1
|
Manna T, Chandra Guchhait K, Jana D, Dey S, Karmakar M, Hazra S, Manna M, Jana P, Panda AK, Ghosh C. Wastewater-based surveillance of Vibrio cholerae: Molecular insights on biofilm regulatory diguanylate cyclases, virulence factors and antibiotic resistance patterns. Microb Pathog 2024; 196:106995. [PMID: 39368563 DOI: 10.1016/j.micpath.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Debarati Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India; Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subrata Hazra
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Mousumi Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradip Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
2
|
Yang T, Sun Q, Yan D, Zhu S, Ji T, Xiao J, Lu H, Liu Y, He Y, Wang W, Cong R, Wang X, Yang Q, Xing W, Zhang Y. Characterizing enterovirus C96 genome and phylodynamics analysis. J Med Virol 2023; 95:e29289. [PMID: 38050821 DOI: 10.1002/jmv.29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Enterovirus C96 (EV-C96) is a recently discovered serotype belonging to enterovirus C species. It had been isolated from patients with acute flaccid paralysis, hand, foot, and mouth disease, diarrhea, healthy people, or environmental specimens. Despite increasing reports of the virus, the small number of full-length genomes available for EV-C96 has limited molecular epidemiological studies. In this study, newly collected rare EV-C96 strains in China from 1997 to 2020 were combined with sequences available in GenBank for comprehensive analyses. Sequence analysis revealed that the nucleotide sequence similarity of EV-C96 and the prototype strain (BAN00-10488) was 75%-81.8% and the amino acid sequence similarity was 85%-94.9%. EV-C96 had a high degree of genetic variation and could be divided into 15 genogroups. The mean evolutionary rate was 5.16 × 10-3 substitution/site/year, and the most recent common ancestor was dated to 1925. A recombination analysis revealed that EV-C96 may be a recombinant derived from other serotypes in the EV-C group in the nonstructural protein coding region. This comprehensive and integrated analysis of the whole genome sequence of EV-C96 provides valuable data for further studies on the molecular epidemiology of EV-C96 worldwide.
Collapse
Affiliation(s)
- Tingting Yang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinbo Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yun He
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenhui Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruyi Cong
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Qian Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Bohou Kombila L, N’dilimabaka N, Garcia D, Rieu O, Engone Ondo JD, Ndong Mebaley T, Boundenga L, Fritz M, Lenguiya LH, Maganga GD, Leroy EM, Becquart P, Mombo IM. Molecular Identification of Enteric Viruses in Domestic Animals in Northeastern Gabon, Central Africa. Animals (Basel) 2023; 13:2512. [PMID: 37570320 PMCID: PMC10417819 DOI: 10.3390/ani13152512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Astroviruses (AstVs), enteroviruses (EVs), and caliciviruses (CaVs) infect several vertebrate taxa. Transmitted through the fecal-oral route, these enteric viruses are highly resistant and can survive in the environment, thereby increasing their zoonotic potential. Here, we screened for AstVs, EVs, and CaVs to investigate the role of domestic animals in the emergence of zoonoses, because they are situated at the human/wildlife interface, particularly in rural forested areas in Central Africa. Rectal swabs were obtained from 123 goats, 41 sheep, and 76 dogs in 10 villages located in northeastern Gabon. Extracted RNA reverse-transcribed into cDNA was used to detect AstVs, EVs, and CaVs by amplification of the RNA-dependent RNA polymerase (RdRp), or capsid protein (VP1) gene using PCR. A total of 23 samples tested positive, including 17 goats for AstVs, 2 goats, 2 sheep, 1 dog for EVs, and 1 dog for CaVs. Phylogenetic analyses revealed that AstV RdRp sequences clustered with sheep-, goat-, or bovine-related AstVs. In addition, one goat and two sheep VP1 sequences clustered with caprine/ovine-related Evs within the Enterovirus G species, and the CaV was a canine vesivirus. However, human-pathogenic Evs, EV-B80 and EV-C99, were detected in goats and dogs, raising questions on the maintenance of viruses able to infect humans.
Collapse
Affiliation(s)
- Linda Bohou Kombila
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
| | - Nadine N’dilimabaka
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
| | - Déborah Garcia
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Océane Rieu
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Jéordy Dimitri Engone Ondo
- Unité des Infections Rétrovirales et Pathologies Associées (UIRPA), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Telstar Ndong Mebaley
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Larson Boundenga
- Unité de Recherche en Écologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon;
| | - Matthieu Fritz
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | | | - Gael Darren Maganga
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Institut National Supérieur d’Agronomie et de Biotechnologies (INSAB), Université des Sciences et Techniques de Masuku (USTM), Franceville BP 913, Gabon
| | - Eric M. Leroy
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Pierre Becquart
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| | - Illich Manfred Mombo
- Unité Émergence des Maladies Virales (UEMV), Département de Virologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (L.B.K.); (N.N.); (T.N.M.); (G.D.M.)
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC) (Université de Montpellier—IRD 224–CNRS 5290), 34394 Montpellier, France; (D.G.); (O.R.); (M.F.); (E.M.L.); (P.B.)
| |
Collapse
|
4
|
Yang X, Cai S, Wu X, Zhang Y, Li D, Chen Y, Chen Q, Zhu S, Yan D, Xu W, Zhang H, Chen Z, Zhang S, Zhou Y, Zhang M, Zheng N, You N. Analysis of the distribution characteristics of enterovirus types based on environmental surveillance from 2013 to 2021 in Fujian Province, China. BIOSAFETY AND HEALTH 2023; 5:240-249. [PMID: 40078225 PMCID: PMC11894980 DOI: 10.1016/j.bsheal.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 03/14/2025] Open
Abstract
Environmental surveillance (ES) is a useful approach for monitoring circulating viruses, including polioviruses (PVs) and non-polio enteroviruses (NPEVs). In this study, the results of nine years of ES from 2013 to 2021 at six sampling sites in three cities in Fujian Province, China, were summarized. It showed that the sewage samples contained abundant viruses, but the positive rate was affected by different sampling sites. From the 520 samples, 431 PVs, 1,713 NPEVs, and 281 human adenoviruses (HAdVs) were isolated. PV isolates had been markedly affected following the adjustment of the immunization strategy. All but one PV isolate were Sabin-like strains without wild PVs. One isolate was vaccine-derived PV type 3 with 10 variation points in the VP1 region. After May 2016, PV type 2 was no longer detected, and PV type 3 became a superior serotype. Of 1,713 NPEVs, 24 serotypes were identified, including echovirus11 (E11), E6, coxsackievirus B3 (CVB3), CVB5, E7, and E3 were the predominant serotypes (37.65%, 20.96%, 11.50%, 8.87%, 8.23%, and 7.06%, respectively). The temporal dynamic of the six common serotypes was inconsistent. E3 was frequently isolated, but the number of isolates was low, with no obvious peaks. E6, E7, and CVB3 exhibited periodic changes with a high peak every three to four years, and E11 only had one high peak lasting four years. Summer-fall peaks of the echoviruses and spring-winter peaks of CVB were observed in the monthly distribution of virus isolation. The infectious isolates of various serotypes of different species identified from the sewage samples showed that ES is an essential part of pathogen surveillance.
Collapse
Affiliation(s)
- Xiuhui Yang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Shaojian Cai
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Xiaoqian Wu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Dong Li
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Yahong Chen
- Quanzhou Center for Disease Control and Prevention, Quanzhou 362018, China
| | - Qianjing Chen
- Longyan Center for Disease Control and Prevention, Longyan 364000, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Hairong Zhang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Zhifei Chen
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Suhan Zhang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Yong Zhou
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Mengping Zhang
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Ningxuan Zheng
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Na You
- Fujian Province Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
- Public Health School of Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
5
|
Rmadi Y, Elargoubi A, González-Sanz R, Mastouri M, Cabrerizo M, Aouni M. Molecular characterization of enterovirus detected in cerebrospinal fluid and wastewater samples in Monastir, Tunisia, 2014-2017. Virol J 2022; 19:45. [PMID: 35303921 PMCID: PMC8932122 DOI: 10.1186/s12985-022-01770-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Enteroviruses (EVs) are considered the main causative agents responsible for aseptic meningitis worldwide. This study was conducted in the Monastir region of Tunisia in order to know the prevalence of EV infections in children with meningitis symptoms. Detected EV types were compared to those identified in wastewater samples.
