1
|
Cao S, Wan Y, Li Y, Xu S, Xia W. Urinary polycyclic aromatic hydrocarbon metabolites in Chinese pregnant women: Concentrations, variability, predictors, and association with oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175121. [PMID: 39084365 DOI: 10.1016/j.scitotenv.2024.175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive contaminants having adverse health effects. Urinary monohydroxylated PAHs (OH-PAHs) are commonly employed as biomarkers to estimate PAH exposure levels in humans. However, little is understood about the variability in OH-PAHs among pregnant women across trimesters and their relationship with oxidative stress biomarkers (OSBs). Based on a prospective birth cohort study conducted in Wuhan, China, we selected 644 women who donated (spot) urine samples across different trimesters and measured the urinary concentrations of eight OH-PAHs and three selected OSBs (8-OHG, 8-OHdG, and HNEMA) to explore the relationship between the OH-PAHs and OSBs. Pregnant women were found to be ubiquitously exposed to the PAHs, with detection rates of the OH-PAHs ranging from 86.3% to 100%. 2-Hydroxynaphthalene (2-OH-Nap) had the highest urinary concentrations among the OH-PAHs during the three trimesters (specific gravity-adjusted median values for the first, second, and third trimesters: 1.86, 2.39, and 2.20 ng/mL, respectively). However, low reproducibility of the OH-PAHs was observed across the three trimesters with intraclass correlation coefficients ranged between 0.02 and 0.22. Most urinary OH-PAHs had the highest concentrations at the first trimester and the lowest at the third trimester. Some OH-PAH concentrations were higher in pregnant women with lower educational level [2-hydroxyphenanthrene (2-OH-Phen) and 3-hydroxyphenanthrene (3-OH-Phen)], those who were overweight [2-OH-Nap, 2/3-hydroxyfluorene (2/3-OH-Fluo), 2-OH-Phen, and 4-hydroxyphenanthrene (4-OH-Phen)], those who were unemployed during pregnancy [1-hydroxynaphthalene, 1/9-hydroxyphenanthrene, and 4-OH-Phen], and the samples donated in summer (most OH-PAHs, except for 2-OH-Nap). In multivariable linear mixed-effects model analyses, every OH-PAH was found to be significantly associated with increased levels of the three OSBs. For example, each interquartile range-fold increase in 2/3-OH-Fluo concentration was associated with the largest increase in 8-OHdG (65.4%) and 8-OHG (49.1%), while each interquartile range-fold increase in 3-OH-Phen concentration was associated with the largest increase in HNEMA (76.3%). Weighted quantile sum regression models, which were used to examine the joint effect of OH-PAH mixture on the OSBs, revealed positive associations between the OH-PAH mixture exposure and the OSBs. Specifically, 2/3-OH-Fluo and 2-OH-Nap were the major contributors in the association with oxidative damage of nucleic acids (8-OHdG and 8-OHG), while hydroxyphenanthrenes and 1-hydroxypyrene were the major contributors in the association with oxidative damage of lipid (HNEMA). Further work is required to examine the potential mediating role of oxidative stress in the relationship of adverse health outcomes with elevated PAH exposure among pregnant women.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Wang Y, Xu J, Yang L, Zhang N, Zhang L, Han B. The Effect of Urinary Polycyclic Aromatic Hydrocarbon Metabolites on Lipid Profiles: Does Oxidative Stress Play a Crucial Mediation Role? TOXICS 2024; 12:748. [PMID: 39453168 PMCID: PMC11511148 DOI: 10.3390/toxics12100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Urinary polycyclic aromatic hydrocarbon (PAH) metabolites are associated with oxidative stress; however, epidemiological studies have not reported the impacts of these urinary PAH metabolites on blood lipid levels. This study investigated the relationship between urinary PAH metabolites, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and blood lipid profiles. A total of 109 elderly volunteers were recruited with complete datasets for analysis. Blood and morning urine samples were collected in the winter of 2011. The PAH metabolites, creatinine, and 8-OHdG levels in urine samples were analyzed using Gas Chromatography-Mass Spectrometry, spectrophotometry, and an ELISA kit, respectively. The blood lipid profiles were analyzed using an automatic biochemical analyzer. The relationship between lipid profiles and 8-OHdG was assessed using a two-independent sample nonparametric test, categorized by gender, smoking, and alcohol consumption status. After normalizing the concentration values, a general linear regression model was employed to examine the correlations between PAH metabolites, 8-OHdG, and lipid profiles. A mediation model was developed to investigate the mediating effect of 8-OHdG on the relationship between PAH metabolites and lipid profiles. The median of eight PAH metabolite concentrations in urine samples ranged from 1 to 10 μmol/mol creatinine (Cr). Significant differences in lipid profiles were observed across genders. However, no significant differences were found in smoking or alcohol consumption status for both genders. Linear regression analysis revealed that an increase in the logarithmic concentration of 2-hydroxynaphthalene (2-OHNap), 9-hydroxyfluorene (9-OHFlu), 3-hydroxyfluorene (3-OHFlu), 2-hydroxyfluorene (2-OHFlu), 1-hydroxypyrene (1-OHPyr), and 6-hydroxychrysene (6-OHChr) was associated with an increase in urinary 8-OHdG levels, after adjusting for BMI and age. Specifically, 1-hydroxynaphthalene (1-OHNap) and 1-OHPyr correlated negatively with apolipoprotein A1 (Apo A1). Conversely, 1-OHPyr was positively correlated with low-density lipoprotein cholesterol (LDL-C). In addition, b,c-dihydroxyphenanthrene (2-OHBcPhe) was positively associated with apolipoprotein B (Apo B). Notably, 8-OHdG did not exhibit a significant correlation with lipid profiles. The mediating effect of 8-OHdG on the relationship between hydroxylated PAHs and lipid profiles was not statistically significant. However, the indirect effects of hydroxylated PAHs on blood lipids were statistically substantial, specifically for 1-OHNap to Apo A1 (-0.025, 95% CI: -0.041, -0.009), 1-OHPyr to LDL-C (0.107, 95% CI: 0.011, 0.203), and 2-OHBcPhe to Apo B (0.070, 95% CI: 0.005, 0.135). This study suggests that an increase in urinary PAH metabolites may elevate the levels of urinary 8-OHdG and influence blood lipid profiles. However, no direct relationship was found between 8-OHdG and lipid profiles. The mediation analysis indicated that the effects of PAH metabolites on lipid changes may operate through pathways other than oxidative stress.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Y.W.); (L.Y.)
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (N.Z.)
| | - Liujie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Y.W.); (L.Y.)
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (N.Z.)
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Y.W.); (L.Y.)
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (N.Z.)
| |
Collapse
|
3
|
Ye C, Liu Y, He Z, Huang W, Chen G, Peng T, Li K. Urinary polycyclic aromatic hydrocarbon metabolites and hyperlipidemia: NHANES 2007-2016. Lipids Health Dis 2024; 23:160. [PMID: 38802874 PMCID: PMC11131247 DOI: 10.1186/s12944-024-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The relationships between urinary polycyclic aromatic hydrocarbon (PAH) metabolites and hyperlipidemia have not been thoroughly studied. The primary goal of this research focused on investigating the linkage between PAH metabolite concentrations in urine and hyperlipidemia prevalence within US adults. METHODS A cross-sectional analysis was conducted using data from the 2007-2016 National Health and Nutrition Examination Survey (NHANES). Logistic regression models were used to assess correlations between urinary PAH metabolite levels and the risk of hyperlipidemia, while restricted cubic spline models were used to examine dose‒response relationships. Subgroup and interaction analyses were performed to further elucidate these associations. Weighted quantile sum (WQS) regression analyzed the cumulative impact of various urinary PAH metabolites on hyperlipidemia risk. RESULTS This study included 7,030 participants. Notably, individuals in the highest quintile of urinary PAH metabolite concentrations exhibited a significantly elevated prevalence of hyperlipidemia, even after comprehensive adjustments (odds ratio [OR]: 1.33, 95% confidence interval [CI]: 1.01-1.75). Moreover, elevated levels of 1-hydroxyphenanthrene and 2-hydroxynaphthalene in the fourth quintile and 2-hydroxyfluorene in the third, fourth, and fifth quintiles demonstrated positive correlations with the prevalence of hyperlipidemia. These associations persisted across subgroup analyses. Additionally, a positive correlation between the urinary PAH metabolite mixture and hyperlipidemia (positive model: OR = 1.04, 95% CI: 1.00-1.09) was observed in the WQS model, and 2-hydroxynaphthalene showed the most substantial contribution. CONCLUSION The cross-sectional analysis identified a significant correlation between urinary PAH metabolite and hyperlipidemia prevalence within the US demographic, with 2-hydroxynaphthalene being the predominant influencer. These findings underscore the need to mitigate PAH exposure as a preventive measure for hyperlipidemia.
Collapse
Affiliation(s)
- Chenle Ye
- Division of Gastroenterology, Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuanrun Liu
- Division of Gastroenterology, Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Zhuoqi He
- Division of Gastroenterology, Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Weikai Huang
- Division of Gastroenterology, Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Guangzhan Chen
- Division of Gastroenterology, Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Tieli Peng
- Division of Gastroenterology, Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
4
|
Hua L, Gao Y, Guo S, Zhu H, Yao Y, Wang B, Fang J, Sun H, Xu F, Zhao H. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons of Rural Population in Northwestern China: Oxidative Stress and Health Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7758-7769. [PMID: 38669205 DOI: 10.1021/acs.est.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure is suspected to be linked to oxidative damage. Herein, ten PAH human exposure biomarkers [hydroxylated PAH metabolites (OH-PAHs)] and five oxidative stress biomarkers (OSBs) were detected in urine samples collected from participants living in a rural area (n = 181) in Northwestern China. The median molar concentration of ΣOH-PAHs in urine was 47.0 pmol mL-1. The 2-hydroxynaphthalene (2-OHNap; median: 2.21 ng mL-1) was the dominant OH-PAH. The risk assessment of PAH exposure found that hazard index (HI) values were <1, indicating that the PAH exposure of rural people in Jingyuan would not generate significant cumulative risks. Smokers (median: 0.033) obtained higher HI values than nonsmokers (median: 0.015, p < 0.01), suggesting that smokers face a higher health risk from PAH exposure than nonsmokers. Pearson correlation and multivariate linear regression analysis revealed that ΣOH-PAH concentrations were significant factors in increasing the oxidative damage to deoxyribonucleic acid (DNA) (8-hydroxy-2'-deoxyguanosine, 8-OHdG), ribonucleic acid (RNA) (8-oxo-7,8-dihydroguanine, 8-oxoGua), and protein (o, o'-dityrosine, diY) (p < 0.05). Among all PAH metabolites, only 1-hydroxypyrene (1-OHPyr) could positively affect the expression of all five OSBs (p < 0.05), suggesting that urinary 1-OHPyr might be a reliable biomarker for PAH exposure and a useful indicator for assessing the impacts of PAH exposure on oxidative stress. This study is focused on the relation between PAH exposure and oxidative damage and lays a foundation for the study of the health effect mechanism of PAHs.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Yafei Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fuliu Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Ryu JY, Hong DH. Association of mixed polycyclic aromatic hydrocarbons exposure with oxidative stress in Korean adults. Sci Rep 2024; 14:7511. [PMID: 38553533 PMCID: PMC10980696 DOI: 10.1038/s41598-024-58263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants associated with several adverse health effects and PAH-induced oxidative stress has been proposed as a potential mechanism. This study evaluated the associations of single and multiple PAHs exposure with oxidative stress within the Korean adult population, using serum gamma glutamyltransferase (GGT) as an oxidative stress marker. Data from the Second Korean National Environmental Health Survey (2012-2014) were analyzed. For analysis, 5225 individuals were included. PAH exposure was assessed with four urinary PAH metabolites: 1-hydroxyphenanthrene, 1-hydroxypyrene, 2-hydroxyfluorene, and 2-naphthol. After adjusting for age, sex, body mass index, drinking, passive smoking, and current smoking (model 1), as well as the presence of diabetes and hepatobiliary diseases (model 2), complex samples general linear model regression analyses for each metabolite revealed a significant positive association between Ln(1-hydroxyphenanthrene) and Ln(GGT) (model 1: β = 0.040, p < 0.01 and model 2: β = 0.044, p < 0.05). For the complete dataset (n = 4378), a significant positive association was observed between mixture of four urinary PAH metabolites and serum GGT in both the quantile g-computation and the Bayesian kernel machine regression analysis. Our study provides evidence for the association between mixed PAH exposure and oxidative stress.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan, 48108, South Korea.
