotypes. However, although PCV2d is currently the most common genotype nowadays, the others continue being circulating in the pig population. Methods The present study reconsidered the epidemiological and evolutionary patterns of PCV2 genotypes using phylodynamic analyses, benefiting from an almost 10-fold increase in ORF2 sequence availability compared to previous studies. Additionally, a phylogeographic analysis was performed to investigate viral dispersal patterns and frequency, and the selective pressures acting on the capsid protein were estimated and compared among genotypes. Results While successive emergence of major genotypes was confirmed, this study extends previous findings by revealing subsequent prevalence fluctuations of PCV2a and PCV2b after their initial decline. This evolutionary process may represent an example of balancing selection, specifically negative frequency-dependent selection, where a genotype fitness diminishes as it becomes more common, and vice versa. Variations in genotype- or clade-specific immunity-affected by the local prevalence of viral groups-combined with the periodic introduction of strains that have independently evolved in different regions, may have led to fluctuations in the population dynamics of major genotypes over time. These fluctuations were associated with ongoing evolution and variations in the capsid amino acid profile. Discussion These findings have profound implications for future control strategies. Although PCV2d remains the most prevalent and widespread genotype, other genotypes should not be neglected. Control strategies should thus target the entire PCV2 population, with a focus on fostering broader and more cross-protective immunity.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| |
Collapse
|
3
|
Xiao Q, Qu M, Xie J, Zhu C, Shan Y, Mao A, Qian W, Zhu J, Guo J, Lang D, Niu J, Wen L, He K. Frequency and Genetic Analysis of Porcine Circovirus Type 2, Which Circulated between 2014 and 2021 in Jiangsu, China. Animals (Basel) 2024; 14:2882. [PMID: 39409831 PMCID: PMC11482567 DOI: 10.3390/ani14192882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Porcine circovirus-associated diseases, caused by porcine circovirus type 2 (PCV2), are widespread and result in significant economic losses to the global swine industry. PCV2 can currently be divided into nine genotypes (PCV2a to PCV2i), with the currently dominant one being the PCV2d genotype. In this study, 2675 samples from 804 pig farms in 13 cities in Jiangsu Province, China, were collected between 2014 and 2021 and subjected to polymerase chain reaction analysis to investigate the frequency and genetic diversity of PCV2. The results showed that 41.42% (1108/2675) of samples tested positive for PCV2. The researchers further analyzed the genetic characteristics of 251 PCV2 strains and found that they belonged to the following four genotypes: PCV2a, PCV2b, PCV2d, and PCV2i. The dominant genotype was PCV2d, with a frequency of 49.80% (125/251). The detection rate of PCV2b was significantly higher than those of PCV2a and PCV2i, at 35.46% (89/251), 7.57% (19/251), and 7.17% (18/251), respectively. The percentage of different genotypes of PCV2 varied irregularly over time. We have further revealed the fingerprint of PCV2i genomic nucleotides for the first time. In conclusion, this study illustrates the high frequency and evolutionary features of PCV2 in Jiangsu Province over the past few years.
Collapse
Affiliation(s)
- Qi Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Meng Qu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jianping Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Cigen Zhu
- Jiangsu Animal Husbandry Station, Nanjing 210036, China;
| | - Yuping Shan
- Animal Husbandry and Veterinary Station of Lianyungang, Lianyungang 222000, China;
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Wenxian Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jiaping Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jiahui Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Dong Lang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jiaqiang Niu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Linzhi 860000, China;
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
4
|
Faustini G, Poletto F, Baston R, Tucciarone CM, Legnardi M, Dal Maso M, Genna V, Fiorentini L, Di Donato A, Perulli S, Cecchinato M, Drigo M, Franzo G. D for dominant: porcine circovirus 2d (PCV-2d) prevalence over other genotypes in wild boars and higher viral flows from domestic pigs in Italy. Front Microbiol 2024; 15:1412615. [PMID: 38952451 PMCID: PMC11215180 DOI: 10.3389/fmicb.2024.1412615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Porcine circovirus 2 (PCV-2) is a key pathogen for the swine industry at a global level. Nine genotypes, differing in epidemiology and potentially virulence, emerged over time, with PCV-2a, -2b, and -2d being the most widespread and clinically relevant. Conversely, the distribution of minor genotypes appears geographically and temporally restricted, suggesting lower virulence and different epidemiological drivers. In 2022, PCV-2e, the most genetically and phenotypically divergent genotype, was identified in multiple rural farms in North-eastern Italy. Since rural pigs often have access to outdoor environment, the introduction from wild boars was investigated. Methods Through a molecular and spatial approach, this study investigated the epidemiology and genetic diversity of PCV-2 in 122 wild boars across different provinces of North-eastern Italy. Results Molecular analysis revealed a high PCV-2 frequency (81.1%, 99/122), and classified the majority of strains as PCV-2d (96.3%, 78/81), with sporadic occurrences of PCV-2a (1.2%, 1/81) and PCV-2b (2.5%, 2/81) genotypes. A viral flow directed primarily from domestic pigs to wild boars was estimated by phylogenetic and phylodynamic analyses. Discussion These findings attested that the genotype replacement so far described only in the Italian domestic swine sector occurred also in wild boars. and suggested that the current heterogeneity of PCV-2d strains in Italian wild boars likely depends more on different introduction events from the domestic population rather than the presence of independent evolutionary pressures. While this might suggest PCV-2 circulation in wild boars having a marginal impact in the industrial sector, the sharing of PCV-2d strains across distinct wild populations, in absence of a consistent geographical pattern, suggests a complex interplay between domestic and wild pig populations, emphasizing the importance of improved biosecurity measures to mitigate the risk of pathogen transmission.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Francesca Poletto
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Riccardo Baston
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | | | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Mariangela Dal Maso
- AULSS 8 Berica, Dipartimento di Prevenzione, Servizi Veterinari, Vicenza, Italy
| | | | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia Romagna (IZSLER), Forlì, Forlì-Cesena, Italy
| | | | - Simona Perulli
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia Romagna (IZSLER), Forlì, Forlì-Cesena, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| |
Collapse
|
5
|
Wang Y, Xu F, Yuan C, Zhang Y, Ren J, Yue H, Ma T, Song Q. Comparison of immune effects of porcine circovirus type 2d (PCV2d) capsid protein expressed by Escherichia coli and baculovirus-insect cells. Vaccine 2024; 42:2848-2857. [PMID: 38514351 DOI: 10.1016/j.vaccine.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen harmful to global pig production, which causes immunosuppression and serious economic losses. PCV2 capsid (Cap) protein expressed by E. coli or baculovirus-insect cells are often used in preparation of PCV2 subunit vaccines, but the latter is expensive to produce. It is therefore crucial to comparison of the immune effects of Cap protein expressed by the above two expression systems for reducing the production cost and guaranteeing PCV2 vaccine quality. In this study, the PCV2d-Cap protein lacking nuclear localization signal (NLS), designated as E. coli-Cap and Bac-Cap, was expressed by E. coli and baculovirus-Spodoptera frugiperda Sf9 (Bac-Sf9) cells, respectively. The expressed Cap proteins could self-assemble into virus-like particles (VLPs), but the Bac-Cap-assembled VLPs were more regular. The two system-expressed Cap proteins induced similar specific IgG responses in mice, but the neutralizing antibody levels of Bac-Cap-immunized mice was higher than those of E. coli-Cap. After PCV2 challenge, IL-10 in Bac-Cap immunized mice decreased significantly than that in E. coli-Cap. The lesions and PCV2 antigen positive cells in tissues of mice immunized with E. coli-Cap and Bac-Cap were significantly reduced, and Bac-Cap appeared mild lesions and fewer PCV2 antigen-positive cells compared with E. coli-Cap immunized mice. The study indicated that Cap proteins expressed by E. coli and Bac-Sf9 cells could induce specific protective immunity, but the latter induced more effective immunity, which provides valuable information for the research and development of PCV2 vaccine.