Methods Two hundred CSF samples collected from hospitalized patients suspected of having aseptic meningitis for an EV infection between May 2014 and May 2017 and 80 wastewater samples collected in the same time-period were analyzed. EV detection and genotyping were performed using PCR methods followed by sequencing. Phylogenetic analyses in the 3′-VP1 region were also carried-out. Results EVs were detected in 12% (24/200) CSF and in 35% (28/80) wastewater samples. EV genotyping was reached in 50% (12/24) CSF-positive samples and in 64% (18/28) sewage. Most frequent types detected in CSF were CVB3, E-30 and E-9 (25% each). In wastewater samples, the same EVs were identified, but also other types non-detected in CSF samples, such as E-17,CVA9 and CVB1 from EV species B, and EV-A71 and CVA8 from EV-A, suggesting their likely lower pathogenicity. Phylogenetic analysis showed that within the same type, different strains circulate in Tunisia. For some of the EV types such as E-9, E-11 or CVB3, the same strains were detected in CSF and wastewater samples. Conclusions Epidemiological studies are important for the surveillance of the EV infections and to better understand the emergence of certain types and variants.
Collapse
Affiliation(s)
- Yosra Rmadi
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia
| | - Aida Elargoubi
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rubén González-Sanz
- Enterovirus and Viral Gastrointestinal Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maha Mastouri
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia.,Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Maria Cabrerizo
- Enterovirus and Viral Gastrointestinal Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Mahjoub Aouni
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia
| |
Collapse
|
6
|
Lima FS, Scalize PS, Gabriel EFM, Gomes RP, Gama AR, Demoliner M, Spilki FR, Vieira JDG, Carneiro LC. Escherichia coli, Species C Human Adenovirus, and Enterovirus in Water Samples Consumed in Rural Areas of Goiás, Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:77-88. [PMID: 34792781 DOI: 10.1007/s12560-021-09504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Rural environments lack basic sanitation services. Facilities for obtaining water and disposing sewage are often under the initiative of each resident, who may not be able to build and maintain them properly. Thus, water for human consumption is subject to fecal contamination and, consequently, the presence of waterborne pathogens, such as enteric viruses. This study evaluated fecal contamination of water samples from individual sources used for domestic water supply on small farms in the state of Goiás, Brazil. Samples were collected from 78 houses whose water sources were tubular wells, dug wells, springs, and surface waters. Escherichia coli (EC) bacteria, analyzed by the defined chromogenic substrate method, was used as a traditional indicator of fecal contamination. The enteric viruses Human mastadenovirus (HAdV) and Enterovirus (EV), analyzed by qPCR, were tested as complementary indicators of fecal contamination. At least one of these markers was found in 89.7% of the samples. Detection rates were 79.5% for EC, 52.6% for HAdV, and 5.1% for EV. The average concentration for EC was 8.82 × 101 most probable number (MPN) per 100 mL, while for HAdV and EV the concentrations were 7.51 × 105 and 1.89 × 106 genomic copies (GC) per liter, respectively. EC was the most frequent marker in ground and surface water samples. HAdV was detected significantly more frequently in groundwater than in surface water and was more efficient in indicating contamination in tubular wells. There was no association of frequencies or correlation of concentrations between EC and HAdV. HAdV indicated human fecal contamination and performed well as a complementary indicator. The results reveal that a large part of the analyzed population is vulnerable to waterborne diseases caused by enteric pathogens.
Collapse
Affiliation(s)
- Fernando Santos Lima
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Paulo Sérgio Scalize
- Escola de Engenharia Civil e Ambiental, Universidade Federal de Goiás, Goiânia, GO, 74605-220, Brazil
| | | | - Raylane Pereira Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Aline Rodrigues Gama
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | | | - Lilian Carla Carneiro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
7
|
Zohra T, Ikram A, Salman M, Amir A, Saeed A, Ashraf Z, Ahad A. Wastewater based environmental surveillance of toxigenic Vibrio cholerae in Pakistan. PLoS One 2021; 16:e0257414. [PMID: 34591885 PMCID: PMC8483414 DOI: 10.1371/journal.pone.0257414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34±2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Asim Saeed
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Zurva Ashraf
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Abdul Ahad
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
8
|
First evidence of enterovirus A71 and echovirus 30 in Uruguay and genetic relationship with strains circulating in the South American region. PLoS One 2021; 16:e0255846. [PMID: 34383835 PMCID: PMC8360592 DOI: 10.1371/journal.pone.0255846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human enteroviruses (EVs) comprise more than 100 types of coxsackievirus, echovirus, poliovirus and numbered enteroviruses, which are mainly transmitted by the faecal-oral route leading to diverse diseases such as aseptic meningitis, encephalitis, and acute flaccid paralysis, among others. Since enteroviruses are excreted in faeces, wastewater-based epidemiology approaches are useful to describe EV diversity in a community. In Uruguay, knowledge about enteroviruses is extremely limited. This study assessed the diversity of enteroviruses through Illumina next-generation sequencing of VP1-amplicons obtained by RT-PCR directly applied to viral concentrates of 84 wastewater samples collected in Uruguay during 2011-2012 and 2017-2018. Fifty out of the 84 samples were positive for enteroviruses. There were detected 27 different types belonging to Enterovirus A species (CVA2-A6, A10, A16, EV-A71, A90), Enterovirus B species (CVA9, B1-B5, E1, E6, E11, E14, E21, E30) and Enterovirus C species (CVA1, A13, A19, A22, A24, EV-C99). Enterovirus A71 (EV-A71) and echovirus 30 (E30) strains were studied more in depth through phylogenetic analysis, together with some strains previously detected by us in Argentina. Results unveiled that EV-A71 sub-genogroup C2 circulates in both countries at least since 2011-2012, and that the C1-like emerging variant recently entered in Argentina. We also confirmed the circulation of echovirus 30 genotypes E and F in Argentina, and reported the detection of genotype E in Uruguay. To the best of our knowledge this is the first report of the EV-A71 C1-like emerging variant in South-America, and the first report of EV-A71 and E30 in Uruguay.
Collapse
|
9
|
Hamouda M, Mustafa F, Maraqa M, Rizvi T, Aly Hassan A. Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143493. [PMID: 33190883 PMCID: PMC7648500 DOI: 10.1016/j.scitotenv.2020.143493] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Wastewater-based epidemiology (WBE) is successful in the detection of the spread of SARS-CoV-2. This review examines the methods used and results of recent studies on the quantification of SARS-CoV-2 in wastewater. WBE becomes essential, especially with virus transmission path uncertainty, limitations on the number of clinical tests that could be conducted, and a relatively long period for infected people to show symptoms. Wastewater surveillance was used to show the effect of lockdown on the virus spread. A WBE framework tailored for SARS-CoV-2 that incorporates lessons learnt from the reviewed studies was developed. Results of the review helped outline challenges facing the detection of SARS-CoV-2 in wastewater samples. A comparison between the various studies with regards to sample concentration and virus quantification was conducted. Five different primers sets were used for qPCR quantification; however, due to limited data availability, there is no consensus on the most sensitive primer. Correlating the slope of the relationship between the number of gene copies vs. the cumulative number of infections normalized to the total population served with the average new cases, suggests that qPCR results could help estimating the number of new infections. The correlation is improved when a lag period was introduced to account for asymptomatic infections. Based on lessons learnt from recent studies, it is recommended that future applications should consider the following: 1) ensuring occupational safety in managing sewage collection and processing, 2) evaluating the effectiveness of greywater disinfection, 3) measuring viral RNA decay due to biological and chemical activities during collection and treatment, 4) assessing the effectiveness of digital PCR, and 5) conducting large scale international studies that follow standardized protocols.