| | - Dong Hyun Hong
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan, 48108, South Korea
| |
Collapse
|
6
|
Lu Z, Li Q, Dai Y, Pan X, Luo X, Peng R, Guo C, Tan L. Association of co-exposure to polycyclic aromatic hydrocarbons and phthalates with oxidative stress and inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169513. [PMID: 38154630 DOI: 10.1016/j.scitotenv.2023.169513] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Exposure to multiple environmental pollutants is ubiquitous and inevitable, but studies investigating their exposure effects on oxidative stress or inflammation have mainly been restricted to single-pollutant models. This study investigated the association of co-exposure to polycyclic aromatic hydrocarbons and phthalates with oxidative stress and inflammation. Using a cross-sectional study in adults, we measured urinary concentrations of metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) and phthalates (mPAEs), urinary oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine, and 9 inflammatory biomarkers in paired blood samples. The associations of urinary OH-PAHs and mPAEs with oxidative stress and inflammation biomarkers were evaluated by different statistical models. The Bayesian kernel machine regression and quantile g-computation was used to examine the joint effects, and increased levels of urinary concentrations of OH-PAHs and mPAEs were associated with elevated 8-hydroxy-2'-deoxyguanosine level and white blood cell counts. Exposure to polycyclic aromatic hydrocarbons contributed more significantly to inflammation, while exposure to phthalates contributed more to oxidative stress. Monoisobutyl phthalate was identified as the most significant metabolite contributing to elevated oxidative stress levels. 1-Hydroxypyrene was negatively associated with platelet, and monomethyl phthalate was significantly positively associated with interleukin 6 in multivariate linear regression. The restricted cubic spline analysis revealed non-linear patterns of 3-hydroxyfluorene with white blood cell, lymphocyte, neutrophil, and C-reactive protein. The results indicated significant associations between increased co-exposure to polycyclic aromatic hydrocarbons and phthalates with elevated oxidative stress and inflammation. Further investigation is needed to elucidate the underlying biological mechanisms and to determine the potential public health implications.
Collapse
Affiliation(s)
- Zhuliangzi Lu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xiaoyan Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Okeke ES, Enochoghene A, Ezeudoka BC, Kaka SD, Chen Y, Mao G, ThankGod Eze C, Feng W, Wu X. A review of heavy metal risks around e-waste sites and comparable municipal dumpsites in major African cities: Recommendations and future perspectives. Toxicology 2024; 501:153711. [PMID: 38123013 DOI: 10.1016/j.tox.2023.153711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
In Africa, the effects of informal e-waste recycling on the environment are escalating. It is regularly transported from developed to developing nations, where it is disassembled informally in search of precious metals, thus increasing human exposure to harmful compounds. Africa has a serious problem with e-waste, as there are significant facilities in Ghana and Nigeria where imported e-waste is unsafely dismantled. however, because they are in high demand and less expensive than new ones, old electronic and electrical items are imported in large quantities, just like in many developing nations. After that, these objects are frequently scavenged to recover important metals through heating, burning, incubation in acids, and other techniques. Serious health hazards are associated with these activities for workers and individuals close to recycling plants. At e-waste sites in Africa, there have been documented instances of elevated concentrations of hazardous elements, persistent organic pollutants, and heavy metals in dust, soils, and vegetation, including plants consumed as food. Individuals who handle and dispose of e-waste are exposed to highly hazardous chemical substances. This paper examines heavy metal risks around e-waste sites and comparable municipal dumpsites in major African cities. Elevated concentrations of these heavy metals metal in downstream aquatic and marine habitats have resulted in additional environmental impacts. These effects have been associated with unfavourable outcomes in marine ecosystems, such as reduced fish stocks characterized by smaller sizes, increased susceptibility to illness, and decreased population densities. The evidence from the examined studies shows how much e-waste affects human health and the environment in Africa. Sub-Saharan African nations require a regulatory framework that includes specialized laws, facilities, and procedures for the safe recycling and disposal of e-waste.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | | | | - Steve Dokpo Kaka
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | | | - Weiwei Feng
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Barros B, Oliveira M, Morais S. Continent-based systematic review of the short-term health impacts of wildfire emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:387-415. [PMID: 37469022 DOI: 10.1080/10937404.2023.2236548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| |
Collapse
|
9
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
10
|
Pálešová N, Maitre L, Stratakis N, Řiháčková K, Pindur A, Kohoutek J, Šenk P, Bartošková Polcrová A, Gregor P, Vrijheid M, Čupr P. Firefighters and the liver: Exposure to PFAS and PAHs in relation to liver function and serum lipids (CELSPAC-FIREexpo study). Int J Hyg Environ Health 2023; 252:114215. [PMID: 37418783 DOI: 10.1016/j.ijheh.2023.114215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Firefighting is one of the most hazardous occupations due to exposure to per- and polyfluoroalkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAHs). Such exposure is suspected to affect the cardiometabolic profile, e.g., liver function and serum lipids. However, only a few studies have investigated the impact of this specific exposure among firefighters. METHODS Men included in the CELSPAC-FIREexpo study were professional firefighters (n = 52), newly recruited firefighters in training (n = 58), and controls (n = 54). They completed exposure questionnaires and provided 1-3 samples of urine and blood during the 11-week study period to allow assessment of their exposure to PFAS (6 compounds) and PAHs (6 compounds), and to determine biomarkers of liver function (alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (BIL)) and levels of serum lipids (total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL) and triglycerides (TG)). The associations between biomarkers were investigated both cross-sectionally using multiple linear regression (MLR) and Bayesian weighted quantile sum (BWQS) regression and prospectively using MLR. The models were adjusted for potential confounders and false discovery rate correction was applied to account for multiplicity. RESULTS A positive association between exposure to PFAS and PAH mixture and BIL (β = 28.6%, 95% CrI = 14.6-45.7%) was observed by the BWQS model. When the study population was stratified, in professional firefighters and controls the mixture showed a positive association with CHOL (β = 29.5%, CrI = 10.3-53.6%) and LDL (β = 26.7%, CrI = 8.3-48.5%). No statistically significant associations with individual compounds were detected using MLR. CONCLUSIONS This study investigated the associations between exposure to PFAS and PAHs and biomarkers of cardiometabolic health in the Czech men, including firefighters. The results suggest that higher exposure to a mixture of these compounds is associated with an increase in BIL and the alteration of serum lipids, which can result in an unfavourable cardiometabolic profile.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Czech Republic; Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | - Petr Gregor
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Shamsedini N, Dehghani M, Samaei MR, Nozari M, Bahrany S, Tabatabaei Z, Azhdarpoor A, Hoseini M, Fararoei M, Roosta S. Non-carcinogenic and cumulative risk assessment of exposure of kitchen workers in restaurants and local residents in the vicinity of polycyclic aromatic hydrocarbons. Sci Rep 2023; 13:6649. [PMID: 37095265 PMCID: PMC10125965 DOI: 10.1038/s41598-023-33193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often formed when organic substances do not burn completely. This study evaluates the non-carcinogenic and cumulative risks associated with PAHs levels by testing blood and urine samples in kitchen workers and residents near restaurants in Shiraz, Iran. Metabolites of PAH in the urine samples as well as clinical parameters in the blood samples were measured. The non-carcinogenic and cumulative risk assessments from exposure of the study groups to PAH metabolites were also evaluated. The highest average concentrations of PAH metabolites were related to kitchen workers (2126.7 ng/g creatinine (ng/g cr)). The metabolites of 1-Hydroxypyrene (1-OHP) and 9-Phenanthrene (9-OHPhe) had the highest and lowest mean concentrations, respectively. A direct correlation was observed between the levels of PAH metabolites with malondialdehyde (MDA) and total antioxidation capacity (TAC) levels (p < 0.05). Hazard Index (HIi) was obtained less than one (HIi < 1), indicating low-risk negative health impacts on the target groups. Nevertheless, conducting more studies to determine the health status of these people is quite evident.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Nozari
- Department of Environmental Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Tabatabaei
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararoei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Shi X, Qiu X, Li A, Jiang X, Wei G, Zheng Y, Chen Q, Chen S, Hu M, Rudich Y, Zhu T. Polar Nitrated Aromatic Compounds in Urban Fine Particulate Matter: A Focus on Formation via an Aqueous-Phase Radical Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5160-5168. [PMID: 36940425 DOI: 10.1021/acs.est.2c07324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polar nitrated aromatic compounds (pNACs) are key ambient brown carbon chromophores; however, their formation mechanisms, especially in the aqueous phase, remain unclear. We developed an advanced technique for pNACs and measured 1764 compounds in atmospheric fine particulate matter sampled in urban Beijing, China. Molecular formulas were derived for 433 compounds, of which 17 were confirmed using reference standards. Potential novel species with up to four aromatic rings and a maximum of five functional groups were found. Higher concentrations were detected in the heating season, with a median of 82.6 ng m-3 for Σ17pNACs. Non-negative matrix factorization analysis indicated that primary emissions particularly coal combustion were dominant in the heating season. While in the non-heating season, aqueous-phase nitration could generate abundant pNACs with the carboxyl group, which was confirmed by their significant association with the aerosol liquid water content. Aqueous-phase formation of 3- and 5-nitrosalicylic acids instead of their isomer of 4-hydroxy-3-nitrobenzoic acid suggests the existence of an intermediate where the intramolecular hydrogen bond favors kinetics-controlled NO2• nitration. This study provides not only a promising technique for the pNAC measurement but also evidence for their atmospheric aqueous-phase formation, facilitating further evaluation of pNACs' climatic effects.
