1
|
Xu T, Zhang X, Tang H, Hua Bd T, Xiao F, Cui Z, Tang G, Zhang L. The Value of Whole-Volume Radiomics Machine Learning Model Based on Multiparametric MRI in Predicting Triple-Negative Breast Cancer. J Comput Assist Tomogr 2025; 49:407-416. [PMID: 39631431 DOI: 10.1097/rct.0000000000001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE This study aimed to investigate the value of radiomics analysis in the precise diagnosis of triple-negative breast cancer (TNBC) based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coefficient (ADC) maps. METHODS This retrospective study included 326 patients with pathologically proven breast cancer (TNBC: 129, non-TNBC: 197). The lesions were segmented using the ITK-SNAP software, and whole-volume radiomics features were extracted using a radiomics platform. Radiomics features were obtained from DCE-MRI and ADC maps. The least absolute shrinkage and selection operator regression method was employed for feature selection. Three prediction models were constructed using a support vector machine classifier: Model A (based on the selected features of the ADC maps), Model B (based on the selected features of DCE-MRI), and Model C (based on the selected features of both combined). Receiver operating characteristic curves were used to evaluate the diagnostic performance of the conventional MR image model and the 3 radiomics models in predicting TNBC. RESULTS In the training dataset, the AUCs for the conventional MR image model and the 3 radiomics models were 0.749, 0.801, 0.847, and 0.896. The AUCs for the conventional MR image model and 3 radiomics models in the validation dataset were 0.693, 0.742, 0.793, and 0.876, respectively. CONCLUSIONS Radiomics based on the combination of whole volume DCE-MRI and ADC maps is a promising tool for distinguishing between TNBC and non-TNBC.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueli Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai, China
| | - Ting Hua Bd
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuxia Xiao
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijun Cui
- Department of Radiology, Chongming Branch of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
He J, Liu N, Zhao L. New progress in imaging diagnosis and immunotherapy of breast cancer. Front Immunol 2025; 16:1560257. [PMID: 40165974 PMCID: PMC11955504 DOI: 10.3389/fimmu.2025.1560257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer (BC) is a predominant malignancy among women globally, with its etiology remaining largely elusive. Diagnosis primarily relies on invasive histopathological methods, which are often limited by sample representation and processing time. Consequently, non-invasive imaging techniques such as mammography, ultrasound, and Magnetic Resonance Imaging (MRI) are indispensable for BC screening, diagnosis, staging, and treatment monitoring. Recent advancements in imaging technologies and artificial intelligence-driven radiomics have enhanced precision medicine by enabling early detection, accurate molecular subtyping, and personalized therapeutic strategies. Despite reductions in mortality through traditional treatments, challenges like tumor heterogeneity and therapeutic resistance persist. Immunotherapies, particularly PD-1/PD-L1 inhibitors, have emerged as promising alternatives. This review explores recent developments in BC imaging diagnostics and immunotherapeutic approaches, aiming to inform clinical practices and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Jie He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nan Liu
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Chang H, Chen J, Wang D, Li H, Ming L, Li Y, Yu D, Yang YX, Kong P, Jia W, Yan Q, Liu X, Zeng Q. Multimodal apparent diffusion MRI model in noninvasive evaluation of breast cancer and Ki-67 expression. Cancer Imaging 2024; 24:137. [PMID: 39394171 PMCID: PMC11470582 DOI: 10.1186/s40644-024-00780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND To assess the capability of multimodal apparent diffusion (MAD) weighted magnetic resonance imaging (MRI) to distinguish between malignant and benign breast lesions, and to predict Ki-67 expression level in breast cancer. METHODS This retrospective study was conducted with 93 patients who had postoperative pathology-confirmed breast cancer or benign breast lesions. MAD images were acquired using a 3.0 T MRI scanner with 16 b values. The MAD parameters, as flow (fF, DF), unimpeded (fluid) (fUI), hindered (fH, DH, and αH), and restricted (fR, DR), were calculated. The differences of the parameters were compared by Mann-Whitney U test between the benign/malignant lesions and high/low Ki-67 expression level. The diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS The fR in the malignant lesions was significantly higher than in the benign lesions (P = 0.001), whereas the fUI and DH were found to be significantly lower (P = 0.007 and P < 0.001, respectively). Compared with individual parameter in differentiating malignant from benign breast lesions, the combination parameters of MAD (fR, DH, and fUI) provided the highest AUC (0.851). Of the 73 malignant lesions, 42 (57.5%) were assessed as Ki-67 low expression and 31 (42.5%) were Ki-67 high expression. The Ki-67 high status showed lower DH, higher DF and higher αH (P < 0.05). The combination parameters of DH, DF, and αH provided the highest AUC (0.691) for evaluating Ki-67 expression level. CONCLUSIONS MAD weighted MRI is a useful method for the breast lesions diagnostics and the preoperative prediction of Ki-67 expression level.
Collapse
Affiliation(s)
- Huan Chang
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan, Shandong, China
| | - Jinming Chen
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan, Shandong, China
| | - Dawei Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hongxia Li
- Department of Radiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Ming
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yuting Li
- Department of Radiology, The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Yu
- United Imaging Research Institute of Intelligent Imaging, Beijing, People's Republic of China
| | - Yu Xin Yang
- United Imaging Research Institute of Intelligent Imaging, Beijing, People's Republic of China
| | - Peng Kong
- Department of Breast Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wenjing Jia
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical Universityand, Shandong Academy of Medical Sciences , Jinan, Shandong, China
| | - Qingqing Yan
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical Universityand, Shandong Academy of Medical Sciences , Jinan, Shandong, China
| | - Xinhui Liu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical Universityand, Shandong Academy of Medical Sciences , Jinan, Shandong, China
| | - Qingshi Zeng
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan, Shandong, China.
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| |
Collapse
|
4
|
Yin L, Zhang Y, Wei X, Shaibu Z, Xiang L, Wu T, Zhang Q, Qin R, Shan X. Preliminary study on DCE-MRI radiomics analysis for differentiation of HER2-low and HER2-zero breast cancer. Front Oncol 2024; 14:1385352. [PMID: 39211554 PMCID: PMC11357957 DOI: 10.3389/fonc.2024.1385352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose This study aims to evaluate the utility of radiomic features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in distinguishing HER2-low from HER2-zero breast cancer. Patients and methods We retrospectively analyzed 118 MRI cases, including 78 HER2-low and 40 HER2-zero patients confirmed by immunohistochemistry or fluorescence in situ hybridization. From each DCE-MRI case, 960 radiomic features were extracted. These features were screened and reduced using intraclass correlation coefficient, Mann-Whitney U test, and least absolute shrinkage to establish rad-scores. Logistic regression (LR) assessed the model's effectiveness in distinguishing HER2-low from HER2-zero. A clinicopathological MRI characteristic model was constructed using univariate and multivariate analysis, and a nomogram was developed combining rad-scores with significant MRI characteristics. Model performance was evaluated using the receiver operating characteristic (ROC) curve, and clinical benefit was assessed with decision curve analysis. Results The radiomics model, clinical model, and nomogram successfully distinguished between HER2-low and HER2-zero. The radiomics model showed excellent performance, with area under the curve (AUC) values of 0.875 in the training set and 0.845 in the test set, outperforming the clinical model (AUC = 0.691 and 0.672, respectively). HER2 status correlated with increased rad-score and Time Intensity Curve (TIC). The nomogram outperformed both models, with AUC, sensitivity, and specificity values of 0.892, 79.6%, and 82.8% in the training set, and 0.886, 83.3%, and 90.9% in the test set. Conclusions The DCE-MRI-based nomogram shows promising potential in differentiating HER2-low from HER2-zero status in breast cancer patients.
Collapse
Affiliation(s)
- Liang Yin
- Department of Breast Surgery, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
- Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Yun Zhang
- School of Medical Imaging, Jiangsu University, Zhenjiang, China
- Department of Radiology, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
| | - Xi Wei
- Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
- Department of Pathology, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Zakari Shaibu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lingling Xiang
- Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
- Department of Radiology, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
| | - Ting Wu
- Department of Pathology, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Qing Zhang
- Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
- Department of Ultrasound, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Rong Qin
- Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
| | - Xiuhong Shan
- Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
- Department of Radiology, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
| |
Collapse
|
5
|
Wang H, Sang L, Xu J, Huang C, Huang Z. Multiparametric MRI-based radiomic nomogram for predicting HER-2 2+ status of breast cancer. Heliyon 2024; 10:e29875. [PMID: 38720718 PMCID: PMC11076642 DOI: 10.1016/j.heliyon.2024.e29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Objective To explore the application of multiparametric MRI-based radiomic nomogram for assessing HER-2 2+ status of breast cancer (BC). Methods Patients with pathology-proven HER-2 2+ invasive BC, who underwent preoperative MRI were divided into training (72 patients, 21 HER-2-positive and 51 HER-2-negative) and validation (32 patients, 9 HER-2-positive and 23 HER-2-negative) sets by randomization. All were classified as HER-2 2+ FISH-positive (HER-2-positive) or -negative (HER-2-negative) according to IHC and FISH. The 3D VOI was drawn on MR images by two radiologists. ADC, T2WI, and DCE images were analyzed separately to extract features (n = 1906). L1 regularization, F-test, and other methods were used to reduce dimensionality. Binary radiomics prediction models using features from single or combined imaging sequences were constructed using logistic regression (LR) classifier then and validated on a validation dataset. To build a radiomics nomogram, multivariate LR analysis was conducted to identify independent indicators. An evaluation of the model's predictive efficacy was made using AUC. Results On the basis of combined ADC, T2WI, and DCE images, ten radiomic features were extracted following feature dimensionality reduction. There was superior diagnostic efficiency of radiomic signature using all three sequences compared to either one or two sequences (AUC for training group: 0.883; AUC for validation group: 0.816). Based on multivariate LR analysis, radiomic signature and peritumoral edema were independent predictors for identifying HER-2 2 +. In both training and validation datasets, nomograms combining peritumoral edema and radiomics signature demonstrated an effective discrimination (AUCs were respectively 0.966 and 0. 884). Conclusion The nomogram that incorporated peritumoral edema and multiparametric MRI-based radiomic signature can be used to effectively predict the HER-2 2+ status of BC.