Collapse
Affiliation(s)
- Mohamed Hamouda
- Civil and Environmental Engineering and the National Water Center, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Munjed Maraqa
- Civil and Environmental Engineering and the National Water Center, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Tahir Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Ashraf Aly Hassan
- Civil and Environmental Engineering and the National Water Center, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Civil and Environmental Engineering, University of Nebraska Lincoln, 900 N 16th St., Lincoln, NE 68588-0531, USA.
| |
Collapse
|
10
|
Fonseca MC, Pupo-Meriño M, García-González LA, Muné M, Resik S, Norder H, Sarmiento L. Molecular Characterization of Coxsackievirus A24v from Feces and Conjunctiva Reveals Epidemiological Links. Microorganisms 2021; 9:531. [PMID: 33807540 PMCID: PMC7998715 DOI: 10.3390/microorganisms9030531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v), the main causative agent of acute hemorrhagic conjunctivitis (AHC), can be isolated from both the eyes and lower alimentary tract. However, the molecular features of CVA24v in feces is not well-documented. In this study, we compared the VP1 and 3C sequences of CVA24v strains isolated from feces during AHC epidemics in Cuba in 1997, 2003, and 2008-2009 with those obtained from conjunctival swabs during the same epidemic period. The sequence analyses of the 3C and VP1 region of stool isolates from the three epidemics showed a high degree of nucleotide identity (ranging from 97.3-100%) to the corresponding conjunctival isolates. The phylogenetic analysis showed that fecal CVA24v isolates from the 1997 and 2003 Cuban outbreaks formed a clade with CVA24v strains isolated from conjunctival swabs in Cuba and other countries during the same period. There were three amino acid changes (3C region) and one amino acid change (VP1 region) in seven CVA24v strains isolated sequentially over 20 days from fecal samples of one patient, suggesting viral replication in the intestine. Despite these substitutions, the virus from the conjunctival swab and fecal samples were genetically very similar. Therefore, fecal samples should be considered as a reliable alternative sample type for the routine molecular diagnosis and molecular epidemiology of CVA24v, also during outbreaks of AHC.
Collapse
Affiliation(s)
- Magilé C. Fonseca
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Mario Pupo-Meriño
- Departamento de Bioinformática, Universidad de las Ciencias Informáticas (UCI), Habana 19370, Cuba;
| | - Luis A. García-González
- Centro de Estudios de Matemática Computacional, Universidad de las Ciencias Informáticas (UCI), Habana 19370, Cuba;
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, Mexico
| | - Mayra Muné
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Sonia Resik
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Heléne Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Luis Sarmiento
- Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 22185 Malmo, Sweden
| |
Collapse
|
11
|
Majumdar M, Klapsa D, Wilton T, Bujaki E, Fernandez-Garcia MD, Faleye TOC, Oyero AO, Adewumi MO, Ndiaye K, Adeniji JA, Martin J. High Diversity of Human Non-Polio Enterovirus Serotypes Identified in Contaminated Water in Nigeria. Viruses 2021; 13:v13020249. [PMID: 33562806 PMCID: PMC7914538 DOI: 10.3390/v13020249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
Human enteroviruses (EVs) are highly prevalent in sewage and have been associated with human diseases with complications leading to severe neurological syndromes. We have used a recently developed molecular method to investigate the presence of EVs in eight samples collected in 2017–2018 from water streams contaminated by drainage channels in three different locations in Nigeria. A total of 93 human EV strains belonging to 45 different serotypes were identified, far exceeding the number of strains and serotypes found in similar samples in previous studies. Next generation sequencing analysis retrieved whole-capsid genomic nucleotide sequences of EV strains belonging to all four A, B, C, and D species. Our results further demonstrate the value of environmental surveillance for the detection of EV transmission of both serotypes commonly associated with clinical syndromes, such as EV-A71, and those that appear to circulate silently but could eventually cause outbreaks and disease. Several uncommon serotypes, rarely reported elsewhere, were detected such as EV-A119, EV-B87, EV-C116, and EV-D111. Ten EV serotypes were detected in Nigeria for the first time and two of them, CV-A12 and EV-B86, firstly described in Africa. This method can be expanded to generate whole-genome EV sequences as we show here for one EV-D111 strain. Our data revealed phylogenetic relationships of Nigerian sewage strains with EV strains reported elsewhere, mostly from African origin, and provided new insights into the whole-genome structure of emerging serotype EV-D111 and recombination events among EV-D serotypes.
Collapse
Affiliation(s)
- Manasi Majumdar
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | - Dimitra Klapsa
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | - Thomas Wilton
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | - Erika Bujaki
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | | | - Temitope Oluwasegun Cephas Faleye
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; (T.O.C.F.); (M.O.A.); (J.A.A.)
| | | | - Moses Olubusuyi Adewumi
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; (T.O.C.F.); (M.O.A.); (J.A.A.)
| | - Kader Ndiaye
- Department of Virology, Institute Pasteur, Dakar, Senegal; (M.D.F.-G.); (K.N.)
| | - Johnson Adekunle Adeniji
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; (T.O.C.F.); (M.O.A.); (J.A.A.)
- World Health Organization National Polio Laboratory, Ibadan, Oyo State, Nigeria;
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
- Correspondence:
| |
Collapse
|
12
|
Street R, Malema S, Mahlangeni N, Mathee A. Wastewater surveillance for Covid-19: An African perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140719. [PMID: 32659559 PMCID: PMC7332947 DOI: 10.1016/j.scitotenv.2020.140719] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 05/17/2023]
Abstract
The COVID-19 pandemic has once again highlighted the importance of access to sufficient quantities of safe water and sanitation in public health. In the current COVID-19 pandemic, an early warning wastewater system has been proposed as a platform for SARS-CoV-2 surveillance, and a potentially important public health strategy to combat the disease. This short communication on wastewater surveillance in sub-Saharan Africa highlights challenges, opportunities and alternatives taken into account the local context.
Collapse
Affiliation(s)
- Renée Street
- Environment & Health Research Unit, South African Medical Research Council, South Africa; School of Nursing and Public Health, Discipline of Occupational and Environmental Health, University of KwaZulu Natal, South Africa.