Collapse
Affiliation(s)
- Yawen Wang
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Fan Xu
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Chen Yuan
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Yanan Zhang
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Jing Ren
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Huaining Yue
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Tiantian Ma
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Qinye Song
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Zhou J, Zhao J, Sun H, Dai B, Zhu N, Dai Q, Qiu Y, Wang D, Cui Y, Guo J, Feng X, Hou L, Liu J. DEAD-box RNA helicase 21 interacts with porcine circovirus type 2 Cap protein and facilitates viral replication. Front Microbiol 2024; 15:1298106. [PMID: 38380105 PMCID: PMC10877017 DOI: 10.3389/fmicb.2024.1298106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases that pose a serious threat to the swine industry. PCV2 capsid (Cap) protein has been shown to interact with DEAD-box RNA helicase 21 (DDX21), an important protein that regulates RNA virus replication. However, whether the interaction between DDX21 and the PCV2 Cap regulates PCV2 replication remains unclear. Herein, by using western blotting, interaction assays, and knockdown analysis, we found that PCV2 infection induced the cytoplasmic relocation of DDX21 from the nucleolus in cultured PK-15 cells. Moreover, the nuclear localization signal (NLS) of PCV2 Cap interacted directly with DDX21. The NLS of PCV2 Cap and 763GSRSNRFQNK772 residues at the C-terminal domain (CTD) of DDX21 were essential for the dual interaction. Upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV2 replication via a lentivirus-delivered system, as evidenced by decreased levels of viral protein expression and virus production. In contrast, the replication of PCV2 increased in transiently DDX21-overexpressing cells. Our results indicate that DDX21 interacts with PCV2 Cap and plays a crucial role in virus replication. These results provide a reference for developing novel potential targets for prevention and control of PCV2 infection.
Collapse
Affiliation(s)
- Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Beining Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Dei Giudici S, Mura L, Bonelli P, Hawko S, Angioi PP, Sechi AM, Denti S, Sulas A, Burrai GP, Madrau MP, Antuofermo E, Oggiano A. Evidence of Porcine Circovirus Type 2 (PCV2) Genetic Shift from PCV2b to PCV2d Genotype in Sardinia, Italy. Viruses 2023; 15:2157. [PMID: 38005836 PMCID: PMC10674684 DOI: 10.3390/v15112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Porcine Circovirus type 2 (PCV2) is the etiological agent of a disease syndrome named Porcine Circovirus disease (PCVD), representing an important threat for the pig industry. The increasing international trade of live animals and the development of intensive pig farming seem to have sustained the spreading of PCVD on a global scale. Recent classification criteria allowed the identification of nine different PCV2 genotypes (PCV2a-i). PCV2a was the first genotype detected with the highest frequency from the late 1990s to 2000, which was then superseded by PCV2b (first genotype shift). An ongoing genotype shift is now determining increasing prevalence rates of PCV2d, in replacement of PCV2b. In Italy, a complete genotype replacement was not evidenced yet. The present study was carried out on 369 samples originating from domestic pigs, free-ranging pigs, and wild boars collected in Sardinia between 2020 and 2022, with the aim to update the last survey performed on samples collected during 2009-2013. Fifty-seven complete ORF2 sequences were obtained, and the phylogenetic and network analyses evidenced that 56 out of 57 strains belong to the PCV2d genotype and only one strain to PCV2b, thus showing the occurrence of a genotype shift from PCV2b to PCV2d in Sardinia.
Collapse
Affiliation(s)
- Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Piero Bonelli
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.H.); (G.P.B.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Anna Maria Sechi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Stefano Denti
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Antonella Sulas
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.H.); (G.P.B.); (E.A.)
