1
|
Kurowski K, Prozmann SN, Cabrita Figueiredo AE, Heyer J, Kind F, Schröder KM, Passlick B, Werner M, Bronsert P, Schmid S. The Ectonucleotidases CD39 and CD73 and the Purinergic Receptor P2X4 Serve as Prognostic Markers in Non-Small Cell Lung Cancer. Cancers (Basel) 2025; 17:1142. [PMID: 40227655 PMCID: PMC11987875 DOI: 10.3390/cancers17071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Purinergic signaling, which involves extracellular ATP (eATP), its metabolites, purinergic receptors and ectonucleotidases, plays a pivotal role in the tumor microenvironment (TME), impacting tumor progression and the antineoplastic immune response. In this study, the CD39, CD73, P2X4, and P2X7 expression in NSCLC tumor cells and the surrounding stroma of 139 resected patients was examined. METHODS The study included tissue samples from 139 NSCLC patients. Tissue microarrays (TMAs) were constructed using 1.0 mm cores from annotated tumor regions. Immunohistochemical staining for CD39, CD73, P2X4, and P2X4 was performed on 2 µm sections. TMA slides were digitized and analyzed with QuPath, where staining intensity was evaluated using a semi-quantitative H-score. Statistical analysis, including survival analysis, was performed using R, to assess the impact of biomarker expression on patient outcomes. RESULTS High CD39 expression in both tumor and stromal cells was significantly associated with prolonged PFS (respectively: p = 0.0058 and p = 0.0067), particularly in adenocarcinoma (ADC) patients (respectively: p = 0.01 and p = 0.023). In the multivariable Cox model, low CD73 expression in tumor cells correlated with longer PFS (HR: 0.47; 95% CI: [0.28, 0.8], p = 0.005), while low CD73 expression in stromal cells was linked to increased progression risk (HR: 4.81; 95% CI: [1.61, 14.4], p = 0.001). Neither P2X7 nor P2X4 demonstrated a consistent effect on PFS in univariable analyses; however, multivariable analyses suggested that P2X4 might play a prognostic role in NSCLCs (HR: 0.37; 95% CI: [0.19, 0.73], p = 0.003). CONCLUSIONS These findings underscore the importance of purinergic signaling in NSCLC prognosis and highlight the role of the ectonucleotidases CD39 and CD73 as potential therapeutic targets to enhance antineoplastic immune responses.
Collapse
Affiliation(s)
- Konrad Kurowski
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Core Facility Histopathology and Digital Pathology Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Sophie Nicole Prozmann
- Department of Thoracic Surgery, University Medical Center Freiburg, 79106 Freiburg, Germany
| | | | - Jannis Heyer
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Core Facility Histopathology and Digital Pathology Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Felix Kind
- Department of Nuclear Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Karl-Moritz Schröder
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Bernward Passlick
- Department of Thoracic Surgery, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Core Facility Histopathology and Digital Pathology Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Core Facility Histopathology and Digital Pathology Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Severin Schmid
- Department of Thoracic Surgery, University Medical Center Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
2
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Cash E, Goodwin AT, Tatler AL. Adenosine receptor signalling as a driver of pulmonary fibrosis. Pharmacol Ther 2023; 249:108504. [PMID: 37482099 DOI: 10.1016/j.pharmthera.2023.108504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary fibrosis is a debilitating and life-limiting lung condition in which the damage- response mechanisms of mixed-population cells within the lungs go awry. The tissue microenvironment is drastically remodelled by aberrantly activated fibroblasts which deposit ECM components into the surrounding lung tissue, detrimentally affecting lung function and capacity for gas exchange. Growing evidence suggests a role for adenosine signalling in the pathology of tissue fibrosis in a variety of organs, including the lung, but the molecular pathways through which this occurs remain largely unknown. This review explores the role of adenosine in fibrosis and evaluates the contribution of the different adenosine receptors to fibrogenesis. Therapeutic targeting of the adenosine receptors is also considered, along with clinical observations pointing towards a role for adenosine in fibrosis. In addition, the interaction between adenosine signalling and other profibrotic signalling pathways, such as TGFβ1 signalling, is discussed.
Collapse
Affiliation(s)
- Emily Cash
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda T Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
4
|
Nucleoside transporters and immunosuppressive adenosine signaling in the tumor microenvironment: Potential therapeutic opportunities. Pharmacol Ther 2022; 240:108300. [PMID: 36283452 DOI: 10.1016/j.pharmthera.2022.108300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.
Collapse
|
5
|
Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci 2022; 23:13074. [PMID: 36361861 PMCID: PMC9654796 DOI: 10.3390/ijms232113074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/16/2023] Open
Abstract
Caffeine is the most frequently used substance with a central nervous system stimulant effect, but its consumption is most often due to the intake of foods and drinks that contain it (coffee, tea, chocolate, food supplements with plant extracts of Guarana, Mate herba, Cola nuts). Due to its innocuity, caffeine is a safe xanthine alkaloid for human consumption in a wide range of doses, being used for its central nervous stimulating effect, lipolytic and diuresis-enhancing properties, but also as a permitted ergogenic compound in athletes. In addition to the mechanisms that explain the effects of caffeine on the targeted organ, there are many proposed mechanisms by which this substance would have antioxidant effects. As such, its consumption prevents the occurrence/progression of certain neurodegenerative diseases as well as other medical conditions associated with increased levels of reactive oxygen or nitrogen species. However, most studies that have assessed the beneficial effects of caffeine have used pure caffeine. The question, therefore, arises whether the daily intake of caffeine from food or drink has similar benefits, considering that in foods or drinks with a high caffeine content, there are other substances that could interfere with this action, either by potentiating or decreasing its antioxidant capacity. Natural sources of caffeine often combine plant polyphenols (phenol-carboxylic acids, catechins) with known antioxidant effects; however, stimulant drinks and dietary supplements often contain sugars or artificial sweeteners that can significantly reduce the effects of caffeine on oxidative stress. The objective of this review is to clarify the effects of caffeine in modulating oxidative stress and assess these benefits, considering the source and the dose administered.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ruxandra-Emilia Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
6
|
Exploiting systems biology to investigate the gene modules and drugs in ovarian cancer: A hypothesis based on the weighted gene co-expression network analysis. Biomed Pharmacother 2021; 146:112537. [PMID: 34922114 DOI: 10.1016/j.biopha.2021.112537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the worrisome gynecological cancers worldwide. Given its considerable mortality rate, it is necessary to investigate its oncogenesis. METHODS In this study, we used systems biology approaches to describe the key gene modules, hub genes, and regulatory drugs associated with serous OC as the novel biomarkers using weighted gene co-expression network analysis (WGCNA). FINDINGS Our findings have demonstrated that the blue module genes (r = 0.8, p-value = 1e-16) are involved in OC progression. Based on gene enrichment analysis, the genes in this module are frequently involved in biological processes such as the Cyclic adenosine monophosphate (cAMP) signaling pathway and the cellular response to transforming growth factor-beta stimulation. The co-expression network has been built using the correlated module's top hub genes, which are ADORA1, ANO9, CD24P4, CLDN3, CLDN7, ELF3, KLHL14, PRSS8, RASAL1, RIPK4, SERINC2, and WNT7A. Finally, a drug-target network has been built to show the interaction of the FDA-approved drugs with hub genes. CONCLUSIONS Our results have discovered that ADORA1, ANO9, SERINC2, and KLHL14 are hub genes associated with serous OC. These genes can be considered as novel candidate target genes for treating OC.