| | - Shirley Malema
- Environment & Health Research Unit, South African Medical Research Council, South Africa
| | - Nomfundo Mahlangeni
- Environment & Health Research Unit, South African Medical Research Council, South Africa
| | - Angela Mathee
- Environment & Health Research Unit, South African Medical Research Council, South Africa; Environmental Health Department, University of Johannesburg, South Africa; School of Public Health, University of the Witwatersrand, South Africa
| |
Collapse
|
13
|
Song Y, Wang D, Zhang Y, Han Z, Xiao J, Lu H, Yan D, Ji T, Yang Q, Zhu S, Xu W. Genetic Diversity Analysis of Coxsackievirus A8 Circulating in China and Worldwide Reveals a Highly Divergent Genotype. Viruses 2020; 12:E1061. [PMID: 32977444 PMCID: PMC7598191 DOI: 10.3390/v12101061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus A8 (CV-A8) is one of the pathogens associated with hand, foot and mouth disease (HFMD) and herpangina (HA), occasionally leading to severe neurological disorders such as acute flaccid paralysis (AFP). Only one study aimed at CV-A8 has been published to date, and only 12 whole-genome sequences are publicly available. In this study, complete genome sequences from 11 CV-A8 strains isolated from HFMD patients in extensive regions from China between 2013 and 2018 were determined, and all sequences from GenBank were retrieved. A phylogenetic analysis based on a total of 34 complete VP1 sequences of CV-A8 revealed five genotypes: A, B, C, D and E. The newly emerging genotype E presented a highly phylogenetic divergence compared with the other genotypes and was composed of the majority of the strains sequenced in this study. Markov chain Monte Carlo (MCMC) analysis revealed that genotype E has been evolving for nearly a century and somehow arose in approximately 2010. The Bayesian skyline plot showed that the population size of CV-A8 has experienced three dynamic fluctuations since 2001. Amino acid residues of VP1100N, 103Y, 240T and 241V, which were embedded in the potential capsid loops of genotype E, might enhance genotype E adaption to the human hosts. The CV-A8 whole genomes displayed significant intra-genotypic genetic diversity in the non-capsid region, and a total of six recombinant lineages were detected. The Chinese viruses from genotype E might have emerged recently from recombining with European CV-A6 strains. CV-A8 is a less important HFMD pathogen, and the capsid gene diversity and non-capsid recombination variety observed in CV-A8 strains indicated that the constant generation of deleterious genomes and a constant selection pressure against these deleterious mutations is still ongoing within CV-A8 quasispecies. It is possible that CV-A8 could become an important pathogen in the HFMD spectrum in the future. Further surveillance of CV-A8 is greatly needed.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
14
|
Genetic diversity of species A rotaviruses detected in clinical and environmental samples, including porcine-like rotaviruses from hospitalized children in the Philippines. INFECTION GENETICS AND EVOLUTION 2020; 85:104465. [PMID: 32687980 DOI: 10.1016/j.meegid.2020.104465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Rotaviruses are the major cause of severe acute diarrhea in infants and young children. Rotaviruses exhibit zoonosis and thereby infect both humans and animals. Viruses detected in urban rivers possibly reflect the presence of circulating viruses in the catchment. The present study investigates the genetic diversity of species A rotaviruses detected from river water and stool of hospitalized children with acute diarrhea in Tacloban City, the Philippines. Species A rotaviruses were detected by real-time RT-PCR and their genotypes were identified by multiplex PCR and sequencing of partial regions of VP7 and VP4. Rotaviruses were detected in 85.7% (30/35) of the river water samples and 62.7% (151/241) of the clinical samples. Genotypes of VP7 in the river water samples were G1, G2, G3, G4, G5, and G9, and those of VP4 were P[3], P[4], P[6], P[8], and P[13]. Genotypes of viruses from the clinical samples were G2P[4], G1P[8], G3P[8], G4P[6], G5P[6], and G9P[8]. Among those, G2P[4] in clinical samples (77.9%, 81/104) and P[4] of VP4 in river water samples (67.5%, 56/83)) were the most frequently detected rotavirus genotypes. However, G5 was the more frequently detected than G2 in the river water samples (42% vs. 13%) which may be originated from porcine rotavirus. Sequence analyses of eleven gene segments revealed one G5P[6] and two G4P[6] rotaviruses in the clinical samples, wherein, several gene segments were closely related to porcine rotaviruses. The constellation of these rotavirus genes suggests the emergence of reassortment between human and porcine rotavirus due to interspecies transmission. Although two commercial rotavirus vaccines are available now, these vaccines are designed to confer immunity against the major human rotaviruses. Constant monitoring of viral variety in populated areas where humans and domestic animals live in close proximity provides vital information related to the diversity of rotaviruses in a human population.
Collapse
|
15
|
Jiao MMA, Apostol LN, de Quiroz-Castro M, Jee Y, Roque V, Mapue M, Navarro FM, Tabada CF, Tandoc A. Non-polio enteroviruses among healthy children in the Philippines. BMC Public Health 2020; 20:167. [PMID: 32013921 PMCID: PMC6998086 DOI: 10.1186/s12889-020-8284-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Enteroviruses (EVs) are most commonly associated with either mild or asymptomatic infections, however, the presence of silent carriers in the community has been proven to play a crucial role in the spread of diseases such as hand, foot, and mouth disease (HFMD) that records high incidence in Asia Pacific region. In the Philippines, limited information is available on the etiology and prevalence of enterovirus outside the Acute Flaccid Paralysis (AFP) surveillance, thus, a study to determine the baseline prevalence of Non-Polio Enteroviruses (NPEVs) among healthy Filipino children was conducted. METHODS A descriptive, cross-sectional study was performed to determine the prevalence of NPEV among healthy children under 6 years old in the Philippines. Duplicate stool samples were collected from 360 healthy children residing in three major urban cities in the country. Virus isolation and polymerase chain reaction were performed to identify enteroviruses present in the samples. To determine if the results of the study are comparable to the AFP surveillance data, the results of the study were compared to the prevalence and isolation rate among AFP cases of the similar cases collected the same year. RESULTS Prevalence of enteroviruses among healthy children was found to be at 24.7%. Comparing the NPEV rates from the study and AFP surveillance of similar age and the same year of collection, there was no significant difference in NPEV case prevalence. The study identified a total of 19 different enterovirus serotypes with majority belonging to species Enterovirus B (EV-B). CONCLUSION The study was able to establish a baseline NPEV case prevalence of 24.7% among healthy children aged under 6 years old in three major urban sites in the Philippines. The high isolation of NPEV among healthy children signifies continuous fecal-oral transmission of enteroviruses in the community.
Collapse
Affiliation(s)
- Maria Melissa Ann Jiao
- National Polio Laboratory, Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Lea Necitas Apostol
- National Polio Laboratory, Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | | | - Youngmee Jee
- Center for Infectious Disease Research, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Vito Roque
- Department of Health-Epidemiology Bureau, Manila, Philippines
| | - Manuel Mapue
- Department of Health-Center for Health Development NCR, Mandaluyong City, Philippines
| | | | - Cleo Fe Tabada
- Department of Health-Center for Health Development Region XI, Davao City, Philippines
| | - Amado Tandoc
- National Polio Laboratory, Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines.
| |
Collapse
|
16
|
Bisseux M, Debroas D, Mirand A, Archimbaud C, Peigue-Lafeuille H, Bailly JL, Henquell C. Monitoring of enterovirus diversity in wastewater by ultra-deep sequencing: An effective complementary tool for clinical enterovirus surveillance. WATER RESEARCH 2020; 169:115246. [PMID: 31710918 DOI: 10.1016/j.watres.2019.115246] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 10/26/2019] [Indexed: 05/28/2023]
Abstract
In a one-year (October 2014-October 2015) pilot study, we assessed wastewater monitoring with sustained sampling for analysis of global enterovirus (EV) infections in an urban community. Wastewater was analysed by ultra-deep sequencing (UDS) after PCR amplification of the partial VP1 capsid protein gene. The nucleotide sequence analysis showed an unprecedented diversity of 48 EV types within the community, which were assigned to the taxonomic species A (n = 13), B (n = 23), and C (n = 12). During the same period, 26 EV types, of which 22 were detected in wastewater, were identified in patients referred to the teaching hospital serving the same urban population. Wastewater surveillance detected a silent circulation of 26 EV types including viruses reported in clinically rare respiratory diseases. Wastewater monitoring as a supplementary procedure can complement clinical surveillance of severe diseases related to non-polio EVs and contribute to the final stages of poliomyelitis eradication.
Collapse
Affiliation(s)
- Maxime Bisseux
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France.
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France
| | - Audrey Mirand
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Christine Archimbaud
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Hélène Peigue-Lafeuille
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Cécile Henquell
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| |
Collapse
|
17
|
Teschovirus and other swine and human enteric viruses in Brazilian watersheds impacted by swine husbandry. Braz J Microbiol 2019; 51:711-717. [PMID: 31784949 DOI: 10.1007/s42770-019-00197-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/29/2019] [Indexed: 10/25/2022] Open
Abstract
Several emerging viral agents related to gastroenteritis are distributed in human and animal populations and may contaminate the environment due to anthropic activities. The objective of this study was to analyze the seasonal contamination by enteric virus and coliforms in water from streams in the Vale do Taquari, draining a large number of pig farms. Microbiological contamination was evidenced by the detection of total and thermotolerant coliforms, reaching their peak in December. Hepatitis E virus (HEV), Enterovirus-G (EV-G) genome, and Sapelovirus-A (SV-A) genome were not detected. On the other hand, Rotavirus (RV) was detected in 3% (1/32) of the samples, whereas Teschovirus-A (PTV) was detected in 6% (2/32). This is the first detection of PTV in environmental samples in Brazil, pointing that the virus is being shedded from swine herds to watersheds. Human mastadenovirus (HAdV) was the most frequent detected viral agent in 9.3% (3/32) with values of 2.54 × 105, 7.13 × 104, and 3.09 × 105 genome copies/liter (gc/L). The circulation of coliforms and viral pathogens is noticeable due to anthropic activities and to the management of animal waste from the pig farming. In this way, enteric viruses can assist in monitoring the quality of watersheds and in tracking sources of contamination.