| | - Maria Paola Madrau
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.H.); (G.P.B.); (E.A.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| |
Collapse
|
8
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
9
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
10
|
Faustini G, Tucciarone CM, Legnardi M, Grassi L, Berto G, Drigo M, Cecchinato M, Franzo G. Into the backyard: Multiple detections of PCV-2e in rural pig farms of Northern Italy. An unexpected ecological niche? Prev Vet Med 2023; 216:105943. [PMID: 37216841 DOI: 10.1016/j.prevetmed.2023.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Porcine circovirus type 2 (PCV-2) is among the most burdensome viruses of the swine industry globally. Several genotypes have been periodically emerging, but just three of them (PCV-2a, PCV-2b, and PCV-2d) seem to circulate worldwide and be associated with the disease. Conversely, the spatial-temporal distribution of minor genotypes appears limited and their clinical relevance is still unclear. Recently PCV-2e was incidentally detected for the first time in Europe in a breeding farm in Northeastern Italy, while no connection could be established with countries where this genotype had been previously detected. To investigate circulating genotypes in the neglected rural context and provide a comparison with the most explored industrial context, a molecular survey was performed on samples collected in rural (n = 72) and industrial farms (n = 110) located in the same geographic area. Phylogenetic analysis surprisingly evidenced PCV-2e circulation only in pigs reared in backyard farms (n = 5), while major genotypes (PCV-2a, -2b, -2d) circulate in both rearing contexts. However, the close genetic similarity between the herein detected PCV-2e strains and the previously reported one testify that, although unusual, such rural-to-industrial strains exchange affected also PCV-2e. The greater genetic and phenotypic diversity of PCV-2e genotype compared to other ones might threaten the protection granted by current vaccines. The present study suggests the rural context as an ecological niche for the circulation of PCV-2e, and even of other minor genotypes. PCV-2e detection in pigs with outdoor access further stresses the epidemiological role of backyard farms as interfaces for pathogen introduction, potentially ascribable to the different rearing approaches, lower managerial and biosecurity capabilities, and easier contacts with wildlife.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Giacomo Berto
- Dipartimento di Prevenzione, AULSS 8 Berica, Via Giovanni Giuseppe Cappellari 6, Vicenza 36100, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy.
| |
Collapse
|
11
|
Zhou Y, Zhou X, Dong W, Zhang Y, Du J, Zhou X, Fang W, Wang X, Song H. Porcine circovirus type 2 induces CHOP-ERO1α-ROS-mediated apoptosis in PK-15 cells. Vet Microbiol 2022; 273:109548. [PMID: 36037618 DOI: 10.1016/j.vetmic.2022.109548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
Porcine circovirus type 2 (PCV2) infection induces endoplasmic reticulum (ER) stress and oxidative stress. These cellular responses could be connected with apoptosis. However, the mechanisms that link ER stress and oxidative stress in PCV2-induced apoptosis are poorly characterized. Here, we demonstrate that PCV2 infection increased expression of proapoptotic protein C/EBP homologous protein (CHOP) and ER oxidoreductase 1 alpha (ERO1α). Inhibition of CHOP by RNA silencing or inhibition of ERO1α by short hairpin RNA or EN460 repressed PCV2-induced reactive oxygen species (ROS) generation, cytosolic calcium level, and apoptotic rate in PK-15 cells. Overexpression of ERO1α enhanced PCV2-induced oxidative stress, caspase-3 cleavage, and apoptosis rate. Treatment of PCV2-infected cells with ROS scavenger N-acetyl-L-cysteine downregulated PCV2-induced ROS production, cytosolic calcium level, and apoptosis rate, but intriguingly decreased expression of CHOP and ERO1α. Thus, we propose that PCV2 induces apoptosis through ER Stress via CHOP-ERO1α-ROS signaling in host cells.
Collapse
Affiliation(s)
- Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Xiaojie Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Yuxin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| |
Collapse
|
12
|
Pan H, Huan C, Zhang W, Hou Y, Zhou Z, Yao J, Gao S. PDZK1 upregulates nitric oxide production through the PI3K/ERK2 pathway to inhibit porcine circovirus type 2 replication. Vet Microbiol 2022; 272:109514. [PMID: 35917623 DOI: 10.1016/j.vetmic.2022.109514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ziyan Zhou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
13
|
Interaction Network of Porcine Circovirus Type 3 and 4 Capsids with Host Proteins. Viruses 2022; 14:v14050939. [PMID: 35632681 PMCID: PMC9144384 DOI: 10.3390/v14050939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
An extensive understanding of the interactions between host cellular and viral proteins provides clues for studying novel antiviral strategies. Porcine circovirus type 3 (PCV3) and type 4 (PCV4) have recently been identified as viruses that can potentially damage the swine industry. Herein, 401 putative PCV3 Cap-binding and 484 putative PCV4 Cap-binding proteins were characterized using co-immunoprecipitation and liquid chromatography-mass spectrometry. Both PCV3 and PCV4 Caps shared 278 identical interacting proteins, but some putative interacting proteins (123 for PCV3 Cap and 206 for PCV4 Cap) differed. A protein-protein interaction network was constructed, and according to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, both PCV3 Cap- and PCV4 Cap-binding proteins participated mainly in ribosome biogenesis, nucleic acid binding, and ATP-dependent RNA helicase activities. Verification assays of eight putative interacting proteins indicated that nucleophosmin-1, nucleolin, DEAD-box RNA helicase 21, heterogeneous nuclear ribonucleoprotein A2/B1, YTH N6-methyladenosine RNA binding protein 1, and Y-box binding protein 1 bound directly to both PCV3 and PCV4 Caps, but ring finger protein 2 and signal transducer and activator of transcription 6 did not. Therefore, the interaction network provided helpful information to support further research into the underlying mechanisms of PCV3 and PCV4 infection.
Collapse
|
14
|
Genetic Diversity of Porcine Circovirus 2 in Wild Boar and Domestic Pigs in Ukraine. Viruses 2022; 14:v14050924. [PMID: 35632666 PMCID: PMC9142977 DOI: 10.3390/v14050924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is responsible for a number of porcine circovirus-associated diseases (PCVAD) that can severely impact domestic pig herds. For a non-enveloped virus with a small genome (1.7 kb ssDNA), PCV2 is remarkably diverse, with eight genotypes (a–h). New genotypes of PCV2 can spread through the migration of wild boar, which are thought to infect domestic pigs and spread further through the domestic pig trade. Despite a large swine population, the diversity of PCV2 genotypes in Ukraine has been under-sampled, with few PCV2 genome sequences reported in the past decade. To gain a deeper understanding of PCV2 genotype diversity in Ukraine, samples of blood serum were collected from wild boars (n = 107) that were hunted in Ukraine during the November–December 2012 hunting season. We found 34/107 (31.8%) prevalence of PCV2 by diagnostic PCR. For domestic pigs, liver samples (n = 16) were collected from a commercial market near Kharkiv in 2019, of which 6 out of 16 (37%) samples were positive for PCV2. We sequenced the genotyping locus ORF2, a gene encoding the PCV2 viral capsid (Cap), for 11 wild boar and six domestic pig samples in Ukraine using an Oxford Nanopore MinION device. Of 17 samples with resolved genotypes, the PCV2 genotype b was the most common in wild boar samples (10 out of 11, 91%), while the domestic pigs were infected with genotypes b and d. We also detected genotype b/d and b/a co-infections in wild boars and domestic pigs, respectively, and for the first time in Ukraine we detected genotype f in a wild boar from Poltava. Building a maximum-likelihood phylogeny, we identified a sublineage of PCV2 genotype b infections in both wild and domestic swine, suggesting a possible epizootic cluster and an ecological interaction between wild boar and domestic pig populations in northeastern Ukraine.