Collapse
Affiliation(s)
- Haili Wang
- Department of Radiology, Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Li Sang
- Department of Radiology, Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jingxu Xu
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of, PHD Technology Co.Ltd, Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of, PHD Technology Co.Ltd, Beijing, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| |
Collapse
|
6
|
Lin J, Zheng H, Jia Q, Shi J, Wang S, Wang J, Ge M. A meta-analysis of MRI radiomics-based diagnosis for BI-RADS 4 breast lesions. J Cancer Res Clin Oncol 2024; 150:254. [PMID: 38748373 PMCID: PMC11096203 DOI: 10.1007/s00432-024-05697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE The aim of this study is to conduct a systematic evaluation of the diagnostic efficacy of Breast Imaging Reporting and Data System (BI-RADS) 4 benign and malignant breast lesions using magnetic resonance imaging (MRI) radiomics. METHODS A systematic search identified relevant studies. Eligible studies were screened, assessed for quality, and analyzed for diagnostic accuracy. Subgroup and sensitivity analyses explored heterogeneity, while publication bias, clinical relevance and threshold effect were evaluated. RESULTS This study analyzed a total of 11 studies involving 1,915 lesions in 1,893 patients with BI-RADS 4 classification. The results showed that the combined sensitivity and specificity of MRI radiomics for diagnosing BI-RADS 4 lesions were 0.88 (95% CI 0.83-0.92) and 0.79 (95% CI 0.72-0.84). The positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 4.2 (95% CI 3.1-5.7), 0.15 (95% CI: 0.10-0.22), and 29.0 (95% CI 15-55). The summary receiver operating characteristic (SROC) analysis yielded an area under the curve (AUC) of 0.90 (95% CI 0.87-0.92), indicating good diagnostic performance. The study found no significant threshold effect or publication bias, and heterogeneity among studies was attributed to various factors like feature selection algorithm, radiomics algorithms, etc. Overall, the results suggest that MRI radiomics has the potential to improve the diagnostic accuracy of BI-RADS 4 lesions and enhance patient outcomes. CONCLUSION MRI-based radiomics is highly effective in diagnosing BI-RADS 4 benign and malignant breast lesions, enabling improving patients' medical outcomes and quality of life.
Collapse
Affiliation(s)
- Jie Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hao Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qiyu Jia
- The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jingjing Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiwei Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Junna Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Min Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
7
|
Fan M, Cao X, Lü F, Xie S, Yu Z, Chen Y, Lü Z, Li L. Generative adversarial network-based synthesis of contrast-enhanced MR images from precontrast images for predicting histological characteristics in breast cancer. Phys Med Biol 2024; 69:095002. [PMID: 38537294 DOI: 10.1088/1361-6560/ad3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Objective. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive tool for assessing breast cancer by analyzing tumor blood flow, but it requires gadolinium-based contrast agents, which carry risks such as brain retention and astrocyte migration. Contrast-free MRI is thus preferable for patients with renal impairment or who are pregnant. This study aimed to investigate the feasibility of generating contrast-enhanced MR images from precontrast images and to evaluate the potential use of synthetic images in diagnosing breast cancer.Approach. This retrospective study included 322 women with invasive breast cancer who underwent preoperative DCE-MRI. A generative adversarial network (GAN) based postcontrast image synthesis (GANPIS) model with perceptual loss was proposed to generate contrast-enhanced MR images from precontrast images. The quality of the synthesized images was evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The diagnostic performance of the generated images was assessed using a convolutional neural network to predict Ki-67, luminal A and histological grade with the area under the receiver operating characteristic curve (AUC). The patients were divided into training (n= 200), validation (n= 60), and testing sets (n= 62).Main results. Quantitative analysis revealed strong agreement between the generated and real postcontrast images in the test set, with PSNR and SSIM values of 36.210 ± 2.670 and 0.988 ± 0.006, respectively. The generated postcontrast images achieved AUCs of 0.918 ± 0.018, 0.842 ± 0.028 and 0.815 ± 0.019 for predicting the Ki-67 expression level, histological grade, and luminal A subtype, respectively. These results showed a significant improvement compared to the use of precontrast images alone, which achieved AUCs of 0.764 ± 0.031, 0.741 ± 0.035, and 0.797 ± 0.021, respectively.Significance. This study proposed a GAN-based MR image synthesis method for breast cancer that aims to generate postcontrast images from precontrast images, allowing the use of contrast-free images to simulate kinetic features for improved diagnosis.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xuan Cao
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| | - Fuqing Lü
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| | - Sangma Xie
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| | - Zhou Yu
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| | - Yuanlin Chen
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University,People's Republic of China
| | - Lihua Li
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University,Hangzhou 310018, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Zhang W, Liang F, Zhao Y, Li J, He C, Zhao Y, Lai S, Xu Y, Ding W, Wei X, Jiang X, Yang R, Zhen X. Multiparametric MR-based feature fusion radiomics combined with ADC maps-based tumor proliferative burden in distinguishing TNBC versus non-TNBC. Phys Med Biol 2024; 69:055032. [PMID: 38306970 DOI: 10.1088/1361-6560/ad25c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Objective.To investigate the incremental value of quantitative stratified apparent diffusion coefficient (ADC) defined tumor habitats for differentiating triple negative breast cancer (TNBC) from non-TNBC on multiparametric MRI (mpMRI) based feature-fusion radiomics (RFF) model.Approach.466 breast cancer patients (54 TNBC, 412 non-TNBC) who underwent routine breast MRIs in our hospital were retrospectively analyzed. Radiomics features were extracted from whole tumor on T2WI, diffusion-weighted imaging, ADC maps and the 2nd phase of dynamic contrast-enhanced MRI. Four models including the RFFmodel (fused features from all MRI sequences), RADCmodel (ADC radiomics feature), StratifiedADCmodel (tumor habitas defined on stratified ADC parameters) and combinational RFF-StratifiedADCmodel were constructed to distinguish TNBC versus non-TNBC. All cases were randomly divided into a training (n= 337) and test set (n= 129). The four competing models were validated using the area under the curve (AUC), sensitivity, specificity and accuracy.Main results.Both the RFFand StratifiedADCmodels demonstrated good performance in distinguishing TNBC from non-TNBC, with best AUCs of 0.818 and 0.773 in the training and test sets. StratifiedADCmodel revealed significant different tumor habitats (necrosis/cysts habitat, chaotic habitat or proliferative tumor core) between TNBC and non-TNBC with its top three discriminative parameters (p <0.05). The integrated RFF-StratifiedADCmodel demonstrated superior accuracy over the other three models, with higher AUCs of 0.832 and 0.784 in the training and test set, respectively (p <0.05).Significance.The RFF-StratifiedADCmodel through integrating various tumor habitats' information from whole-tumor ADC maps-based StratifiedADCmodel and radiomics information from mpMRI-based RFFmodel, exhibits tremendous promise for identifying TNBC.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Fangrong Liang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Yue Zhao
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Jiamin Li
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Chutong He
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Yandong Zhao
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, People's Republic of China
| | - Yongzhou Xu
- Philips Healthcare, Guangzhou, Guangdong, 510220, People's Republic of China
| | - Wenshuang Ding
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People's Republic of China
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510180, People's Republic of China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| |
Collapse
|
9
|
Xu M, Zeng S, Li F, Liu G. Utilizing grayscale ultrasound-based radiomics nomogram for preoperative identification of triple negative breast cancer. LA RADIOLOGIA MEDICA 2024; 129:29-37. [PMID: 37919521 DOI: 10.1007/s11547-023-01739-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE This study aimed to develop a radiomics nomogram based on grayscale ultrasound (US) to distinguish triple-negative breast cancer (TNBC) from non-triple-negative breast cancer (NTNBC) prior to surgery. METHODS A retrospective analysis of 454 breast carcinoma patients confirmed by pathology was conducted, with 317 patients in the training dataset (59 with TNBC) and 137 patients in the validation dataset (27 with TNBC). Clinical information, conventional US features, and radiomics features were collected, and the Radscore model was constructed after feature selection. Independent risk factors were identified using univariate and multivariate logistic regression analysis. The nomogram model was assessed using the receiver operating characteristic (ROC) curve analysis, calibration curve, decision curve analysis (DCA), net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS Tumor shape, margin, and calcification were independent risk factors in the clinical prediction model. Additionally, 16 radiomics features were selected to construct the Radscore model out of a total of 474 extracted features. The radiomics nomogram model, which incorporated tumor shape, margin, calcification, and Radscore, achieved an AUC value of 0.837 in the training dataset and 0.813 in the validation dataset, outperforming both the Radscore and clinical models in terms of predictive performance. The significant improvement of NRI and IDI indicated that the Radscore may be useful biomarkers for TNBC. CONCLUSION The US-based radiomics nomogram showed satisfactory preoperative prediction of TNBC.
Collapse
Affiliation(s)
- Maolin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Shue Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, 430079, China
| | - Fang Li
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, 430079, China.
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
10
|
Gullo RL, Partridge SC, Shin HJ, Thakur SB, Pinker K. Update on DWI for Breast Cancer Diagnosis and Treatment Monitoring. AJR Am J Roentgenol 2024; 222:e2329933. [PMID: 37850579 PMCID: PMC11196747 DOI: 10.2214/ajr.23.29933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
DWI is a noncontrast MRI technique that measures the diffusion of water molecules within biologic tissue. DWI is increasingly incorporated into routine breast MRI examinations. Currently, the main applications of DWI are breast cancer detection and characterization, prognostication, and prediction of treatment response to neoadjuvant chemotherapy. In addition, DWI is promising as a noncontrast MRI alternative for breast cancer screening. Problems with suboptimal resolution and image quality have restricted the mainstream use of DWI for breast imaging, but these shortcomings are being addressed through several technologic advancements. In this review, we present an up-to-date assessment of the use of DWI for breast cancer imaging, including a summary of the clinical literature and recommendations for future use.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, University of Washington, Seattle, WA, USA 98109, USA
| | - Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
11
|
Bhalla K, Xiao Q, Luna JM, Podany E, Ahmad T, Ademuyiwa FO, Davis A, Bennett DL, Gastounioti A. Radiologic imaging biomarkers in triple-negative breast cancer: a literature review about the role of artificial intelligence and the way forward. BJR ARTIFICIAL INTELLIGENCE 2024; 1:ubae016. [PMID: 40201726 PMCID: PMC11974408 DOI: 10.1093/bjrai/ubae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 11/10/2024] [Indexed: 04/10/2025]
Abstract
Breast cancer is one of the most common and deadly cancers in women. Triple-negative breast cancer (TNBC) accounts for approximately 10%-15% of breast cancer diagnoses and is an aggressive molecular breast cancer subtype associated with important challenges in its diagnosis, treatment, and prognostication. This poses an urgent need for developing more effective and personalized imaging biomarkers for TNBC. Towards this direction, artificial intelligence (AI) for radiologic imaging holds a prominent role, leveraging unique advantages of radiologic breast images, being used routinely for TNBC diagnosis, staging, and treatment planning, and offering high-resolution whole-tumour visualization, combined with the immense potential of AI to elucidate anatomical and functional properties of tumours that may not be easily perceived by the human eye. In this review, we synthesize the current state-of-the-art radiologic imaging applications of AI in assisting TNBC diagnosis, treatment, and prognostication. Our goal is to provide a comprehensive overview of radiomic and deep learning-based AI developments and their impact on advancing TNBC management over the last decade (2013-2024). For completeness of the review, we start with a brief introduction of AI, radiomics, and deep learning. Next, we focus on clinically relevant AI-based diagnostic, predictive, and prognostic models for radiologic breast images evaluated in TNBC. We conclude with opportunities and future directions for AI towards advancing diagnosis, treatment response predictions, and prognostic evaluations for TNBC.