Collapse
|
18
|
Majumdar M, Klapsa D, Wilton T, Akello J, Anscombe C, Allen D, Mee ET, Minor PD, Martin J. Isolation of Vaccine-Like Poliovirus Strains in Sewage Samples From the United Kingdom. J Infect Dis 2019; 217:1222-1230. [PMID: 29309594 DOI: 10.1093/infdis/jix667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
Background Environmental surveillance (ES) is a sensitive method for detecting human enterovirus (HEV) circulation, and it is used worldwide to support global polio eradication. We describe a novel ES approach using next-generation sequencing (NGS) to identify HEVs in sewage samples collected in London, United Kingdom, from June 2016 to May 2017. Methods Two different methods were used to process raw sewage specimens: a 2-phase aqueous separation system and size exclusion by filtration and centrifugation. HEVs were isolated using cell cultures and analyzed using NGS. Results Type 1 and 3 vaccine-like poliovirus (PV) strains were detected in samples collected from September 2016 through January 2017. NGS analysis allowed us to rapidly obtain whole-genome sequences of PV and non-PV HEV strains. As many as 6 virus strains from different HEV serotypes were identified in a single cell culture flask. PV isolates contained only a small number of mutations from vaccine strains commonly seen in early isolates from vaccinees. Conclusions Our ES setup has high sensitivity for polio and non-PV HEV detection, generating nearly whole-genome sequence information. Such ES systems provide critical information to assist the polio eradication endgame and contribute to the improvement of our understanding of HEV circulation patterns in humans.
Collapse
Affiliation(s)
- Manasi Majumdar
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Dimitra Klapsa
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Thomas Wilton
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Joyce Akello
- Enterovirus Unit, Public Health England, London, United Kingdom
| | | | - David Allen
- Enterovirus Unit, Public Health England, London, United Kingdom
| | - Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Philip D Minor
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| |
Collapse
|
19
|
Wang Q, Ji F, Wang S, Lin X, Tao Z, Xu A. Complete genome characterization of three enterovirus C96 isolates in China. Arch Virol 2019; 164:2183-2186. [PMID: 31119477 DOI: 10.1007/s00705-019-04291-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Abstract
Enterovirus C96 (EV-C96) is a newer member of the species Enterovirus C. In this study, we determined the complete genome sequences of three EV-C96 isolates, one recovered from domestic sewage in 2013 and the other two isolated during surveillance of acute flaccid paralysis cases in 1991 and 2009, respectively. The complete genome sequences of these isolates were 75.6-84.2% identical to each other, 75.1-81.8% identical to the prototype strain, and 75.0-91.5% identical to other previously reported strains. Phylogenetic analysis of VP1 sequences revealed a high degree of genetic divergence among currently available EV-C96 sequences in the GenBank database, with an overall mean p-distance of 0.176. It is interesting to note that the 1991 strain 127/SD/CHN/1991 is the earliest EV-C96 isolate so far. Although EV-C96 is not frequently isolated during enterovirus surveillance, its great genetic diversity and the above findings suggest that this serotype has been circulating in China for many years.
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Feng Ji
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Suting Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Xiaojuan Lin
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Zexin Tao
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| | - Aiqiang Xu
- School of Public Health, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
20
|
Hu L, Zhang Y, Hong M, Fan Q, Yan D, Zhu S, Wang D, Xu W. Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains. Virol J 2019; 16:40. [PMID: 30922336 PMCID: PMC6439968 DOI: 10.1186/s12985-019-1151-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00-10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenotypic characteristics of two EV-C96 strains isolated from individuals from the Tibet Autonomous Region of China. METHODS Human rhabdomyosarcoma (RD), human laryngeal epidermoid carcinoma (HEp-2), and human cervical cancer (Hela) cells were infected with the Tibet EV-C96 strains, and enterovirus RNA in the cell culture was detected with a real time RT-PCR-based enterovirus screening method. The temperature sensitivity of Tibet EV-C96 strains were assayed on a monolayer of RD cells in 24-well plates. Full-length genome sequencing was performed by a 'primer-walking' strategy, and the evolutionary history of EV-C96 was studied by maximum likelihood analysis. RESULTS Strain 2005-T49 grew in all three kinds of cells, and it was not temperature sensitive. In contrast, none of the three cells produced CPE for strain 2012-94H. Phylogenetic analysis of the two Tibetan viruses, other EV-C96 strains, and EV-C prototypes showed that EV-C96 strains were grouped into three clusters (Cluster1-3) based on their VP1 sequences, which may represent three genotypes. Phylogenetic trees based on the P2 and P3 regions highlighted the difference between Chinese EV-C96 strains and the EV-C96 prototype strain BAN-10488. All Chinese strains formed a cluster separate from BAN-10488, which clustered with CV-A1/CV-A22/CV-A19. CONCLUSIONS There is genetic variability between EV-C96 strains which suggest that at least few genetic lineages co-exist and there has been some degree of circulation in different geographical regions for some time. Some recombination events must have occurred during EV-C96 evolution as EV-C96 isolates cluster with different EV-C prototype strains in phylogenetic trees in different genomic regions. However, recombination does not seem to have occurred frequently as EV-C96 isolates from different years and locations appear to cluster together in all genomic regions analysed. These findings expand the understanding of the characterization of EV-C96 and are meaningful for the surveillance of the virus.
Collapse
Affiliation(s)
- Lan Hu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Department of the Laboratory, Guanghua Hospital of Traditional and Western Medicine, Changning District, Shanghai, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Qin Fan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Zhejiang Center for Disease Control and Prevention, Hangzhou city, Zhejiang Province, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China. .,Anhui University of Science and Technology, Hefei city, Anhui Province, People's Republic of China.
| |
Collapse
|
21
|
Ibrahim EME, El-Liethy MA, Abia ALK, Hemdan BA, Shaheen MN. Survival of E. coli O157:H7, Salmonella Typhimurium, HAdV2 and MNV-1 in river water under dark conditions and varying storage temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1297-1304. [PMID: 30340275 DOI: 10.1016/j.scitotenv.2018.08.275] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
The ability of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Human adenovirus serotype 2 (HAdV2) and Murine Norovirus 1 (MNV-1) to survive in river water at -20, 4, room temperature (~24 °C) and 37 °C, were evaluated under dark conditions. The tested surface water was obtained from the main Nile River in the Dokki area, Giza and sterilized by autoclaving. The pathogens were inoculated separately in the autoclaved river water. Each microcosm was sampled and the test microorganisms counted after zero (immediately following inoculation), 1, 7, 15, 30, 60, 90 and 120 days. Physicochemical parameters including pH, turbidity, electrical conductivity, dissolved oxygen, total dissolved solids, total alkalinity, biological oxygen demand, chemical oxygen demand, nitrates and nitrites, and sulphate, were also measured. For HAdV2, the highest decay rates were observed at 37 °C and room temperature compared to 4 and -20 °C. A similar trend was found for the MNV-1, although unlike the HAdV2, the decay rate was higher at -20 than at 4 °C. Also, 4 °C was the best temperature for the survival of MNV-1 (T90 = 76.9 days), E. coli O157:H7 (T90 = 103 days) and Salmonella Typhimurium (T90 = 105 days). The least survival of the pathogens, except MNV-1, was recorded at 37 °C. These results indicate that under dark conditions and low temperatures, enteric pathogens could be stable for extended periods. No significant statistical correlation was observed between the experimental temperatures and the infectivity of the viral particles. This study provided useful information about the stability of these pathogens in the Nile River water and could serve as an early warning when considering the water of the river for agricultural irrigation or household use in areas with limited or no access to potable water.