Collapse
Affiliation(s)
- Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Ailin Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Gaoyuan Wei
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yan Zheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shiyi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Min Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, and College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
13
|
Sun Y, Huang C, Jiang Y, Wan Y. Urinary concentrations of fungicide carbendazim's metabolite and associations with oxidative stress biomarkers in young children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18408-18418. [PMID: 36215016 DOI: 10.1007/s11356-022-23311-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Carbendazim (CBDZ) is the most widely used fungicide in China. It is ubiquitous in environment and can induce oxidative stress in mammals, while data on occurrence of its metabolite in human urine are scarce, and the relationship between CBDZ and oxidative stress biomarkers (OSBs) in young children has not been examined. The aim of this study was to measure the concentrations of methyl 5-hydroxy-2-benzimidazolecarbamate (5-HBC, the main metabolite of CBDZ in urine) in 390 urine samples collected from 130 healthy young (< 6.6 years old) children from Shenzhen and Wuhan, in south and central China, respectively, and to evaluate the associations of 5-HBC with three selected OSBs (4-HNEMA, 8-OHG, and 8-OHdG, for lipid, RNA, and DNA, respectively). 5-HBC was found in 99.2% of the urine samples at concentrations ranging from below the method detection limit (< 0.005 ng/mL) to 10.9 ng/mL (median: 0.11 ng/mL). Moderate inter-day reproducibility was found for specific gravity-adjusted 5-HBC concentrations (intraclass correlation coefficient: 0.50). The urinary 5-HBC concentrations were significantly and positively associated with 4-HNEMA (p < 0.01). An interquartile range increase in urinary 5-HBC concentrations was associated with a 42.1% increase in 4-HNEMA, which implied that CBDZ exposure might be associated with lipid peroxidation in young children without occupational exposure. As far as we know, this pilot study is the first to report urinary 5-HBC and its associations with OSBs in children.
Collapse
Affiliation(s)
- Yanfeng Sun
- Wuhan Centers for Disease Control and Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Changgang Huang
- Wuhan Centers for Disease Control and Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong, 518054, People's Republic of China
| | - Yanjian Wan
- Wuhan Centers for Disease Control and Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China.
| |
Collapse
|
14
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
15
|
Xiao Q, Lü Z, Zhu Z, Zhang D, Shen J, Huang M, Chen X, Yang J, Huang X, Rao M, Lu S. Exposure to polycyclic aromatic hydrocarbons and the associations with oxidative stress in waste incineration plant workers from South China. CHEMOSPHERE 2022; 303:135251. [PMID: 35688192 DOI: 10.1016/j.chemosphere.2022.135251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Waste incineration is one of the most common emission sources of polycyclic aromatic hydrocarbons (PAHs), causing potential occupational exposure in waste incineration workers. However, relative investigations among waste incineration plant workers are still very limited, particularly in China. Therefore, we collected urine specimens from 77 workers in a waste incineration plant as the exposed group, and 101 residents as the control group in Shenzhen, China. Nine mono-hydroxylated PAH metabolites (OH-PAHs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured, and their internal relationships were explored. The urinary levels of most OH-PAHs and 8-OHdG in the exposed group exhibited high levels versus another group (p < 0.05). We found negative associations between OH-PAHs and 8-OHdG in the control group (p < 0.05), while most of OH-PAHs were not associated with 8-OHdG in the exposed group, which indicated that the exposure to waste incineration could enlarge the level of individual oxidative stress damage. Nevertheless, PAHs were less likely to trigger obvious health risks in exposed workers through estimation of human intake and exposure risks. This study provides a reference for occupational PAH exposure and strengthen the need of health monitoring among incineration workers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhanlu Lü
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Lin XY, Liu YX, Zhang YJ, Shen HM, Guo Y. Polycyclic aromatic hydrocarbon exposure and DNA oxidative damage of workers in workshops of a petrochemical group. CHEMOSPHERE 2022; 303:135076. [PMID: 35649444 DOI: 10.1016/j.chemosphere.2022.135076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The petrochemical industry has promoted the development of economy, while polycyclic aromatic hydrocarbons (PAHs) produced by the industry become the threat for environment and humans. Data on human occupational exposure in petrochemical industry are limited. In the present study, urinary hydroxylated PAH metabolites (OH-PAHs) and a biomarker of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)) were measured in 546 workers of a petrochemical group in Northeast China, to investigate PAH exposure and related potential health risk. The concentrations of ∑9OH-PAH in all workers were 0.25-175 μg/g Cre with a median value of 4.41 μg/g Cre. Metabolites of naphthalene were the predominant compounds. The levels of PAH metabolites were significantly different for workers with different jobs, which were the highest for recycling workers (13.7 μg/g Cre) and the lowest for agency managers (5.12 μg/g Cre). Besides, higher levels of OH-PAHs were usually found in males and older workers. There was a dose-response relationship between levels of 8-OHdG and ∑9OH-PAHs (p < 0.01). No difference was observed in concentrations of 8-OHdG for workers of different gender or ages, work history as well as noise. Furthermore, workers simultaneously exposed to other potential pollutants and higher levels of ∑9OH-PAH had significantly higher levels of 8-OHdG compared with those in the corresponding subgroups. Our results suggested that exposure to PAHs or co-exposure to PAHs and potential toxics in the petrochemical plant may cause DNA damage. We call for more researches on the associations among noise, chemical pollution and oxidative stress to workers in the real working environment.
Collapse
Affiliation(s)
- Xiao-Ya Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Li P, Yang Q, Li Y, Han Y, Qu Z, Gao L, Cui T, Xiong W, Xi W, Zhang X. Association of urinary polycyclic aromatic hydrocarbon metabolites with symptoms among autistic children: A case–control study in Tianjin, China. Autism Res 2022; 15:1941-1960. [DOI: 10.1002/aur.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Peiying Li
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
| | - Qiaoyun Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
- Department of Occupational and Environmental Health School of Public Health, Tianjin Medical University Tianjin China
| | - Yao Li
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
| |
Collapse
|
18
|
Rafiee A, Delgado-Saborit JM, Aquilina NJ, Amiri H, Hoseini M. Assessing oxidative stress resulting from environmental exposure to metals (Oids) in a middle Eastern population. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2649-2668. [PMID: 34390449 DOI: 10.1007/s10653-021-01065-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/04/2021] [Indexed: 05/15/2023]
Abstract
Concentrations of metals and metalloids derived mainly from anthropogenic activities have increased considerably in the environment. Metals might be associated with increase reactive oxygen species (ROS) damage, potentially related to several health outcomes. This study has recruited 200 adult participants, including 110 males and 90 females in Shiraz (Iran), to investigate the relationship between chronic exposure to metals and ROS damage by analyzing malondialdehyde (MDA) and 8-Oxo-2'-deoxyguanosine (8-OHdG) concentrations, and has evaluated the associations between chronic metal exposure and ROS damage using regression analysis. Our findings showed participants are chronically exposed to elevate As, Ni, Hg, and Pb levels. The mean urinary concentrations of 8-OHdG and MDA were 3.8 ± 2.35 and 214 ± 134 µg/g creatinine, respectively. This study shows that most heavy metals are correlated with urinary ROS biomarkers (R ranges 0.19 to 0.64). In addition, regression analysis accounting for other confounding factors such as sex, age, smoking status, and teeth filling with amalgam highlights that Al, Cu, Si and Sn are associated with 8-OHdG concentrations, while an association between Cr and MDA and 8-OHdG is suggested. Smoking cigarettes and water-pipe is considered a significant contributory factor for both ROS biomarkers (MDA and 8-OHdG).
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Juana Maria Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain
- Population Health and Environmental Sciences, Analytical Environmental and Forensic Sciences, King's College London, London, UK
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Noel J Aquilina
- Department of Chemistry, University of Malta, Msida, 2080, MSD, Malta
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Razi blvd, Kuye Zahra Street, Shiraz, Iran.
| |
Collapse
|
19
|
Jacobson MH, Wu Y, Liu M, Kannan K, Lee S, Ma J, Warady BA, Furth S, Trachtman H, Trasande L. Urinary Polycyclic Aromatic Hydrocarbons in a Longitudinal Cohort of Children with CKD: A Case of Reverse Causation? KIDNEY360 2022; 3:1011-1020. [PMID: 35845343 PMCID: PMC9255870 DOI: 10.34067/kid.0000892022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
Abstract
Background Air pollution, which results in the formation of polycyclic aromatic hydrocarbons (PAHs), has been identified as a cause of renal function decline and a contributor to CKD. However, the results of cross-sectional studies investigating personal, integrated biomarkers of PAHs have been mixed. Longitudinal studies may be better suited to evaluate environmental drivers of kidney decline. The purpose of this study was to examine associations of serially measured urinary PAH metabolites with clinical and subclinical measures of kidney function over time among children with CKD. Methods This study was conducted among 618 participants in the Chronic Kidney Disease in Children study, a cohort study of pediatric patients with CKD from the United States and Canada, between 2005 and 2015. In serially collected urine samples over time, nine PAH metabolites were measured. Clinical outcomes measured annually included eGFR, proteinuria, and BP. Subclinical biomarkers of tubular injury (kidney injury molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidant stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and F2-isoprostane) were assayed in urine samples. Results Children were followed over an average (SD) of 3.0 (1.6) years and 2469 study visits (mean±SD, 4.0±1.6). Hydroxynaphthalene (NAP) or hydroxyphenanthrene (PHEN) metabolites were detected in >99% of samples and NAP concentrations were greater than PHEN concentrations. PHEN metabolites, driven by 3-PHEN, were associated with increased eGFR and reduced proteinuria, diastolic BP z-score, and NGAL concentrations over time. However, PAH metabolites were consistently associated with increased KIM-1 and 8-OHdG concentrations. Conclusions Among children with CKD, these findings provoke the potential explanation of reverse causation, where renal function affects measured biomarker concentrations, even in the setting of a longitudinal study. Additional work is needed to determine if elevated KIM-1 and 8-OHdG excretion reflects site-specific injury to the proximal tubule mediated by low-grade oxidant stress.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
| | - Yinxiang Wu
- Department of Population Health, New York University Langone Medical Center, New York, New York
| | - Mengling Liu
- Department of Population Health, New York University Langone Medical Center, New York, New York
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Sunmi Lee
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Jing Ma
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Bradley A Warady
- Division of Nephrology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
| | - Susan Furth
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Howard Trachtman
- Department of Pediatrics, Division of Nephrology, New York University Langone Medical Center, New York, New York
- University of Michigan, Ann Arbor, Michigan
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, New York University Langone Medical Center, New York, New York
- Department of Population Health, New York University Langone Medical Center, New York, New York
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York
- New York University Wagner School of Public Service, New York, New York
- New York University College of Global Public Health, New York, New York
| |
Collapse
|
20
|
Wu X, Cao X, Lintelmann J, Peters A, Koenig W, Zimmermann R, Schneider A, Wolf K. Assessment of the association of exposure to polycyclic aromatic hydrocarbons, oxidative stress, and inflammation: A cross-sectional study in Augsburg, Germany. Int J Hyg Environ Health 2022; 244:113993. [PMID: 35777219 DOI: 10.1016/j.ijheh.2022.113993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to acute and chronic health effects through the suggested pathways of oxidative stress and inflammation. However, evidence is still limited. We aimed to investigate jointly the relationship of PAHs, oxidative stress, and inflammation. METHODS We measured 13 biomarkers of PAH exposure (n = 6: hydroxylated polycyclic aromatic hydrocarbons, [OH-PAHs]), oxidative stress (n = 6: malondialdehyde (MDA); 8-hydroxy-2'-deoxyguanosine (8-OHdG); and 4 representatives of the compound class of F2α-isoprostanes) in urine, and inflammation (n = 1: high-sensitivity C-reactive protein, [hs-CRP]) in serum from 400 participants at the second follow-up (2013/2014) of the German KORA survey S4. Multiple linear regression models were applied to investigate the interplay between biomarkers. RESULTS Concentrations of biomarkers varied according to sex, age, smoking status, season, and a history of obesity, diabetes, or chronic kidney disease. All OH-PAHs were significantly and positively associated with oxidative stress biomarkers. An interquartile range (IQR) increase in sum OH-PAHs was associated with a 13.3% (95% CI: 9.9%, 16.9%) increase in MDA, a 6.5% (95% CI: 3.5%, 9.6%) increase in 8-OHdG, and an 8.4% (95% CI: 6.6%, 11.3%) increase in sum F2α-isoprostanes. Associations were more pronounced between OH-PAHs and F2α-isoprostanes but also between OH-PAHs and 8-OHdG for participants with potential underlying systemic inflammation (hs-CRP ≥ 3 mg/L). We observed no association between OH-PAHs and hs-CRP levels. While 8-OHdG was significantly positively associated with hs-CRP (13.7% [95% CI: 2.2%, 26.5%] per IQR increase in 8-OHdG), F2α-isoprostanes and MDA indicated only a positive or null association, respectively. CONCLUSION The results of this cross-sectional study suggest, at a population level, that exposure to PAHs is associated with oxidative stress even in a low exposure setting. Oxidative stress markers, but not PAHs, were associated with inflammation. Individual risk factors were important contributors to these processes and should be considered in future studies. Further longitudinal studies are necessary to investigate the causal chain of the associations.
