1
|
Arora P, Bhagat S, Krishnendu MR, Singh S. Emerging trends of biomedical nanotechnology in nutrition, health monitoring and disease diagnosis. 3 Biotech 2025; 15:152. [PMID: 40336812 PMCID: PMC12052695 DOI: 10.1007/s13205-025-04291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/22/2025] [Indexed: 05/09/2025] Open
Abstract
The transdisciplinary nature of nanotechnology has facilitated its application across various fields, especially in biological sciences. The primary aim of this review is to consolidate the many facets of nanomedicine, theranostics, and nanotechnology in food preservation into a unified framework and to underscore established research methodologies in the medical domain. Nanoparticles serve a crucial function in improving the bioavailability of orally delivered bioactive substances. This review demonstrated that nanoparticles can enhance the bioavailability of micronutrients, such as vitamin B12, vitamin A, folic acid, and iron. New advances in nanotechnology have made big differences in finding pathogens and killing them specifically, helping people to get better health through medication delivery and imaging, improving food packaging better so it lasts longer, and making foods healthier overall. Nanotechnology currently enhances the safety of delivering highly hazardous medicines through the use of nanozymes that exhibit antioxidant and antibacterial characteristics. Moreover, wearable devices can identify significant alterations in vital signs, medical problems, and infections occurring within the body. We anticipate that these technologies will provide physicians with enhanced direct access to crucial information about the causes of changes in vital signs or diseases, as they are directly connected to the source of the problem. This review paper thoroughly examines the latest developments in nanomaterials and nanozymes as antimicrobial agents in food science and nutrition, wound healing, illness diagnostics, imaging, and potential future uses. The paper presents a concise and structured report on nanotechnology, which will be beneficial to researchers and scientists for future research opportunities.
Collapse
Affiliation(s)
- Palak Arora
- Nanobiology and Nanozymology Research Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - Stuti Bhagat
- Nanobiology and Nanozymology Research Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - M. R. Krishnendu
- Nanobiology and Nanozymology Research Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - Sanjay Singh
- Nanobiology and Nanozymology Research Lab, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| |
Collapse
|
2
|
Szkopek D, Mendel M, Kinsner M, Ognik K, Szyryńska N, Lewczuk B, Kozłowski K, Kos I, Konieczka P. Cannabidiol and nano-selenium mediate intestinal barrier function by affecting mucosal microstructures, and gut-associated immunological and oxidative stress response in the gut of chickens infected with C. perfringens. Front Immunol 2025; 16:1529449. [PMID: 40356900 PMCID: PMC12066498 DOI: 10.3389/fimmu.2025.1529449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Nutritional additives with biological activity, such as cannabidiol (CBD) and nano-selenium (nano-Se), are viable to prevent bacterial diseases such as necrotic enteritis in chickens. The present study hypothesized that CBD and nano-Se mediate epigenetic and oxidative DNA changes in blood and intestinal epithelial cells and can affect intestinal development and functionality in broiler chickens at an early stage of infection with C. perfringens. This study revealed that both compounds, in combination under physiological or pathophysiological conditions, can act synergistically, improving the indices of histomorphometry of duodenum, jejunum, and ileum. Examination of the structures and ultrastructures of the gastrointestinal tract showed that CBD + nano-Se supplementation did not manifest adverse effects on the host gut indices. In contrast, epigenetic and oxidative markers of blood and gut structures indicated that these components balanced the immune system, mitigating the excessive inflammatory response caused by infection, which boosted the immune response of birds to challenge. There were also significant correlations between indicators of intestinal barrier function, such as diamine oxidase and lactic acid levels, and histomorphometry and markers of DNA integrity in the blood and intestine of chickens. In addition, it was shown that nano-Se increased hemoglobin concentration, which may be beneficial in the host's response to pathogen stimuli. These findings evidenced the health-promoting effect of cannabidiol and nano-selenium in C. perfringens-infected chickens and provided new insights into the mechanism of action of both nutritional additives.