Collapse
|
7
|
Witzler M, Vermeeren S, Kolevatov RO, Haddad R, Gericke M, Heinze T, Schulze M. Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:6719-6731. [PMID: 35006974 DOI: 10.1021/acsabm.1c00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current approaches in stem cell-based bone tissue engineering require a release of bioactive compounds over up to 2 weeks. This study presents a polyelectrolyte-layered system featuring sustained release of water-soluble drugs with decreased burst release. The bioactive compounds adenosine 5'-triphosphate (ATP), suramin, and A740003 (a less water-soluble purinergic receptor ligand) were incorporated into alginate hydrogel beads subsequently layered with different polyelectrolytes (chitosan, poly(allyl amine), alginate, or lignosulfonate). Drug release into aqueous medium was monitored over 14 days and evaluated using Korsmeyer-Peppas, Peppas-Sahlin, Weibull models, and a Langmuir-like "Two-Stage" model. Release kinetics strongly depended on both the drug and the polyelectrolyte system. For ATP, five alternating layers of poly(allyl amine) and alginate proved to be most effective in sustaining the release. Release of suramin could be prolonged best with lignosulfonate as polyanion. A740003 showed prolonged release even without layering. Applying polyelectrolyte layers significantly slowed down the burst release. Release curves could be best described with the Langmuir-like model.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany.,Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Sarah Vermeeren
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Roman O Kolevatov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Martin Gericke
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Thomas Heinze
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| |
Collapse
|
8
|
Bhagavatham SKS, Khanchandani P, Kannan V, Potikuri D, Sridharan D, Pulukool SK, Naik AA, Dandamudi RB, Divi SM, Pargaonkar A, Ray R, Santha SSR, Seshagiri PB, Narasimhan K, Gumdal N, Sivaramakrishnan V. Adenosine deaminase modulates metabolic remodeling and orchestrates joint destruction in rheumatoid arthritis. Sci Rep 2021; 11:15129. [PMID: 34301999 PMCID: PMC8302689 DOI: 10.1038/s41598-021-94607-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease associated with inflammation and joint remodeling. Adenosine deaminase (ADA), a risk factor in RA, degrades adenosine, an anti-inflammatory molecule, resulting in an inflammatory bias. We present an integrative analysis of clinical data, cytokines, serum metabolomics in RA patients and mechanistic studies on ADA-mediated effects on in vitro cell culture models. ADA activity differentiated patients into low and high ADA sets. The levels of the cytokines TNFα, IFNγ, IL-10, TGFβ and sRANKL were elevated in RA and more pronounced in high ADA sets. Serum metabolomic analysis shows altered metabolic pathways in RA which were distinct between low and high ADA sets. Comparative analysis with previous studies shows similar pathways are modulated by DMARDs and biologics. Random forest analysis distinguished RA from control by methyl-histidine and hydroxyisocaproic acid, while hexose-phosphate and fructose-6-phosphate distinguished high ADA from low ADA. The deregulated metabolic pathways of High ADA datasets significantly overlapped with high ADA expressing PBMCs GEO transcriptomics dataset. ADA induced the death of chondrocytes, synoviocyte proliferation, both inflammation in macrophages and their differentiation into osteoclasts and impaired differentiation of mesenchymal stem cells to osteoblasts and mineralization. PBMCs expressing elevated ADA had increased expression of cytokines and P2 receptors compared to synovial macrophages which has low expression of ADA. Our data demonstrates increased cytokine levels and distinct metabolic signatures of RA based on the ADA activity, suggests an important role for ADA in the pathophysiology of RA joints and as a potential marker and therapeutic target in RA patients.
Collapse
Affiliation(s)
- Sai Krishna Srimadh Bhagavatham
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Prakash Khanchandani
- grid.496668.30000 0004 1767 3076Department of Orthopedics, Sri Sathya Sai Institute of Higher Medical Sciences, PG, Puttaparthi, 515134 India
| | - Vishnu Kannan
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India ,grid.411552.60000 0004 1766 4022Present Address: Department of Botany/Biotechnology, CMS College, Kottayam, 686001 India
| | | | - Divya Sridharan
- grid.34980.360000 0001 0482 5067Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bengaluru, 560012 India
| | - Sujith Kumar Pulukool
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Ashwin Ashok Naik
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Rajesh Babu Dandamudi
- grid.444651.60000 0004 0496 6988Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India ,Present Address: Phenomenex India, Hyderabad, Telangana 500084 India
| | - Sai Mangala Divi
- grid.496668.30000 0004 1767 3076Department of Biochemistry, Sri Sathya Sai Institute of Higher Medical Sciences, PG, Puttaparthi, 515134 India
| | - Ashish Pargaonkar
- grid.464737.50000 0004 1775 153XAgilent Technologies India Pvt Ltd, Bengaluru, 560048 India
| | - Rahul Ray
- grid.496668.30000 0004 1767 3076Department of Orthopedics, Sri Sathya Sai Institute of Higher Medical Sciences, PG, Puttaparthi, 515134 India
| | - Saibharath Simha Reddy Santha
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| | - Polani B. Seshagiri
- grid.34980.360000 0001 0482 5067Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bengaluru, 560012 India
| | - K. Narasimhan
- Sri Sathya Sai General Hospital, Puttaparthi, 515134 India
| | | | - Venketesh Sivaramakrishnan
- grid.444651.60000 0004 0496 6988Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, 515134 India
| |
Collapse
|
9
|
Missel A, Walenta L, Eubler K, Mundt N, Heikelä H, Pickl U, Trottmann M, Popper B, Poutanen M, Strauss L, Köhn FM, Kunz L, Spehr M, Mayerhofer A. Testicular adenosine acts as a pro-inflammatory molecule: role of testicular peritubular cells. Mol Hum Reprod 2021; 27:6276438. [PMID: 33993290 DOI: 10.1093/molehr/gaab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.
Collapse
Affiliation(s)
- Annika Missel
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Lena Walenta
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Katja Eubler
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Nadine Mundt
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Hanna Heikelä
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | | | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Matti Poutanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Leena Strauss
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Marc Spehr
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Artur Mayerhofer
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| |
Collapse
|
10
|
Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol 2021; 187:114419. [PMID: 33460626 DOI: 10.1016/j.bcp.2021.114419] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | | | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Almeida RF, Ferreira TP, David CVC, Abreu E Silva PC, Dos Santos SA, Rodrigues ALS, Elisabetsky E. Guanine-Based Purines as an Innovative Target to Treat Major Depressive Disorder. Front Pharmacol 2021; 12:652130. [PMID: 33927625 PMCID: PMC8076783 DOI: 10.3389/fphar.2021.652130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Roberto F Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.,Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago P Ferreira
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Camila V C David
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Paulo C Abreu E Silva
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sulamita A Dos Santos
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana L S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
13
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Zhou Y, Arredondo HM, Wang N. P2Y Receptors in Bone - Anabolic, Catabolic, or Both? Front Endocrinol (Lausanne) 2021; 12:818499. [PMID: 35069456 PMCID: PMC8777008 DOI: 10.3389/fendo.2021.818499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
P2Y receptors, including eight subtypes, are G protein-coupled receptors that can be activated by extracellular nucleotides. Nearly all P2Y receptors are expressed in bone cells, suggesting their involvements in bone physiology and pathology. However, their exact roles in bone homeostasis are not entirely clear. Therefore, this mini review summarizes new research developments regarding individual P2Y receptors and their roles in bone biology, particularly detailing those which execute both anabolic and catabolic functions. This dual function has highlighted the conundrum of pharmacologically targeting these P2Y receptors in bone-wasting diseases. Further research in finding more precise targeting strategy, such as promoting anabolic effects via combining with physical exercise, should be prioritized.