Collapse
Affiliation(s)
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, X54001, Durban, South Africa.
| | - Bahaa Ahmed Hemdan
- Environmental Microbiology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed Nasr Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
22
|
Madakshira MG, Bhardwaj S, Gupta K, Chander Y, Bhalla A. A fatal case of enterovirus infection with secondary hemophagocytosis-case report with review of literature. APMIS 2018; 126:877-882. [PMID: 30357959 DOI: 10.1111/apm.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 11/28/2022]
Abstract
Enterovirus is a common viral infection, which can affect multiple organ systems with an array of clinical presentation such as meningitis, encephalitis, myocarditis, and disseminated infections. The illness is usually asymptomatic and self-limited but few cases can be severe and life-threatening especially when associated with hemophagocytosis. We discuss a fatal case of disseminated enterovirus infection and the histomorphological features of the infection.
Collapse
Affiliation(s)
- Manoj Gopal Madakshira
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunny Bhardwaj
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogesh Chander
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
23
|
Majumdar M, Sharif S, Klapsa D, Wilton T, Alam MM, Fernandez-Garcia MD, Rehman L, Mujtaba G, McAllister G, Harvala H, Templeton K, Mee ET, Asghar H, Ndiaye K, Minor PD, Martin J. Environmental Surveillance Reveals Complex Enterovirus Circulation Patterns in Human Populations. Open Forum Infect Dis 2018; 5:ofy250. [PMID: 30377626 PMCID: PMC6201154 DOI: 10.1093/ofid/ofy250] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background Enteroviruses are common human pathogens occasionally associated with severe disease, notoriously paralytic poliomyelitis caused by poliovirus. Other enterovirus serotypes such as enterovirus A71 and D68 have been linked to severe neurological syndromes. New enterovirus serotypes continue to emerge, some believed to be derived from nonhuman primates. However, little is known about the circulation patterns of many enterovirus serotypes and, in particular, the detailed enterovirus composition of sewage samples. Methods We used a next-generation sequencing approach analyzing reverse transcriptase polymerase chain reaction products synthesized directly from sewage concentrates. Results We determined whole-capsid genome sequences of multiple enterovirus strains from all 4 A to D species present in environmental samples from the United Kingdom, Senegal, and Pakistan. Conclusions Our results indicate complex enterovirus circulation patterns in human populations with differences in serotype composition between samples and evidence of sustained and widespread circulation of many enterovirus serotypes. Our analyses revealed known and divergent enterovirus strains, some of public health relevance and genetically linked to clinical isolates. Enteroviruses identified in sewage included vaccine-derived poliovirus and enterovirus D-68 stains, new enterovirus A71 and coxsackievirus A16 genogroups indigenous to Pakistan, and many strains from rarely reported serotypes. We show how this approach can be used for the early detection of emerging pathogens and to improve our understanding of enterovirus circulation in humans.
Collapse
Affiliation(s)
- Manasi Majumdar
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts, United Kingdom
| | | | - Dimitra Klapsa
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts, United Kingdom
| | - Thomas Wilton
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts, United Kingdom
| | | | | | | | | | | | | | | | - Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts, United Kingdom
| | - Humayun Asghar
- World Health Organization Eastern Mediterranean Regional Office, Amman, Jordan
| | | | - Philip D Minor
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts, United Kingdom
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Herts, United Kingdom
| |
Collapse
|
24
|
Staggemeier R, Heck TMS, Demoliner M, Ritzel RGF, Röhnelt NMS, Girardi V, Venker CA, Spilki FR. Enteric viruses and adenovirus diversity in waters from 2016 Olympic venues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:304-312. [PMID: 28185736 DOI: 10.1016/j.scitotenv.2017.01.223] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 05/27/2023]
Abstract
Rio de Janeiro's inner and coastal waters are heavily impacted by human sewage pollution for decades. Enteric viruses, including human adenoviruses (HAdV), human enterovirus (EV), group A rotavirus (RV) and hepatitis A virus (HAV) are more likely to be found in contaminated surface waters. The present work aimed to assess the frequency and loads of EV, HAdV-C and -F species, RV and HAV in sand and water samples from venues used during the 2016 Summer Olympics and by tourists attending the event. Sixteen monthly collections were carried out from March 2015 to July 2016 in 12 different sites from Rio de Janeiro, Brazil. Total and thermotolerant coliform counting was performed along molecular detection of virus was performed using quantitative polymerase chain reaction (qPCR). Analyses of all samples were further investigated by integrated cell culture PCR to check about the presence of HAdV infectious virus particles. The results show that 95.9% of water samples showed contamination with at least one type of virus. Regarding the viruses individually (% for water and sand respectively): HAdV-C (93.1%-57.8%), HAdV-F (25.3%-0%), RV (12.3%-4.4%), EV (26.7%-8.8%) and HAV (0%). The viral loads ranged from 103gc/L up to 109gc/L (water), and 103gc/g to 106gc/g (sand). In the phylogenetic tree, were classified into four main clusters, referring to species C, D, F and BAdV. And up to 90% of sites studied presented at least once presence of infectious HAdV-C. The most contaminated points were the Rodrigo de Freitas Lagoon, where Olympic rowing took place, and the Marina da Glória, the starting point for the sailing races, demonstrating serious problem of fecal contamination of water resources and threatens the health of Olympic athletes, tourists and residents.
Collapse
Affiliation(s)
- Rodrigo Staggemeier
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Tatiana M S Heck
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Rute G F Ritzel
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Nicole M S Röhnelt
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Viviane Girardi
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Carolina A Venker
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Fernando R Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239 no. 2755, Novo Hamburgo, RS 93352-000, Brazil.
| |
Collapse
|
25
|
A novel Enterovirus 96 circulating in China causes hand, foot, and mouth disease. Virus Genes 2017; 53:352-356. [DOI: 10.1007/s11262-017-1431-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
|
26
|
Opanda SM, Wamunyokoli F, Khamadi S, Coldren R, Bulimo WD. Genotyping of enteroviruses isolated in Kenya from pediatric patients using partial VP1 region. SPRINGERPLUS 2016; 5:158. [PMID: 27026855 PMCID: PMC4766141 DOI: 10.1186/s40064-016-1834-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3′-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.
Collapse
Affiliation(s)
- Silvanos M Opanda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; College of Health Sciences (COHES), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Samoel Khamadi
- The Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rodney Coldren
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya
| | - Wallace D Bulimo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
27
|
Vilar MJ, Peralta B, García-Bocanegra I, Simon-Grifé M, Bensaid A, Casal J, Segalés J, Pina-Pedrero S. Distribution and genetic characterization of Enterovirus G and Sapelovirus A in six Spanish swine herds. Virus Res 2016; 215:42-9. [PMID: 26836019 DOI: 10.1016/j.virusres.2016.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
Abstract
The prevalence of Enterovirus G (EV-G) and Sapelovirus A (PSV-1) was investigated in Spanish swine herds by means of cross-sectional studies. Faecal samples from clinically healthy pigs were collected from six farms, and analysed by RT-PCR. The results indicated a high prevalence of EV-G detected in nearly all the animals older than 3 weeks of age. Otherwise, PSV-1 was only detected in 3-week-old piglets from one of the farms. Genetic analyses performed in the VP1 region of the EV-G indicated circulation of diverse strains in the same farm, related to genotypes G1, G2, G3, G4, G6, G9, G12, G13 and G14. Moreover, co-infection of several PSV-1 variants in the same animal was evident, typical of viral quasispecies. Evolutionary pressure analysis indicated that microevolution of PSV-1 seems to be driven by negative selection. This study gives further insights in the epidemiology of EV-G and PSV-1.