Collapse
Affiliation(s)
- Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bio-Economy, University of Life Sciences in Lublin, Lublin, Poland
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ivica Kos
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Asghari-Moghadam M, Mehri M. Enhanced Sperm Quality in Aged Broiler Breeder Roosters with Organic Selenium and Selenium Nanoparticles: A Comparative Bioavailability Study. Biol Trace Elem Res 2025; 203:2409-2419. [PMID: 39078568 DOI: 10.1007/s12011-024-04323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024]
Abstract
This study aimed to investigate the impact of dietary selenium treatments on various sperm parameters and antioxidant responses in aged roosters to determine the relative bioavailability value (RBV) and optimize selenium supplementation. Over 40 days, starting from week 47 of age, the roosters were fed ten experimental diets, including a basal diet without selenium supplement and nine selenium-treated diets. These selenium-treated diets comprised three different selenium sources (selenium selenite: SS; SelPlex: Se-enriched yeast; selenium nanoparticles: SeNPs), each with three levels of selenium supplements (0.15, 0.30, and 0.45 mg/kg). Statistical analysis indicated significant treatment effects on all measured parameters except sperm volume. Sperm motility and viability increased linearly with higher dietary selenium levels. The relative bioavailability values (RBV) of SelPlex and SeNPs compared to SS were estimated using the slope ratio and exponential regression methods. Using the slope-ratio method, the RBV for sperm volume was 457% for SelPlex and 314% for SeNPs, compared to SS. Using exponential regression, the RBV of SelPlex and SeNPs for various parameters were as follows: for MDA (malondialdehyde), 260% and 317%; for TAC (total antioxidant capacity), 447% and 294%; for sperm morphology, 227% and 423%; and for sperm concentration, 346% and 298%, respectively. Principal component analysis revealed strong correlations between sperm motility, viability, and antioxidant parameters, with weaker associations observed between sperm volume and testosterone. Optimization using a desirability function identified 0.45 mg/kg selenium supplementation using SeNPs as optimal, maximizing sperm parameters and antioxidant responses while minimizing MDA and morphology. These findings offer valuable insights into effective selenium supplementation strategies to enhance avian reproductive health in aged roosters.
Collapse
Affiliation(s)
- Morteza Asghari-Moghadam
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, 98661-5538, Sistan, Iran.
| | - Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, 98661-5538, Sistan, Iran
| |
Collapse
|
4
|
Chen Y, Zhang S, Gao X, Hao Z, Guo Y, Wang Y, Yuan J. Selenium nanoparticles affect chicken offspring's intestinal health better than other selenium sources. Poult Sci 2024; 103:104367. [PMID: 39413704 PMCID: PMC11530909 DOI: 10.1016/j.psj.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
This study aimed to assess the effects of maternal diets containing various selenium (Se) sources on the intestinal mucosal function in the jejunum of chicken offspring. A total of 630, 18-wk-old Hy-Line Grey hens and 70 18-wk-old Hy-Line Grey breeders were randomly allocated into 7 groups, with 5 replicates in each group (18 hens and tow roosters). After 4 wk of Se depletion, the birds were fed either a nonsupplemented basal diet (control) or the same basal diet supplemented with 0.15 mg/kg selenium nanoparticles (Nano-Se), 0.30 mg/kg Nano-Se, 0.30 mg/kg selenocysteine (Sec), 0.30 mg/kg sodium selenite (SS), 0.30 mg/kg selenomethionine (SeMet), or 0.15 mg/kg Nano-Se + 0.15 mg/kg Sec, for 8 wk. Frtilized eggs were collected and incubated during the final week of the experiment. Jejunal tissues from