Collapse
|
15
|
Molecular Detection and Genetic Characterization of Porcine Circovirus 2 (PCV-2) in Black-Backed Jackal (Lupulella mesomelas) in Namibia. Animals (Basel) 2022; 12:ani12050620. [PMID: 35268189 PMCID: PMC8909721 DOI: 10.3390/ani12050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the genus Circovirus have been identified in several host species. While initially considered host-specific, there is growing evidence of their presence in unexpected hosts. Porcine circovirus 2 (PCV-2) is no exception, having been reported in animals belonging to different orders, including carnivores. Recently, PCV-2 was detected in domestic pigs, warthogs and antelopes in Namibia. Considering the potential contact between these populations and wild carnivores, the presence of PCV-2 was investigated in 32 black-backed jackals (Lupulella mesomelas) shot between February and July 2021 as part of predator control operations in Namibia. Two lung lymph nodes tested positive for PCV-2 by PCR, confirming the broader-than-expected PCV-2 host tropism and the susceptibility of canids. Sequence analysis demonstrated a close association between the PCV-2s identified in the jackals and PCV-2b strains collected from South African domestic pigs. Although several hypotheses regarding the source of the jackal’s infection are proposed, further studies should be performed to properly assess how PCV-2 is acquired and maintained in the wild and its potential impact on wild and domestic species.
Collapse
|
16
|
Li N, Liu J, Qi J, Hao F, Xu L, Guo K. Genetic Diversity and Prevalence of Porcine Circovirus Type 2 in China During 2000-2019. Front Vet Sci 2022; 8:788172. [PMID: 34977219 PMCID: PMC8717868 DOI: 10.3389/fvets.2021.788172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
As the major pathogen for porcine circovirus-associated disease (PCVAD), porcine circovirus type 2 (PCV2) is no longer treated as an emerging virus anymore. The wide distribution of PCV2 infection in China causes huge economic losses in the swine industry. Currently, it is generally believed that PCV2 has eight genotypes (PCV2a to PCV2h), with PCV2a, PCV2b, and PCV2d being widely distributed. To comprehensively explore the genetic diversity and prevalence of PCV2 in China, PCV-2 sequences submitted from China in the GenBank database were retrieved. With a total of 714 PCV2 strains were retrieved, we found that early-submitted PCV2 sequences were mainly collected from coastal provinces in the southeast part of China, which may indicate PCV2 was initially circulating in those regions. From 2002 to 2008, PCV2b was the dominant prevalent genotype in those retrieved sequences. From 2009, PCV2d became the dominant genotype in those sequences, dropping a hint that a potential shift of PCV2b to PCV2d might occur in 2009, which is similar to the patterns at the global level. In addition to the PCV2a, PCV2b, and PCV2d genotypes, novel strains were also characterized. We further revealed that the amino acid sequences consistency of PCV2a Cap is higher than those in other genotypes. Together, this study provided clues for the possible prevalent genotypes and dynamics of genetic diversity in China from 2000 to 2019.
Collapse
Affiliation(s)
- Ning Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiali Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Feng Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Franzo G, Settypalli TBK, Agusi ER, Meseko C, Minoungou G, Ouoba BL, Habibata ZL, Wade A, de Barros JL, Tshilenge CG, Gelaye E, Yami M, Gizaw D, Chibssa TR, Anahory IV, Mapaco LP, Achá SJ, Ijomanta J, Jambol AR, Adedeji AJ, Luka PD, Shamaki D, Diop M, Bakhoum MT, Lo MM, Chang'a JS, Magidanga B, Mayenga C, Ziba MW, Dautu G, Masembe C, Achenbach J, Molini U, Cattoli G, Lamien CE, Dundon WG. Porcine circovirus-2 in Africa: Identification of continent-specific clusters and evidence of independent viral introductions from Europe, North America and Asia. Transbound Emerg Dis 2021; 69:e1142-e1152. [PMID: 34812571 DOI: 10.1111/tbed.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023]
Abstract
Porcine circovirus-2 (PCV-2) is associated with several disease syndromes in domestic pigs that have a significant impact on global pig production and health. Currently, little is known about the status of PCV-2 in Africa. In this study, a total of 408 archived DNA samples collected from pigs in Burkina Faso, Cameroon, Cape Verde, Ethiopia, the Democratic Republic of the Congo, Mozambique, Nigeria, Senegal, Tanzania and Zambia between 2000 and 2018 were screened by PCR for the presence of PCV-2. Positive amplicons of the gene encoding the viral capsid protein (ORF2) were sequenced to determine the genotypes circulating in each country. Four of the nine currently known genotypes of PCV-2 were identified (i.e. PCV-2a, PCV-2b, PCV-2d and PCV-2 g) with more than one genotype being identified in Burkina Faso, Ethiopia, Nigeria, Mozambique, Senegal and Zambia. Additionally, a phylogeographic analysis which included 38 additional ORF2 gene sequences of PCV-2s previously identified in Mozambique, Namibia and South Africa from 2014 to 2016 and 2019 to 2020 and available in public databases, demonstrated the existence of several African-specific clusters and estimated the approximate time of introduction of PCV-2s into Africa from other continents. This is the first in-depth study of PCV-2 in Africa and it has important implications for pig production at both the small-holder and commercial farm level on the continent.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Clement Meseko
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | | | | | | | - Abel Wade
- National Veterinary Laboratory (LANAVET), Garoua, Cameroon
| | - José Luís de Barros
- Direction Génerale de l`Agriculture, Sylviculture et Élèvage, Direction des Services Vétérinaires, Cape Verde
| | | | - Esayas Gelaye
- National Veterinary Institute (NVI), Debre Zeit, Ethiopia
| | - Martha Yami
- National Veterinary Institute (NVI), Debre Zeit, Ethiopia
| | - Daniel Gizaw
- National Animal Health Diagnostic and Investigation Center (NAHDIC), Sebeta, Ethiopia
| | | | - Iolanda Vieira Anahory
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | - Lourenço P Mapaco
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | - Sara J Achá