Collapse
Affiliation(s)
- Xiao Wu
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xin Cao
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jutta Lintelmann
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Munich, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wolfgang Koenig
- German Heart Centre Munich, Technical University of Munich, Munich, Germany; DZHK, German Centre for Cardiovascular Research, Partner Site Munich, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Ralf Zimmermann
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | | |
Collapse
|
21
|
Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Mosalaei S, Hoseini M. Health consequences of disinfection against SARS-CoV-2: Exploring oxidative stress damage using a biomonitoring approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152832. [PMID: 34986424 PMCID: PMC8720300 DOI: 10.1016/j.scitotenv.2021.152832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 05/13/2023]
Abstract
Individuals who get involved in the disinfection of public settings using sodium hypochlorite might suffer adverse health effects. However, scarce information is available on the potential oxidative stress damage caused at low concentrations typically used for disinfection. We aimed to assess whether exposure to sodium hypochlorite during the COVID-19 pandemic causes oxidative stress damage in workers engaged in disinfection tasks. 75 operators engaged in the disinfection of public places were recruited as the case group, and 60 individuals who were not exposed to disinfectant were chosen as the control group. Spot urine samples were collected before (BE) and after exposure (AE) to disinfectants in the case group. Likewise, controls provided two spot urine samples in the same way as the case group. Urinary malondialdehyde (MDA) levels were quantified by forming thiobarbituric acid reactive substances in the urine. In addition, the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the urine was determined using an ELISA kit. Results showed significant differences in the urinary levels of oxidative stress markers, where median 8-OHdG (AE case: 3.84 ± 2.89 μg/g creatinine vs AE control 2.54 ± 1.21 μg/g creatinine) and MDA (AE case: 169 ± 89 μg/g creatinine vs AE control 121 ± 47 μg/g creatinine) levels in case group AE samples were 1.55 and 1.35-times higher than the control group AE samples (P < 0.05), respectively. Besides, urinary levels of oxidative stress markers in AE samples of the case group were significantly higher than in BE samples (8-OHdG BE 3.40 ± 1.95 μg/g creatinine, MDA BE 136 ± 51.3 μg/g creatinine, P < 0.05). Our results indicated that exposure to even low levels of sodium hypochlorite used in disinfection practices might cause oxidative stress related damage. With this in mind, implementing robust protective measures, such as specific respirators, is crucial to reduce the health burdens of exposure to disinfectants.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Center, The University of Queensland, South Brisbane, Australia
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Shamim Mosalaei
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Hoseini M. Exploring urinary biomarkers to assess oxidative DNA damage resulting from BTEX exposure in street children. ENVIRONMENTAL RESEARCH 2022; 203:111725. [PMID: 34302825 DOI: 10.1016/j.envres.2021.111725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 05/12/2023]
Abstract
Children are highly susceptible to environmental contaminants as their physiology and some metabolic pathways differ from adults. The present cross-sectional study aimed to assess whether exposure to benzene, toluene, ethylbenzene, o,p-xylene, and m-xylene (BTEX) affects oxidative DNA damage in street children using a biomonitoring approach. Thirty-five boys (7-13 years of age), exposed by working at a busy intersection, and 25 unexposed boys of similar age and living in the neighborhood near the busy intersection were recruited. Urinary un-metabolized BTEX levels were quantified by a headspace gas chromatography-mass spectrometry (GC-MS). Urinary malonaldehyde (MDA) was measured with spectrophotometry. Sociodemographic and lifestyle conditions information was collected by interviews using administered questionnaires. Exposed subjects provided urine before (BE) and after work exposure (AE), while unexposed boys gave a single morning sample. Urinary BTEX concentrations in BE samples were similar to unexposed. Concentrations in AE samples were 2.36-fold higher than observed in BE samples (p < 0.05) and higher than those in the unexposed group (p < 0.05). In addition, urinary MDA levels in AE samples were 3.2 and 3.07-times higher than in BE samples and in the unexposed group (p < 0.05). Environmental tobacco smoke (ETS) increased urinary BTEX and MDA levels in both groups. Our findings confirm that street children working at busy intersections are significantly exposed to BTEX, which is associated with oxidative stress. Implementing protective measures is crucial to reduce exposure and to improve health outcomes in this group.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Center, The University of Queensland, South Brisbane, Australia
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Parvez SM, Jahan F, Brune MN, Gorman JF, Rahman MJ, Carpenter D, Islam Z, Rahman M, Aich N, Knibbs LD, Sly PD. Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health 2021; 5:e905-e920. [PMID: 34895498 PMCID: PMC8674120 DOI: 10.1016/s2542-5196(21)00263-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Electronic waste (e-waste) contains numerous chemicals harmful to human and ecological health. To update a 2013 review assessing adverse human health consequences of exposure to e-waste, we systematically reviewed studies reporting effects on humans related to e-waste exposure. We searched EMBASE, PsycNET, Web of Science, CINAHL, and PubMed for articles published between Dec 18, 2012, and Jan 28, 2020, restricting our search to publications in English. Of the 5645 records identified, we included 70 studies that met the preset criteria. People living in e-waste exposed regions had significantly elevated levels of heavy metals and persistent organic pollutants. Children and pregnant women were especially susceptible during the critical periods of exposure that detrimentally affect diverse biological systems and organs. Elevated toxic chemicals negatively impact on neonatal growth indices and hormone level alterations in e-waste exposed populations. We recorded possible connections between chronic exposure to e-waste and DNA lesions, telomere attrition, inhibited vaccine responsiveness, elevated oxidative stress, and altered immune function. The existence of various toxic chemicals in e-waste recycling areas impose plausible adverse health outcomes. Novel cost-effective methods for safe recycling operations need to be employed in e-waste sites to ensure the health and safety of vulnerable populations.
Collapse
Affiliation(s)
- Sarker M Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Farjana Jahan
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Marie-Noel Brune
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | - Julia F Gorman
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Musarrat J Rahman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Carpenter
- School of Public Health, Environmental Health Sciences, University at Albany, Albany, NY, USA
| | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Mahbubur Rahman
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Zhu H, Martinez-Moral MP, Kannan K. Variability in urinary biomarkers of human exposure to polycyclic aromatic hydrocarbons and its association with oxidative stress. ENVIRONMENT INTERNATIONAL 2021; 156:106720. [PMID: 34166875 PMCID: PMC8380707 DOI: 10.1016/j.envint.2021.106720] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Urinary concentrations of mono-hydroxylated metabolites of PAHs (OH-PAHs) have been used as biomarkers of these chemicals' exposure in humans. Little is known, however, with regard to intra- and inter-individual variability in OH-PAH concentrations and their association with oxidative stress. We conducted a longitudinal study of measurement of urinary concentrations of 15 OH-PAHs and 7 oxidative stress biomarkers (OSBs) of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], lipid [malondialdehyde (MDA) and F2-isoprostanes (PGF2α)] and protein [o,o'-dityrosine (diY)] peroxidation in 19 individuals for 44 consecutive days. Metabolites of naphthalene (OHNap), fluorene (OHFlu), phenanthrene (OHPhe), and pyrene (OHPyr) were found in >70% of 515 urine samples analyzed, at sum concentrations (∑OH-PAH) measured in the range of 0.46-60 ng/mL. After adjusting for creatinine, OHNap and ∑OH-PAH concentrations exhibited moderate predictability, with intra-class correlation coefficients (ICCs) ranging from 0.359 to 0.760. However, ICC values were low (0.001-0.494) for OHFlu, OHPhe, and OHPyr, which suggested poor predictability for these PAH metabolites. Linear mixed-effects analysis revealed that an unit increase in ∑OH-PAH concentration corresponded to 4.5%, 5.3%, 20%, and 21% increase in respective urinary 8-OHdG, MDA, PGF2α, and diY concentrations, suggesting an association with oxidative damage to DNA, lipids, and proteins. The daily intakes of PAHs, calculated from urinary concentrations of OH-PAHs, were 10- to 100-fold below the current reference doses. This study provides valuable information to design sampling strategies in biomonitoring studies and in assigning exposure classifications of PAHs in epidemiologic studies.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Maria-Pilar Martinez-Moral
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
25
|
Simultaneous determination of multiple isomeric hydroxylated polycyclic aromatic hydrocarbons in urine by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122983. [PMID: 34655894 DOI: 10.1016/j.jchromb.2021.122983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Monitoring the level of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in urine is the key to exploring human metabolic changes and comprehensive potential toxicity of PAHs. The OH-PAHs with isomeric structure have different biological functions, indicating that their quantification is indispensable. However, the quantitation method is still dissatisfactory due to the poor separation of these isomeric OH-PAHs. The current study established a ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS) method to complete the simultaneous determination of 17 OH-PAHs, including two naphthalene metabolites (1-hydroxynaphthalene, 2-hydroxynaphthalene), two fluorene metabolites (2-hydroxyfluorene, 3-hydroxyfluorene), five phenanthrene metabolites (1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene), a pyrene metabolite (1-hydroxypyrene), five chrysene metabolites (1-hydroxychrysene, 2-hydroxychrysene, 3-hydroxychrysene, 4-hydroxychrysene, 6-hydroxychrysene) and two benzo[a]pyrene metabolites (3-hydroxybenzo[a]pyrene, 9-hydroxybenzo[a]pyrene). The method validation results showed good selectivity, linearity (r2 > 0.999), inter-day and intra-day precision (relative standard deviation (RSD) < 5.5% and RSD < 6.3%), stability (RSD < 19.3%), matrix effect (-8.3%-11.5%) and recovery (65.9%-116.2%). This method is convenient, sensitive and efficient, saving expensive materials and complicated derivatization procedures. The practical applicability of developed approach was also tested in urine samples to identify potential biomarkers of PAHs exposure in humans, and a great compromise was obtained between recoveries and extract convenience. The developed approach may be widely utilized for specific determination of OH-PAHs with isomer structure in urine samples. It is expected that the application of this method may provide powerful references for PAHs exposure assessment.