embryonic d 18 and the hatch day were collected for analysis, and the 7-d survival rate of the offspring was recorded. Compared to the control, the maternal diet of 0.30 mg/kg Nano-Se, 0.30 mg/kg Sec, and 0.30 mg/kg SeMet significantly increased the survival of 7-day-old offspring (P < 0.05). The maternal diet supplemented with 0.30 mg/kg Nano-Se significantly increased intestinal villus height and the villus height/crypt depth ratio in chicks at embryonic d 18 and in 1-day-old (P < 0.05). The maternal diet containing 0.30 mg/kg Nano-Se and Sec increased the mRNA expression levels of tight junction proteins in 1-day-old offspring (P < 0.05). Supplemental 0.30 mg/kg Nano-Se significantly increased the mRNA expression levels of marker genes in intestinal enteroendocrine, stem, and Paneth cells (P < 0.05). In 1-day-old chicks, the number of intestinal goblet cells, as well as the mRNA expression levels of intestinal mucin2 (Muc2) and goblet cell differentiation factors (Spdef and C-myc), were the highest in diets supplemented with 0.30 mg/kg Nano-Se. Moreover, the expression levels of intestinal Muc2 and Spdef in chicks at embryonic d 18 was the highest with 0.30 mg/kg Nano-Se supplementation (P < 0.05). Supplementing with 0.30 mg/kg Nano-Se significantly reduced reactive oxygen species levels and decreased the mRNA expression levels of apoptosis-related genes in 1-day-old chicks (P < 0.05). Additionally, 0.30 mg/kg Nano-Se supplementation significantly down-regulated NLRP3 pathway gene expression in 1-day-old chicks (P < 0.05). In conclusion, maternal dietary supplementation with Nano-Se improved jejunal microarchitecture, antioxidant levels, and the expression of tight-junction protein in chicken offspring along with supporting goblet cell development by inhibiting the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yanhong Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuyang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Hao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Microbiology and Immunology Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Li R, Liu J, Liu M, Liang M, Wang Z, Sha Y, Ma H, Lin Y, Li B, You J, Zhang L, Qin M. Effects of selenium-enriched yeast dietary supplementation on egg quality, gut morphology and caecal microflora of laying hens. Anim Biotechnol 2024; 35:2258188. [PMID: 38193802 DOI: 10.1080/10495398.2023.2258188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Selenium (Se) is an essential micronutrient for humans and animals and is a powerful antioxidant that can promote reproductive and immune functions. The purpose of this study was to evaluate the effects of supplemental dietary selenium-enriched yeast (SeY) on egg quality, gut morphology and microflora in laying hens. In total, 100 HY-Line Brown laying hens (45-week old) were randomly allocated to two groups with 10 replicates and fed either a basal diet (without Se supplementation) or a basal diet containing 0.2 mg/kg Se in the form of SeY for 8 weeks. The Se supplementation did not have a significant effect on egg quality and intestinal morphology of laying hens. Based on the 16S rRNA sequencing, SeY dietary supplementation effectively modulated the cecal microbiota structure. An alpha diversity analysis demonstrated that birds fed 100 mg/kg SeY had a higher cecal bacterial diversity. SeY dietary addition elevated Erysipelotrichia (class), Lachnospiraceae (family), Erysipelotrichaceae (family) and Ruminococcus_torques_group (genus; p < .05). Analysis of microbial community-level phenotypes revealed that SeY supplementation decreased the microorganism abundance of facultatively anaerobic and potentially pathogenic phenotypes. Overall, SeY supplementation cannot significantly improve intestinal morphology; however, it modulated the composition of cecal microbiota toward a healthier gut.