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | | | | | | | - Pam Dachung Luka
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - David Shamaki
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Mariame Diop
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Mame Thierno Bakhoum
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Modou Moustapha Lo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Jelly S Chang'a
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Bishop Magidanga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Charles Mayenga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Maureen Wakwamba Ziba
- Department of Veterinary Services Ministry of Fisheries and Livestock, Central Veterinary Research Institute, Lusaka, Zambia
| | - George Dautu
- Department of Veterinary Services Ministry of Fisheries and Livestock, Central Veterinary Research Institute, Lusaka, Zambia
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia.,Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - William G Dundon
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
18
|
Computational based design and tracking of synthetic variants of Porcine circovirus reveal relations between silent genomic information and viral fitness. Sci Rep 2021; 11:10620. [PMID: 34012100 PMCID: PMC8134455 DOI: 10.1038/s41598-021-89918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Viral genomes not only code the protein content, but also include silent, overlapping codes which are important to the regulation of the viral life cycle and affect its evolution. Due to the high density of these codes, their non-modular nature and the complex intracellular processes they encode, the ability of current approaches to decipher them is very limited. We describe the first computational-experimental pipeline for studying the effects of viral silent and non-silent information on its fitness. The pipeline was implemented to study the Porcine Circovirus type 2 (PCV2), the shortest known eukaryotic virus, and includes the following steps: (1) Based on the analyses of 2100 variants of PCV, suspected silent codes were inferred. (2) Five hundred variants of the PCV2 were designed to include various ‘smart’ silent mutations. (3) Using state of the art synthetic biology approaches, the genomes of these five hundred variants were generated. (4) Competition experiments between the variants were performed in Porcine kidney-15 (PK15) cell-lines. (5) The variant titers were analyzed based on novel next-generation sequencing (NGS) experiments. (6) The features related to the titer of the variants were inferred and their analyses enabled detection of various novel silent functional sequence and structural motifs. Furthermore, we demonstrate that 50 of the silent variants exhibit higher fitness than the wildtype in the analyzed conditions.
Collapse
|
19
|
Emergence of porcine circovirus 2g (PCV2g) and evidence for recombination between genotypes 2g, 2b and 2d among field isolates from non-vaccinated pigs in Mizoram, India. INFECTION GENETICS AND EVOLUTION 2021; 90:104775. [PMID: 33618002 DOI: 10.1016/j.meegid.2021.104775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
The molecular genetics of fourteen Porcine Circovirus 2 (PCV2) isolates from non-vaccinated pigs that died of porcine circovirus associated disease (PCVAD) between 2012 and 2019 in the Mizoram state of North East India, was studied. The PCVAD in these pigs, that had shown characteristic clinical signs and lesions associated with post-weaning multi-systemic wasting syndrome and reproductive failure was confirmed with detection of PCV2 DNA in the tissue samples. Complete viral genomes of these fourteen field isolates were sequenced following in house developed overlapping PCR. The multiple sequence alignment of viral capsid proteins or the open reading frame 2 (ORF2) sequences showed highly conserved residues known for antibody recognition and genotype specificity, however, variations were noticed in the amino acid residues previously known as important for in vitro replication of PCV2. The phylogenetic analyses based on the complete genome sequences enabled identification of genotype PCV2g (9/14, 64.29%) for the first time in India along with genotypes PCV2d (3/14, 21.43%) and PCV2b (2/14, 14.29%). Further, recombination analyses showed evidence for recombination between the genotypes 2b, 2g and 2d. This is the first report on the prevalence of genotype PCV2g and natural inter-genotypic (2g-2b, 2g-2d and 2d-2g) recombinants in India. The findings indicate a non-vaccine driven, natural genotypic shift and signify the need for routine PCV2 surveillance and genotyping. Our analyses also provide a solid ground for future studies to understand the consequences of multiple PCV2 genotypes within a pig population with respect to vaccination, diagnostics and emergence of new genotypes.
Collapse
|
20
|
Park KH, Chae C. The prevalence of porcine circovirus type 2e (PCV2e) in Korean slaughter pig lymph nodes when compared with other PCV2 genotypes. Transbound Emerg Dis 2021; 68:3043-3047. [PMID: 33406315 DOI: 10.1111/tbed.13975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/12/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022]
Abstract
The objective of this study was to determine the prevalence of porcine circovirus type 2e (PCV2e) over other PCV2 genotypes (a, b, c and d) from the lymph nodes of 1,550 randomly selected slaughter pigs. Samples were obtained at a rate of five samples per farm from 310 farms between January 2018 and May 2020. Of the 1,550 lymph node samples, PCV2 DNA was detected in 762 (49.20%) samples. Among the 762 PCV2 DNA-positive samples, a single PCV2 genotype was detected in 744 samples, while multiple PCV2 genotypes were only detected in 18 samples. Of the 744 single infection cases, PCV2d was the most prevalent with 709 cases, followed by PCV2b (15 cases), PCV2a (14 cases) and PCV2e (6 cases). Of the 18 multiple infection cases, PCV2a+PCV2d was the most prevalent (7 cases) followed by PCV2b+PCV2d (3 cases), PCV2b+PCV2e (3 cases), PCV2a+PCV2b+PCV2d (3 cases) and PCV2a+PCV2b (2 cases). No PCV2c was detected in any of the single or multiple infection cases. The results of prevalence identified PCV2d as the current dominant genotype, while the newly emerging PCV2e maintained the lowest prevalence among the evaluated swine farms.