Collapse
|
26
|
Shi X, Qiu X, Chen Q, Chen S, Hu M, Rudich Y, Zhu T. Organic Iodine Compounds in Fine Particulate Matter from a Continental Urban Region: Insights into Secondary Formation in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1508-1514. [PMID: 33443418 DOI: 10.1021/acs.est.0c06703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric iodine chemistry can significantly affect the atmospheric oxidation capacity in certain regions. In such processes, particle-phase organic iodine compounds (OICs) are key reservoir species in their loss processes. However, their presence and formation mechanism remain unclear, especially in continental regions. Using gas chromatography and time-of-flight mass spectrometry coupled with both electron capture negative ionization and electron impact sources, this study systematically identified unknown OICs in 2-year samples of ambient fine particulate matter (PM2.5) collected in Beijing, an inland city. We determined the molecular structure of 37 unknown OICs, among which six species were confirmed by reference standards. The higher concentrations for ∑37OICs (median: 280 pg m-3; range: 49.0-770 pg m-3) measured in the heating season indicate intensive coal combustion sources of atmospheric iodine. 1-Iodo-2-naphthol and 4-iodoresorcinol are the most abundant species mainly from primary combustion emission and secondary formation, respectively. The detection of 2- and 4-iodoresorcinols, but not of iodine-substituted catechol/hydroquinone or 5-iodoresorcinol, suggests that they are formed via the electrophilic substitution of resorcinol by hypoiodous acid, a product of the reaction of iodine with ozone. This study reports isomeric information on OICs in continental urban PM2.5 and provides valuable evidence on the formation mechanism of OICs in ambient particles.
Collapse
Affiliation(s)
- Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shiyi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Min Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
27
|
Hu W, Wang Y, Wang T, Ji Q, Jia Q, Meng T, Ma S, Zhang Z, Li Y, Chen R, Dai Y, Luan Y, Sun Z, Leng S, Duan H, Zheng Y. Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population. ENVIRONMENT INTERNATIONAL 2021; 147:106341. [PMID: 33383389 DOI: 10.1016/j.envint.2020.106341] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Oxidative stress has been suggested to be one of the key drivers of health impact of particulate matter (PM). More studies on the oxidative potential of PM alone, but fewer studies have comprehensively evaluated the effects of external and internal exposure to PM compositions on oxidative stress in population. OBJECTIVE To comprehensively investigate the exposure-response relationship between PM and its main compositions with oxidative stress indicators. METHODS We conducted a cross-sectional study including 768 participants exposed to particulates. Environmental levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and metals in PM were measured, and urinary levels of PAHs metabolites and metals were measured as internal dose, respectively. Multivariable linear regression models were used to analyze the correlations of PM exposure and urinary levels of 8-hydroxy-2́'-deoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α) and malondialdehyde (MDA). RESULTS The concentration of both PM2.5 and total PAHs was significantly correlated with increased urinary 8-OHdG, 8-iso-PGF2α and MDA levels (all p < 0.05). The levels of 4 essential metals all showed significant exposure-response increase in urinary 8-OHdG in both current and non-current smokers (all p < 0.05); ambient selenium, cobalt and zinc were found to be significantly correlated with urinary 8-iso-PGF2α (p = 0.002, 0.003, 0.01, respectively); only selenium and cobalt were significantly correlated with urinary MDA (p < 0.001, 0.01, respectively). Furthermore, we found each one-unit increase in urinary total OH-PAHs generated a 0.32 increase in urinary 8-OHdG, a 0.22 increase in urinary 8-iso-PGF2α and a 0.19 increase in urinary MDA (all p < 0.001). Furthermore, it was found that the level of 12 urinary metals all showed significant and positive correlations with three oxidative stress biomarkers in all subjects (all p < 0.001). CONCLUSIONS Our systematic molecular epidemiological study showed that particulate matter components could induce increased oxidative stress on DNA and lipid. It may be more important to monitor and control the harmful compositions in PM rather than overall particulate mass.
Collapse
Affiliation(s)
- Wei Hu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianpeng Ji
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong, China
| | - Tao Meng
- School of Medicine, Shanxi Datong University, Datong, China
| | - Sai Ma
- International Travel health Care Center, Qingdao Customs, Qingdao, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong, China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Shuguang Leng
- School of Public Health, Qingdao University, Qingdao, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
28
|
Liu B, Chen Y, Li S, Xu Y, Wang Y. Relationship between urinary metabolites of polycyclic aromatic hydrocarbons and risk of papillary thyroid carcinoma and nodular goiter: A case-control study in non-occupational populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116158. [PMID: 33310200 DOI: 10.1016/j.envpol.2020.116158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to the development of certain diseases. However, the relationship between PAH exposure and thyroid disorders remains unknown. We measured 10 of the most common hydroxylated PAHs (OH-PAHs) in the urine of thyroid nodular goiter (NG) patients, papillary thyroid carcinoma (PTC) patients, and healthy controls by gas chromatography-triple-quadrupole mass spectrometry (GC-MS/MS). We found that the concentrations of 2-hydroxyfluorene (2-OH-FLU), 2-hydroxydibenzofuran (2-OH-DBF), and 1-hydroxyphenanthrene (1-OH-PHE) in the NG group, and of 2-hydroxynaphthalene (2-OH-NAP), 2-OH-DBF, and 1-OH-PHE in the PTC group were significantly higher than those in controls. In addition, participants in the high tertiles of 2-OH-FLU and 1-OH-PHE had higher risk of NG. Besides these two OH-PAHs, elevated risk of NG was observed in women in the high tertiles of 1-hydroxynaphthalene (1-OH-NAP), 2-OH-NAP, 2-OH-DBF, and 3-hydroxyfluorene (3-OH-FLU). Furthermore, participants in the high tertiles of seven OH-PAHs, namely, 1-OH-NAP, 2-OH-NAP, 2-OH-DBF, 2-OH-FLU, 3-OH-FLU, 3/9-hydroxyphenanthrene (3/9-OH-PHE), and 1-OH-PHE, had elevated risk of PTC, and females in these high tertiles had an even higher risk of PTC. Our findings suggest that PAH exposure may increase the risk of NG/PTC, and there may be a gender-specific effect of PAH exposure on the development of NG/PTC.
Collapse
Affiliation(s)
- Boying Liu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yanyan Chen
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
29
|
Zou K, Wang P, Duan X, Yang Y, Zhang H, Wang S, Shi L, Wang Y, Yao W, Wang W. Benchmark dose estimation for coke oven emissions based on oxidative damage in Chinese exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110889. [PMID: 32623235 PMCID: PMC7643142 DOI: 10.1016/j.ecoenv.2020.110889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 05/09/2023]
Abstract
Coke oven emissions (COEs) can cause oxidative stress of the body, which in turn induces the occupational lung disease and also increases the risk of other diseases. COEs are the major occupational hazard factors for coke oven workers. The aim of the study is to explore the influences of COEs exposure on oxidative damage and estimate the benchmark dose (BMD) of COEs. A group of 542 workers exposed to COEs and 237 healthy controls from the same city were recruited in this study. The corresponding measuring kits were used to determine the plasma biomarkers of oxidative damage level. Generalized linear models and trend tests were used to analyze the relationship between COEs exposure and biomarkers. EPA Benchmark Dose Software was performed to calculate BMD and the lower confidence limit of the benchmark dose (BMDL) of COEs exposure. A significant association was observed between COEs exposure and oxidative damage with T-AOC as a biomarker. The BMD of COEs exposure were 2.83 mg/m3 and 1.39 mg/m3 for males and females, respectively, and the corresponding BMDL were 1.47 mg/m3 and 0.75 mg/m3, respectively. Our results suggested that the exposure level of COEs below the current national occupational exposure limits (OELs) would induce oxidative damage, and the OEL of COEs based on the T-AOC damage was suggested at 0.03 mg/m3 in this study.
Collapse
Affiliation(s)
- Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute of Occupational Health, Zhengzhou, 450052, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yanbin Wang
- Department of Safety Management Office, Anyang Iron and Steel Group Corporation, Anyang, 455000, China
| | - Wu Yao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Yang Q, Bai Y, Qin GQ, Jia RY, Zhu W, Zhang D, Fang ZZ. Inhibition of UDP-glucuronosyltransferases (UGTs) by polycyclic aromatic hydrocarbons (PAHs) and hydroxy-PAHs (OH-PAHs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114521. [PMID: 32283403 DOI: 10.1016/j.envpol.2020.114521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as one of the ubiquitous environmental pollutants caused by unavoidable combustion of by-products. Despite decades of research on adverse health effects towards humans, the effects of PAHs and their hydroxylated metabolites (OH-PAHs) on UDP-glucuronosyltransferases (UGTs) remain unclear. This study aimed to investigate inhibitory effects with structure-dependence of 14 PAHs and OH-PAHs towards the activity of 7 isoforms of UGTs using in vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) as the probe reaction. PAHs and OH-PAHs showed inhibitory effects towards different UGT isoforms with different extents. For inhibition kinetics determination, 1-HONAP, 4-HOPHE, 9-HOPHE, and 1-HOPYR were utilized as the representative compounds, and UGT1A6, UGT1A9 and UGT2B7 were chosen as the three representative UGT isoforms. The inhibitory effects of 4-HOPHE, 9-HOPHE and 1-HOPYR on three above UGT isoforms were the same: UGT1A9>UGT1A6>UGT2B; for 1-HONAP, that is UGT1A6>UGT1A9>UGT2B. Molecular docking methods were utilized to find the activity cavity of UGT1A9 and UGT2B7 binding with 1-HONAP and 1-HOPYR. Hydrogen bonds and hydrophobic contacts were mainly contributors to their interactions. In vitro-in vivo extrapolation (IVIVE) showed that high in vivo inhibition possibility exists for the inhibition of OH-PAHs on UGTs. All the results provide a novel viewpoint for an explanation of the toxicity of PAHs and OH-PAHs.