Collapse
Affiliation(s)
- Kanika Bhalla
- Breast Image Computing Lab, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Qi Xiao
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - José Marcio Luna
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Emily Podany
- Division of Hematology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Tabassum Ahmad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Foluso O Ademuyiwa
- Alvin J. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Andrew Davis
- Alvin J. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Debbie Lee Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| | - Aimilia Gastounioti
- Breast Image Computing Lab, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
12
|
Campana A, Gandomkar Z, Giannotti N, Reed W. The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review. J Med Radiat Sci 2023; 70:462-478. [PMID: 37534540 PMCID: PMC10715343 DOI: 10.1002/jmrs.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Collapse
Affiliation(s)
- Annalise Campana
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Nicola Giannotti
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
13
|
Cho S, Joo B, Park M, Ahn SJ, Suh SH, Park YW, Ahn SS, Lee SK. A Radiomics-Based Model for Potentially More Accurate Identification of Subtypes of Breast Cancer Brain Metastases. Yonsei Med J 2023; 64:573-580. [PMID: 37634634 PMCID: PMC10462808 DOI: 10.3349/ymj.2023.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Breast cancer brain metastases (BCBM) may involve subtypes that differ from the primary breast cancer lesion. This study aimed to develop a radiomics-based model that utilizes preoperative brain MRI for multiclass classification of BCBM subtypes and to investigate whether the model offers better prediction accuracy than the assumption that primary lesions and their BCBMs would be of the same subtype (non-conversion model) in an external validation set. MATERIALS AND METHODS The training and external validation sets each comprised 51 cases (102 cases total). Four machine learning classifiers combined with three feature selection methods were trained on radiomic features and primary lesion subtypes for prediction of the following four subtypes: 1) hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)-, 2) HR+/HER2+, 3) HR-/HER2+, and 4) triple-negative. After training, the performance of the radiomics-based model was compared to that of the non-conversion model in an external validation set using accuracy and F1-macro scores. RESULTS The rate of discrepant subtypes between primary lesions and their respective BCBMs were 25.5% (n=13 of 51) in the training set and 23.5% (n=12 of 51) in the external validation set. In the external validation set, the accuracy and F1-macro score of the radiomics-based model were significantly higher than those of the non-conversion model (0.902 vs. 0.765, p=0.004; 0.861 vs. 0.699, p=0.002). CONCLUSION Our radiomics-based model represents an incremental advance in the classification of BCBM subtypes, thereby facilitating a more appropriate personalized therapy.
Collapse
Affiliation(s)
- Seonghyeon Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bio Joo
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Teng X, Zhang J, Zhang X, Fan X, Zhou T, Huang YH, Wang L, Lee EYP, Yang R, Cai J. Noninvasive imaging signatures of HER2 and HR using ADC in invasive breast cancer: repeatability, reproducibility, and association with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:77. [PMID: 37381020 DOI: 10.1186/s13058-023-01674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The immunohistochemical test (IHC) of HER2 and HR can provide prognostic information and treatment guidance for invasive breast cancer patients. We aimed to develop noninvasive image signatures ISHER2 and ISHR of HER2 and HR, respectively. We independently evaluate their repeatability, reproducibility, and association with pathological complete response (pCR) to neoadjuvant chemotherapy. METHODS Pre-treatment DWI, IHC receptor status HER2/HR, and pCR to neoadjuvant chemotherapy of 222 patients from the multi-institutional ACRIN 6698 trial were retrospectively collected. They were pre-separated for development, independent validation, and test-retest. 1316 image features were extracted from DWI-derived ADC maps within manual tumor segmentations. ISHER2 and ISHR were developed by RIDGE logistic regression using non-redundant and test-retest reproducible features relevant to IHC receptor status. We evaluated their association with pCR using area under receiver operating curve (AUC) and odds ratio (OR) after binarization. Their reproducibility was further evaluated using the test-retest set with intra-class coefficient of correlation (ICC). RESULTS A 5-feature ISHER2 targeting HER2 was developed (AUC = 0.70, 95% CI 0.59 to 0.82) and validated (AUC = 0.72, 95% CI 0.58 to 0.86) with high perturbation repeatability (ICC = 0.92) and test-retest reproducibility (ICC = 0.83). ISHR was developed using 5 features with higher association with HR during development (AUC = 0.75, 95% CI 0.66 to 0.84) and validation (AUC = 0.74, 95% CI 0.61 to 0.86) and similar repeatability (ICC = 0.91) and reproducibility (ICC = 0.82). Both image signatures showed significant associations with pCR with AUC of 0.65 (95% CI 0.50 to 0.80) for ISHER2 and 0.64 (95% CI 0.50 to 0.78) for ISHER2 in the validation cohort. Patients with high ISHER2 were more likely to achieve pCR to neoadjuvant chemotherapy with validation OR of 4.73 (95% CI 1.64 to 13.65, P value = 0.006). Low ISHR patients had higher pCR with OR = 0.29 (95% CI 0.10 to 0.81, P value = 0.021). Molecular subtypes derived from the image signatures showed comparable pCR prediction values to IHC-based molecular subtypes (P value > 0.05). CONCLUSION Robust ADC-based image signatures were developed and validated for noninvasive evaluation of IHC receptors HER2 and HR. We also confirmed their value in predicting treatment response to neoadjuvant chemotherapy. Further evaluations in treatment guidance are warranted to fully validate their potential as IHC surrogates.
Collapse
Affiliation(s)
- Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyu Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyu Fan
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu-Hua Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lu Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Elaine Yuen Phin Lee
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Y920, Lee Shau Kee Building, Hong Kong, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Hong Kong, China.
- Research Institute for Smart Aging, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
16
|
Szep M, Pintican R, Boca B, Perja A, Duma M, Feier D, Epure F, Fetica B, Eniu D, Roman A, Dudea SM, Chiorean A. Whole-Tumor ADC Texture Analysis Is Able to Predict Breast Cancer Receptor Status. Diagnostics (Basel) 2023; 13:diagnostics13081414. [PMID: 37189515 DOI: 10.3390/diagnostics13081414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
There are different breast cancer molecular subtypes with differences in incidence, treatment response and outcome. They are roughly divided into estrogen and progesterone receptor (ER and PR) negative and positive cancers. In this retrospective study, we included 185 patients augmented with 25 SMOTE patients and divided them into two groups: the training group consisted of 150 patients and the validation cohort consisted of 60 patients. Tumors were manually delineated and whole-volume tumor segmentation was used to extract first-order radiomic features. The ADC-based radiomics model reached an AUC of 0.81 in the training cohort and was confirmed in the validation set, which yielded an AUC of 0.93, in differentiating ER/PR positive from ER/PR negative status. We also tested a combined model using radiomics data together with ki67% proliferation index and histological grade, and obtained a higher AUC of 0.93, which was also confirmed in the validation group. In conclusion, whole-volume ADC texture analysis is able to predict hormonal status in breast cancer masses.
Collapse
Affiliation(s)
- Madalina Szep
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bianca Boca
- Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andra Perja
- Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, 400347 Cluj-Napoca, Romania
| | | | - Diana Feier
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Medimages Breast Center, 400462 Cluj-Napoca, Romania
| | - Flavia Epure
- Medical Imaging Department, Medisprof Cancer Center, 400641 Cluj Napoca, Romania
| | - Bogdan Fetica
- Department of Pathology, "Ion Chiricuţă" Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Dan Eniu
- Department of Surgical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andrei Roman
- Department of Radiology, "Ion Chiricuță" Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Sorin Marian Dudea
- Department of Radiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | | |
Collapse
|
17
|
Chiesa-Estomba CM, Mayo-Yanez M, Guntinas-Lichius O, Vander-Poorten V, Takes RP, de Bree R, Halmos GB, Saba NF, Nuyts S, Ferlito A. Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review. Biomedicines 2023; 11:805. [PMID: 36979783 PMCID: PMC10045560 DOI: 10.3390/biomedicines11030805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
(1) Background: Hypopharyngeal squamous cell carcinomas usually present with locally advanced disease and a correspondingly poor prognosis. Currently, efforts are being made to improve tumor characterization and provide insightful information for outcome prediction. Radiomics is an emerging area of study that involves the conversion of medical images into mineable data; these data are then used to extract quantitative features based on shape, intensity, texture, and other parameters; (2) Methods: A systematic review of the peer-reviewed literature was conducted; (3) Results: A total of 437 manuscripts were identified. Fifteen manuscripts met the inclusion criteria. The main targets described were the evaluation of textural features to determine tumor-programmed death-ligand 1 expression; a surrogate for microvessel density and heterogeneity of perfusion; patient stratification into groups at high and low risk of progression; prediction of early recurrence, 1-year locoregional failure and survival outcome, including progression-free survival and overall survival, in patients with locally advanced HPSCC; thyroid cartilage invasion, early disease progression, recurrence, induction chemotherapy response, treatment response, and prognosis; and (4) Conclusions: our findings suggest that radiomics represents a potentially useful tool in the diagnostic workup as well as during the treatment and follow-up of patients with HPSCC. Large prospective studies are essential to validate this technology in these patients.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Otorhinolaryngology-Head & Neck Surgery Department, Hospital Universitario Donostia, Biodonostia Research Institute, Faculty of Medicine, Deusto University, 20014 San Sebastian, Spain
| | - Miguel Mayo-Yanez
- Otorhinolaryngology-Head and Neck Surgery Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | | | - Vincent Vander-Poorten
- Section Head and Neck Oncology, Department of Oncology, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Robert P. Takes
- Department of Otolaryngology/Head and Neck Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Gyorgy B. Halmos
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sandra Nuyts
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35125 Padua, Italy
| |
Collapse
|
18
|
Yin H, Bai L, Jia H, Lin G. Noninvasive assessment of breast cancer molecular subtypes on multiparametric MRI using convolutional neural network with transfer learning. Thorac Cancer 2022; 13:3183-3191. [PMID: 36203226 PMCID: PMC9663668 DOI: 10.1111/1759-7714.14673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To evaluate the performances of multiparametric MRI-based convolutional neural networks (CNNs) for the preoperative assessment of breast cancer molecular subtypes. METHODS A total of 136 patients with 136 pathologically confirmed invasive breast cancers were randomly divided into training, validation, and testing sets in this retrospective study. The CNN models were established based on contrast-enhanced T1 -weighted imaging (T1 C), Apparent diffusion coefficient (ADC), and T2 -weighted imaging (T2 W) using the training and validation sets. The performances of CNN models were evaluated on the testing set. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were calculated to assess the performance. RESULTS For the separation of each subtype from other subtypes on the testing set, the T1 C-based models yielded AUCs from 0.762 to 0.920; the ADC-based models yielded AUCs from 0.686 to 0.851; and the T2 W-based models achieved AUCs from 0.639 to 0.697. CONCLUSION T1 C-based models performed better than ADC-based models and T2 W-based models in assessing the breast cancer molecular subtypes. The discriminating performances of our CNN models for triple negative and human epidermal growth factor receptor 2-enriched subtypes were better than that of luminal A and luminal B subtypes.
Collapse
Affiliation(s)
- Haolin Yin
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Lutian Bai
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Huihui Jia
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Guangwu Lin
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
19
|
Currie G, Hawk KE, Rohren E. The transformational potential of molecular radiomics. J Med Radiat Sci 2022; 70 Suppl 2:77-88. [PMID: 36238997 PMCID: PMC10122929 DOI: 10.1002/jmrs.626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Conventional radiomics in nuclear medicine involve hand-crafted and computer-assisted regions of interest. Recent developments in artificial intelligence (AI) have seen the emergence of AI-augmented segmentation and extraction of lower order traditional radiomic features. Deep learning (DL) affords the opportunity to extract abstract radiomic features directly from input tensors (images) without the need for segmentation. These fourth-order, high dimensional radiomics produce deep radiomics and are well suited to the data density associated with the molecular nature of hybrid imaging. Molecular radiomics and deep molecular radiomics provide insights beyond images and quantitation typical of semantic reporting. While the application of molecular radiomics using hand-crafted and computer-generated features is integrated into decision-making in nuclear medicine, the acceptance of deep molecular radiomics is less universal. This manuscript aims to provide an understanding of the language and principles associated with radiomics and deep radiomics in nuclear medicine.