Collapse
Affiliation(s)
- Kee Hwan Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Porcine Circovirus 2 Genotypes, Immunity and Vaccines: Multiple Genotypes but One Single Serotype. Pathogens 2020; 9:pathogens9121049. [PMID: 33327478 PMCID: PMC7764931 DOI: 10.3390/pathogens9121049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
Identified for the first time in the 1990s, Porcine circovirus 2 (PCV-2) should not be considered an emerging virus anymore. Nevertheless, many aspects of its biology and epidemiology are still controversial. Particularly, its high evolutionary rate has caused the emergence of several variants and genotypes, alternating on the worldwide proscenium. The biological and practical implications of such heterogenicity are unfortunately largely unknown. The effectiveness of currently available vaccines against new genotypes that have emerged over time has been the topic of an intense debate and often inconclusive or contradictory results between experimental, field, and epidemiological studies have been gathered. The challenge in establishing an effective PCV-2 disease model, the peculiarities in experimental design and settings and the strains involved could justify the observed differences. The present work aims to summarize and critically review the available knowledge on PCV-2 genetic heterogeneity, immunity, and vaccine efficacy, organizing and harmonizing the available data from different sources, shedding light on this complex field and highlighting current knowledge gaps and future perspectives. So far, all vaccines in the market have shown great efficacy in reducing clinical signs associated to diseases caused by PCV-2, independently of the genotype present in the farm. Moreover, experimental data demonstrated the cross-protection of PCV-2a vaccines against the most widespread genotypes (PCV-2a, PCV-2b, and PCV-2d). Therefore, despite the significant number of genotypes described/proposed (PCV-2a to PCV-2i), it seems one single PCV-2 serotype would exist so far.
Collapse
|
22
|
Correa-Fiz F, Franzo G, Llorens A, Huerta E, Sibila M, Kekarainen T, Segalés J. Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Sci Rep 2020; 10:17747. [PMID: 33082419 PMCID: PMC7576782 DOI: 10.1038/s41598-020-74627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is a single stranded DNA virus with one of the highest mutation rates among DNA viruses. This ability allows it to generate a cloud of mutants constantly providing new opportunities to adapt and evade the immune system. This pig pathogen is associated to many diseases, globally called porcine circovirus diseases (PCVD) and has been a threat to pig industry since its discovery in the early 90's. Although 11 ORFs have been predicted from its genome, only two main proteins have been deeply characterized, i.e. Rep and Cap. The structural Cap protein possesses the majority of the epitopic determinants of this non-enveloped virus. The evolution of PCV2 is affected by both natural and vaccine-induced immune responses, which enhances the genetic variability, especially in the most immunogenic Cap region. Intra-host variability has been also demonstrated in infected animals where long-lasting infections can take place. However, the association between this intra-host variability and pathogenesis has never been studied for this virus. Here, the within-host PCV2 variability was monitored over time by next generation sequencing during an experimental infection, demonstrating the presence of large heterogeneity. Remarkably, the level of quasispecies diversity, affecting particularly the Cap coding region, was statistically different depending on viremia levels and clinical signs detected after infection. Moreover, we proved the existence of hyper mutant subjects harboring a remarkably higher number of genetic variants. Altogether, these results suggest an interaction between genetic diversity, host immune system and disease severity.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
23
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Basigin-CyP elevated porcine circovirus type2 replication. Virus Res 2020; 289:198152. [PMID: 32896569 DOI: 10.1016/j.virusres.2020.198152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Porcine circovirus type2 (PCV2) is a member of the circoviridae family. PCV2 was identified as the main pathogen of postweaning multisystemic wasting syndrome (PMWS) in weaned piglets and causes massive economic loss. Basigin, is a transmembrane glycoprotein belonging to the immunoglobulin superfamily; which is also a receptor for cyclophilins. CyP belongs to the immunophilin family that has peptidyl-prolyl cis-trans isomerase activity. Basigin-CyP interaction affects the replication stages of several viruses. In this study, we found that Basigin could elevate the replication of PCV2, and the Basigin only affected the replication stage rather than adsorption or endocytosis stages. In addition, the ligands of Basigin, CyPA and CyPB also elevated the replication of PCV2. Basigin-CyP interation was necessary for elevating PCV2 replication; At last, CyPs were proved to promote the replication of PCV2 by activating ERK signaling.
Collapse
|
25
|
Zhu X, Wen L, Wang W, Xiao Q, Li B, He K. PCV2 inhibits the Wnt signalling pathway in vivo and in vitro. Vet Microbiol 2020; 247:108787. [PMID: 32768231 DOI: 10.1016/j.vetmic.2020.108787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 11/16/2022]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen of the current pig industry. The Wnt signalling pathway plays an important role in the growth of young animals. In this study, we mainly elucidated the relationship between PCV2 and the Wnt signalling pathway. In an in vivo experiment in mice, we demonstrated the downregulatory effects of PCV2 infection on expression levels of downstream components of the Wnt signalling pathway. Weight loss in mice was reversed by activating the Wnt signalling pathway, and the body weight was still significantly higher than that in mice infected with PCV2. We detected levels of growth hormone (GH) in the liver and sera, which showed that GH was also downregulated in mice challenged with PCV2. Lithium chloride, the activator of Wnt signalling, upregulated GH, albeit to a significantly lesser degree than that in corresponding non-stimulated mock mice. In vitro studies showed that PCV2 infection downregulated protein expression of β-catenin and mRNA expression of matrix metallopeptidase-2 (Mmp2), downregulated protein expression of β-catenin in the cytoplasm and nucleus, and reduced the activity of the TCF/LEF promoter, demonstrating that PCV2 inhibited activation of the Wnt signalling pathway in vitro. Finally, we found that Rep protein of PCV2 might be responsible for the inhibitory effect.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Qi Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.