Collapse
|
15
|
Zhang Y, Babczyk P, Pansky A, Kassack MU, Tobiasch E. P2 Receptors Influence hMSCs Differentiation towards Endothelial Cell and Smooth Muscle Cell Lineages. Int J Mol Sci 2020; 21:E6210. [PMID: 32867347 PMCID: PMC7503934 DOI: 10.3390/ijms21176210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) have shown their multipotential including differentiating towards endothelial and smooth muscle cell lineages, which triggers a new interest for using hMSCs as a putative source for cardiovascular regenerative medicine. Our recent publication has shown for the first time that purinergic 2 receptors are key players during hMSC differentiation towards adipocytes and osteoblasts. Purinergic 2 receptors play an important role in cardiovascular function when they bind to extracellular nucleotides. In this study, the possible functional role of purinergic 2 receptors during MSC endothelial and smooth muscle differentiation was investigated. METHODS AND RESULTS Human MSCs were isolated from liposuction materials. Then, endothelial and smooth muscle-like cells were differentiated and characterized by specific markers via Reverse Transcriptase-PCR (RT-PCR), Western blot and immunochemical stainings. Interestingly, some purinergic 2 receptor subtypes were found to be differently regulated during these specific lineage commitments: P2Y4 and P2Y14 were involved in the early stage commitment while P2Y1 was the key player in controlling MSC differentiation towards either endothelial or smooth muscle cells. The administration of natural and artificial purinergic 2 receptor agonists and antagonists had a direct influence on these differentiations. Moreover, a feedback loop via exogenous extracellular nucleotides on these particular differentiations was shown by apyrase digest. CONCLUSIONS Purinergic 2 receptors play a crucial role during the differentiation towards endothelial and smooth muscle cell lineages. Some highly selective and potent artificial purinergic 2 ligands can control hMSC differentiation, which might improve the use of adult stem cells in cardiovascular tissue engineering in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
- Institute of Pharmaceutical & Medicinal Chemistry, University of Dusseldorf, D-40225 Dusseldorf, Germany;
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
| | - Andreas Pansky
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
| | - Matthias Ulrich Kassack
- Institute of Pharmaceutical & Medicinal Chemistry, University of Dusseldorf, D-40225 Dusseldorf, Germany;
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
| |
Collapse
|
16
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Tariba Knežević P, Vukman R, Uhač M, Illeš D, Kovačević Pavičić D, Simonić-Kocijan S. P 2Y 2 Receptors Mediate Masseter Muscle Mechanical Hypersensitivity in Rats. J Pain Res 2020; 13:1323-1333. [PMID: 32581574 PMCID: PMC7280063 DOI: 10.2147/jpr.s239831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/07/2020] [Indexed: 01/18/2023] Open
Abstract
Purpose P2Y2 receptors (P2Y2Rs) are among the various receptors that play an important role in nociception. The goal of this research was to investigate possible P2Y2R expression changes in the trigeminal ganglion (TRG) in bilateral masseter muscle (MM) hypersensitivity following unilateral MM inflammation. The impact of unilateral intramasseteric administration of P2Y2R antagonist on bilateral MM hypersensitivity was also explored. Materials and Methods Bilateral MM hypersensitivity was provoked by unilateral intramasseteric injection of complete Freund’s adjuvant (CFA). The head withdrawal threshold (HWT) was assessed bilaterally 4 days later. Bilateral TRG and MM isolation were followed, and quantitative real-time polymerase chain reaction (qRT-PCR) and histopathological analysis were carried out on these tissues, respectively. The involvement of P2Y2Rs in nocifensive behavior was evaluated by administering two doses of P2Y2R antagonist AR-C118925 (0.2 or 1 mg/100 μL) in inflamed MM 4 days post-CFA administration. Bilateral HWT was assessed at different time points following antagonist injection. Results qRT-PCR analysis demonstrated P2Y2R up-regulation in TRG ipsilateral to the site of CFA administration. Compared to the controls, both doses of AR-C118925 injected ipsilateral to the TRG increased the bilateral HWT at 30, 60, 90, and 120 minutes after antagonist administration. Conclusion The findings suggest that P2Y2Rs may affect MM inflammatory hypersensitivity owing to its up-regulation in the TRG in MM inflammatory pain states.
Collapse
Affiliation(s)
- Petra Tariba Knežević
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Robert Vukman
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Mia Uhač
- Department of Orthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Davor Illeš
- Department of Removable Prosthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Kovačević Pavičić
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Sunčana Simonić-Kocijan
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Rijeka, Croatia.,Department of Prosthodontics, Clinic of Dental Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| |
Collapse
|
18
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
19
|
Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I, Junger W, Barrett N, Bankova L. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci Immunol 2020; 5:5/43/eaax7224. [PMID: 31953256 PMCID: PMC7176051 DOI: 10.1126/sciimmunol.aax7224] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Chemosensory epithelial cells (EpCs) are specialized cells that promote innate type 2 immunity and protective neurally mediated reflexes in the airway. Their effector programs and modes of activation are not fully understood. Here, we define the transcriptional signature of two choline acetyltransferase-expressing nasal EpC populations. They are found in the respiratory and olfactory mucosa and express key chemosensory cell genes including the transcription factor Pou2f3, the cation channel Trpm5, and the cytokine Il25 Moreover, these cells share a core transcriptional signature with chemosensory cells from intestine, trachea and thymus, and cluster with tracheal brush cells (BrCs) independently from other respiratory EpCs, indicating that they are part of the brush/tuft cell family. Both nasal BrC subsets express high levels of transcripts encoding cysteinyl leukotriene (CysLT) biosynthetic enzymes. In response to ionophore, unfractionated nasal BrCs generate CysLTs at levels exceeding that of the adjacent hematopoietic cells isolated from naïve mucosa. Among activating receptors, BrCs express the purinergic receptor P2Y2. Accordingly, the epithelial stress signal ATP and aeroallergens that elicit ATP release trigger BrC CysLT generation, which is mediated by the P2Y2 receptor. ATP- and aeroallergen-elicited CysLT generation in the nasal lavage is reduced in mice lacking Pou2f3, a requisite transcription factor for BrC development. Last, aeroallergen-induced airway eosinophilia is reduced in BrC-deficient mice. These results identify a previously undescribed BrC sensor and effector pathway leading to generation of lipid mediators in response to luminal signals. Further, they suggest that BrC sensing of local damage may provide an important sentinel immune function.
Collapse
Affiliation(s)
- S. Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - N. Hallen
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Y. Kanaoka
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - C. Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - W. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - N.A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - L.G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020; 11:329. [PMID: 32528416 PMCID: PMC7256624 DOI: 10.3389/fendo.2020.00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of purinergic receptors by nucleotides and/or nucleosides plays an important role in the control of vascular function, including modulation of vascular smooth muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions, acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y), target diverse downstream effectors, and substrates to regulate vascular smooth muscle function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have been shown to be mediated by different purinergic receptors in a vascular bed- and species-specific manner. Purinergic signaling has been shown to play a key role in altering vascular smooth muscle excitability and vascular reactivity following acute and short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is evidence that vascular smooth muscle excitability and vascular reactivity is severely impaired during diabetes and that this is mediated, at least in part, by activation of purinergic receptors. Thus, purinergic receptors present themselves as important candidates mediating vascular reactivity in hyperglycemia, with potentially important clinical and therapeutic potential. In this review, we provide a narrative summarizing our current understanding of the expression, function, and signaling of purinergic receptors specifically in vascular smooth muscle cells and discuss their role in vascular complications following hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Miguel Martin-Aragon Baudel
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Miguel Martin-Aragon Baudel
| | - Ricardo Espinosa-Tanguma
- Departamento de Fisiologia y Biofisca, Universidad Autónoma San Luis Potosí, San Luis Potosí, Mexico
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Manuel F. Navedo
| |
Collapse
|
21
|
Akhtari M, Zargar SJ, Vojdanian M, Ashraf-Ganjouei A, Javinani A, Hamzeh E, Rezaiemanesh A, Jamshidi A, Mahmoudi M. P2 receptors mRNA expression profiles in macrophages from ankylosing spondylitis patients and healthy individuals. Int J Rheum Dis 2019; 23:350-357. [PMID: 31884692 DOI: 10.1111/1756-185x.13783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a multifactorial rheumatic disease which mainly involves the axial skeleton. Macrophages and extracellular nucleotides have been shown to contribute to the inflammation process in autoimmune diseases. Membrane-bound purinergic P2 receptors might be involved in the modulation of immune cells in AS. Therefore, we aimed to analyze the messenger RNA (mRNA) expression of P2 receptors in the macrophages of AS patients and healthy controls. METHODS Twenty-three AS patients and 23 age- and sex-matched healthy individuals were included in our study. Whole blood-separated monocytes of study participants were stimulated by macrophage colony-stimulating factor for 7 days and differentiated to macrophages. Monocyte and macrophage markers were analyzed by flow cytometry. SYBR green real-time polymerase chain reaction was used to measure the relative expression levels of P2RX1 , P2RX2 , P2RX3 , P2RX4 , P2RX5 , P2RX6 , P2RX7 , P2RY1 , P2RY2 , P2RY4 , P2RY6 , P2RY11 , P2RY12 , P2RY13 , P2RY14 , and PANX1 genes. RESULTS P2RY13 and P2RY6 genes had the highest expression levels in macrophages among P2RY genes. P2RY1 mRNA expression was significantly down-regulated (-1.75 fold) and P2RY14 was up-regulated (2.6 fold) in macrophages of AS patients compared to healthy individuals. P2RX4 gene had the highest expression in monocyte-derived macrophages, followed by P2RX7 and P2RX1 genes. There was no significant difference in P2X receptor mRNA expression level between macrophages of AS patients and healthy individuals. CONCLUSIONS Our results indicate that AS patients show altered expression levels of P2 receptor genes. Moreover, these changes might be associated with disease activity and patients' status.