Collapse
Affiliation(s)
- Geoffrey Currie
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - K Elizabeth Hawk
- School of Medicine, Stanford University, Stanford, California, USA.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Eric Rohren
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
Radiomic Signatures Derived from Hybrid Contrast-Enhanced Ultrasound Images (CEUS) for the Assessment of Histological Characteristics of Breast Cancer: A Pilot Study. Cancers (Basel) 2022; 14:cancers14163905. [PMID: 36010897 PMCID: PMC9405598 DOI: 10.3390/cancers14163905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to evaluate the diagnostic performance of radiomic features extracted from standardized hybrid contrast-enhanced ultrasound (CEUS) data for the assessment of hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, tumor grade and Ki-67 in patients with primary breast cancer. METHODS This prospective study included 72 patients with biopsy-proven breast cancer who underwent CEUS examinations between October 2020 and September 2021. RESULTS A radiomic analysis found the WavEnHH_s_4 parameter as an independent predictor associated with the HER2+ status with 76.92% sensitivity, and 64.41% specificity and a prediction model that could differentiate between the HER2 entities with 76.92% sensitivity and 84.75% specificity. The RWavEnLH_s-4 parameter was an independent predictor for estrogen receptor (ER) status with 55.93% sensitivity and 84.62% specificity, while a prediction model (RPerc01, RPerc10 and RWavEnLH_s_4) could differentiate between the progesterone receptor (PR) status with 44.74% sensitivity and 88.24% specificity. No texture parameter showed statistically significant results at the univariate analysis when comparing the Nottingham grade and the Ki-67 status. CONCLUSION Our preliminary data indicate a potential that hybrid CEUS radiomic features allow the discrimination between breast cancers of different receptor and HER2 statuses with high specificity. Hybrid CEUS radiomic features might have the potential to provide a noninvasive, easily accessible and contrast-agent-safe method to assess tumor biology before and during treatment.
Collapse
|
21
|
Xu A, Chu X, Zhang S, Zheng J, Shi D, Lv S, Li F, Weng X. Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma. BMC Cancer 2022; 22:872. [PMID: 35945526 PMCID: PMC9364617 DOI: 10.1186/s12885-022-09967-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status. Methods We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this cohort into training set (n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set (n = 86, 28 HER2-positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 (http://keyan.deepwise.com/), then radiomics feature extraction was implemented with PyRadiomics library. Recursive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using multivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, calibration curve, and decision curve analysis (DCA). Results 70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the validation set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological grade) was constructed and yielded better discrimination compared with Rad score (p = 0.374, Delong test), with an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation set. Moreover, calibration with the p-value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, and the DCA verified the benefits of the nomogram. Conclusion Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09967-6.
Collapse
Affiliation(s)
- Aqiao Xu
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China.
| | - Xiufeng Chu
- Department of Surgical, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jing Zheng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Dabao Shi
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Shasha Lv
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China
| | - Feng Li
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, 100080, P.R. China
| | - Xiaobo Weng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, 312030, China.
| |
Collapse
|
22
|
Chen H, Li W, Wan C, Zhang J. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers. Front Oncol 2022; 12:942943. [PMID: 35992872 PMCID: PMC9389013 DOI: 10.3389/fonc.2022.942943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Objective To determine the preoperative magnetic resonance imaging (MRI) findings of breast cancer on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted magnetic resonance imaging (DWI) in different molecular subtypes. Materials and methods A retrospective study was conducted on 116 breast cancer subjects who underwent preoperative MRI and surgery or biopsy. Three radiologists retrospectively assessed the morphological and kinetic characteristics on DCE-MRI and tumor detectability on DWI, by using apparent diffusion coefficient (ADC) values of lesions. The clinicopathologic and MRI features of four subtypes were compared. The correlation between clinical and MRI findings with molecular subtypes was evaluated using the chi-square and ANOVA tests, while the Mann–Whitney test was used to analyze the relationship between ADC and prognostic factors. Results One hundred and sixteen women diagnosed with breast cancer confirmed by surgery or biopsy had the following subtypes of breast cancer: luminal A (27, 23.3%), luminal B (56, 48.2%), HER2 positive (14, 12.1%), and triple-negative breast cancer (TNBC) (19, 16.4%), respectively. Among the subtypes, significant differences were found in axillary node metastasis, histological grade, tumor shape, rim enhancement, margin, lesion type, intratumoral T2 signal intensity, Ki-67 index, and paratumoral enhancement (p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, and p = 0.02, respectively). On DWI, the mean ADC value of TNBC (0.910 × 10−3 mm2/s) was the lowest compared to luminal A (1.477×10−3 mm2/s), luminal B (0.955 × 10−3 mm2/s), and HER2 positive (0.996 × 10−3 mm2/s) (p < 0.001). Analysis of the correlation between different prognostic factors and ADC value showed that only axillary lymph node status and ADC value had a statistically significant difference (p = 0.009). Conclusion The morphologic features of MRI can be used as imaging biomarkers to identify the molecular subtypes of breast cancer. In addition, quantitative assessments of ADC values on DWI may also provide biological clues about molecular subtypes.
Collapse
Affiliation(s)
- Hui Chen
- Department of Oncology, Tianmen First People’s Hospital, Tianmen, China
| | - Wei Li
- Department of Oncology, Tianmen First People’s Hospital, Tianmen, China
| | - Chao Wan
- Department of Oncology, Tianmen First People’s Hospital, Tianmen, China
| | - Jue Zhang
- Department of CT/MRI, Tianmen First People's Hospital, Tianmen, China
- *Correspondence: Jue Zhang,
| |
Collapse
|
23
|
Siviengphanom S, Gandomkar Z, Lewis SJ, Brennan PC. Mammography-based Radiomics in Breast Cancer: A Scoping Review of Current Knowledge and Future Needs. Acad Radiol 2022; 29:1228-1247. [PMID: 34799256 DOI: 10.1016/j.acra.2021.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Breast cancer is a highly complex heterogeneous disease. Current validated prognostic factors (e.g., histological grade, lymph node involvement, receptor status, and proliferation index), as well as multigene tests (e.g., Oncotype DX and PAM50) are helpful to describe breast cancer characteristics and predict the chance of recurrence risk and survival. Nevertheless, they are invasive and cannot capture a complete heterogeneity of the entire breast tumor resulting in up to 30% of patients being either over- or under-treated for breast cancer. Furthermore, multigene testings are time consuming and expensive. Radiomics is emerging as a reliable, accurate, non-invasive, and cost-effective approach of using quantitative image features to classify breast cancer characteristics and predict patient outcomes. Several recent radiomics reviews have been conducted in breast cancer, however, specific mammography-based radiomics studies have not been well discussed. This scoping review aims to assess and summarize the current evidence on the potential usefulness of mammography-based (i.e., digital mammography, digital breast tomosynthesis, and contrast-enhanced mammography) radiomics in predicting factors that describe breast cancer characteristics, recurrence, and survival. MATERIALS AND METHODS PubMed database and eligible text reference were searched using relevant keywords to identify studies published between 2015 and December 19, 2020. Studies collected were screened and assessed based on the inclusion and exclusion criteria. RESULTS Eighteen eligible studies were included and organized into three main sections: radiomics predicting breast cancer characteristics, radiomics predicting breast cancer recurrence and survival, and radiomics integrating with clinical data. Majority of publications reported retrospective studies while three studies examined prospective cohorts. Encouraging results were reported, suggesting the potential clinical value of mammography-based radiomics. Further efforts are required to standardize radiomics approaches and catalogue reproducible and relevant mammographic radiomic features. The role of integrating radiomics with other information is discussed. CONCLUSION The potential role of mammography-based radiomics appears promising but more efforts are required to further evaluate its reliability as a routine clinical tool.
Collapse
Affiliation(s)
- Somphone Siviengphanom
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia..
| | - Ziba Gandomkar
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Sarah J Lewis
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Patrick C Brennan
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
25
|
Sha Y, Chen J. MRI-based radiomics for the diagnosis of triple-negative breast cancer: a meta-analysis. Clin Radiol 2022; 77:655-663. [DOI: 10.1016/j.crad.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
26
|
Multiparametric 18F-FDG PET/MRI-Based Radiomics for Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2022; 14:cancers14071727. [PMID: 35406499 PMCID: PMC8996836 DOI: 10.3390/cancers14071727] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The aim of this study was to assess whether multiparametric 18F-FDG PET/MRI-based radiomics analysis is able to predict pathological complete response in breast cancer patients and hence potentially enhance pretherapeutic patient stratification. METHODS A total of 73 female patients (mean age 49 years; range 27-77 years) with newly diagnosed, therapy-naive breast cancer underwent simultaneous 18F-FDG PET/MRI and were included in this retrospective study. All PET/MRI datasets were imported to dedicated software (ITK-SNAP v. 3.6.0) for lesion annotation using a semi-automated method. Pretreatment biopsy specimens were used to determine tumor histology, tumor and nuclear grades, and immunohistochemical status. Histopathological results from surgical tumor specimens were used as the reference standard to distinguish between complete pathological response (pCR) and noncomplete pathological response. An elastic net was employed to select the most important radiomic features prior to model development. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated for each model. RESULTS The best results in terms of AUCs and NPV for predicting complete pathological response in the entire cohort were obtained by the combination of all MR sequences and PET (0.8 and 79.5%, respectively), and no significant differences from the other models were observed. In further subgroup analyses, combining all MR and PET data, the best AUC (0.94) for predicting complete pathologic response was obtained in the HR+/HER2- group. No difference between results with/without the inclusion of PET characteristics was observed in the TN/HER2+ group, each leading to an AUC of 0.92 for all MR and all MR + PET datasets. CONCLUSION 18F-FDG PET/MRI enables comprehensive high-quality radiomics analysis for the prediction of pCR in breast cancer patients, especially in those with HR+/HER2- receptor status.