Collapse
Affiliation(s)
- Qiaoyun Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, PR China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, PR China
| | - Yu Bai
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China
| | - Guo-Qiang Qin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China
| | - Ruo-Yong Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China
| | - Weihua Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Dafang Zhang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Zhong-Ze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, PR China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, PR China.
| |
Collapse
|
31
|
Zhang H, Han Y, Qiu X, Wang Y, Li W, Liu J, Chen X, Li R, Xu F, Chen W, Yang Q, Fang Y, Fan Y, Wang J, Zhang H, Zhu T. Association of internal exposure to polycyclic aromatic hydrocarbons with inflammation and oxidative stress in prediabetic and healthy individuals. CHEMOSPHERE 2020; 253:126748. [PMID: 32464779 DOI: 10.1016/j.chemosphere.2020.126748] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are key air pollutants that may contribute to the risk of numerous diseases by inducing inflammation and oxidative stress. Individuals with metabolic disorders may be more susceptible to PAH-induced inflammation and oxidative stress. To test this hypothesis, we designed a panel study involving 60 patients with pre-type 2 diabetes (pre-T2D) and 60 reference participants, and conducted up to seven repeated clinical examinations. Urinary metabolites of PAHs (i.e., OH-PAHs), measured as indicators of total PAH exposure, showed significant associations with markers of respiratory and systemic inflammation, including exhaled nitric oxide, interleukin (IL)-6 in exhaled breath condensate, and blood IL-2 and IL-8 levels and leucocyte count. The most significant effect was on urinary malondiadehyde (MDA), a marker of lipid peroxidation; a onefold increase of OH-PAHs was associated with 9.2-46.0% elevation in MDA in pre-T2D participants and 9.8-31.2% increase in healthy references. Pre-T2D participants showed greater increase in MDA, suggesting that metabolic disorder enhanced the oxidative damage induced by PAH exposure. This study revealed the association between PAH exposure and markers of inflammation and oxidative stress, and the enhanced responses of pre-T2D patients suggested that individuals with metabolic disorders were more susceptible to the adverse health effects of PAH exposure.
Collapse
Affiliation(s)
- Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China.
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Ran Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Qiaoyun Yang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yanhua Fang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yunfei Fan
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Junxia Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Hongyin Zhang
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| |
Collapse
|
32
|
Peng M, Lu S, Yu Y, Liu S, Zhao Y, Li C, Ma S. Urinary monohydroxylated polycyclic aromatic hydrocarbons in primiparas from Shenzhen, South China: Levels, risk factors, and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113854. [PMID: 31918135 DOI: 10.1016/j.envpol.2019.113854] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The main objectives of the present study were to investigate urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 77 primiparas who live in Shenzhen, Guangdong Province, China, and their association with 8-hydroxy-2'-deoxyguanosine (8-OHdG) and human health risks. High detection frequencies of OH-PAHs demonstrated the wide occurrence of chemicals in the human exposure to PAHs. The urinary concentrations of Σ7OH-PAHs ranged from 1.37 to 45.5 ng/mL, and the median concentrations of 1-hydroxynaphthalene (1-OHN), 2-hydroxynaphthalene (2-OHN), 2-hydoxyfluorene (2-OHF), ΣOHPhe (the sum of 1-, 2+ 3-hydroxyphenanthrene), and 1-hydroxypyrene (1-OHP) were 3.00, 2.58, 0.31, 0.44, and 0.51 ng/mL, respectively. In the sum concentration of seven OH-PAHs, 1-OHN accounted for the largest proportion (43.7% of Σ7OH-PAHs), followed by 2-OHN (37.1%), 2-OHF (4.94%), 1-OHP (8.01%), 1-OHPhe (4.79%), and 2+3-OHPhe (1.46%). The present results showed that vehicle exhaust and petrochemical emission are the main sources of PAHs in primiparas in Shenzhen, and inhalation is the most important exposure route. The living conditions have a significant influence on human exposure to PAHs. The concentrations of 8-OHdG were positively correlated with OH-PAH concentrations in urine because evidence suggested that urinary 8-OHdG levels can be considered as a biomarker of oxidative DNA damage. Hazard quotient was used to assess the human health risks from exposure to single compound, and hazard index was used to assess the cumulative risks of the compounds, which demonstrated that the exposure risks from PAHs in primiparas were relatively low.
Collapse
Affiliation(s)
- Mengmeng Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengtao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
33
|
Agoun-Bahar S, Djebbar R, Nait Achour T, Abrous-Belbachir O. Soil-to-plant transfer of naphthalene and its effects on seedlings pea ( Pisum sativum L.) grown on contaminated soil. ENVIRONMENTAL TECHNOLOGY 2019; 40:3713-3723. [PMID: 29883289 DOI: 10.1080/09593330.2018.1485752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to determinate effect of naphthalene at different concentrations on morphological, physiological and some metabolic responses of pea seedlings. The quantification of naphthalene and its by-products were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS) in soil and in the different plant parts (roots, stems, leaves and fruit). In our controlled laboratory studies, plants exposed to naphthalene were able to efficiently grow and maintain their content of chlorophyll and carotenoids comparatively to the control plants. However, the pollutant slightly increased the amounts of fatty acid peroxides and strongly those of malonyldialdehyde, the product of lipid peroxidation. The glutathione S transferase activity was also increased for all concentrations used especially in leaves. Chromatograms showed that naphthalene has fallen sharply in the soil or even disappeared for the highest concentration from the second to third week. Furthermore, the removal ratio of 67% of the pollutant from the soil was distributed between two metabolites (ion 47 and ion 59) in the leaves for this same concentration in only three weeks of cultivation. In parallel, the amount of pollutant remained higher in unvegetated control soil. These results suggest that seedlings of pea (Pisum sativum L.) can remove naphthalene from contaminated soil and consequently have a high potential to be used as a promising candidate for the phytoremediation of naphthalene-contaminated soil.
Collapse
Affiliation(s)
- S Agoun-Bahar
- Laboratoire de Biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algérie
| | - R Djebbar
- Laboratoire de Biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algérie
| | - T Nait Achour
- Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Université de Montpellier, Montpellier, France
| | - O Abrous-Belbachir
- Laboratoire de Biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algérie
| |
Collapse
|
34
|
Lou XY, Wu PR, Guo Y. Urinary metabolites of polycyclic aromatic hydrocarbons in pregnant women and their association with a biomarker of oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27281-27290. [PMID: 31325095 DOI: 10.1007/s11356-019-05855-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy may pose adverse health risk to both the mothers and babies. In the present study, 188 pregnant women of different trimesters were recruited in Guangzhou, south China, and nine hydroxyl PAHs (OH-PAHs) and a biomarker of DNA oxidative damage, 8-hydroxy-2'-deoxyguanosine (8-OHdG), were determined in their urine samples. All OH-PAHs except for 4-hydroxyphenanthrene and 6-hydroxychrysene were found in > 90% samples, with total concentration in the range of 0.52 to 42.9 μg/g creatinine. In general, concentration levels of OH-PAHs in pregnant women were lower than those in general population in the same research area but with higher levels in working women than in housewives. The mean daily intakes of PAHs from dietary estimated by urinary OH-PAHs were 0.021, 0.004, 0.047, and 0.030 μg/kg_bw/day for naphthalene, fluorene, phenanthrene, and pyrene, respectively, which were much lower than the reference doses (20, 30, and 40 μg/kg_bw/day for naphthalene, pyrene, and fluorene, respectively) derived from chronic oral exposure data by the United States Environmental Protection Agency. The low exposure levels of PAHs may be attributed to the traditional dietary taboo of Chinese pregnant women, which is to minimize the consumption of "toxic" food. The concentrations of 8-OHdG (4.67-49.4 μg/g creatinine) were significantly positively correlated with concentrations of several OH-PAHs, such as metabolites of naphthalene, fluorene, and phenanthrene (r = 0.3-0.6). In addition, the concentrations of 8-OHdG were higher in working women than in housewives when exposed to the same levels of PAHs, partly indicating the possible relation between work-related pressure for working women and the oxidative stress.
Collapse
Affiliation(s)
- Xiang-Yin Lou
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Peng-Ran Wu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
35
|
Mu G, Zhou Y, Ma J, Guo Y, Xiao L, Zhou M, Cao L, Li W, Wang B, Yuan J, Chen W. Combined effect of central obesity and urinary PAH metabolites on lung function: A cross-sectional study in urban adults. Respir Med 2019; 152:67-73. [DOI: 10.1016/j.rmed.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/08/2019] [Accepted: 05/05/2019] [Indexed: 01/06/2023]
|
36
|
Billet S, Landkocz Y, Martin PJ, Verdin A, Ledoux F, Lepers C, André V, Cazier F, Sichel F, Shirali P, Gosset P, Courcot D. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J Environ Sci (China) 2018; 71:168-178. [PMID: 30195675 DOI: 10.1016/j.jes.2018.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.5 and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B lung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.5. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.
Collapse
Affiliation(s)
- Sylvain Billet
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Yann Landkocz
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Perrine J Martin
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Anthony Verdin
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Frédéric Ledoux
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Capucine Lepers
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | | | - Fabrice Cazier
- University of the Littoral Opal Coast, Common Centre of Measurements, CCM, Dunkerque, France
| | - François Sichel
- Normandy Univ, UNICAEN, ABTE EA4651, Caen, France; Centre François Baclesse, Caen, France
| | - Pirouz Shirali
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Pierre Gosset
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France; Department of Anatomy and Pathological Cytology, Saint-Vincent Hospital, Catholic Hospital, Lille, France
| | - Dominique Courcot
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| |
Collapse
|
37
|
Shao J, Wheeler AJ, Chen L, Strandberg B, Hinwood A, Johnston FH, Zosky GR. The pro-inflammatory effects of particulate matter on epithelial cells are associated with elemental composition. CHEMOSPHERE 2018; 202:530-537. [PMID: 29587234 DOI: 10.1016/j.chemosphere.2018.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Adverse health effects of particulate matter (PM) vary with chemical composition; however, evidence regarding which elements are the most detrimental is limited. The roof space area provides an open and stable environment for outdoor PM to settle and deposit. Therefore, this study used roof space PM samples as a proxy of residential cumulative exposure to outdoor air pollution to investigate their pro-inflammatory effects on human lung cells and the contribution of the endotoxin and chemical content. METHODS Roof space PM samples of 36 different homes were collected and analysed using standardised techniques. We evaluated cytotoxicity and cytokine production of BEAS-2B cells after PM exposure using MTS and ELISA, respectively. Principle component analysis (PCA) and linear regression analyses were employed to assess the associations between cytokine production and the PM components. RESULTS PM caused significant time- and dose-dependent increases in cellular cytokine production (p < 0.05). PCA identified four factors that explained 68.33% of the variance in the chemical composition. An increase in Factor 1 (+Fe, +Al, +Mn) score and a decrease in Factor 2 (-Ca, +Pb, +PAH) score were associated with increased interleukin (IL)-6 (Factor 1; p = 0.010; Factor 2; p = 0.006) and IL-8 (Factor 1; p = 0.003; Factor 2; p = 0.020) production, however, only the association with Factor 1 was evident after correcting for endotoxin and particle size. CONCLUSIONS Our study provides novel insight into the positive associations between pro-inflammatory effects of roof space PM samples with Fe, Al and Mn levels.