Collapse
Affiliation(s)
- Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Huiwen Ma
- Yantai Animal Disease Prevention and Control Center, Yantai, China
| | - Yafeng Lin
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Baohua Li
- Haiyang Animal Disease Prevention and Control Center, Yantai, China
| | - Jinming You
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, China
| | - Lei Zhang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
6
|
Almeida CF, Faria M, Carvalho J, Pinho E. Contribution of nanotechnology to greater efficiency in animal nutrition and production. J Anim Physiol Anim Nutr (Berl) 2024; 108:1430-1452. [PMID: 38767313 DOI: 10.1111/jpn.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Feed costs present a major burden in animal production for human consumption, representing a key opportunity for cost reduction and profit improvement. Nanotechnology offers potential to increase productivity by creating higher-quality and safer products. The feed sector has benefited from the use of nanosystems to improve the stability and bioavailability of feed ingredients. The development of nanotechnology products for feed must consider the challenges raised by biological barriers as well as regulatory requirements. While some nanotechnology-based products are already commercially available for animal production, the exponential growth and application of these products requires further research ensuring their safety and the establishment of comprehensive legislative frameworks and regulatory guidelines. Thus, this article provides an overview of the current state of the art regarding nanotechnology solutions applied in feed, as well as the risks and opportunities aimed to help researchers and livestock producers.
Collapse
Affiliation(s)
- Carina F Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Vairão, Portugal
| | | | | | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Vairão, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Porto, Portugal
- AliCE - Associate Laboratory in Chemical Engineering, Porto, Portugal
| |
Collapse
|
7
|
Abd El-Hack ME, Ashour EA, Baset SA, Kamal M, Swelum AA, Suliman GM, Ebrahim A, Bassiony SS. Effect of Dietary Supplementation of Organic Selenium Nanoparticles on Growth Performance and Carcass Traits of Broiler Chickens. Biol Trace Elem Res 2024; 202:3760-3766. [PMID: 37932618 DOI: 10.1007/s12011-023-03948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
This study examined how broilers up to 38 days of age fared regarding growth efficiency and carcass characteristics concerning selenium nanoparticle activities (SeNPs). A total of 180 one-week-old broiler (Cobb 500) chicks without sex were randomly allocated into three groups, each with six replications of 10 chicks. The trial took 38 days to complete. The three study dietary groups were fed ad libitum feed and water throughout their 38-day of age, along with corn-and-soybean meal-based diets supplemented with 0 (control), 1.5, and 2.0 ml SeNPs (concentration = 5%) /kg diet, respectively. According to the current findings, the SeNP supplementation groups had greater body weight, weight gain, and performance indicators than the control group after 38 days of the feeding experiment. The findings demonstrated that dietary interventions did not affect the amount of feed consumed (FC) per chick per day or the feed conversion ratio (FCR). The conclusion is that adding SeNPs to broiler diets at 1.5 or 2.0 ml/kg increased productivity. In contrast, lower levels of selenium (Se) (1.5 ml/kg diet) showed encouraging results and could be employed as a useful feed additive in broilers.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Shahira Abdel Baset
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Samar S Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
8
|
Hasanvand S, Ebrahimi B, Paimard G, Rouhi M, Hashami Z, Zibaei R, Roshandel Z, Mohammadi R. Optimization of Seleno-chitosan-phytic acid nanocomplex for efficient removal of patulin from apple juice. Food Chem 2024; 443:138576. [PMID: 38301556 DOI: 10.1016/j.foodchem.2024.138576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 μg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.
Collapse
Affiliation(s)
- Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical Uni-versity, Wenzhou, Zhejiang 325027, China
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Roshandel
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Yang X, Song W, Gao F, Luo H, Liu P, Tan Z, Zhou J, Wang D, Nie X, Lai C, Shi H, Li X, Zhang D. Superoxide Dismutase Catalyzed Size-Adjustable Selenium Nanoparticles in Saccharomyces boulardii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4257-4266. [PMID: 38354318 DOI: 10.1021/acs.jafc.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.