Collapse
|
27
|
Daimiel Naranjo I, Gibbs P, Reiner JS, Lo Gullo R, Thakur SB, Jochelson MS, Thakur N, Baltzer PAT, Helbich TH, Pinker K. Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists' Performance. Cancers (Basel) 2022; 14:cancers14071743. [PMID: 35406514 PMCID: PMC8997089 DOI: 10.3390/cancers14071743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Currently, breast contrast-enhanced MRI is the most sensitive imaging technique for breast cancer detection; however, its specificity is low given the common characteristics shared by benign breast lesions and some cancers. This leads to a high number of false-positive cases and, therefore, unnecessary biopsies. Multiparametric MRI including diffusion-weighted imaging assists in this task by increasing the specificity for breast lesion discrimination. Nevertheless, interpretation of breast MRI is still highly dependent on the reader’s level of experience. Our work combines radiomic features extracted from multiparametric MRI to generate predictive models for breast cancer differentiation. Additionally, decision support models were compared with the performance of two breast dedicated radiologists for lesion differentiation. Our work proves the potential of multiparametric radiomics coupled with machine learning to be implemented in clinical practice for lesion differentiation on breast MRI. AI algorithms show value to assist less experienced readers, improving the accuracy for breast lesion discrimination. Abstract This multicenter retrospective study compared the performance of radiomics analysis coupled with machine learning (ML) with that of radiologists for the classification of breast tumors. A total of 93 consecutive women (mean age: 49 ± 12 years) with 104 histopathologically verified enhancing lesions (mean size: 22.8 ± 15.1 mm), classified as suspicious on multiparametric breast MRIs were included. Two experienced breast radiologists assessed all of the lesions, assigning a Breast Imaging Reporting and Database System (BI-RADS) suspicion category, providing a diffusion-weighted imaging (DWI) score based on lesion signal intensity, and determining the apparent diffusion coefficient (ADC). Ten predictive models for breast lesion discrimination were generated using radiomic features extracted from the multiparametric MRI. The area under the receiver operating curve (AUC) and the accuracy were compared using McNemar’s test. Multiparametric radiomics with DWI score and BI-RADS (accuracy = 88.5%; AUC = 0.93) and multiparametric radiomics with ADC values and BI-RADS (accuracy= 88.5%; AUC = 0.96) models showed significant improvements in diagnostic accuracy compared to the multiparametric radiomics (DWI + DCE data) model (p = 0.01 and p = 0.02, respectively), but performed similarly compared to the multiparametric assessment by radiologists (accuracy = 85.6%; AUC = 0.03; p = 0.39). In conclusion, radiomics analysis coupled with the ML of multiparametric MRI could assist in breast lesion discrimination, especially for less experienced readers of breast MRIs.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
- Department of Radiology, Breast Imaging Service, Guy’s and St. Thomas’ NHS Trust, Great Maze Pond, London SE1 9RT, UK
- Correspondence: (I.D.N.); (P.G.)
| | - Peter Gibbs
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
- Correspondence: (I.D.N.); (P.G.)
| | - Jeffrey S. Reiner
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
| | - Roberto Lo Gullo
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
| | - Sunitha B. Thakur
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY 10065, USA
| | - Maxine S. Jochelson
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
| | - Nikita Thakur
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA;
| | - Pascal A. T. Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, 1090 Wien, Austria; (P.A.T.B.); (T.H.H.)
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, 1090 Wien, Austria; (P.A.T.B.); (T.H.H.)
| | - Katja Pinker
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (K.P.)
| |
Collapse
|
28
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
29
|
Zhou BY, Wang LF, Yin HH, Wu TF, Ren TT, Peng C, Li DX, Shi H, Sun LP, Zhao CK, Xu HX. Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study. EBioMedicine 2021; 74:103684. [PMID: 34773890 PMCID: PMC8599999 DOI: 10.1016/j.ebiom.2021.103684] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Preoperative determination of breast cancer molecular subtypes facilitates individualized treatment plan-making and improves patient prognosis. We aimed to develop an assembled convolutional neural network (ACNN) model for the preoperative prediction of molecular subtypes using multimodal ultrasound (US) images. METHODS This multicentre study prospectively evaluated a dataset of greyscale US, colour Doppler flow imaging (CDFI), and shear-wave elastography (SWE) images in 807 patients with 818 breast cancers from November 2016 to February 2021. The St. Gallen molecular subtypes of breast cancer were confirmed by postoperative immunohistochemical examination. The monomodal ACNN model based on greyscale US images, the dual-modal ACNN model based on greyscale US and CDFI images, and the multimodal ACNN model based on greyscale US and CDFI as well as SWE images were constructed in the training cohort. The performances of three ACNN models in predicting four- and five-classification molecular subtypes and identifying triple negative from non-triple negative subtypes were assessed and compared. The performance of the multimodal ACNN was also compared with preoperative core needle biopsy (CNB). FINDING The performance of the multimodal ACNN model (macroaverage area under the curve [AUC]: 0.89-0.96) was superior to that of the dual-modal ACNN model (macroaverage AUC: 0.81-0.84) and the monomodal ACNN model (macroaverage AUC: 0.73-0.75) in predicting four-classification breast cancer molecular subtypes, which was also better than that of preoperative CNB (AUC: 0.89-0.99 vs. 0.67-0.82, p < 0.05). In addition, the multimodal ACNN model outperformed the other two ACNN models in predicting five-classification molecular subtypes (AUC: 0.87-0.94 vs. 0.78-0.81 vs. 0.71-0.78) and identifying triple negative from non-triple negative breast cancers (AUC: 0.934-0.970 vs. 0.688-0.830 vs. 0.536-0.650, p < 0.05). Moreover, the multimodal ACNN model obtained satisfactory prediction performance for both T1 and non-T1 lesions (AUC: 0.957-0.958 and 0.932-0.985). INTERPRETATION The multimodal US-based ACNN model is a potential noninvasive decision-making method for the management of patients with breast cancer in clinical practice. FUNDING This work was supported in part by the National Natural Science Foundation of China (Grants 81725008 and 81927801), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), and the Science and Technology Commission of Shanghai Municipality (Grants 19441903200, 19DZ2251100, and 21Y11910800).
Collapse
Affiliation(s)
- Bo-Yang Zhou
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li-Fan Wang
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao-Hao Yin
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ting-Fan Wu
- Translational Medicine Team, GE Healthcare, Shanghai, China
| | - Tian-Tian Ren
- Department of Medical Ultrasound, Ma'anshan People's Hospital, Ma'anshan, China
| | - Chuan Peng
- Department of Medical Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - De-Xuan Li
- Beijing XiaoBaiShiJi Network Technical Co., Ltd, Beijing, China
| | - Hui Shi
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Chong-Ke Zhao
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Hui-Xiong Xu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, China; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
30
|
Fan M, Zhang Y, Fu Z, Xu M, Wang S, Xie S, Gao X, Wang Y, Li L. A deep matrix completion method for imputing missing histological data in breast cancer by integrating DCE-MRI radiomics. Med Phys 2021; 48:7685-7697. [PMID: 34724248 DOI: 10.1002/mp.15316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Clinical indicators of histological information are important for breast cancer treatment and operational decision making, but these histological data suffer from frequent missing values due to various experimental/clinical reasons. The limited amount of histological information from breast cancer samples impedes the accuracy of data imputation. The purpose of this study was to impute missing histological data, including Ki-67 expression level, luminal A subtype, and histological grade, by integrating tumor radiomics. METHODS To this end, a deep matrix completion (DMC) method was proposed for imputing missing histological data using nonmissing features composed of histological and tumor radiomics (termed radiohistological features). DMC finds a latent nonlinear association between radiohistological features across all samples and samples for all the features. Radiomic features of morphologic, statistical, and texture were extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) inside the tumor. Experiments on missing histological data imputation were performed with a variable number of features and missing data rates. The performance of the DMC method was compared with those of the nonnegative matrix factorization (NMF) and collaborative filtering (MCF)-based data imputation methods. The area under the curve (AUC) was used to assess the performance of missing histological data imputation. RESULTS By integrating radiomics from DCE-MRI, the DMC method showed significantly better performance in terms of AUC than that using only histological data. Additionally, DMC using 120 radiomic features showed an optimal prediction performance (AUC = 0.793), which was better than the NMF (AUC = 0.756) and MCF methods (AUC = 0.706; corrected p = 0.001). The DMC method consistently performed better than the NMF and MCF methods with a variable number of radiomic features and missing data rates. CONCLUSIONS DMC improves imputation performance by integrating tumor histological and radiomics data. This study transforms latent imaging-scale patterns for interactions with molecular-scale histological information and is promising in the tumor characterization and management of patients.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - You Zhang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Zhenyu Fu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiwei Wang
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, USA
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
31
|
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021; 127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.
Collapse
Affiliation(s)
- Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
32
|
Davey MG, Davey MS, Boland MR, Ryan ÉJ, Lowery AJ, Kerin MJ. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging - A systematic review and meta-analysis. Eur J Radiol 2021; 144:109996. [PMID: 34624649 DOI: 10.1016/j.ejrad.2021.109996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Breast cancer has four distinct molecular subtypes which are discriminated using gene expression profiling following biopsy. Radiogenomics is an emerging field which utilises diagnostic imaging to reveal genomic properties of disease. We aimed to perform a systematic review of the current literature to evaluate the value radiomics in differentiating breast cancers into their molecular subtypes using diagnostic imaging. METHODS A systematic review was performed as per PRISMA guidelines. Studies assessing radiomictumour analysis in differentiatingbreast cancer molecular subtypeswere included. Quality was assessed using the radiomics quality score (RQS). Diagnostic sensitivity and specificity of radiomic analyses were included for meta-analysis; Study specific sensitivity and specificity were retrieved and summary ROC analysis were performed to compile pooled sensitivities and specificities. RESULTS Forty-one studies were included. Overall, there were 10,090 female patients (mean age of 47.6 ± 11.7 years, range: 21-93) and molecular subtypewas reported in 7,693 of cases, with Luminal A (LABC), Luminal B (LBBC), Human Epidermal Growth Factor Receptor-2 overexpressing (HER2+), and Triple Negative (TNBC) breast cancers representing 51.3%, 19.9%, 12.3% and 16.3% of tumour respectively. Seven studies provided radiomic analysis to determine molecular subtypes using mammography to differentiateTNBCvs.others (sensitivity: 0.82,specificity:0.79). Thirty-five studies reported on radiomic analysis of magnetic resonance imaging (MRI); LABC versus others(sensitivity:0.78,specificity:0.83),HER2+versusothers(sensitivity:0.87,specificity:0.88), andLBBCversusTNBC (sensitivity: 0.79,specificity:0.88) respectively. CONCLUSION Radiomic tumour assessment of contemporary breast imaging provide a novel option in determining breast cancer molecular subtypes. However, amelioration of such techniques are required and genetic expression assessment will remain the gold standard.
Collapse
Affiliation(s)
- Matthew G Davey
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland.
| | - Martin S Davey
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Michael R Boland
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Éanna J Ryan
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Aoife J Lowery
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Michael J Kerin
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| |
Collapse
|
33
|
Abdelhafiz AS, Fouda MA, Elzefzafy NA, Taha II, Mohemmed OM, Alieldin NH, Toony I, Abdel Wahab AA, Farahat IG. Gene expression analysis of invasive breast carcinoma yields differential patterns in luminal subtypes of breast cancer. Ann Diagn Pathol 2021; 55:151814. [PMID: 34517157 DOI: 10.1016/j.anndiagpath.2021.151814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
Breast cancer is a heterogeneous disease, and new biomarkers are needed for more accurate classification and prediction of prognosis. The goal of this study is to assess the expression of breast cancer classification genes, to identify new molecular signatures in different intrinsic subtypes of breast cancer and to correlate their expression with different clinical variables. The study included 84 female patients newly diagnosed with non-metastatic breast cancer at the outpatient clinic at the National Cancer Institute, Cairo University, Egypt. Detection of 17 breast cancer classification genes was done using RT-PCR in tumor and normal tissues. Estrogen receptor (ER), progesterone receptor (PR), HER2, and Ki67 expression were assessed using IHC assay for intrinsic subtyping. Combined expression of FOXA1 and GATA3 was statistically higher in luminal subtypes in comparison to non-luminal subtypes. In Luminal A subtype; GRB7, EGFR, PTGS2, ID1, and KRT5 were significantly downregulated. FOXA1 and GATA3 were significantly upregulated in luminal B subtype, where EGFR and PTGS2 were significantly downregulated. While ESR1, EGFR, KRT5 and PTGS2 showed significantly low expression in tumor tissue in Her2 enriched subtype, TFF3 was significantly downregulated in triple negative subtype. GATA3 and FOXA1 expression exhibited significant correlation with tumor grade. Furthermore, GATA3, FOXA1, ESR1, and ID1 were also correlated significantly with staging of the tumor. Combined expression of ESR1, FOXA1 and GATA3 represents a molecular signature of luminal subtypes. Long term follow-up is needed to investigate the prognostic effect of breast cancer classification genes found in this study.