Collapse
Affiliation(s)
- Maryam Akhtari
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Zargar
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Javinani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hamzeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent. Sci Rep 2019; 9:18938. [PMID: 31831761 PMCID: PMC6908675 DOI: 10.1038/s41598-019-55194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Purinergic receptor is a potential drug target for neuropathic pain, Alzheimer disease, and prostate cancer. Focusing on the structure-based ligand discovery, docking analysis on the crystal structure of P2Y1 receptor (P2Y1R) with 923 derivatives of 1-indolinoalkyl 2-phenolic compound is performed to understand the molecular insights of the receptor. The structural model identified the top novel ligands, 426 (compound 1) and 636 (compound 2) having highest binding affinity with the docking score of -7.38 and -6.92. We have reported the interaction efficacy and the dynamics of P2Y1R protein with the ligands. The best hits synthesized were experimentally optimized as a potent P2Y1 agonists. These ligands exhibits anti-proliferative effect against the PC-3 and DU-145 cells (IC50 = 15 µM - 33 µM) with significant increase in the calcium level in dose- and time-dependent manner. Moreover, the activation of P2Y1R induced the apoptosis via Capase3/7 and ROS signaling pathway. Thus it is evidenced that the newly synthesized ligands, as a P2Y1R agonists could potentially act as a therapeutic drug for treating prostate cancer.
Collapse
|
23
|
Suzuki T, Kohyama K, Moriyama K, Ozaki M, Hasegawa S, Ueno T, Saitoe M, Morio T, Hayashi M, Sakuma H. Extracellular ADP augments microglial inflammasome and NF-κB activation via the P2Y12 receptor. Eur J Immunol 2019; 50:205-219. [PMID: 31549730 DOI: 10.1002/eji.201848013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome is a molecular complex that translates signals from pathogens and tissue damage into inflammatory responses, and plays crucial roles in numerous neurological diseases. Activation of the NLRP3 inflammasome leads to caspase-1 dependent cleavage of pro-IL-1β to form mature IL-1β. By acting on the P2X7 purinergic receptor, extracellular ATP is one of the major stimuli that activates the NLRP3 inflammasome. Although microglia express multiple purinergic receptors, their roles in inflammasome-mediated inflammation are largely unknown. We studied the role of the P2Y12 receptor, a metabotropic P2Y receptor enriched in microglia, on inflammation in vitro. Inhibition of the microglial P2Y12 receptor by PSB0739 or siRNA knockdown suppressed IL-1β release. P2Y12 receptor-deficient microglia displayed markedly attenuated IL-1β mRNA expression and release. P2Y12 receptor blockade also suppressed IL-6 production. Both IL-1β and IL-6 responses were augmented by extracellular ADP or ADP-βS and were abrogated by PSB0739. Mechanistically, ADP-βS potentiated NF-κB activation. In addition, ADP altered mitochondrial membrane potential in combination with ATP and increased the number of caspase-1 positive cells through the P2Y12 receptor. These results elucidate a novel inflammatory mechanism by which extracellular ADP acts on the P2Y12 receptor to activate NF-κB and the NLRP3 inflammasome to enhance microglial inflammation.
Collapse
Affiliation(s)
- Tomonori Suzuki
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Pediatrics and Developmental Biology, Bio-Environmental Response Division, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Kohyama
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kengo Moriyama
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mariko Ozaki
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Setsuko Hasegawa
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Taro Ueno
- Learning and Memory Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minoru Saitoe
- Learning and Memory Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Bio-Environmental Response Division, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaharu Hayashi
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Sakuma
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
24
|
Reklow RJ, Alvares TS, Zhang Y, Miranda Tapia AP, Biancardi V, Katzell AK, Frangos SM, Hansen MA, Toohey AW, Cass CE, Young JD, Pagliardini S, Boison D, Funk GD. The Purinome and the preBötzinger Complex - A Ménage of Unexplored Mechanisms That May Modulate/Shape the Hypoxic Ventilatory Response. Front Cell Neurosci 2019; 13:365. [PMID: 31496935 PMCID: PMC6712068 DOI: 10.3389/fncel.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Exploration of purinergic signaling in brainstem homeostatic control processes is challenging the traditional view that the biphasic hypoxic ventilatory response, which comprises a rapid initial increase in breathing followed by a slower secondary depression, reflects the interaction between peripheral chemoreceptor-mediated excitation and central inhibition. While controversial, accumulating evidence supports that in addition to peripheral excitation, interactions between central excitatory and inhibitory purinergic mechanisms shape this key homeostatic reflex. The objective of this review is to present our working model of how purinergic signaling modulates the glutamatergic inspiratory synapse in the preBötzinger Complex (key site of inspiratory rhythm generation) to shape the hypoxic ventilatory response. It is based on the perspective that has emerged from decades of analysis of glutamatergic synapses in the hippocampus, where the actions of extracellular ATP are determined by a complex signaling system, the purinome. The purinome involves not only the actions of ATP and adenosine at P2 and P1 receptors, respectively, but diverse families of enzymes and transporters that collectively determine the rate of ATP degradation, adenosine accumulation and adenosine clearance. We summarize current knowledge of the roles played by these different purinergic elements in the hypoxic ventilatory response, often drawing on examples from other brain regions, and look ahead to many unanswered questions and remaining challenges.
Collapse
Affiliation(s)
- Robert J. Reklow
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tucaaue S. Alvares
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yong Zhang
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana P. Miranda Tapia
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexis K. Katzell
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sara M. Frangos
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan A. Hansen
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander W. Toohey
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carol E. Cass
- Professor Emerita, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - James D. Young
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Gregory D. Funk
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, Kiefmann R, Klose H. The P2-receptor-mediated Ca 2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension. Purinergic Signal 2019; 15:299-311. [PMID: 31396838 DOI: 10.1007/s11302-019-09674-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as vessel integrity, vasodilatation, inflammatory, and thrombotic responses as well as survival and DNA repair, mostly via Ca2+ signaling pathways. However, a comprehensive analysis of the molecular components of the underlying P2 receptor-mediated Ca2+ signaling pathways in the lung has not been conducted so far. Therefore, our aim was to identify the principal P2 receptor Ca2+ signalosome in the human pulmonary endothelium and investigate potential dysregulation in pulmonary vascular disease. Comparative transcriptomics and quantitative immunohistochemistry were performed on publicly available RNA sequencing and protein datasets to identify the specific expression profile of the P2-receptor Ca2+ signalosome in the healthy human pulmonary endothelium and endothelial cells (EC) dysfunctional due to loss of or defective bone morphogenetic protein receptor (BMPR2). Functional expression of signalosome components was tested by single cell Ca2+ imaging. Comparative transcriptome analysis of 11 endothelial cell subtypes revealed a specific P2 receptor Ca2+ signalosome signature for the pulmonary endothelium. Pulmonary endothelial expression of the most abundantly expressed Ca2+ toolkit genes CALM1, CALM2, VDAC1, and GNAS was confirmed by immunohistochemistry (IHC). P2RX1, P2RX4, P2RY6, and P2YR11 showed strong lung endothelial staining by IHC, P2X5, and P2Y1 were found to a much lesser extent. Very weak or no signals were detected for all other P2 receptors. Stimulation of human pulmonary artery (HPA) EC by purine nucleotides ATP, ADP, and AMP led to robust intracellular Ca2+ signals mediated through both P2X and P2Y receptors. Pyrimidine UTP and UDP-mediated Ca2+ signals were generated almost exclusively by activation of P2Y receptors. HPAEC made dysfunctional by siRNA-mediated BMPR2 depletion showed downregulation of 18 and upregulation of 19 P2 receptor Ca2+ signalosome genes including PLCD4, which was found to be upregulated in iPSC-EC from BMPR2-mutant patients with pulmonary arterial hypertension. In conclusion, the human pulmonary endothelium expresses a distinct functional subset of the P2 receptor Ca2+ signalosome. Composition of the P2 receptor Ca2+ toolkit in the pulmonary endothelium is susceptible to genetic disturbances likely contributing to an unfavorable pulmonary disease phenotype found in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jan K Hennigs
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Nicole Lüneburg
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Annett Stage
- Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Melanie Schmitz
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Körbelin
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lars Harbaum
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christiane Matuszcak
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Mienert