Collapse
Affiliation(s)
- Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wancheng Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Feng Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Pei Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Xinling Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Chenhuan Lai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Xun Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Daihui Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210037, China
| |
Collapse
|
10
|
Turovsky EA, Baryshev AS, Plotnikov EY. Selenium Nanoparticles in Protecting the Brain from Stroke: Possible Signaling and Metabolic Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:160. [PMID: 38251125 PMCID: PMC10818530 DOI: 10.3390/nano14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Strokes rank as the second most common cause of mortality and disability in the human population across the world. Currently, available methods of treating or preventing strokes have significant limitations, primarily the need to use high doses of drugs due to the presence of the blood-brain barrier. In the last decade, increasing attention has been paid to the capabilities of nanotechnology. However, the vast majority of research in this area is focused on the mechanisms of anticancer and antiviral effects of nanoparticles. In our opinion, not enough attention is paid to the neuroprotective mechanisms of nanomaterials. In this review, we attempted to summarize the key molecular mechanisms of brain cell damage during ischemia. We discussed the current literature regarding the use of various nanomaterials for the treatment of strokes. In this review, we examined the features of all known nanomaterials, the possibility of which are currently being studied for the treatment of strokes. In this regard, the positive and negative properties of nanomaterials for the treatment of strokes have been identified. Particular attention in the review was paid to nanoselenium since selenium is a vital microelement and is part of very important and little-studied proteins, e.g., selenoproteins and selenium-containing proteins. An analysis of modern studies of the cytoprotective effects of nanoselenium made it possible to establish the mechanisms of acute and chronic protective effects of selenium nanoparticles. In this review, we aimed to combine all the available information regarding the neuroprotective properties and mechanisms of action of nanoparticles in neurodegenerative processes, especially in cerebral ischemia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
11
|
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2360-2376. [PMID: 38063966 DOI: 10.1007/s11356-023-31202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 μm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Ali Gheibi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran
| | - Reza Faridi Majidi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ryabova YV, Sutunkova MP, Minigalieva IA, Shabardina LV, Filippini T, Tsatsakis A. Toxicological effects of selenium nanoparticles in laboratory animals: A review. J Appl Toxicol 2024; 44:4-16. [PMID: 37312419 DOI: 10.1002/jat.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
This paper provides a comprehensive summary of the main toxicological studies conducted on selenium nanoparticles (NPs) using laboratory animals, up until February 28, 2023. A literature search revealed 17 articles describing experimental studies conducted on warm-blooded animals. Despite some uncertainties, in vivo studies have demonstrated that selenium NPs have an adverse effect on laboratory animals, as evidenced by several indicators of general toxic action. These effects include reductions of body mass, changes in hepatotoxicity indices (increased enzyme activity and accumulation of selenium in the liver), and the possibility of impairment of fatty acid, protein, lipid, and carbohydrate metabolisms. However, no specific toxic action attributable solely to selenium has been identified. The LOAEL and NOAEL values are contradictory. The NOAEL was 0.22 mg/kg body weight per day for males and 0.33 mg/kg body weight per day for females, while the LOAEL was assumed to be a dose of 0.05 mg/kg of nanoselenium. This LOAEL value is much higher for rats than for humans. The relationship between the adverse effects of selenium NPs and exposure dose is controversial and presents a wide typological diversity. Further research is needed to clarify the absorption, metabolism, and long-term toxicity of selenium NPs, which is critical to improving the risk assessment of these compounds.
Collapse
Affiliation(s)
- Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Lada V Shabardina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Tommaso Filippini
- CREAGEN Research Center for Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
13
|
Zeng L, Peng Q, Li Q, Bi Y, Kong F, Wang Z, Tan S. Synthesis, characterization, biological activity, and in vitro digestion of selenium nanoparticles stabilized by Antarctic ice microalgae polypeptide. Bioorg Chem 2023; 141:106884. [PMID: 37774435 DOI: 10.1016/j.bioorg.2023.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
A new type of uniformly dispersed selenium nanoparticles (SeNPs) was prepared using Antarctic ice microalgae polypeptides (AIMP) as the stabilizer and dispersant. Different characterization techniques and tests show that the SeNPs are effectively combined with AIMP through physical adsorption and hydrogen bonding to form a more stable structure. Orange-red, zero-valence, amorphous, and spherical AIMP-SeNPs with a diameter of 52.07 ± 1.011 nm and a zeta potential of -41.41 ± 0.882 mV were successfully prepared under the optimal conditions. The AIMP-SeNPs had significantly higher DPPH, ABTS and hydroxyl radicals scavenging abilities compared with AIMP and Na2SeO3, and prevented the growth of both Gram-negative and Gram-positive bacteria by disrupting the integrity of cell walls, cell membranes and mitochondrial membranes. The AIMP-SeNPs had higher gastrointestinal stability compared with SeNPs. Thus, this research highlights the crucial role of AIMP as a biopolymer framework in the dispersion, stabilization, and size management of SeNPs and concludes that AIMP-SeNPs can be exploited as a potent antioxidant supplement and antibacterial substance in foods and medicine.