Collapse
Affiliation(s)
- Jingyi Shao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia; Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6017, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Bo Strandberg
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Andrea Hinwood
- Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia 6017, Australia; Environmental Protection Authority Victoria, Carlton, Victoria 3053, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Graeme R Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
38
|
Bal C, Ağış ER, Büyükşekerci M, Gündüzöz M, Tutkun L, Yılmaz ÖH. Occupational exposure to asphalt fume can cause oxidative DNA damage among road paving workers. Am J Ind Med 2018; 61:471-476. [PMID: 29512166 DOI: 10.1002/ajim.22830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES We designed the present study to determine the effect of occupational exposure to asphalt fumes on oxidative status and DNA damage in road paving workers. METHODS Sixty road paving workers exposed to asphalt fumes and forty non-exposed control subjects were recruited. Occupational exposure to PAHs was assessed by urinary 1-hydroxypyrene (1-OHP) excretion. Serum thiol disulfide homeostasis (TDH), total oxidant status (TOS) and total antioxidant status (TAS) and urinary 8-hydro-deoxyguanosine (8-OH-dG) level were evaluated by automated colourimetric method. RESULTS The urinary concentrations of 1-OHP and 8-OH-dG were significantly higher in the exposed group than in the control group (P < 0.001). Disulfide/thiol ratio, TOS, and TAS were also significantly higher for the asphalt workers. A positive correlation existed between urinary 1-OHP and 8-OH-dG, TOS and TAS. CONCLUSION Study results indicate that exposure to PAHs induces oxidative stress and causes genotoxic effects in asphalt workers.
Collapse
Affiliation(s)
- Ceylan Bal
- Department of Biochemistry; Yıldırım Beyazıt University; Ankara Turkey
| | - Erol R. Ağış
- Department of Pharmacology; Occupational and Environmental Diseases Hospital; Ankara Turkey
| | - Murat Büyükşekerci
- Department of Pharmacology; Occupational and Environmental Diseases Hospital; Ankara Turkey
| | - Meşide Gündüzöz
- Department of Family Medicine; Occupational and Environmental Diseases Hospital; Ankara Turkey
| | - Lütfiye Tutkun
- Department of Medical Biochemistry; Bozok University; Yozgat Turkey
| | - Ömer H. Yılmaz
- Department of Public Health; Yıldırım Beyazıt University; Ankara Turkey
| |
Collapse
|
39
|
Antoniewicz L, Novo M, Bosson J, Lundbäck M. Brief exposure to Swedish snus causes divergent vascular responses in healthy male and female volunteers. PLoS One 2018; 13:e0195493. [PMID: 29668699 PMCID: PMC5905986 DOI: 10.1371/journal.pone.0195493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction The use of Swedish oral moist snuff, known as snus, has for a long time been limited to the Scandinavian countries. With declining cigarette sales in the western world, tobacco companies have looked to the development of alternative tobacco products. In 2006 snus products were launched in the US. Even though several studies have demonstrated negative health effects, snus is often depicted as harmless. The aim of the present study was to investigate acute vascular effects of snus as measured by arterial stiffness as well as blood pressure and heart rate. Methods Two separate randomized double-blind crossover studies with the same study design were pooled for analysis. Twenty-nine healthy snus-users (17 females, 12 males) were included. Snus (Göteborgs Rapé) and tobacco free snus (Onico) were administered in a randomized order at two separate visits. Arterial stiffness, blood pressure and heart rate were measured at baseline as well as every five minutes for 40 minutes during exposure. Following snus removal, measurements continued for 30 minutes post exposure. Arterial stiffness was measured using pulse wave velocity (Vicorder) and pulse wave analysis (Sphygmocor). Results Compared to placebo, snus significantly increased systolic and diastolic blood pressure as well as heart rate, however, only in females (p = 0.004, p = 0.006 and p<0.001 respectively). No changes were seen in arterial stiffness measurements in either gender. Conclusion We observed an increase in blood pressure and heart rate only in females, but not in males due to snus usage as compared to placebo. This novel finding was surprising and needs to be further investigated considering most of the earlier studies have mainly focused on male snus users and the increasing usage of snus among females.
Collapse
Affiliation(s)
- Lukasz Antoniewicz
- Karolinska Institutet, Department of Clinical Sciences, Division of Internal Medicine, Danderyd Hospital, Stockholm, Sweden
- Umeå University, Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå, Sweden
- * E-mail:
| | - Mirza Novo
- Umeå University, Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå, Sweden
| | - Jenny Bosson
- Umeå University, Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå, Sweden
| | - Magnus Lundbäck
- Karolinska Institutet, Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Gong P, Wang X, Sheng J, Wang H, Yuan X, He Y, Qian Y, Yao T. Seasonal variations and sources of atmospheric polycyclic aromatic hydrocarbons and organochlorine compounds in a high-altitude city: Evidence from four-year observations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1188-1197. [PMID: 29074198 DOI: 10.1016/j.envpol.2017.10.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Lijiang is a high-altitude city located on the eastern fringe of the Tibetan Plateau, with complex seasonal atmospheric circulations (i.e. westerly wind, Indian Monsoon, and East Asia Monsoon). Very few previous studies have focused on seasonal variations and sources of organic pollutants in Lijiang. In this study, a four-year air campaign from June 2009 to July 2013 was conducted to investigate the temporal trends and the sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds [including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)]. The atmospheric PAH concentrations in winter are 2-3 times of those in summer, probably because of the combined result of enhanced local emission and long-range atmospheric transport (LRAT) during winter. Traffic pollution was the primary local source of PAHs, while biomass burning is the dominant LRAT source. OCPs and PCBs also mainly underwent LRAT to reach Lijiang. The peak concentrations of most of OCPs occurred in pre-monsoon season and winter, which were carried by air masses from Myanmar and India through westerly winds. As compared with other sites of the Tibetan Plateau, without the direct barrier of the Himalaya, Lijiang is easily contaminated by the incursion of polluted air masses.
Collapse
Affiliation(s)
- Ping Gong
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China.
| | - Jiujiang Sheng
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Xiaohua Yuan
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanqing He
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yun Qian
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Tandong Yao
- Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
| |
Collapse
|
41
|
Yu N, Shu S, Lin Y, She J, Ip HSS, Qiu X, Zhu Y. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation. PLoS One 2017; 12:e0188498. [PMID: 29176859 PMCID: PMC5703570 DOI: 10.1371/journal.pone.0188498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 01/12/2023] Open
Abstract
Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers’ urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p < 0.05), whereas the reductions on PAH exposures were insignificant. Although nonsignificant, a reduction of 17% was also observed in the drivers’ urinary MDA under WC+HECA. The MDA concentrations were found to be significantly associated with the in-cabin PM2.5 and UFP concentrations, suggesting the reduction of the drivers’ lipid peroxidation can be at least partially attributed to the PM2.5 and UFP reduction by WC+HECA. Overall, these results suggest HECA filters have potential to reduce particle levels inside taxis and protect drivers’ health.
Collapse
Affiliation(s)
- Nu Yu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
| | - Shi Shu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
| | - Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
| | - Jianwen She
- California Department of Public Health, 850 Marina Bay Parkway, Richmond, California, United States
| | - Ho Sai Simon Ip
- California Department of Public Health, 850 Marina Bay Parkway, Richmond, California, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, People’s Republic of China
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
- * E-mail:
| |
Collapse
|
42
|
Sun Y, Pang Y, Zhang J, Li Z, Liu J, Wang B. Application of molecularly imprinted polymers for the analysis of polycyclic aromatic hydrocarbons in lipid matrix-based biological samples. Anal Bioanal Chem 2017; 409:6851-6860. [DOI: 10.1007/s00216-017-0646-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 11/28/2022]
|
43
|
Bortey-Sam N, Ikenaka Y, Akoto O, Nakayama SMM, Asante KA, Baidoo E, Obirikorang C, Saengtienchai A, Isoda N, Nimako C, Mizukawa H, Ishizuka M. Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:311-320. [PMID: 28551561 DOI: 10.1016/j.envpol.2017.05.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/07/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Studies of polycyclic aromatic hydrocarbons (PAHs) and its metabolites in PM10, soils, rat livers and cattle urine in Kumasi, Ghana, revealed high concentrations and cancer potency. In addition, WHO and IARC have reported an increase in cancer incidence and respiratory diseases in Ghana. Human urine were therefore collected from urban and control sites to: assess the health effects associated with PAHs exposure using malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG); identify any association between OH-PAHs, MDA, 8-OHdG with age and sex; and determine the relationship between PAHs exposure and occurrence of respiratory diseases. From the results, urinary concentrations of the sum of OH-PAHs (∑OHPAHs) were significantly higher from urban sites compared to the control site. Geometric mean concentrations adjusted by specific gravity, GMSG, indicated 2-OHNaphthalene (2-OHNap) (6.01 ± 4.21 ng/mL) as the most abundant OH-PAH, and exposure could be through the use of naphthalene-containing-mothballs in drinking water purification, insect repellent, freshener in clothes and/or "treatment of various ailments". The study revealed that exposure to naphthalene significantly increases the occurrence of persistent cough (OR = 2.68, CI: 1.43-5.05), persistent headache (OR = 1.82, CI: 1.02-3.26), tachycardia (OR = 3.36, CI: 1.39-8.10) and dyspnea (OR = 3.07, CI: 1.27-7.43) in Kumasi residents. Highest level of urinary 2-OHNap (224 ng/mL) was detected in a female, who reported symptoms of persistent cough, headache, tachycardia, nasal congestion and inflammation, all of which are symptoms of naphthalene exposure according to USEPA. The ∑OHPAHs, 2-OHNap, 2-3-OHFluorenes, and -OHPhenanthrenes showed a significantly positive correlation with MDA and 4-OHPhenanthrene with 8-OHdG, indicating possible lipid peroxidation/cell damage or degenerative disease in some participants. MDA and 8-OHdG were highest in age group 21-60. The present study showed a significant sex difference with higher levels of urinary OH-PAHs in females than males.