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer H Böger
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer Kiefmann
- Department of Anesthesiology, Center of Anesthesiology and Critical Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hans Klose
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
26
|
He P, Zhou W, Liu M, Chen Y. Recent Advances of Small Molecular Regulators Targeting G Protein- Coupled Receptors Family for Oncology Immunotherapy. Curr Top Med Chem 2019; 19:1464-1483. [PMID: 31264549 DOI: 10.2174/1568026619666190628115644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
The great clinical success of chimeric antigen receptor T cell (CAR-T) and PD-1/PDL-1 inhibitor therapies suggests the drawing of a cancer immunotherapy age. However, a considerable proportion of cancer patients currently receive little benefit from these treatment modalities, indicating that multiple immunosuppressive mechanisms exist in the tumor microenvironment. In this review, we mainly discuss recent advances in small molecular regulators targeting G Protein-Coupled Receptors (GPCRs) that are associated with oncology immunomodulation, including chemokine receptors, purinergic receptors, prostaglandin E receptor EP4 and opioid receptors. Moreover, we outline how they affect tumor immunity and neoplasia by regulating immune cell recruitment and modulating tumor stromal cell biology. We also summarize the data from recent clinical advances in small molecular regulators targeting these GPCRs, in combination with immune checkpoints blockers, such as PD-1/PDL-1 and CTLA4 inhibitors, for cancer treatments.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
27
|
Hevia MJ, Castro P, Pinto K, Reyna-Jeldes M, Rodríguez-Tirado F, Robles-Planells C, Ramírez-Rivera S, Madariaga JA, Gutierrez F, López J, Barra M, De la Fuente-Ortega E, Bernal G, Coddou C. Differential Effects of Purinergic Signaling in Gastric Cancer-Derived Cells Through P2Y and P2X Receptors. Front Pharmacol 2019; 10:612. [PMID: 31249523 PMCID: PMC6584115 DOI: 10.3389/fphar.2019.00612] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is the one of the most prevalent cancers and one of the leading causes of cancer-induced deaths. Previously, we found that the expression of purinergic P2Y2 receptor (P2Y2R) is increased in GC samples as compared to adjacent healthy mucosa taken from GC-diagnosed patients. In this work, we studied in detail purinergic signaling in the gastric adenocarcinoma-derived cell lines: AGS, MKN-45, and MKN-74, and compared them to a nontumoral epithelial cell line: GES-1. In GC-derived cells, we detected the expression of several purinergic receptors, and found important differences as compared to GES-1 cells. Functional studies revealed a strong contribution of P2Y2Rs in intracellular calcium increases, elicited by adenosine-triphosphate (ATP), uridine-triphosphate (UTP), and the P2Y2R agonist MRS2768. Responses were preserved in the absence of extracellular calcium and inhibited by P2Y2R antagonists. In GES-1 cells, ATP and UTP induced similar responses and the combination of P2X and P2Y receptor antagonists was able to block them. Proliferation studies showed that ATP regulates AGS and MKN-74 cells in a biphasic manner, increasing cell proliferation at 10–100 μM, but inhibiting at 300 μM ATP. On the other hand, 1–300 μM UTP, a P2Y2R agonist, increased concentration-dependent cell proliferation. The effects of UTP and ATP were prevented by both wide-range and specific purinergic antagonists. In contrast, in GES-1 cells ATP only decreased cell proliferation in a concentration-dependent manner, and UTP had no effect. Notably, the isolated application of purinergic antagonists was sufficient to change the basal proliferation of AGS cells, indicating that nucleotides released by the cells can act as paracrine/autocrine signals. Finally, in tumor-derived biopsies, we found an increase of P2Y2R and a decrease in P2X4R expression; however, we found high variability between seven different biopsies and their respective adjacent healthy gastric mucosa. Even so, we found a correlation between the expression levels of P2Y2R and P2X4R and survival rates of GC patients. Taken together, these results demonstrate the involvement of different purinergic receptors and signaling in GC, and the pattern of expression changes in tumoral cells, and this change likely directs ATP and nucleotide signaling from antiproliferative effects in healthy tissues to proliferative effects in cancer.
Collapse
Affiliation(s)
- María José Hevia
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Katherine Pinto
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | | | | | - Sebastián Ramírez-Rivera
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Juan Andrés Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | | | - Javier López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Marcelo Barra
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Giuliano Bernal
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
28
|
Zhou F, Liu X, Gao L, Zhou X, Cao Q, Niu L, Wang J, Zuo D, Li X, Yang Y, Hu M, Yu Y, Tang R, Lee BH, Choi BW, Wang Y, Izumiya Y, Xue M, Zheng K, Gao D. HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. J Neuroinflammation 2019; 16:71. [PMID: 30947729 PMCID: PMC6449963 DOI: 10.1186/s12974-019-1466-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HANDs) afflict more than half of HIV-1-positive individuals. The transactivator of transcription (Tat) produced by HIV virus elicits inflammatory process and is a major neurotoxic mediator that induce neuron damage during HAND pathogenesis. Activated astrocytes are important cells involved in neuroinflammation and neuronal damage. Purinergic receptors expressed in astrocytes participate in a positive feedback loop in virus-induced neurotoxicity. Here, we investigated that whether P2Y4R, a P2Y receptor subtype, that expressed in astrocyte participates in Tat-induced neuronal death in vitro and in vivo. METHODS Soluble Tat protein was performed to determine the expression of P2Y4R and proinflammatory cytokines in astrocytes using siRNA technique via real-time PCR, Western blot, and immunofluorescence assays. Cytometric bead array was used to measure proinflammatory cytokine release. The TUNEL staining and MTT cell viability assay were analyzed for HT22 cell apoptosis and viability, and the ApopTag® peroxidase in situ apoptosis detection kit and cresyl violet staining for apoptosis and death of hippocampal neuron in vivo. RESULTS We found that Tat challenge increased the expression of P2Y4R in astrocytes. P2Y4R signaling in astrocytes was involved in Tat-induced inflammatory cytokine production via PI3K/Akt- and ERK1/2-dependent pathways. Knockdown of P2Y4R expression significantly reduced inflammatory cytokine production and relieved Tat-mediated neuronal apoptosis in vitro. Furthermore, in vivo challenged with Tat, P2Y4R knockdown mice showed decreased inflammation and neuronal damage, especially in hippocampal CA1 region. CONCLUSIONS Our data provide novel insights into astrocyte-mediated neuron damage during HIV-1 infection and suggest a potential therapeutic target for HANDs.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/pathology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/pathology
- Oncogene Protein v-akt
- Phosphatidylinositol 3-Kinases
- RNA, Messenger/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transduction, Genetic
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Feng Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Lin Gao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xinxin Zhou
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Qianwen Cao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Liping Niu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Jing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dongjiao Zuo
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Byoung Wook Choi
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, Sacramento, CA USA
| | - Min Xue
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
29
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
30
|
Rennert L, Zschiedrich S, Sandner L, Hartleben B, Cicko S, Ayata CK, Meyer C, Zech A, Zeiser R, Huber TB, Idzko M, Grahammer F. P2Y2R Signaling Is Involved in the Onset of Glomerulonephritis. Front Immunol 2018; 9:1589. [PMID: 30061884 PMCID: PMC6054981 DOI: 10.3389/fimmu.2018.01589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Endogenously released adenosine-5’-triphosphate (ATP) is a key regulator of physiological function and inflammatory responses in the kidney. Genetic or pharmacological inhibition of purinergic receptors has been linked to attenuation of inflammatory disorders and hence constitutes promising new avenues for halting and reverting inflammatory renal diseases. However, the involvement of purinergic receptors in glomerulonephritis (GN) has only been incompletely mapped. Here, we demonstrate that induction of GN in an experimental antibody-mediated GN model results in a significant increase of urinary ATP-levels and an upregulation of P2Y2R expression in resident kidney cells as well as infiltrating leukocytes pointing toward a possible role of the ATP/P2Y2R-axis in glomerular disease initiation. In agreement, decreasing extracellular ATP-levels or inhibition of P2R during induction of antibody-mediated GN leads to a reduction in all cardinal features of GN such as proteinuria, glomerulosclerosis, and renal failure. The specific involvement of P2Y2R could be further substantiated by demonstrating the protective effect of the lack of P2Y2R in antibody-mediated GN. To systematically differentiate between the function of P2Y2R on resident renal cells versus infiltrating leukocytes, we performed bone marrow-chimera experiments revealing that P2Y2R on hematopoietic cells is the main driver of the ATP/P2Y2R-mediated disease progression in antibody-mediated GN. Thus, these data unravel an important pro-inflammatory role for P2Y2R in the pathogenesis of GN.