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt.
| | - Merhan A Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Nahla A Elzefzafy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Iman I Taha
- ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Omar M Mohemmed
- ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Nelly H Alieldin
- Department of BioStatistics and Epidemiology, National Cancer Institute, Cairo University, Egypt
| | - Iman Toony
- Department of Medical Oncology, National Cancer Institute, Cairo University, Egypt
| | - Abdelhady Ali Abdel Wahab
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| | - Iman Gouda Farahat
- Department of Pathology, National Cancer Institute, Cairo University, Egypt; ENCI biobank, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
34
|
Huang Y, Wei L, Hu Y, Shao N, Lin Y, He S, Shi H, Zhang X, Lin Y. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer. Front Oncol 2021; 11:706733. [PMID: 34490107 PMCID: PMC8416497 DOI: 10.3389/fonc.2021.706733] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate whether radiomics features extracted from multi-parametric MRI combining machine learning approach can predict molecular subtype and androgen receptor (AR) expression of breast cancer in a non-invasive way. Materials and Methods Patients diagnosed with clinical T2–4 stage breast cancer from March 2016 to July 2020 were retrospectively enrolled. The molecular subtypes and AR expression in pre-treatment biopsy specimens were assessed. A total of 4,198 radiomics features were extracted from the pre-biopsy multi-parametric MRI (including dynamic contrast-enhancement T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion coefficient map) of each patient. We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). The performances of binary classification models were assessed via the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). And the performances of multiclass classification models were assessed via AUC, overall accuracy, precision, recall rate, and F1-score. Results A total of 162 patients (mean age, 46.91 ± 10.08 years) were enrolled in this study; 30 were low-AR expression and 132 were high-AR expression. HR+/HER2− cancers were diagnosed in 56 cases (34.6%), HER2+ cancers in 81 cases (50.0%), and TNBC in 25 patients (15.4%). There was no significant difference in clinicopathologic characteristics between low-AR and high-AR groups (P > 0.05), except the menopausal status, ER, PR, HER2, and Ki-67 index (P = 0.043, <0.001, <0.001, 0.015, and 0.006, respectively). No significant difference in clinicopathologic characteristics was observed among three molecular subtypes except the AR status and Ki-67 (P = <0.001 and 0.012, respectively). The Multilayer Perceptron (MLP) showed the best performance in discriminating AR expression, with an AUC of 0.907 and an accuracy of 85.8% in the testing dataset. The highest performances were obtained for discriminating TNBC vs. non-TNBC (AUC: 0.965, accuracy: 92.6%), HER2+ vs. HER2− (AUC: 0.840, accuracy: 79.0%), and HR+/HER2− vs. others (AUC: 0.860, accuracy: 82.1%) using MLP as well. The micro-AUC of MLP multiclass classification model was 0.896, and the overall accuracy was 0.735. Conclusions Multi-parametric MRI-based radiomics combining with machine learning approaches provide a promising method to predict the molecular subtype and AR expression of breast cancer non-invasively.
Collapse
Affiliation(s)
- Yuhong Huang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yalan Hu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingyu Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: Where are we and where are we heading? Eur J Radiol 2021; 142:109882. [PMID: 34392105 PMCID: PMC8387447 DOI: 10.1016/j.ejrad.2021.109882] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Significant advances in imaging analysis and the development of high-throughput methods that can extract and correlate multiple imaging parameters with different clinical outcomes have led to a new direction in medical research. Radiomics and artificial intelligence (AI) studies are rapidly evolving and have many potential applications in breast imaging, such as breast cancer risk prediction, lesion detection and classification, radiogenomics, and prediction of treatment response and clinical outcomes. AI has been applied to different breast imaging modalities, including mammography, ultrasound, and magnetic resonance imaging, in different clinical scenarios. The application of AI tools in breast imaging has an unprecedented opportunity to better derive clinical value from imaging data and reshape the way we care for our patients. The aim of this study is to review the current knowledge and future applications of AI-enhanced breast imaging in clinical practice.
Collapse
Affiliation(s)
- Almir Bitencourt
- Department of Imaging, A.C.Camargo Cancer Center, Sao Paulo, SP, Brazil; Dasa, Sao Paulo, SP, Brazil
| | - Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Guy's and St. Thomas' NHS Trust, Great Maze Pond, London, UK
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding. Cancers (Basel) 2021; 13:cancers13122928. [PMID: 34208197 PMCID: PMC8230865 DOI: 10.3390/cancers13122928] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Breast cancer is considered the leading cancer type and main cause of cancer death in women. In this study, we assess simultaneous 18F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based analysis comprised prediction of molecular subtype, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Our results demonstrated high accuracy for multiparametric MRI alone as well as 18F-FDG PET/MRI as an imaging platform for high-quality non-invasive tissue characterization. Abstract Background: This study investigated the performance of simultaneous 18F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype analysis, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Methods: One hundred and twenty-four patients underwent simultaneous 18F-FDG PET/MRI. Breast tumors were segmented and radiomic features were extracted utilizing CERR software following the IBSI guidelines. LASSO regression was employed to select the most important radiomics features prior to model development. Five-fold cross validation was then utilized alongside support vector machines, resulting in predictive models for various combinations of imaging data series. Results: The highest AUC and accuracy for differentiation between luminal A and B was achieved by all MR sequences (AUC 0.98; accuracy 97.3). The best results in AUC for prediction of hormone receptor status and proliferation rate were found based on all MR and PET data (ER AUC 0.87, PR AUC 0.88, Ki-67 AUC 0.997). PET provided the best determination of grading (AUC 0.71), while all MR and PET analyses yielded the best results for lymphonodular and distant metastatic spread (0.81 and 0.99, respectively). Conclusion: 18F-FDG PET/MRI enables comprehensive high-quality radiomics analysis for breast cancer phenotyping and tumor decoding, utilizing the perks of simultaneously acquired morphologic, functional and metabolic data.
Collapse
|
37
|
Suo S, Yin Y, Geng X, Zhang D, Hua J, Cheng F, Chen J, Zhuang Z, Cao M, Xu J. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, bi-, and stretched-exponential models. J Transl Med 2021; 19:236. [PMID: 34078388 PMCID: PMC8173748 DOI: 10.1186/s12967-021-02886-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background To investigate the performance of diffusion-weighted (DW) MRI with mono-, bi- and stretched-exponential models in predicting pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) for breast cancer, and further outline a predictive model of pCR combining DW MRI parameters, contrast-enhanced (CE) MRI findings, and/or clinical-pathologic variables. Methods In this retrospective study, 144 women who underwent NACT and subsequently received surgery for invasive breast cancer were included. Breast MRI including multi-b-value DW imaging was performed before (pre-treatment), after two cycles (mid-treatment), and after all four cycles (post-treatment) of NACT. Quantitative DW imaging parameters were computed according to the mono-exponential (apparent diffusion coefficient [ADC]), bi-exponential (pseudodiffusion coefficient and perfusion fraction), and stretched-exponential (distributed diffusion coefficient and intravoxel heterogeneity index) models. Tumor size and relative enhancement ratio of the tumor were measured on contrast-enhanced MRI at each time point. Pre-treatment parameters and changes in parameters at mid- and post-treatment relative to baseline were compared between pCR and non-pCR groups. Receiver operating characteristic analysis and multivariate regression analysis were performed. Results Of the 144 patients, 54 (37.5%) achieved pCR after NACT. Overall, among all DW and CE MRI measures, flow-insensitive ADC change (ΔADC200,1000) at mid-treatment showed the highest diagnostic performance for predicting pCR, with an area under the receiver operating characteristic curve (AUC) of 0.831 (95% confidence interval [CI]: 0.747, 0.915; P < 0.001). The model combining pre-treatment estrogen receptor and human epidermal growth factor receptor 2 statuses and mid-treatment ΔADC200,1000 improved the AUC to 0.905 (95% CI: 0.843, 0.966; P < 0.001). Conclusion Mono-exponential flow-insensitive ADC change at mid-treatment was a predictor of pCR after NACT in breast cancer.
Collapse
Affiliation(s)
- Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China.,Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Yin
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| | - Xiaochuan Geng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| | - Dandan Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| | - Jia Hua
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China.
| | - Fang Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| | - Jie Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China.
| | - Zhiguo Zhuang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Rd, Shanghai, 200127, China
| |
Collapse
|
38
|
Daimiel Naranjo I, Gibbs P, Reiner JS, Lo Gullo R, Sooknanan C, Thakur SB, Jochelson MS, Sevilimedu V, Morris EA, Baltzer PAT, Helbich TH, Pinker K. Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11060919. [PMID: 34063774 PMCID: PMC8223779 DOI: 10.3390/diagnostics11060919] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this multicenter retrospective study was to evaluate radiomics analysis coupled with machine learning (ML) of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) radiomics models separately and combined as multiparametric MRI for improved breast cancer detection. Consecutive patients (Memorial Sloan Kettering Cancer Center, January 2018-March 2020; Medical University Vienna, from January 2011-August 2014) with a suspicious enhancing breast tumor on breast MRI categorized as BI-RADS 4 and who subsequently underwent image-guided biopsy were included. In 93 patients (mean age: 49 years ± 12 years; 100% women), there were 104 lesions (mean size: 22.8 mm; range: 7-99 mm), 46 malignant and 58 benign. Radiomics features were calculated. Subsequently, the five most significant features were fitted into multivariable modeling to produce a robust ML model for discriminating between benign and malignant lesions. A medium Gaussian support vector machine (SVM) model with five-fold cross validation was developed for each modality. A model based on DWI-extracted features achieved an AUC of 0.79 (95% CI: 0.70-0.88), whereas a model based on DCE-extracted features yielded an AUC of 0.83 (95% CI: 0.75-0.91). A multiparametric radiomics model combining DCE- and DWI-extracted features showed the best AUC (0.85; 95% CI: 0.77-0.92) and diagnostic accuracy (81.7%; 95% CI: 73.0-88.6). In conclusion, radiomics analysis coupled with ML of multiparametric MRI allows an improved evaluation of suspicious enhancing breast tumors recommended for biopsy on clinical breast MRI, facilitating accurate breast cancer diagnosis while reducing unnecessary benign breast biopsies.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Department of Radiology, Breast Imaging Service, Guy’s and St. Thomas’ NHS Trust, Great Maze Pond, London SE1 9RT, UK
- Correspondence: (I.D.N.); (P.G.)
| | - Peter Gibbs
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Correspondence: (I.D.N.); (P.G.)
| | - Jeffrey S. Reiner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Caleb Sooknanan
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Sunitha B. Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxine S. Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Varadan Sevilimedu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA;
| | - Elizabeth A. Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Pascal A. T. Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Wien 1090, Austria; (P.A.T.B.); (T.H.H.)