Collapse
Affiliation(s)
- Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Kwadwo A Asante
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - Elvis Baidoo
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Norikazu Isoda
- Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan; Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Japan
| | - Collins Nimako
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060-0818, Japan.
| |
Collapse
|
44
|
Al-Saleh I, Al-Rouqi R, Elkhatib R, Abduljabbar M, Al-Rajudi T. Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Int J Hyg Environ Health 2017; 220:1252-1278. [PMID: 28869188 DOI: 10.1016/j.ijheh.2017.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Exposure to heavy metals can cause renal injury, which has been well documented in occupational exposure. Studies of low exposure in the general population, however, are still scarce, particularly for vulnerable populations such as mothers and young children. This study evaluated exposure to heavy metals, and biomarkers of renal function and oxidative stress in 944 lactating mothers and their infants and investigated the role of the interaction between heavy metals and oxidative stress in altering renal function. Mother and infant urine samples were analyzed to measure mercury (Hg), cadmium (Cd), and lead (Pb) concentrations for determining body-burden exposure; N-acetyl-β-d-glucosaminidase (NAG), α1-microglobulin (α1-MG), albumin (ALB), and creatinine (Cr) concentrations for determining early renal injury; and 8-hydroxy-2-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) concentrations for determining oxidative stress. The median concentrclearlyations in mothers presented as μg/g Cr (infants as μg/l) for Hg, Cd, and Pb were 0.695 (0.716), 0.322 (0.343), and 3.97 (5.306) respectively. The mothers and their infants had clearly been exposed to heavy metals and had levels higher than the reference values reported for the general populations of USA, Germany, and Canada. Multiple regression analyses clearly demonstrated associations between urinary heavy metals in quartiles and several renal and oxidative biomarkers in mothers and to a lesser extent their infants. ß coefficients for urinary excretions of MDA, 8-OHdG, ALB, α1-MG, NAG, and Cr in mothers were high in the highest quartile of Hg (1.183-51.29μg/g Cr or 1.732-106.95μg/l), Cd (0.565-765.776μg/g Cr or 0.785-1347.0μg/l), and Pb (6.606-83.937μg/g Cr or 9.459-80.826μg/l), except Pb was not associated with ALB. Infants in the highest Pb quartile (9.293-263.098μg/l) had the highest ß coefficients of urinary excretion of MDA, 8-OHdG, ALB, NAG, and Cr. Significant increasing trend in biomarkers across the quartiles of the three metals was seen in both mothers and infants (ptrend <0.001). A receiver operating characteristic analysis supported the predictive abilities of the four renal biomarkers in discriminating between low versus high metal quartiles. The interaction between heavy metals and oxidative stress contributed to the high excretions of renal biomarkers, but the mechanism remains unclear. These findings add to the limited evidence that low exposure to heavy metals in the general population is associated with alterations in renal function that could eventually progress to renal damage if exposure continues and that children are more susceptible due to the immaturity of their body organs.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Reem Al-Rouqi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Rola Elkhatib
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
45
|
Ferguson KK, McElrath TF, Pace GG, Weller D, Zeng L, Pennathur S, Cantonwine DE, Meeker JD. Urinary Polycyclic Aromatic Hydrocarbon Metabolite Associations with Biomarkers of Inflammation, Angiogenesis, and Oxidative Stress in Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4652-4660. [PMID: 28306249 PMCID: PMC5771235 DOI: 10.1021/acs.est.7b01252] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Environmental exposure to polycyclic aromatic hydrocarbons (PAHs) is prevalent and may adversely impact pregnancy and development of the fetus. The purpose of this exploratory study was to examine urinary PAH metabolites in potential association with mediators of these outcomes. To do so, we measured a panel of 12 inflammatory, angiogenic, and oxidative stress biomarkers in plasma or urine from women in their third trimester of pregnancy (n = 200). Urinary PAH metabolites were highly detectable (>88%) in the study population, and most were higher in women who had lower education levels, higher body mass index, and who were African-American. Some PAH metabolites showed consistent positive associations with the plasma inflammation marker C-reactive protein (CRP) and the urinary oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG) and 8-isoprostane. For example, an interquartile range increase in 2-hydroxynapthalene was associated with a 35% increase in CRP (95% confidence interval = -0.13, 83.2), a 14% increase in 8-OHdG (95% confidence interval =0.59, 30.1), and a 48% increase in 8-isoprostane (95% confidence interval =16.7, 87.0). These data suggest that exposure to PAHs may cause systemic changes during pregnancy that could lead to adverse pregnancy or developmental outcomes; however, these results should be corroborated in a larger study population.
Collapse
Affiliation(s)
- Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Thomas F. McElrath
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | | - David Weller
- NSF International, Ann Arbor, Michigan, 48105, USA
| | - Lixia Zeng
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - David E. Cantonwine
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
46
|
Wu X, Lintelmann J, Klingbeil S, Li J, Wang H, Kuhn E, Ritter S, Zimmermann R. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers 2017; 22:525-536. [DOI: 10.1080/1354750x.2017.1306753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiao Wu
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
| | - Sophie Klingbeil
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jie Li
- Department of Environmental Health, Shandong University, Jinan, China
| | - Hao Wang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Evelyn Kuhn
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Sebastian Ritter
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Ralf Zimmermann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
47
|
Yilmaz ÖH, Bal C, Neşelioglu S, Büyükşekerci M, Gündüzöz M, Eren F, Tutkun L, Yilmaz FM. Thiol/disulfide homeostasis in asphalt workers. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2016; 71:268-272. [PMID: 26230037 DOI: 10.1080/19338244.2015.1076760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.
Collapse
Affiliation(s)
- Ömer Hınç Yilmaz
- a Department of Public Health , Yıldırım Beyazıt University , Ankara , Turkey
| | - Ceylan Bal
- b Department of Biochemistry , Occupational Diseases Hospital , Ankara , Turkey
| | - Salim Neşelioglu
- c Department of Biochemistry , Atatürk Educational and Research Hospital , Ankara , Turkey
| | - Murat Büyükşekerci
- d Department of Pharmacology , Occupational Diseases Hospital , Ankara , Turkey
| | - Meşide Gündüzöz
- e Department of Family Medicine , Occupational Diseases Hospital , Ankara , Turkey
| | - Funda Eren
- c Department of Biochemistry , Atatürk Educational and Research Hospital , Ankara , Turkey
| | - Lutfiye Tutkun
- f Department of Chemical Engineering and Bioengineering Division , Hacettepe University , Ankara , Turkey
| | - Fatma Meric Yilmaz
- g Department of Biochemistry , Yıldırım Beyazıt University Medical Faculty , Ankara , Turkey
| |
Collapse
|
48
|
Lu SY, Li YX, Zhang JQ, Zhang T, Liu GH, Huang MZ, Li X, Ruan JJ, Kannan K, Qiu RL. Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near e-waste recycling facilities in China. ENVIRONMENT INTERNATIONAL 2016; 94:161-169. [PMID: 27258657 DOI: 10.1016/j.envint.2016.05.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4μg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7μg/g Cre) and urban (10.9μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6μg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4μg/g Cre) and non-smokers (24.7μg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies.
Collapse
Affiliation(s)
- Shao-You Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Yan-Xi Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jian-Qing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Gui-Hua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Ming-Zhi Huang
- School of Geography and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ju-Jun Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
49
|
Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles. Toxicol Lett 2016; 255:36-42. [PMID: 27208482 DOI: 10.1016/j.toxlet.2016.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To evaluate how exposure to deep-frying oils, repeated frying oil (RFO) and restaurant waste oil (RWO) affects emission of polycyclic aromatic hydrocarbons (PAHs) and oxidative stress in male restaurant workers. METHODS The study participants included 236 male restaurant workers in 12 restaurants in Shenzhen. Airborne particulate PAHs were measured over 12h on each of two consecutive work days. Urinary 1-hydroxypyrene (1-OHP) measurements were used to indicate cooking oil fumes (COF) exposure, and urinary malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were adopted as oxidative stress markers. RESULTS The production and emission rates of ultrafine particles (UFPs) and PM2.5 were higher in the exposed groups than in the control group. The concentrations of summed PAHs were in the order of RFO-frying group>RWO-frying group>deep-frying group>unexposed control group. Urinary 1-OHP was found to be a significant predictor of elevated urinary MDA and 8-OHdG concentrations (all, P<0.05). UFPs were a significant predictor of elevated urinary 8-OHdG for restaurant workers (P<0.05). The RFO- and RWO-frying groups had higher mean urinary concentrations of 1-OHP, MDA and 8-OHdG than the control group (P<0.05). RFO exposure was found to be a significant risk factor for elevated urinary 8-OHdG and RWO exposure was found to be a significant risk factor for elevated urinary MDA (both, P<0.001). CONCLUSIONS Concentrations of urinary 1-OHP, MDA and 8-OHdG reflect occupational exposure to PAHs from COFs and oxidative stress in restaurants workers. Exposure to RFO may cause increased oxidative DNA damage, and exposure to RWO might cause increased lipid peroxidation.
Collapse
|
50
|
Bin P, Shen M, Li H, Sun X, Niu Y, Meng T, Yu T, Zhang X, Dai Y, Gao W, Gu G, Yu S, Zheng Y. Increased levels of urinary biomarkers of lipid peroxidation products among workers occupationally exposed to diesel engine exhaust. Free Radic Res 2016; 50:820-30. [PMID: 27087348 DOI: 10.1080/10715762.2016.1178738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diesel engine exhaust (DEE) was found to induce lipid peroxidation (LPO) in animal exposure studies. LPO is a class of oxidative stress and can be reflected by detecting the levels of its production, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and etheno-DNA adducts including 1,N(6)-etheno-2'-deoxyadenosine (ɛdA) and 3,N(4)-etheno-2'-deoxycytidine (ɛdC). However, the impact of DEE exposure on LPO has not been explored in humans. In this study, we evaluated urinary MDA, 4-HNE, ɛdA, and ɛdC levels as biomarkers of LPO among 108 workers with exclusive exposure to DEE and 109 non-DEE-exposed workers. Results showed that increased levels of urinary MDA and ɛdA were observed in subjects occupationally exposed to DEE before and after age, body mass index (BMI), smoking status, and alcohol use were adjusted (all p < 0.001). There was a statistically significant relationship between the internal exposure dose (urinary ΣOH-PAHs) and MDA, 4-HNE, and ɛdA (all p < 0.001). Furthermore, significant increased relations between urinary etheno-DNA adduct and MDA, 4-HNE were observed (all p < 0.05). The findings of this study suggested that the level of LPO products (MDA and ɛdA) was increased in DEE-exposed workers, and urinary MDA and ɛdA might be feasible biomarkers for DEE exposure. LPO induced DNA damage might be involved and further motivated the genomic instability could be one of the pathogeneses of cancer induced by DEE-exposure. However, additional investigations should be performed to understand these observations.
Collapse
Affiliation(s)
- Ping Bin
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Meili Shen
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Haibin Li
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Xin Sun
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Yong Niu
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Tao Meng
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Tao Yu
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Xiao Zhang
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Yufei Dai
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Weimin Gao
- b Department of Environmental Toxicology , The Institute of Environmental and Human Health, Texas Tech University , Lubbock , TX , USA
| | - Guizhen Gu
- c Henan Provincial Institute of Occupational Health , Zhengzhou , Henan , China
| | - Shanfa Yu
- c Henan Provincial Institute of Occupational Health , Zhengzhou , Henan , China
| | - Yuxin Zheng
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| |
Collapse
|