Collapse
Affiliation(s)
- M J Vilar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - B Peralta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - I García-Bocanegra
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, 14071 Córdoba, Spain
| | - M Simon-Grifé
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J Casal
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Barcelona, Spain
| | - J Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Barcelona, Spain
| | - S Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
28
|
Lin J, Singh A. Detection of human enteric viruses in Umgeni River, Durban, South Africa. JOURNAL OF WATER AND HEALTH 2015; 13:1098-112. [PMID: 26608771 DOI: 10.2166/wh.2015.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The prevalence of adenovirus (AdV), rotaviruses (RV) and enteroviruses (EV) in Umgeni River waters of Durban, South Africa was assessed qualitatively and quantitatively during April 2011 to January 2012 using polymerase chain reaction (PCR)/reverse transcription-polymerase chain reaction (RT-PCR), nested PCR and quantitative PCR (qPCR), as well as nested integrated cell culture PCR (nested ICC-PCR). The phylogenetic analysis of the adenovirus and enterovirus amplicons was also performed. The nested PCR results effectively detected the presence of AdV and EV in all water samples. The results of qPCR demonstrated that higher populations of EV and of AdV were widely found in the Umgeni River. Rotavirus could only be detected in the upper Umgeni River, mainly during drier seasons. Nested ICC-PCR further confirmed the presence of infectious AdV and EV particles in 100% of water samples using various cell lines. The present study identifies potential viral hazards of Umgeni River water for domestic water supply and recreational activities.
Collapse
Affiliation(s)
- Johnson Lin
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| | - Atheesha Singh
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| |
Collapse
|
29
|
Kumazaki M, Usuku S. Nucleotide Correlations Between Rotavirus C Isolates in Clinical Samples from Outbreaks and in Sewage Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:269-275. [PMID: 25475764 DOI: 10.1007/s12560-014-9175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
Rotavirus C (RVC) is detected in both sporadic cases and outbreaks of gastroenteritis worldwide. However, the epidemic dynamics of RVC in populations remain poorly understood because the detection rate is low. In this study, raw sewage samples were collected from a wastewater treatment plant in Yokohama, Japan, over 5 years, in 12-month period from September to August, to identify the RVC strains in these samples and compare them with the RVC strains circulating in the population. RVC strains were detected in 15 of the 118 raw sewage samples collected between 2007 and 2012. The highest number of positive samples detected per period (seven) was in 2008-2009. A fragment (225 nucleotides) of the VP7 gene of RVC from 14 sewage samples was sequenced. The nucleotide sequences of 11 strains were completely consistent with those of clinical strains identified in Yokohama. A phylogenetic analysis showed that 13 strains from the sewage samples clustered with several Yokohama outbreak strains and were closely related to the clinical strains (except sewage-derived strain Y11-SW0805-C). Our study demonstrates a correlation between clinical and sewage strains of RVC based on a genetic analysis, and shows that monitoring environmental samples is an effective way to study the strains circulating in a population, including in asymptomatic or mildly symptomatic patients, even when these infections are not detected in clinical samples. This is the first report of the surveillance of RVC in sewage samples in Yokohama, Japan, for molecular epidemiological analysis.
Collapse
Affiliation(s)
- Makoto Kumazaki
- Department of Testing and Research, Yokohama City Institute of Health, 2-7-1 Tomiokahigashi, Kanazawa-ku, Yokohama, Kanagawa, 236-0051, Japan,
| | | |
Collapse
|
30
|
Wieczorek M, Ciąćka A, Witek A, Kuryk Ł, Żuk-Wasek A. Environmental Surveillance of Non-polio Enteroviruses in Poland, 2011. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:224-231. [PMID: 25862480 DOI: 10.1007/s12560-015-9195-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to apply environmental surveillance to evaluate circulation of non-polio enteroviruses (NPEVs) in sewage in Poland. Samples of raw sewage were collected in 14 sewage disposal systems from January to December, 2011. Sewage samples were concentrated prior to analysis by RT-PCR and isolation in cells (RD, L20B and Caco-2). Out of the 165 analysed samples, 127 (77%) were positive for enteroviruses using RT-PCR and 109 (66%) were positive for enteroviruses using cell culture methods and the highest detection rate was observed in the summer and autumn. In total, 141 enteroviruses were identified using neutralization test (107 NPEVs and 34 polioviruses). Accounting for 52% of all the detected NPEVs, E11 and E3 were the predominant serotypes identified in raw sewage. Retrospectively, E11 was the known aetiology for the past aseptic meningitis outbreaks in Poland, as E3 being rarely associated with any outbreak prior to 2013. In conclusion, the environmental surveillance provides data which may help in understanding the epidemiology of enteroviruses in humans.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health - National Institute of Hygiene, Chocimska 24 Str., 00-791, Warsaw, Poland,
| | | | | | | | | |
Collapse
|
31
|
Environmental surveillance of poliovirus in sewage water around the introduction period for inactivated polio vaccine in Japan. Appl Environ Microbiol 2015; 81:1859-64. [PMID: 25556189 DOI: 10.1128/aem.03575-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period.
Collapse
|
32
|
Angez M, Shaukat S, Zahra R, Khurshid A, Sharif S, Alam MM, Zaidi SSZ. Molecular epidemiology of enterovirus B77 isolated from non polio acute flaccid paralytic patients in Pakistan during 2013. INFECTION GENETICS AND EVOLUTION 2014; 29:189-95. [PMID: 25433133 DOI: 10.1016/j.meegid.2014.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/02/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023]
Abstract
Human enteroviruses are associated with various clinical syndromes and severe neurological disorders. The aim of this study was to determine the molecular epidemiology of non polio enteroviruses and their correlation with acute flaccid paralysis (AFP) patients living in Khyber Pakhtunkhwa (KP) and Federally Administered Tribal Areas (FATA) of Pakistan. The stool samples collected from these patients were used for isolation of non polio enteroviruses (NPEVs). Out of 38 samples, 29 (76.3%) were successfully typed by microneutralization assay into eleven serotypes including echovirus (E)-3 (5.3%), E-7 (2.6%), E-11 (13.2%), E-12 (7.9%), E-13 (10.5%), E-20 (7.9%), E-27 (5.3%), E-29 (10.5%), E-30 (7.9%), E-33 (2.6%), coxsackievirus (CV) B5 (2.6%) and nine isolates (23.7%) remained untyped which were confirmed as NPEVs by real time RT-PCR. Complete VP1 genetic sequencing data characterized untypeable isolates into enterovirus B77 (EV-B77). Moreover, molecular phylogenetic analysis classified these viruses into two new genotypes having high genetic diversity (at least 17.7%) with prototype. This study provides valuable information on extensive genetic diversity of EV-B77 genotypes. Although, its association with neurological disorder has not yet been known but isolation of nine EV-B77 viruses from AFP cases highlights the fact that they may have a contributing role in the etiology of AFP. In addition, it is needed to establish enterovirus surveillance system and laboratory diagnostic facilities for early detection of NPEVs that may cause poliomyelitis like paralysis especially in the situation when we are at the verge of polio eradication.