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Wien 1090, Austria; (P.A.T.B.); (T.H.H.)
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Wien 1090, Austria; (P.A.T.B.); (T.H.H.)
| |
Collapse
|
39
|
Krajnc D, Papp L, Nakuz TS, Magometschnigg HF, Grahovac M, Spielvogel CP, Ecsedi B, Bago-Horvath Z, Haug A, Karanikas G, Beyer T, Hacker M, Helbich TH, Pinker K. Breast Tumor Characterization Using [ 18F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics. Cancers (Basel) 2021; 13:cancers13061249. [PMID: 33809057 PMCID: PMC8000810 DOI: 10.3390/cancers13061249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the second most common diagnosed malignancy in women worldwide. In this study, we examine the feasibility of breast tumor characterization based on [18F]FDG-PET/CT images using machine learning (ML) approaches in combination with data-preprocessing techniques. ML prediction models for breast cancer detection and the identification of breast cancer receptor status, proliferation rate, and molecular subtypes were established and evaluated. Furthermore, the importance of most repeatable features was investigated. Results displayed high performance of malignant/benign tumor differentiation and triple negative tumor subtype ML models. We observed high repeatability of radiomic features for both high performing predictive models. Abstract Background: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [18F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. Methods: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [18F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. Results: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46–0.68 AUC). SUVmax model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. Conclusions: Predictive models based on [18F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype.
Collapse
Affiliation(s)
- Denis Krajnc
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
| | - Laszlo Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
| | - Thomas S. Nakuz
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
| | - Heinrich F. Magometschnigg
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (H.F.M.); (T.H.H.); or (K.P.)
| | - Marko Grahovac
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Clemens P. Spielvogel
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Boglarka Ecsedi
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
| | | | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Georgios Karanikas
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria; (D.K.); (L.P.); (B.E.)
- Correspondence:
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.S.N.); (M.G.); (C.P.S.); (A.H.); (G.K.); (M.H.)
| | - Thomas H. Helbich
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (H.F.M.); (T.H.H.); or (K.P.)
| | - Katja Pinker
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (H.F.M.); (T.H.H.); or (K.P.)
- Memorial Sloan Kettering Cancer Center, Breast Imaging Service, Department of Radiology, New York, NY 10065, USA
| |
Collapse
|
40
|
[Multimodal, multiparametric and genetic breast imaging]. Radiologe 2021; 61:183-191. [PMID: 33464404 DOI: 10.1007/s00117-020-00801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
CLINICAL/METHODOLOGICAL ISSUE Multiparametric magnetic resonance imaging (MRI) aims to visualize and quantify biological, physiological and pathological processes at the cellular and molecular level and provides valuable information about key processes in cancer development and progression. "Omics" strategies (genomics, transcriptomics, proteomics, metabolomics) have many uses in oncology. STANDARD RADIOLOGICAL METHODS Multiparametric MRI of the breast currently includes T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI (DCE-MRI) METHODOLOGICAL INNOVATIONS: Additional parameters such as proton magetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), blood oxygen level-dependent (BOLD), hyperpolarized (HP) MRI or lipid MRS are currently being developed and are being evaluated in breast cancer diagnostics. ACHIEVEMENTS Radiogenomics is a new direction in medical science that has been made possible by significant advances in imaging and image analysis methods, as well as the development of techniques to extract and correlate various imaging parameters with "omics" data. The aim of radiogenomics is to correlate imaging characteristics (phenotypes) with gene expression patterns, gene mutations and other genome-associated properties and is the evolution of the correlation between radiology and pathology from the anatomical-histological to the molecular level. Quantitative and qualitative imaging biomarkers provide insights into the complex tumor biology. Initial results suggest that radiogemics will play an important role in the diagnosis, prognosis, and treatment of breast cancer. PRACTICAL RECOMMENDATIONS This article provides an overview of the current state of radiogenomics of the breast and future applications and challenges.
Collapse
|
41
|
Ni M, Zhou X, Liu J, Yu H, Gao Y, Zhang X, Li Z. Prediction of the clinicopathological subtypes of breast cancer using a fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI. BMC Cancer 2020; 20:1073. [PMID: 33167903 PMCID: PMC7654148 DOI: 10.1186/s12885-020-07557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The clinicopathological classification of breast cancer is proposed according to therapeutic purposes. It is simplified and can be conducted easily in clinical practice, and this subtyping undoubtedly contributes to the treatment selection of breast cancer. This study aims to investigate the feasibility of using a Fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI for predicting the clinicopathological subtypes of breast cancer. METHODS Patients who underwent breast magnetic resonance imaging were confirmed by retrieving data from our institutional picture archiving and communication system (PACS) between March 2013 and September 2017. Five clinicopathological subtypes were determined based on the status of ER, PR, HER2 and Ki-67 from the immunohistochemical test. The radiomic features of diffusion-weighted imaging were derived from the volume of interest (VOI) of each tumour. Fisher discriminant analysis was performed for clinicopathological subtyping by using a backward selection method. To evaluate the diagnostic performance of the radiomic features, ROC analyses were performed to differentiate between immunohistochemical biomarker-positive and -negative groups. RESULTS A total of 84 radiomic features of four statistical methods were included after preprocessing. The overall accuracy for predicting the clinicopathological subtypes was 96.4% by Fisher discriminant analysis, and the weighted accuracy was 96.6%. For predicting diverse clinicopathological subtypes, the prediction accuracies ranged from 92 to 100%. According to the cross-validation, the overall accuracy of the model was 82.1%, and the accuracies of the model for predicting the luminal A, luminal BHER2-, luminal BHER2+, HER2 positive and triple negative subtypes were 79, 77, 88, 92 and 73%, respectively. According to the ROC analysis, the radiomic features had excellent performance in differentiating between different statuses of ER, PR, HER2 and Ki-67. CONCLUSIONS The Fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI is a reliable method for the prediction of clinicopathological breast cancer subtypes.
Collapse
Affiliation(s)
- Ming Ni
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Xiaoming Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Jingwei Liu
- Department of Pediatric Surgery, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Haiyang Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Yuanxiang Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China
| | - Xuexi Zhang
- Life Science, GE Healthcare China, Shanghai, 201203, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266000, China.
| |
Collapse
|
42
|
Hsu CY, Lin SM, Ming Tsang N, Juan YH, Wang CW, Wang WC, Kuo SH. Magnetic resonance imaging-derived radiomic signature predicts locoregional failure after organ preservation therapy in patients with hypopharyngeal squamous cell carcinoma. Clin Transl Radiat Oncol 2020; 25:1-9. [PMID: 33426314 PMCID: PMC7780126 DOI: 10.1016/j.ctro.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE To develop and validate a magnetic resonance imaging (MRI)-derived radiomic signature (RS) for the prediction of 1-year locoregional failure (LRF) in patients with hypopharyngeal squamous cell carcinoma (HPSCC) who received organ preservation therapy (OPT). MATERIAL AND METHODS A total of 800 MRI-based features of pretreatment tumors were obtained from 116 patients with HPSCC who received OPT from two independent cohorts. The least absolute shrinkage and selection operator regression model were used to select the features used to develop the RS. Harrell's C-index and corrected C-index were used to evaluate the discriminative ability of RS. The Youden index was used to select the optimal cut-point for risk category. RESULTS The RS yielded 1000 times bootstrapping corrected C-index of 0.8036 and 0.78235 in the experimental (n = 82) and validation cohorts (n = 34), respectively. With respect to the subgroup of patients with stage III/IV and cT4 disease, the RS also showed good predictive performance with corrected C-indices of 0.760 and 0.754, respectively. The dichotomized risk category using an RS of 0.0326 as the cut-off value yielded a 1-year LRF predictive accuracy of 79.27%, 79.41%, 76.74%, and 71.15% in the experimental, validation, stage III/IV, and cT4a cohorts, respectively. The low-risk group was associated with a significantly better progression-free laryngectomy-free and overall survival outcome in two independent institutions, stage III/IV, and cT4a cohorts. CONCLUSION The RS-based model provides a novel and convenient approach for the prediction of the 1-year LRF and survival outcome in patients with HPSCC who received OPT.
Collapse
Affiliation(s)
- Che-Yu Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Min Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital at LinKou, Taiwan
| | - Ngan Ming Tsang
- Department of Radiation Oncology, Chang Gung Memorial Hospital at LinKou, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Taoyuan, Taiwan
| | - Chun-Wei Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Chung Wang
- Department of Mathematics, National Taiwan University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
43
|
Multi-parametric MRI lesion heterogeneity biomarkers for breast cancer diagnosis. Phys Med 2020; 80:101-110. [PMID: 33137621 DOI: 10.1016/j.ejmp.2020.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To identify intra-lesion imaging heterogeneity biomarkers in multi-parametric Magnetic Resonance Imaging (mpMRI) for breast lesion diagnosis. METHODS Dynamic Contrast Enhanced (DCE) and Diffusion Weighted Imaging (DWI) of 73 female patients, with 85 histologically verified breast lesions were acquired. Non-rigid multi-resolution registration was utilized to spatially align sequences. Four (4) DCE (2nd post-contrast frame, Initial-Enhancement, Post-Initial-Enhancement and Signal-Enhancement-Ratio) and one (1) DWI (Apparent-Diffusion-Coefficient) representations were analyzed, considering a representative lesion slice. 11 1st-order-statistics and 16 texture features (Gray-Level-Co-occurrence-Matrix (GLCM) and Gray-Level-Run-Length-Matrix (GLRLM) based) were derived from lesion segments, provided by Fuzzy C-Means segmentation, across the 5 representations, resulting in 135 features. Least-Absolute-Shrinkage and Selection-Operator (LASSO) regression was utilized to select optimal feature subsets, subsequently fed into 3 classification schemes: Logistic-Regression (LR), Random-Forest (RF), Support-Vector-Machine-Sequential-Minimal-Optimization (SVM-SMO), assessed with Receiver-Operating-Characteristic (ROC) analysis. RESULTS LASSO regression resulted in 7, 6 and 7 features subsets from DCE, DWI and mpMRI, respectively. Best classification performance was obtained by the RF multi-parametric scheme (Area-Under-ROC-Curve, (AUC) ± Standard-Error (SE), AUC ± SE = 0.984 ± 0.025), as compared to DCE (AUC ± SE = 0.961 ± 0.030) and DWI (AUC ± SE = 0.938 ± 0.032) and statistically significantly higher as compared to DWI. The selected mpMRI feature subset highlights the significance of entropy (1st-order-statistics and 2nd-order-statistics (GLCM)) and percentile features extracted from 2nd post-contrast frame, PIE, SER maps and ADC map. CONCLUSION Capturing breast intra-lesion heterogeneity, across mpMRI lesion segments with 1st-order-statistics and texture features (GLCM and GLRLM based), offers a valuable diagnostic tool for breast cancer.