Collapse
Affiliation(s)
- Laura Rennert
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Zschiedrich
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Sandner
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Björn Hartleben
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanja Cicko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Charlotte Meyer
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Zech
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany.,Division of Pulmonology, Department of Medicine II, Medical University Vienna, Vienna, Austria
| | - Florian Grahammer
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
32
|
Hatano N, Ohya S, Imaizumi Y, Clark RB, Belke D, Giles WR. ATP increases [Ca 2+ ] i and activates a Ca 2+ -dependent Cl - current in rat ventricular fibroblasts. Exp Physiol 2018; 103:666-682. [PMID: 29493027 DOI: 10.1113/ep086822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/22/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although electrophysiological and biophysical characteristics of heart fibroblasts have been studied in detail, their responses to prominent paracrine agents in the myocardium have not been addressed adequately. Our experiments characterize changes in cellular electrophysiology and intracellular calcium in response to ATP. What is the main finding and its importance? In rat ventricular fibroblasts maintained in cell culture, we find that ATP activates a specific subset of Ca2+ -activated Cl- channels as a consequence of binding to P2Y purinoceptors and then activating phospholipase C. This response is not dependent on [Ca2+ ]o but requires an increase in [Ca2+ ]i and is modulated by the type of nucleotide that is the purinergic agonist. ABSTRACT Effects of ATP on enzymatically isolated rat ventricular fibroblasts maintained in short-term (36-72 h) cell culture were examined. Immunocytochemical staining of these cells revealed that a fibroblast, as opposed to a myofibroblast, phenotype was predominant. ATP, ADP or uridine 5'-triphosphate (UTP) all produced large increases in [Ca2+ ]i . Voltage-clamp studies (amphotericin-perforated patch) showed that ATP (1-100 μm) activated an outwardly rectifying current, with a reversal potential very close to the Nernst potential for Cl- . In contrast, ADP was much less effective, and UTP produced no detectable current. The non-selective Cl- channel blockers niflumic acid, DIDS and NPPB (each at 100 μm), blocked the responses to 100 μm ATP. An agonist for P2Y purinoceptors, 2-MTATP, activated a very similar outwardly rectifying C1- current. The P2Y receptor antagonists, suramin and PPADS (100 μm each), significantly inhibited the Cl- current produced by 100 μm ATP. ATP was able to activate this Cl- current when [Ca2+ ]o was removed, but not when [Ca2+ ]i was buffered with BAPTA-AM. In the presence of the phospholipase C inhibitor U73122, this Cl- current could not be activated. PCR analysis revealed strong signals for a number of P2Y purinoceptors and for the Ca2+ -activated Cl- channel, TMEM16F (also denoted ANO6). In summary, these results demonstrate that activation of P2Y receptors by ATP causes a phospholipase C-dependent increase in [Ca2+ ]i , followed by activation of a Ca2+ -dependent Cl- current in rat ventricular fibroblasts.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Robert B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
de Almeida-Pereira L, Repossi MG, Magalhães CF, Azevedo RDF, Corrêa-Velloso JDC, Ulrich H, Ventura ALM, Fragel-Madeira L. P2Y 12 but not P2Y 13 Purinergic Receptor Controls Postnatal Rat Retinogenesis In Vivo. Mol Neurobiol 2018; 55:8612-8624. [PMID: 29574630 DOI: 10.1007/s12035-018-1012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Adenine nucleotides through P2Y1 receptor stimulation are known to control retinal progenitor cell (RPC) proliferation by modulating expression of the p57KIP2, a cell cycle regulator. However, the role of Gi protein-coupled P2Y12 and P2Y13 receptors also activated by adenine nucleotides in RPC proliferation is still unknown. Gene expression of the purinergic P2Y12 subtype was detected in rat retina during early postnatal days (P0 to P5), while expression levels of P2Y13 were low. Immunohistochemistry assays performed with rat retina on P3 revealed P2Y12 receptor expression in both Ki-67-positive cells in the neuroblastic layer and Ki-67-negative cells in the ganglion cell layer and inner nuclear layer. Nonetheless, P2Y13 receptor expression could not be detected in any stratum of rat retina. Intravitreal injection of PSB 0739 or clopidogrel, both selective P2Y12 receptor antagonists, increased by 20 and 15%, respectively, the number of Ki-67-positive cells following 24 h of exposure. Moreover, the P2Y12 receptor inhibition increased cyclin D1 and decreased p57KIP2 expression. However, there were no changes in the S phase of the cell cycle (BrdU-positive cells) or in mitosis (phospho-histone-H3-positive cells). Interestingly, an increase in the number of cyclin D1/TUNEL-positive cells after treatment with PSB 0739 was observed. These data suggest that activation of P2Y12 receptors is required for the successful exit of RPCs from cell cycle in the postnatal rat retina.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
34
|
Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018; 9:212. [PMID: 29593540 PMCID: PMC5861216 DOI: 10.3389/fphar.2018.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation-related intestinal diseases are a set of various conditions presenting an overactive enteric immune system. A continuous overproduction of pro-inflammatory cytokines and a decreased production of anti-inflammatory modulators are generally observed, while morpho-functional alterations of the enteric nervous system lead to intestinal secretory and motor dysfunctions. The factors at the basis of these conditions are still to be totally identified and current therapeutic strategies are aimed only at achieving and maintaining remission states, by using therapeutic tools like aminosalicylates, corticosteroids, immunomodulators, biological drugs (i.e., monoclonal antibodies), and eventually surgery. Recent reports described a key role of purinergic mediators (i.e., adenosine and its nucleotides ATP and ADP) in the regulation of the activity of immune cells and enteric nervous system, showing also that alterations of the purinergic signaling are linked to pathological conditions of the intestinal tract. These data prompted to a series of investigations to test the therapeutic potential for inflammation-related intestinal conditions of compounds able to restore or modulate an altered purinergic signaling within the gut. This review provides an overview on these investigations, describing the results of preclinical and/or clinical evaluation of compounds able to stimulate or inhibit specific P2 (i.e., P2X7) or P1 (i.e., A2A or A3) receptor signaling and to modify the adenosine levels through the modulation of enzymes activity (i.e., Adenosine Deaminase) or nucleoside transporters. Recent developments in the field are also reported and the most promising purine-based therapeutic strategies for the treatment of inflammation-related gastrointestinal disorders are schematically summarized.
Collapse
Affiliation(s)
- Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
35
|
P2Y12 antibody inhibits platelet activity and protects against thrombogenesis. Biochem Biophys Res Commun 2017; 493:1069-1074. [DOI: 10.1016/j.bbrc.2017.09.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 11/23/2022]
|
36
|
Naviaux RK, Curtis B, Li K, Naviaux JC, Bright AT, Reiner GE, Westerfield M, Goh S, Alaynick WA, Wang L, Capparelli EV, Adams C, Sun J, Jain S, He F, Arellano DA, Mash LE, Chukoskie L, Lincoln A, Townsend J. Low-dose suramin in autism spectrum disorder: a small, phase I/II, randomized clinical trial. Ann Clin Transl Neurol 2017; 4:491-505. [PMID: 28695149 PMCID: PMC5497533 DOI: 10.1002/acn3.424] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE No drug is yet approved to treat the core symptoms of autism spectrum disorder (ASD). Low-dose suramin was effective in the maternal immune activation and Fragile X mouse models of ASD. The Suramin Autism Treatment-1 (SAT-1) trial was a double-blind, placebo-controlled, translational pilot study to examine the safety and activity of low-dose suramin in children with ASD. METHODS Ten male subjects with ASD, ages 5-14 years, were matched by age, IQ, and autism severity into five pairs, then randomized to receive a single, intravenous infusion of suramin (20 mg/kg) or saline. The primary outcomes were ADOS-2 comparison scores and Expressive One-Word Picture Vocabulary Test (EOWPVT). Secondary outcomes were the aberrant behavior checklist, autism treatment evaluation checklist, repetitive behavior questionnaire, and clinical global impression questionnaire. RESULTS Blood levels of suramin were 12 ± 1.5 μmol/L (mean ± SD) at 2 days and 1.5 ± 0.5 μmol/L after 6 weeks. The terminal half-life was 14.7 ± 0.7 days. A self-limited, asymptomatic rash was seen, but there were no serious adverse events. ADOS-2 comparison scores improved by -1.6 ± 0.55 points (n = 5; 95% CI = -2.3 to -0.9; Cohen's d = 2.9; P = 0.0028) in the suramin group and did not change in the placebo group. EOWPVT scores did not change. Secondary outcomes also showed improvements in language, social interaction, and decreased restricted or repetitive behaviors. INTERPRETATION The safety and activity of low-dose suramin showed promise as a novel approach to treatment of ASD in this small study.