Collapse
Affiliation(s)
- Lixia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Qiang Peng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Qiao Li
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| |
Collapse
|
14
|
Zhang H, Zhao Z, Guan W, Zhong Y, Wang Y, Zhou Q, Liu F, Luo Q, Liu J, Ni J, He N, Guo D, Li L, Xing Q. Nano-Selenium inhibited antibiotic resistance genes and virulence factors by suppressing bacterial selenocompound metabolism and chemotaxis pathways in animal manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115277. [PMID: 37499390 DOI: 10.1016/j.ecoenv.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yang Wang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qilong Zhou
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Fuyu Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qi Luo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Junyi Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jian Ni
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| |
Collapse
|
15
|
Ye R, Guo Q, Huang J, Wang Z, Chen Y, Dong Y. Eucommia ulmoides polysaccharide modified nano-selenium effectively alleviated DSS-induced colitis through enhancing intestinal mucosal barrier function and antioxidant capacity. J Nanobiotechnology 2023; 21:222. [PMID: 37438752 DOI: 10.1186/s12951-023-01965-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qingyun Guo
- Qingyun Guo,Milu conservation research unit, Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Debata NR, Sethy K, Swain RK, Mishra SK, Panda N, Maity S. Supplementation of nano-selenium (SeNPs) improved growth, immunity, antioxidant enzyme activity, and selenium retention in broiler chicken during summer season. Trop Anim Health Prod 2023; 55:260. [PMID: 37402941 DOI: 10.1007/s11250-023-03678-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
The present experiment was aimed at finding the optimal supplemental dose of nano-selenium in broiler chicken during the summer season for better performance in terms of growth, blood metabolites, immune response, antioxidant status, and selenium concentration in vital organs. Three-hundred-day-old Vencobb broiler chicks were randomly distributed into five dietary treatment groups with six replicates of 10 chicks each. The dietary treatments were as follows: T1 (control group), basal diet; T2, basal diet with 0.0375 ppm of nano-Se; T3, basal diet with 0.075 ppm of nano-Se; T4, basal diet with 0.15 ppm of nano-Se; T5, basal diet with 0.3 ppm of nano-Se. The experiment was carried out for 35 days. The average gain and feed conversion ratio were best observed in T4 and T5. The antibody titres were significantly higher (P < 0.05) in the treated birds. At the 5th week, erythrocytic glutathione peroxidase, catalase, and superoxide dismutase activities were significantly (P < 0.05) higher and lipid peroxidation values were significantly (P < 0.05) lower in all the nano-Se-treated groups. The Se levels in the liver, breast muscle, kidney, brain, and gizzard were significantly (P < 0.05) increased with increased dietary nano-Se. Histological studies of the liver and kidney in the highest nano-Se-treated groups (T4 and T5) did not show any abnormal changes. It is concluded that supplementation of nano-selenium at 0.15 ppm over and above the basal level improved the performance and protect the birds from summer stress without any adverse effect on the vital organs of chicken.