Collapse
|
44
|
Bian T, Wu Z, Lin Q, Wang H, Ge Y, Duan S, Fu G, Cui C, Su X. Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer. Br J Radiol 2020; 93:20200287. [PMID: 32822542 DOI: 10.1259/bjr.20200287] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives: To investigate the ability of radiomic signatures based on MRI to evaluate the response and efficiency of neoadjuvant chemotherapy (NAC) for treating breast cancers. Methods: 152 patients were included in this study at our institution between March 2017 and September 2019. All patients with breast cancer underwent a preoperative breast MRI and the Miller–Payne grading system was applied to evaluate response to NAC. Quantitative parameters were compared between patients with sensitive and insensitive responses to NAC and between those with pathological complete responses (pCR) and non-pCR. Four radiomic signatures were built based on T2W imaging, diffusion-weighted imaging, dynamic contrast-enhanced imaging and their combination, and radiomics scores (Rad-score) were calculated. The combination of the clinical factors and Rad-scores created a nomogram model. Multivariate logistic regression was performed to assess the association between MRI features and independent clinical risk factors. Results: 20 features and 18 features were selected to build the radiomic signature for evaluating sensitivity and the possibility of pCR, respectively. The combined radiomic signature and nomogram model showed a similar discrimination in the training (AUC 0.91, 0.92, 95% confidence interval [CI], 0.85–0.96, 0.86–0.98) and validation (AUC 0.93, 0.91, 95% CI, 0.86–1.00, 0.82–1.00) sets. The clinical factor model exhibited reduced performance (AUC 0.74, 0.64, 95% CI, 0.64–0.84, 0.46–0.82) in terms of NAC sensitivity and pCR. Conclusions: The combined radiomic signature and nomogram model exhibited potential predictive power for predicting effective NAC treatment which can aid in the prognosis and guidance of treatment regimens. Advances in knowledge: Identifying a means of assessing the efficacy of NAC before surgery can guide follow-up treatment and avoid chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Tiantian Bian
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Zengjie Wu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Qing Lin
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Yaqiong Ge
- GE Healthcare, Pudong, 210000, Shanghai, China
| | | | - Guangming Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chunxiao Cui
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xiaohui Su
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
45
|
Bitencourt AGV, Gibbs P, Rossi Saccarelli C, Daimiel I, Lo Gullo R, Fox MJ, Thakur S, Pinker K, Morris EA, Morrow M, Jochelson MS. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer. EBioMedicine 2020; 61:103042. [PMID: 33039708 PMCID: PMC7648120 DOI: 10.1016/j.ebiom.2020.103042] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). Methods This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MATLAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal status). For predicting pCR, the data was split into a training and test set (80:20). Findings The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared test). Interpretation The machine learning models, including both clinical and radiomics MRI features, can be used to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients. Funding NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish Foundation Alfonso Martin Escudero, European School of Radiology.
Collapse
Affiliation(s)
- Almir G V Bitencourt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Imaging, A.C. Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Peter Gibbs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carolina Rossi Saccarelli
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Isaac Daimiel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Fox
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sunitha Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Elizabeth A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maxine S Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
46
|
Qiu X, Jiang Y, Zhao Q, Yan C, Huang M, Jiang T. Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer? JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1897-1905. [PMID: 32329142 PMCID: PMC7540260 DOI: 10.1002/jum.15294] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES This work aimed to investigate whether quantitative radiomics imaging features extracted from ultrasound (US) can noninvasively predict breast cancer (BC) metastasis to axillary lymph nodes (ALNs). METHODS Presurgical B-mode US data of 196 patients with BC were retrospectively studied. The cases were divided into the training and validation cohorts (n = 141 versus 55). The elastic net regression technique was used for selecting features and building a signature in the training cohort. A linear combination of the selected features weighted by their respective coefficients produced a radiomics signature for each individual. A radiomics nomogram was established based on the radiomics signature and US-reported ALN status. In a receiver operating characteristic curve analysis, areas under the curves (AUCs) were determined for assessing the accuracy of the prediction model in predicting ALN metastasis in both cohorts. The clinical value was assessed by a decision curve analysis. RESULTS In all, 843 radiomics features per case were obtained from expert-delineated lesions on US imaging in this study. Through radiomics feature selection, 21 features were selected to constitute the radiomics signature for predicting ALN metastasis. Area under the curve values of 0.778 and 0.725 were obtained in the training and validation cohorts, respectively, indicating moderate predictive ability. The radiomics nomogram comprising the radiomics signature and US-reported ALN status showed the best performance for ALN detection in the training cohort (AUC, 0.816) but moderate performance in the validation cohort (AUC, 0.759). The decision curve showed that both the radiomics signature and nomogram displayed good clinical utility. CONCLUSIONS This pilot radiomics study provided a noninvasive method for predicting presurgical ALN metastasis status in BC.
Collapse
Affiliation(s)
- Xiaoying Qiu
- Departments of UltrasonographyFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qiyu Zhao
- Departments of UltrasonographyFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
- Hepatobiliary and Pancreatic SurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Chunhong Yan
- Departments of UltrasonographyFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Min Huang
- Departments of UltrasonographyFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Tian'an Jiang
- Departments of UltrasonographyFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
- Hepatobiliary and Pancreatic SurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
47
|
Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors. Eur J Nucl Med Mol Imaging 2020; 48:683-693. [PMID: 32979059 DOI: 10.1007/s00259-020-05037-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort. METHODS Magnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests. RESULTS Low-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05). CONCLUSION Texture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.
Collapse
|
48
|
La Forgia D, Fanizzi A, Campobasso F, Bellotti R, Didonna V, Lorusso V, Moschetta M, Massafra R, Tamborra P, Tangaro S, Telegrafo M, Pastena MI, Zito A. Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome. Diagnostics (Basel) 2020; 10:E708. [PMID: 32957690 PMCID: PMC7555402 DOI: 10.3390/diagnostics10090708] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Contrast-Enhanced Spectral Mammography (CESM) is a recently introduced mammographic method with characteristics particularly suitable for breast cancer radiomic analysis. This work aims to evaluate radiomic features for predicting histological outcome and two cancer molecular subtypes, namely Human Epidermal growth factor Receptor 2 (HER2)-positive and triple-negative. From 52 patients, 68 lesions were identified and confirmed on histological examination. Radiomic analysis was performed on regions of interest (ROIs) selected from both low-energy (LE) and ReCombined (RC) CESM images. Fourteen statistical features were extracted from each ROI. Expression of estrogen receptor (ER) was significantly correlated with variation coefficient and variation range calculated on both LE and RC images; progesterone receptor (PR) with skewness index calculated on LE images; and Ki67 with variation coefficient, variation range, entropy and relative smoothness indices calculated on RC images. HER2 was significantly associated with relative smoothness calculated on LE images, and grading tumor with variation coefficient, entropy and relative smoothness calculated on RC images. Encouraging results for differentiation between ER+/ER-, PR+/PR-, HER2+/HER2-, Ki67+/Ki67-, High-Grade/Low-Grade and TN/NTN were obtained. Specifically, the highest performances were obtained for discriminating HER2+/HER2- (90.87%), ER+/ER- (83.79%) and Ki67+/Ki67- (84.80%). Our results suggest an interesting role for radiomics in CESM to predict histological outcomes and particular tumors' molecular subtype.
Collapse
Affiliation(s)
- Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Francesco Campobasso
- Dipartimento di Economia e Finanza, Università degli Studi di Bari “Aldo Moro”, Largo Abbazia S. Scolastica, 70124 Bari, Italy;
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro”, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
| | - Vittorio Didonna
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Marco Moschetta
- Unità Operativa Semplice Dipartimentale Radiodiagnostica ad Indirizzo Senologico, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (M.T.)
| | - Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Pasquale Tamborra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Michele Telegrafo
- Unità Operativa Semplice Dipartimentale Radiodiagnostica ad Indirizzo Senologico, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (M.T.)
| | - Maria Irene Pastena
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| |
Collapse
|
49
|
Liu Y, Zhao S, Huang J, Zhang X, Qin Y, Zhong H, Yu J. Quantitative Analysis of Enhancement Intensity and Patterns on Contrast-enhanced Spectral Mammography. Sci Rep 2020; 10:9807. [PMID: 32555338 PMCID: PMC7299980 DOI: 10.1038/s41598-020-66501-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/11/2020] [Indexed: 02/05/2023] Open
Abstract
CESM is an emerging digital mammography technology with a high breast cancer detection and a limited diagnostic specificity. In order to improve specificity, we quantitatively assessed enhancement intensity of breast lesions with different pathological types and hormonal receptor status and evaluated the consistency of enhancement patterns between CESM and DCE-MRI. A total of 145 lesions were enrolled, consisting of 43 malignant (17 non-infiltrating cancers and 26 infiltrating cancers) and 99 benign lesions. The diagnostic performance of enhancement intensity in the former positions was significantly higher than that in the latter positions (AUC: 0.834 vs. 0.755, p = 0.0008). Infiltrating cancers showed the highest enhancement intensity, while benign lesions the lowest (mean CNR1: 7.6% vs. 2.7%; median CNR1: 6.8% vs. 2.7%). Enhancement intensity of ER or PR positive group was weaker than negative group, while HER-2 positive group was stronger than negative group. 28 patients with 28 lesions performed both CESM and DCE-MRI examinations, showing a coincidence rate of 64.2% and moderate agreement (k = 0.515) between CESM and DCE-MRI. In conclusion, quantitative analysis of enhancement characteristics is feasible to the diagnosis practice on CESM.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Shuang Zhao
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Juan Huang
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Xueqin Zhang
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Yun Qin
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Huanhuan Zhong
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Jianqun Yu
- Department of Radiology, Sichuan University West China Hospital, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
50
|
Non-Invasive Assessment of Breast Cancer Molecular Subtypes with Multiparametric Magnetic Resonance Imaging Radiomics. J Clin Med 2020; 9:jcm9061853. [PMID: 32545851 PMCID: PMC7356091 DOI: 10.3390/jcm9061853] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
We evaluated the performance of radiomics and artificial intelligence (AI) from multiparametric magnetic resonance imaging (MRI) for the assessment of breast cancer molecular subtypes. Ninety-one breast cancer patients who underwent 3T dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping were included retrospectively. Radiomic features were extracted from manually drawn regions of interest (n = 704 features per lesion) on initial DCE-MRI and ADC maps. The ten best features for subtype separation were selected using probability of error and average correlation coefficients. For pairwise comparisons with >20 patients in each group, a multi-layer perceptron feed-forward artificial neural network (MLP-ANN) was used (70% of cases for training, 30%, for validation, five times each). For all other separations, linear discriminant analysis (LDA) and leave-one-out cross-validation were applied. Histopathology served as the reference standard. MLP-ANN yielded an overall median area under the receiver-operating-characteristic curve (AUC) of 0.86 (0.77–0.92) for the separation of triple negative (TN) from other cancers. The separation of luminal A and TN cancers yielded an overall median AUC of 0.8 (0.75–0.83). Radiomics and AI from multiparametric MRI may aid in the non-invasive differentiation of TN and luminal A breast cancers from other subtypes.
Collapse
|