Collapse
Affiliation(s)
- Robert K. Naviaux
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of MedicineUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of PediatricsUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of PathologyUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
| | - Brooke Curtis
- Alliant International University10455 Pomerado RoadSan DiegoCalifornia92131
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of MedicineUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of NeurosciencesUniversity of CaliforniaSan Diego School of Medicine9500 Gilman Drive.La JollaCA92093‐0662
| | - A. Taylor Bright
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of MedicineUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
| | - Gail E. Reiner
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of NeurosciencesUniversity of CaliforniaSan Diego School of Medicine9500 Gilman Drive.La JollaCA92093‐0662
| | - Marissa Westerfield
- The Research in Autism and Development Laboratory (RAD Lab)University of California9500 Gilman DriveLa JollaCA92093‐0959
| | - Suzanne Goh
- Pediatric Neurology Therapeutics7090 Miratech DrSan DiegoCA92121
| | - William A. Alaynick
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of MedicineUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
| | - Lin Wang
- The Mitochondrial and Metabolic Disease CenterUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
- Department of MedicineUniversity of CaliforniaSan Diego School of Medicine214 Dickinson St., Bldg CTF, Rm C102San Diego92103‐8467California
| | - Edmund V. Capparelli
- Department of Pediatricsand Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaSan Diego School of Medicine9500 Gilman DriveLa JollaCA92093‐0657
| | - Cynthia Adams
- Clinical and Translational Research Institute (CTRI)University of CaliforniaSan DiegoLa JollaCA92037
| | - Ji Sun
- Clinical and Translational Research Institute (CTRI)University of CaliforniaSan DiegoLa JollaCA92037
| | - Sonia Jain
- Department of Family Medicine and Public HealthUniversity of CaliforniaSan DiegoLa JollaCA92093
| | - Feng He
- Department of Family Medicine and Public HealthUniversity of CaliforniaSan DiegoLa JollaCA92093
| | - Deyna A. Arellano
- Clinical and Translational Research Institute (CTRI)University of CaliforniaSan DiegoLa JollaCA92037
| | - Lisa E. Mash
- The Research in Autism and Development Laboratory (RAD Lab)University of California9500 Gilman DriveLa JollaCA92093‐0959
- Department of PsychologySan Diego State University5500 Campanile DriveSan DiegoCA92182
| | - Leanne Chukoskie
- The Research in Autism and Development Laboratory (RAD Lab)University of California9500 Gilman DriveLa JollaCA92093‐0959
- Institute for Neural ComputationUniversity of California9500 Gilman DriveLa Jolla92093‐0523
| | - Alan Lincoln
- Alliant International University10455 Pomerado RoadSan DiegoCalifornia92131
| | - Jeanne Townsend
- Department of NeurosciencesUniversity of CaliforniaSan Diego School of Medicine9500 Gilman Drive.La JollaCA92093‐0662
- The Research in Autism and Development Laboratory (RAD Lab)University of California9500 Gilman DriveLa JollaCA92093‐0959
| |
Collapse
|
37
|
Sun K, Liu H, Song A, Manalo JM, D'Alessandro A, Hansen KC, Kellems RE, Eltzschig HK, Blackburn MR, Roach RC, Xia Y. Erythrocyte purinergic signaling components underlie hypoxia adaptation. J Appl Physiol (1985) 2017; 123:951-956. [PMID: 28572494 DOI: 10.1152/japplphysiol.00155.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023] Open
Abstract
Erythrocytes are vital to human adaptation under hypoxic conditions because of their abundance in number and irreplaceable function of delivering oxygen (O2). However, although multiple large-scale altitude studies investigating the overall coordination of the human body for hypoxia adaptation have been conducted, detailed research with a focus on erythrocytes was missing due to lack of proper techniques. The recently maturing metabolomics profiling technology appears to be the answer to this limitation. Metabolomics profiling provides unbiased high-throughput screening data that reveal the overall metabolic status of erythrocytes. Recent studies have exploited this new technology and provided novel insight into erythrocyte physiology and pathology. In particular, a series of studies focusing on erythrocyte purinergic signaling have reported that adenosine signaling, coupled with 5' AMP-activated protein kinase (AMPK) and the production of erythrocyte-enriched bioactive signaling lipid sphingosine 1-phosphate, regulate erythrocyte glucose metabolism for more O2 delivery. Moreover, an adenosine-dependent "erythrocyte hypoxic memory" was discovered that provides an explanation for fast acclimation upon re-ascent. These findings not only shed new light on our understanding of erythrocyte function and hypoxia adaptation, but also offer a myriad of novel therapeutic possibilities to counteract various hypoxic conditions.
Collapse
Affiliation(s)
- Kaiqi Sun
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Robert C Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; .,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
38
|
Jiang LH, Mousawi F, Yang X, Roger S. ATP-induced Ca 2+-signalling mechanisms in the regulation of mesenchymal stem cell migration. Cell Mol Life Sci 2017; 74:3697-3710. [PMID: 28534085 PMCID: PMC5597679 DOI: 10.1007/s00018-017-2545-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. .,Sino-UK Joint Laboratory of Brain Function and Injury, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China. .,Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 37032, Tours, France.
| | - Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Xuebin Yang
- Department of Oral Biology, University of Leeds, WTBB, St James University Hospital, Leeds, LS97TF, UK
| | - Sėbastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 37032, Tours, France
| |
Collapse
|
39
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Guanosine and its role in neuropathologies. Purinergic Signal 2016; 12:411-26. [PMID: 27002712 PMCID: PMC5023624 DOI: 10.1007/s11302-016-9509-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer's disease, Parkinson's disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
de Almeida-Pereira L, Magalhães CF, Repossi MG, Thorstenberg MLP, Sholl-Franco A, Coutinho-Silva R, Ventura ALM, Fragel-Madeira L. Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y 1 Receptor. Mol Neurobiol 2016; 54:5142-5155. [PMID: 27558237 DOI: 10.1007/s12035-016-0059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022]
Abstract
Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPβ-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57KIP2 and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | - Alfred Sholl-Franco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
- Laboratório de Desenvolvimento e Regeneração Neural, Departmento de Neurobiologia, Universidade Federal Fluminense, Cx. Postal 100180, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
41
|
Jiang LH, Hao Y, Mousawi F, Peng H, Yang X. Expression of P2 Purinergic Receptors in Mesenchymal Stem Cells and Their Roles in Extracellular Nucleotide Regulation of Cell Functions. J Cell Physiol 2016; 232:287-297. [PMID: 27403750 DOI: 10.1002/jcp.25484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Extracellular ATP and other nucleotides induce autocrine and/or paracrine purinergic signalling via activation of the P2 receptors on the cell surface, which represents one of the most common signalling mechanisms. Mesenchymal stem cells (MSC) are a type of multipotent adult stem cells that have many promising applications in regenerative medicine. There is increasing evidence to show that extracellular nucleotides regulate MSC functions and P2 receptor-mediated purinergic signalling plays an important role in such functional regulation. P2 receptors comprise ligand-gated ion channel P2X receptors and G-protein-coupled P2Y receptors. In this review, we provide an overview of the current understanding with respect to expression of the P2X and P2Y receptors in MSC and their roles in mediating extracellular nucleotide regulation of MSC proliferation, migration and differentiation. J. Cell. Physiol. 232: 287-297, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lin-Hua Jiang
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom. .,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.
| | - Yunjie Hao
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Fatema Mousawi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Hongsen Peng
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Xuebin Yang
- Faculty of Medicine and Health, Department of Oral Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
42
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
43
|
Stachon P, Geis S, Peikert A, Heidenreich A, Michel NA, Ünal F, Hoppe N, Dufner B, Schulte L, Marchini T, Cicko S, Ayata K, Zech A, Wolf D, Hilgendorf I, Willecke F, Reinöhl J, von Zur Mühlen C, Bode C, Idzko M, Zirlik A. Extracellular ATP Induces Vascular Inflammation and Atherosclerosis via Purinergic Receptor Y2 in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1577-86. [PMID: 27339459 DOI: 10.1161/atvbaha.115.307397] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE A solid body of evidence supports a role of extracellular ATP and its P2 receptors in innate and adaptive immunity. It promotes inflammation as a danger signal in various chronic inflammatory diseases. Thus, we hypothesize contribution of extracellular ATP and its receptor P2Y2 in vascular inflammation and atherosclerosis. APPROACH AND RESULTS Extracellular ATP induced leukocyte rolling, adhesion, and migration in vivo as assessed by intravital microscopy and in sterile peritonitis. To test the role of extracellular ATP in atherosclerosis, ATP or saline as control was injected intraperitoneally 3× a week in low-density lipoprotein receptor(-/-) mice consuming high cholesterol diet. Atherosclerosis significantly increased after 16 weeks in ATP-treated mice (n=13; control group, 0.26 mm2; ATP group, 0.33 mm2; P=0.01). To gain into the role of ATP-receptor P2Y2 in ATP-induced leukocyte recruitment, ATP was administered systemically in P2Y2-deficient or P2Y2-competent mice. In P2Y2-deficient mice, the ATP-induced leukocyte adhesion was significantly reduced as assessed by intravital microscopy. P2Y2 expression in atherosclerosis was measured by real-time polymerase chain reaction and immunohistochemistry and demonstrates an increased expression mainly caused by influx of P2Y2-expressing macrophages. To investigate the functional role of P2Y2 in atherogenesis, P2Y2-deficient low-density lipoprotein receptor(-/-) mice consumed high cholesterol diet. After 16 weeks, P2Y2-deficient mice showed significantly reduced atherosclerotic lesions with decreased macrophages compared with P2Y2-competent mice (n=11; aortic arch: control group, 0.25 mm(2); P2Y2-deficient, 0.14 mm2; P=0.04). Mechanistically, atherosclerotic lesions from P2Y2-deficient mice expressed less vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 RNA. CONCLUSIONS We show that extracellular ATP induces vascular inflammation and atherosclerosis via activation of P2Y2.