Collapse
Affiliation(s)
- N R Debata
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - K Sethy
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India.
| | - R K Swain
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - S K Mishra
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - N Panda
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - S Maity
- Centre Coordinator, GIET University, Raygada, Gunupur, Odisha, India
| |
Collapse
|
17
|
Nie X, Zhu Z, Lu H, Xue M, Tan Z, Zhou J, Xin Y, Mao Y, Shi H, Zhang D. Assembly of selenium nanoparticles by protein coronas composed of yeast protease A. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Ojeda ML, Nogales F, Carrasco López JA, Gallego-López MDC, Carreras O, Alcudia A, Pajuelo E. Microbiota-Liver-Bile Salts Axis, a Novel Mechanism Involved in the Contrasting Effects of Sodium Selenite and Selenium-Nanoparticle Supplementation on Adipose Tissue Development in Adolescent Rats. Antioxidants (Basel) 2023; 12:antiox12051123. [PMID: 37237989 DOI: 10.3390/antiox12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adolescence is a period during which body composition changes deeply. Selenium (Se) is an excellent antioxidant trace element related to cell growth and endocrine function. In adolescent rats, low Se supplementation affects adipocyte development differently depending on its form of administration (selenite or Se nanoparticles (SeNPs). Despite this effect being related to oxidative, insulin-signaling and autophagy processes, the whole mechanism is not elucidated. The microbiota-liver-bile salts secretion axis is related to lipid homeostasis and adipose tissue development. Therefore, the colonic microbiota and total bile salts homeostasis were explored in four experimental groups of male adolescent rats: control, low-sodium selenite supplementation, low SeNP supplementation and moderate SeNPs supplementation. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. Supplementation was received orally through water intake; low-Se rats received twice more Se than control animals and moderate-Se rats tenfold more. Supplementation with low doses of Se clearly affected anaerobic colonic microbiota profile and bile salts homeostasis. However, these effects were different depending on the Se administration form. Selenite supplementation primarily affected liver by decreasing farnesoid X receptor hepatic function, leading to the accumulation of hepatic bile salts together to increase in the ratio Firmicutes/Bacteroidetes and glucagon-like peptide-1 (GLP-1) secretion. In contrast, low SeNP levels mainly affected microbiota, moving them towards a more prominent Gram-negative profile in which the relative abundance of Akkermansia and Muribaculaceae was clearly enhanced and the Firmicutes/Bacteroidetes ratio decreased. This bacterial profile is directly related to lower adipose tissue mass. Moreover, low SeNP administration did not modify bile salts pool in serum circulation. In addition, specific gut microbiota was regulated upon administration of low levels of Se in the forms of selenite or SeNPs, which are properly discussed. On its side, moderate-SeNPs administration led to great dysbiosis and enhanced the abundance of pathogenic bacteria, being considered toxic. These results strongly correlate with the deep change in adipose mass previously found in these animals, indicating that the microbiota-liver-bile salts axis is also mechanistically involved in these changes.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fátima Nogales
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Olimpia Carreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
19
|
Au A, Mojadadi A, Shao JY, Ahmad G, Witting PK. Physiological Benefits of Novel Selenium Delivery via Nanoparticles. Int J Mol Sci 2023; 24:ijms24076068. [PMID: 37047040 PMCID: PMC10094732 DOI: 10.3390/ijms24076068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Dietary selenium (Se) intake within the physiological range is critical to maintain various biological functions, including antioxidant defence, redox homeostasis, growth, reproduction, immunity, and thyroid hormone production. Chemical forms of dietary Se are diverse, including organic Se (selenomethionine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se (selenate and selenite). Previous studies have largely investigated and compared the health impacts of dietary Se on agricultural stock and humans, where dietary Se has shown various benefits, including enhanced growth performance, immune functions, and nutritional quality of meats, with reduced oxidative stress and inflammation, and finally enhanced thyroid health and fertility in humans. The emergence of nanoparticles presents a novel and innovative technology. Notably, Se in the form of nanoparticles (SeNPs) has lower toxicity, higher bioavailability, lower excretion in animals, and is linked to more powerful and superior biological activities (at a comparable Se dose) than traditional chemical forms of dietary Se. As a result, the development of tailored SeNPs for their use in intensive agriculture and as candidate for therapeutic drugs for human pathologies is now being actively explored. This review highlights the biological impacts of SeNPs on growth and reproductive performances, their role in modulating heat and oxidative stress and inflammation and the varying modes of synthesis of SeNPs.