Collapse
Affiliation(s)
- Mehar Angez
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan; Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Shahzad Shaukat
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Adnan Khurshid
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Salmaan Sharif
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
33
|
Harvala H, Calvert J, Van Nguyen D, Clasper L, Gadsby N, Molyneaux P, Templeton K, McWilliams Leitch C, Simmonds P. Comparison of diagnostic clinical samples and environmental sampling for enterovirus and parechovirus surveillance in Scotland, 2010 to 2012. ACTA ACUST UNITED AC 2014; 19. [PMID: 24762664 DOI: 10.2807/1560-7917.es2014.19.15.20772] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human enteroviruses (EV) and parechoviruses (HPeV) within the family Picornaviridae are the most common causes of viral central nervous system (CNS)-associated infections including meningitis and neonatal sepsis-like disease. The frequencies of EV and HPeV types identified in clinical specimens collected in Scotland over an eight-year period were compared to those identified in sewage surveillance established in Edinburgh. Of the 35 different EV types belonging to four EV species (A to D) and the four HPeV types detected in this study, HPeV3 was identified as the most prevalent picornavirus in cerebrospinal fluid samples, followed by species B EV. Interestingly, over half of EV and all HPeV CNS-associated infections were observed in young infants (younger than three months). Detection of species A EV including coxsackievirus A6 and EV71 in clinical samples and sewage indicates that these viruses are already widely circulating in Scotland. Furthermore, species C EV were frequently identified EV in sewage screening but they were not present in any of 606 EV-positive clinical samples studied, indicating their likely lower pathogenicity. Picornavirus surveillance is important not only for monitoring the changing epidemiology of these infections but also for the rapid identification of spread of emerging EV and/or HPeV types.
Collapse
Affiliation(s)
- H Harvala
- Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The evolution of Vp1 gene in enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99. PLoS One 2014; 9:e93737. [PMID: 24695547 PMCID: PMC3973639 DOI: 10.1371/journal.pone.0093737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 12/17/2022] Open
Abstract
Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific ‘signature’ amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific ‘signature’ amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.
Collapse
|
35
|
Ayukekbong JA, Fobisong C, Lindh M, Nkuo-Akenji T, Bergström T, Norder H. Molecular analysis of enterovirus in Cameroon by partial 5′UTR-VP4 gene sequencing reveals a high genetic diversity and frequency of infections. J Med Virol 2014; 86:2092-101. [DOI: 10.1002/jmv.23926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- James Ayukepi Ayukekbong
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Cajetan Fobisong
- Section For Clinical Research; Redeem Biomedical System; Douala Cameroon
| | - Magnus Lindh
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Theresia Nkuo-Akenji
- Department of Life Science; Faculty of Science; University of Buea; Buea Cameroon
| | - Tomas Bergström
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Helene Norder
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
36
|
Battistone A, Buttinelli G, Bonomo P, Fiore S, Amato C, Mercurio P, Cicala A, Simeoni J, Foppa A, Triassi M, Pennino F, Fiore L. Detection of Enteroviruses in Influent and Effluent Flow Samples from Wastewater Treatment Plants in Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:13-22. [PMID: 24277051 DOI: 10.1007/s12560-013-9132-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/11/2013] [Indexed: 05/21/2023]
Abstract
This study evaluated the presence and seasonal distribution of polio and other enteroviruses in four wastewater treatment plants in three cities in Italy, using different treatment systems. Detection of enteroviruses was carried out by virus isolation in cell cultures after concentration of water samples collected at both inlet and outlet of the treatment plants, following the methods described in the WHO guidelines. Viral serotypes isolated before and after water treatment were compared. Forty-eight non-polio enteroviruses were isolated from 312 samples collected at the inlet of the four wastewater treatment plants, 35 of which were Coxsackievirus type B (72.9 %) and 13 Echovirus (27.1 %). After treatment, 2 CVB3, 1 CVB5, and 1 Echo 6 were isolated. CVB3 and Echo 6 serotypes were also detected in samples collected at the inlet of the TP, in the same month and year. The high rate of detection of infectious enteroviruses in inlet sewage samples (30.1 %) indicates wide diffusion of these viruses in the populations linked to the collectors. The incomplete removal of infectious viruses following sewage treatment highlights possible risks for public health relate to treated waters discharge into the environment.
Collapse
Affiliation(s)
- Andrea Battistone
- CRIVIB, National Centre for Immunobiologicals Research and Evaluation, Viral Vaccines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Gabriele Buttinelli
- CRIVIB, National Centre for Immunobiologicals Research and Evaluation, Viral Vaccines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Bonomo
- CRIVIB, National Centre for Immunobiologicals Research and Evaluation, Viral Vaccines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fiore
- CRIVIB, National Centre for Immunobiologicals Research and Evaluation, Viral Vaccines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Concetta Amato
- CRIVIB, National Centre for Immunobiologicals Research and Evaluation, Viral Vaccines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Pietro Mercurio
- A.M.A.P. S.p.A. "Impianto di depurazione Acqua dei Corsari", Palermo, Italy
| | - Antonella Cicala
- A.M.A.P. S.p.A. "Impianto di depurazione Acqua dei Corsari", Palermo, Italy
| | | | | | - Maria Triassi
- Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | - Lucia Fiore
- CRIVIB, National Centre for Immunobiologicals Research and Evaluation, Viral Vaccines Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
37
|
Lu J, Zheng H, Zhang Y, Guo X, Wu D, Li H, Liu L, Zeng H, Yi L, Fang L, Mo Y, Xu W, Ke C. Whole genomic sequence and replication kinetics of a new enterovirus C96 isolated from Guangdong, China with a different cell tropism. PLoS One 2014; 9:e86877. [PMID: 24497989 PMCID: PMC3907579 DOI: 10.1371/journal.pone.0086877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 96 (EV-C96) is a newly described serotype within the enterovirus C (EV-C) species, and its biological and pathological characters are largely unknown. In this study, we sequenced the whole genome of a novel EV-C96 strain that was isolated in 2011 from a patient with acute flaccid paralysis (AFP) in Guangdong province, China and characterized the properties of its infection. Sequence analysis revealed the close relationship between the EV-C96 strains isolated from the Guangdong and Shandong provinces of China, and suggested that recombination events occurred both between these EV-C96 strains and with other EV-C viruses. Moreover, the virus replication kinetics showed EV-C96 Guangdong strain replicated at a high rate in RD cells and presented a different cell tropism to other strains isolated from Shandong recently. These findings gave further insight into the evolutionary processes and extensive biodiversity of EV-C96.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- * E-mail:
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Leng Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hanri Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yanling Mo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
38
|
Sun Q, Zhang Y, Cui H, Zhu S, Li X, Huang G, Tang H, Yan D, Wang D, Xu W. Complete genome sequence analysis of two human enterovirus C99 strains isolated in Xinjiang Uighur Autonomous Region, China, in 2011. Arch Virol 2013; 159:359-64. [PMID: 24013237 DOI: 10.1007/s00705-013-1839-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
Human enterovirus C99 (EV-C99) is a new member of the species Enterovirus C, and although only a few EV-C99 sequences have been obtained thus far, the strain has been identified on four continents. In 2011, two EV-C99 strains were isolated from two healthy children in Xinjiang, China, and to our knowledge, this is the first finding of EV-C99 in China. The two strains, designated HT-XEBGH09F and KSSC-ALXHH01F, showed 78.8-86.6 % similarity to other EV-C99 strains and exhibited intra-serotypic genetic recombination within the P2 coding regions. These findings reflect high genetic divergence among the EV-C99 strains.
Collapse
Affiliation(s)
- Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gensberger ET, Kostić T. Novel tools for environmental virology. Curr Opin Virol 2012; 3:61-8. [PMID: 23246441 DOI: 10.1016/j.coviro.2012.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/07/2012] [Accepted: 11/16/2012] [Indexed: 02/01/2023]
Abstract
Routine monitoring of relevant environmental viruses is of great importance for public health and quality assessment. Even though cell culture (i.e., viral infectivity assay) is still regarded as the golden standard, use of new strategies based on the molecular techniques significantly increased in the past years. Specific and rapid detection are main advantages of this alternative approach. Furthermore, integration of cell culture or propidium monoazide treatment with nucleic acid amplification allows for the differentiation of infectious particles. Additional recently reported approaches for the detection of viruses include, among others, whole transcriptome amplification and cell culture combined with Fourier transform infrared spectroscopy. Noteworthy is also the fact, that regardless of the selected detection method, sample preparation still remains the major bottleneck.
Collapse
Affiliation(s)
- Eva Theres Gensberger
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Konrad-Lorenz Strasse 24, A-3430 Tulln, Austria
| | | |
Collapse
|