Collapse
Affiliation(s)
- Peter Stachon
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Serjosha Geis
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Alexander Peikert
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Adrian Heidenreich
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Nathaly Anto Michel
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Fatih Ünal
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Bianca Dufner
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Lisa Schulte
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Sanja Cicko
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Korcan Ayata
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Andreas Zech
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Florian Willecke
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Jochen Reinöhl
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Marco Idzko
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
Toti K, Renders M, Groaz E, Herdewijn P, Van Calenbergh S. Nucleosides with Transposed Base or 4'-Hydroxymethyl Moieties and Their Corresponding Oligonucleotides. Chem Rev 2015; 115:13484-525. [PMID: 26655745 DOI: 10.1021/acs.chemrev.5b00545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates, their stereoisomers, and their close analogues. The biological activities of all known 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates as potential antiviral or anticancer agents are compiled. The routes that have been taken for the chemical synthesis of such nucleoside derivatives are described, with special attention to the innovative strategies. The enzymatic synthesis, base-pairing properties, structure, and stability of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides are discussed. The use of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides as small oligonucleotide (e.g., human immunodeficiency virus integrase) inhibitors, in applications such as antisense therapy, silencing RNA (siRNA), or aptamer selections, is detailed.
Collapse
Affiliation(s)
- Kiran Toti
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Marleen Renders
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Elisabetta Groaz
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Peti-Peterdi J, Kishore BK, Pluznick JL. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2015; 78:391-414. [PMID: 26667077 DOI: 10.1146/annurev-physiol-021115-105403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148;
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
46
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 2015; 11:389-407. [PMID: 26126429 PMCID: PMC4529847 DOI: 10.1007/s11302-015-9460-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Adenosine receptors (ARs) have emerged as new drug targets. The majority of data on affinity/potency and selectivity of AR ligands described in the literature has been obtained for the human species. However, preclinical studies are mostly performed in mouse or rat, and standard AR agonists and antagonists are frequently used for studies in rodents without knowing their selectivity in the investigated species. In the present study, we selected a set of frequently used standard AR ligands, 8 agonists and 16 antagonists, and investigated them in radioligand binding studies at all four AR subtypes, A1, A2A, A2B, and A3, of three species, human, rat, and mouse. Recommended, selective agonists include CCPA (for A1AR of rat and mouse), CGS-21680 (for A2A AR of rat), and Cl-IB-MECA (for A3AR of all three species). The functionally selective partial A2B agonist BAY60-6583 was found to additionally bind to A1 and A3AR and act as an antagonist at both receptor subtypes. The antagonists PSB-36 (A1), preladenant (A2A), and PSB-603 (A2B) displayed high selectivity in all three investigated species. MRS-1523 acts as a selective A3AR antagonist in human and rat, but is only moderately selective in mouse. The comprehensive data presented herein provide a solid basis for selecting suitable AR ligands for biological studies.
Collapse
MESH Headings
- Adenosine A1 Receptor Agonists/metabolism
- Adenosine A1 Receptor Agonists/pharmacology
- Adenosine A1 Receptor Antagonists/metabolism
- Adenosine A1 Receptor Antagonists/pharmacology
- Adenosine A2 Receptor Agonists/metabolism
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine A2 Receptor Antagonists/metabolism
- Adenosine A2 Receptor Antagonists/pharmacology
- Adenosine A3 Receptor Agonists/metabolism
- Adenosine A3 Receptor Agonists/pharmacology
- Adenosine A3 Receptor Antagonists/metabolism
- Adenosine A3 Receptor Antagonists/pharmacology
- Animals
- Arrestin/metabolism
- Binding, Competitive/drug effects
- CHO Cells
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cricetinae
- Cricetulus
- Cyclic AMP/metabolism
- DNA, Complementary/drug effects
- DNA, Complementary/genetics
- Humans
- Mice
- Rats
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/drug effects
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Species Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Stephan Jepards
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alessandro Casari
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anke C. Schiedel
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
48
|
Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol (1985) 2015; 119:1173-82. [PMID: 26316513 DOI: 10.1152/japplphysiol.00350.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects.
Collapse
Affiliation(s)
- Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Vinette V, Placet M, Arguin G, Gendron FP. Multidrug Resistance-Associated Protein 2 Expression Is Upregulated by Adenosine 5'-Triphosphate in Colorectal Cancer Cells and Enhances Their Survival to Chemotherapeutic Drugs. PLoS One 2015; 10:e0136080. [PMID: 26295158 PMCID: PMC4546675 DOI: 10.1371/journal.pone.0136080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Extracellular adenosine 5’-triphosphate (ATP) is a signaling molecule that induces a plethora of effects ranging from the regulation of cell proliferation to modulation of cancerous cell behavior. In colorectal cancer, ATP was reported to stimulate epithelial cell proliferation and possibly promote resistance to anti-cancer treatments. However, the exact role of this danger-signaling molecule on cancerous intestinal epithelial cells (IECs) in response to chemotherapeutic agents remains unknown. To address how ATP may influence the response of cancerous IECs to chemotherapeutic agents, we used Caco-2 cells, which display enterocyte-like features, to determine the effect of ATP on the expression of multidrug resistance-associated protein 2 (MRP2). Gene and protein expression were determined by quantitative real-time PCR (qRT-PCR) and Western blotting. Resistance to etoposide, cisplatin and doxorubicin was determined by MTT assays in response to ATP stimulation of Caco-2 cells and in cells for which MRP2 expression was down-regulated by shRNA. ATP increased the expression of MRP2 at both the mRNA and protein levels. MRP2 expression involved an ATP-dependent stimulation of the MEK/ERK signaling pathway that was associated with an increase in relative resistance of Caco-2 cells to etoposide. Abolition of MRP2 expression using shRNA significantly reduced the protective effect of MRP2 toward etoposide as well as to cisplatin and doxorubicin. This study describes the mechanism by which ATP may contribute to the chemoresistance of cancerous IECs in colorectal cancer. Given the heterogeneity of colorectal adenocarcinoma responses to anti-cancer drugs, these findings call for further study to understand the role of P2 receptors in cancer drug therapy and to develop novel therapies aimed at regulating P2 receptor activity.
Collapse
Affiliation(s)
- Valérie Vinette
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Morgane Placet
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
50
|
Abstract
The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. In the present study, we provide striking evidence that ATP, in turn, stimulates internalization of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellular ATP is elevated. In the nervous system, this includes phenomena such as synaptic plasticity, pain, precursor cell development and stroke; outside of the nervous system, this includes things like skeletal and smooth muscle activity and inflammation. Within 15 min, ATP led to significant Panx1-EGFP internalization. In a series of experiments, we determined that hydrolysable ATP is the most potent stimulator of Panx1 internalization. We identified two possible mechanisms for Panx1 internalization, including activation of ionotropic purinergic (P2X) receptors and involvement of a putative ATP-sensitive residue in the first extracellular loop of Panx1 (Trp(74)). Internalization was cholesterol-dependent, but clathrin, caveolin and dynamin independent. Detailed analysis of Panx1 at specific endosome sub-compartments confirmed that Panx1 is expressed in endosome membranes of the classical degradation pathway under basal conditions and that elevation of ATP levels diverts a sub-population to recycling endosomes. This is the first report detailing endosome localization of Panx1 under basal conditions and the potential for ATP regulation of its surface expression. Given the ubiquitous expression profile of Panx1 and the importance of ATP signalling, these findings are of critical importance for understanding the role of Panx1 in health and disease.
Collapse
|