| |
Collapse
|
26
|
Lv Q, Wang T, Deng J, Chen Y, Yan Q, Wang D, Zhu Y. Genomic analysis of porcine circovirus type 2 from southern China. Vet Med Sci 2020; 6:875-889. [PMID: 32510830 PMCID: PMC7738708 DOI: 10.1002/vms3.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is recognized as virulent porcine pathogen and has been linked to porcine circovirus diseases (PCVD). However, there remain many unknowns regarding the spread and epidemic growth of PCV2. Methods To assess the genetic diversity of PCV2 in the southern China, a total of 92 sequences of PCV2 strains from this region were retrieved from GenBank and were subjected to amino acid variation and phylogenetic analyses together with 28 representative sequences, based on the sequence of the ORF2 gene, from different swine‐producing countries. Results All 92 PCV2 strains shared between 93.7% and 100% sequence similarity and could be divided into four genotypes (PCV2a, PCV2b, PCV2d and PCV2h), of which PCV2d had surpassed PCV2b and became the most prevalent PCV2 genotype in this region. Alignment of the deduced amino acid sequences of the capsid protein revealed that the obtained PCV2 strains possess two major heterogenic regions/hypervariable regions (positions 52–68 and 185–191), which were within or close to the epitopic regions in the capsid (Cap) protein. Meanwhile, the 92 PCV2 sequences also show evidence of at least five unique recombination events. Conclusion The data in this study indicate that the PCV2 strains in the southern China are undergoing constant genetic variation and that the predominant strain and its antigenic epitopes in this area have been gradually changing in recent years.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, PR China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Jiahua Deng
- College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China
| | - Yan Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China
| | - Qiu Yan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China
| | - Daobo Wang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, PR China
| | - Yulin Zhu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China
| |
Collapse
|
27
|
Wang S, Ren X, Li J, Lin C, Zhou J, Zhou J, Gu J. NAP1L4 inhibits porcine circovirus type 2 replication via IFN-β signaling pathway. Vet Microbiol 2020; 246:108692. [PMID: 32605741 DOI: 10.1016/j.vetmic.2020.108692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Porcine circovirus type 2 (PCV2) capsid protein (Cap) was previously reported to interact with nucleosome assembly protein 1-like 4 (NAP1L4). The biological function of Cap-NAP1L4 interaction is unknown. Here, we demonstrated that PCV2 Cap could directly interact with NAP1L4, which the amino acid residues 124-279 of NAP1L4 were responsible for the interaction. Furthermore, over-expression of NAP1L4 down-regulated the expression of PCV2 Cap and Rep. DNA copies and virus titers were also decreased in NAP1L4 over-expressed PK15 cells. While, knockout of NAP1L4 through CRISPR/Cas9 technology in PK15 cells could up-regulate the mRNA and protein levels of PCV2 Cap and Rep. PCV2 genomic DNA copies and virus titers were also increased in NAP1L4-knockdown/-knockout PK15 cells compared with wild type PK15 cells. In addition, NAP1L4 depletion was demonstrated to facilitate cytosolic carboxypeptidase-like protein 5 (CCP5) and cytosolic carboxypeptidase 6 (CCP6) expression, which could activate cGAS to promote IFN-β production. Indeed, knockout of NAP1L4 was also confirmed to increase IFN-β expression. And IFN-β stimulation could promote PCV2 replication in PK15 cells. Taken together, our findings suggest that NAP1L4 interacts with PCV2 Cap and inhibits PCV2 replication through regulating IFN-β production. Our study provides theoretical basis for further study of PCV2.
Collapse
Affiliation(s)
- Shengnan Wang
- Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Science, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xuqian Ren
- Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiarong Li
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Science, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China; Veterianry Medical Research Center, Zhejiang University, Hangzhou, China
| | - Cui Lin
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Science, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China; Veterianry Medical Research Center, Zhejiang University, Hangzhou, China
| | - Jianwei Zhou
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Science, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China; Veterianry Medical Research Center, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Science, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China; Veterianry Medical Research Center, Zhejiang University, Hangzhou, China.
| | - Jinyan Gu
- Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
28
|
Molecular epidemiology and genetic variation analyses of porcine circovirus type 2 isolated from Yunnan Province in China from 2016-2019. BMC Vet Res 2020; 16:96. [PMID: 32293447 PMCID: PMC7087357 DOI: 10.1186/s12917-020-02304-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease (PCVAD). Its prevalence in swine herds was first reported in China in 2000. PCV2 infection causes immunosuppression that leads to multiple diseases, causing serious economic problems for the swine industry in China. Since information on the genetic variation of PCV2 in Yunnan province is limited, this study aims to investigate the molecular epidemiological and evolutionary characteristics of PCV2 from 2016 to 2019. METHODS A total of 279 clinical samples were collected from different regions of Yunnan between 2016 to 2019, and PCV2 was detected by PCR. We then amplified full genomes from the positive samples, and the sequences were analysed for homology and genetic evolution. RESULTS Overall, 60.93% (170/279) of the screened swine herd samples were positive for PCV2. We sequenced 15 Yunnan province PCV2 strains from positive samples. Analyses of the complete genomes and Cap genes led to the classification of the 15 Yunnan PCV2 strains into PCV2a (2 of 15), PCV2b (1of 15) and PCV2d (12 of 15). All strains shared 94.3-99.9% of their identities with the nucleotide sequences of complete genomes in this study and shared 94.2-99.9% identity with the reference sequences. All strains share 89.4-100% and 86.8-100% of their identities with the nucleotide and amino acid (aa) sequences of Cap, respectively. CONCLUSIONS The results of this study provide evidence that PCV2a, PCV2b and PCV2d genotypes coexisted in Yunnan Province from 2016 to 2019, and the priority prevalence genotype was PCV2d. The data provide evidence for the increased genetic diversity and insights into the molecular epidemiology of PCV2. This study also provides basic data for the Yunnan province PCV2 molecular epidemiological survey and accumulates effective materials for the development of PCV2 vaccines.
Collapse
|
29
|
Franzo G, Tinello S, Grassi L, Tucciarone CM, Legnardi M, Cecchinato M, Dotto G, Mondin A, Martini M, Pasotto D, Menandro ML, Drigo M. Free to Circulate: An Update on the Epidemiological Dynamics of Porcine Circovirus 2 (PCV-2) in Italy Reveals the Role of Local Spreading, Wild Populations, and Foreign Countries. Pathogens 2020; 9:pathogens9030221. [PMID: 32192210 PMCID: PMC7157736 DOI: 10.3390/pathogens9030221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Porcine circovirus 2 (PCV-2) is one of the most impactful and widespread pathogens of the modern swine industry. Unlike other DNA viruses, PCV-2 is featured by a remarkable genetic variability, which has led to the emergence and recognition of different genotypes, some of which (PCV-2a, 2b, and 2d) have alternated over time. Currently, PCV-2d is considered the most prevalent genotype, and some evidence of differential virulence and vaccine efficacy have been reported. Despite the potential practical relevance, the data on PCV-2 epidemiology in Italy are quite outdated and do not quantify the actual circulation of this genotype in Italy. In the present study, 82 complete ORF2 sequences were obtained from domestic pigs and wild boars sampled in Northern Italy in the period 2013–2018 and merged with those previously obtained from Italy and other countries. A combination of phylogenetic, haplotype network, and phylodynamic analyses were used to genotype the collected strains and evaluate the temporal trend and the spatial and host spread dynamics. A rising number of PCV-2d detections was observed in domestic pigs, particularly since 2013, reaching a detection frequency comparable to PCV-2b. A similar picture was observed in wild boars, although a lower sequence number was available. Overall, the present study demonstrates the extreme complexity of PCV-2 molecular epidemiology in Italy, the significant spread across different regions, the recurrent introduction from foreign countries, and the frequent occurrence of recombination events. Although a higher viral flux occurred from domestic to wild populations than vice versa, wild boars seem to maintain PCV-2 infection and spread it over relatively long distances.
Collapse
|
30
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
31
|
Liu J, Ma C, Zhang X, You J, Dong M, Chen L, Jiang P, Yun S. Molecular detection of Hsp90 inhibitor suppressing PCV2 replication in host cells. Microb Pathog 2019; 132:51-58. [PMID: 31028862 DOI: 10.1016/j.micpath.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause devastating disease manifestations in pig populations with major economic implications. Our previous research found that Hsp90 is required for PCV2 production in PK-15 and 3D4/31 cells. The aim of this study was to evaluate the effect of Hsp90 inhibitor regulating PCV2 replication and to explore its underlying mechanism. In PK-15 and 3D4/31 cells treated with 17-AAG after viral adsorption, replication of PCV2 was attenuated as assessed by quantitating the expression of viral protein. Following NF-κB activation it was observed that 24hpi with PCV2 was significantly inhibited in the presence of 17-AAG. The expression of Hsp90 associated client proteins in PCV2-infected cells were also reduced in the presence of 17-AAG. However, treatment with MG-132 failed to rescue 17-AAG mediated reduction of PCV2 production in host cells. Thus, Hsp90 regulates PCV2 by modulating cellular signaling proteins. These results highlight the importance of cellular proteins during PCV2 infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Chang Ma
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Li Chen
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China.
| |
Collapse
|
32
|
Porcine circovirus type 2 ORF5 protein induces endoplasmic reticulum stress and unfolded protein response in porcine alveolar macrophages. Arch Virol 2019; 164:1323-1334. [PMID: 30877450 DOI: 10.1007/s00705-019-04185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/19/2019] [Indexed: 01/12/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the essential infectious agent causing porcine circovirus-associated disease (PCVD) in pigs and one of the important viruses that severely jeopardize the swine husbandry industry. PCV2 elicits the unfolded protein response (UPR) via activation of the PERK pathway, and its capsid protein (Cap) has also been found to induce UPR with subsequent activation of apoptosis. The open reading frame 5 (ORF5) protein is a recently discovered non-structural protein, and its function in PCV2 pathogenesis remains unknown. The aim of this study was to determine whether the PCV2 ORF5 protein could induce endoplasmic reticulum stress (ERS) and UPR in porcine alveolar macrophages (PAMs). pEGFP-tagged ORF5 protein was transiently overexpressed in PAMs. Transmission electron microscopy (TEM) was employed to examine changes in ER morphology, and quantitative real-time PCR and western blotting analysis were used to measure UPR-related cell signaling alterations. We found that the ORF5 protein triggers swelling and degranulation of the ER and upregulates the expression of ERS markers. Further experiments demonstrated that the PCV2 ORF5 protein induces ERS and UPR via the PERK (RNA-activated protein kinase-like endoplasmic reticulum kinase), ATF6 (activating transcription factor 6) and IRE1 (inositol requiring enzyme 1) signaling pathways. Together with previous studies, we provide new information on the ERS-UPR induced by the PCV2 ORF5 protein.
Collapse
|
33
|
Guo K, Xu L, Wu M, Hou Y, Jiang Y, Lv J, Xu P, Fan Z, Zhang R, Xing F, Zhang Y. A Host Factor GPNMB Restricts Porcine Circovirus Type 2 (PCV2) Replication and Interacts With PCV2 ORF5 Protein. Front Microbiol 2019; 9:3295. [PMID: 30671053 PMCID: PMC6331448 DOI: 10.3389/fmicb.2018.03295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the infectious agent of postweaning multisystemic wasting syndrome (PMWS). The recently discovered open reading frame 5 (ORF5) in PCV2 genome encodes a non-structural protein. Previous study revealed that ORF5 protein inhibits cell proliferation and may interact with host transmembrane glycoprotein NMB (GPNMB). However, whether the GPNMB affects PCV2 replication and the underlying molecular mechanisms are still unknown. In this study, the transcriptome maps of PCV2-infected and ORF5-transfected porcine alveolar macrophages 3D4/2 (PAM) cells were profiled. The GPNMB gene was down-regulated in PCV2-infected and ORF5-transfected PAMs. By using glutathione S-transferase (GST) pull-down, co-immunoprecipitation (co-IP) and confocal microscopy approaches, we convincingly showed that PCV2 ORF5 protein interacts with GPNMB. Furthermore, by utilizing lentivirus mediated overexpression or knockdown approach, we showed that the cellular GPNMB significantly inhibits PCV2 replication and ORF5 expression. Moreover, GPNMB overexpressing leads to an increased Cyclin A expression and a reduced S phase, whereas GPNMB knockdown causes a decreased Cyclin A expression and a prolonged S phase. In conclusion, we identified a novel host factor GPNMB that interacts with PCV2 ORF5 protein and restricts PCV2 replication.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengmeng Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiangman Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Panpan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhixin Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruiqi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Fushan Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|