Collapse
Affiliation(s)
- Alice Au
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Albaraa Mojadadi
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jia-Ying Shao
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gulfam Ahmad
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Andrology Department, Royal Women's and Children's Pathology, Carlton, VIC 3053, Australia
| | - Paul K Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Nie X, Yang X, He J, Liu P, Shi H, Wang T, Zhang D. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front Bioeng Biotechnol 2023; 11:1167123. [PMID: 36994362 PMCID: PMC10042385 DOI: 10.3389/fbioe.2023.1167123] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, microbial conversion of inorganic selenium into an efficient and low-toxic form of selenium has attracted much attention. With the improvement of scientific awareness and the continuous progress of nanotechnology, selenium nanoparticles can not only play the unique functions of organic selenium and inorganic selenium but also have higher safety, absorption and biological activity than other selenium forms. Therefore, the focus of attention has gradually shifted beyond the level of selenium enrichment in yeast to the combination of biosynthetic selenium nanoparticles (BioSeNPs). This paper primarily reviews inorganic selenium and its conversion to less toxic organic selenium and BioSeNPs by microbes. The synthesis method and potential mechanism of organic selenium and BioSeNPs are also introduced, which provide a basis for the production of specific forms of selenium. The methods to characterize selenium in different forms are discussed to understand the morphology, size and other characteristics of selenium. In general, to obtain safer and higher selenium content products, it is necessary to develop yeast resources with higher selenium conversion and accumulation.
Collapse
Affiliation(s)
- Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Xurui Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Pei Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, China
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA, United States
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Product, Chinese Academy of Forestry, Nanjing, Jiangsu, China
- *Correspondence: Hao Shi, , ; Tao Wang, ; Daihui Zhang,
| |
Collapse
|
21
|
Borowska M, Jiménez-Lamana J, Bierla K, Jankowski K, Szpunar J. A green and fast microwave-assisted synthesis of selenium nanoparticles and their characterization under gastrointestinal conditions using mass spectrometry. Food Chem 2023; 417:135864. [PMID: 36924715 DOI: 10.1016/j.foodchem.2023.135864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
We present a novel microwave-assisted green synthesis of selenium nanoparticles (SeNPs) using yeast extract as source of a non-toxic reducing and capping agents. Effects of synthesis and gastrointestinal digestion conditions on the biogenic Se particle size distribution and number concentration using SP ICP MS were evaluated. The median equivalent diameter of SeNPs varied depending on the synthesis conditions. Upon incubation in simulated gastric juice, the increase of SeNPs size was observed, whereas after simulated intestinal juice addition, their size came back close to the initial value. The biomolecules contained in yeast extract, which play predominant role in the synthesis of SeNPs, were identified by non-targeted qualitative analysis using LC Orbitrap ESI MS. The use of the state-of-the-art MS techniques allowed both the comprehensive assessment of the processes leading to the SeNPs formation and the evaluation of their behavior under gastrointestinal conditions which is of utmost importance for their use as a novel selenium source.
Collapse
Affiliation(s)
- Magdalena Borowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, 00-664 Warsaw, Poland.
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| | - Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| | - Krzysztof Jankowski
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, 00-664 Warsaw, Poland
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| |
Collapse
|
22
|
Wang M, Sun X, Wang Y, Deng X, Miao J, Zhao D, Sun K, Li M, Wang X, Sun W, Qin J. Construction of Selenium Nanoparticle-Loaded Mesoporous Silica Nanoparticles with Potential Antioxidant and Antitumor Activities as a Selenium Supplement. ACS OMEGA 2022; 7:44851-44860. [PMID: 36530304 PMCID: PMC9753530 DOI: 10.1021/acsomega.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Excessive reactive oxygen species (ROS) can damage cells and affect normal cell functions, which are related to various diseases. Selenium nanoparticles are a potential selenium supplement for their good biocompatibility and antioxidant activity. However, their poor stability has become an obstacle for further applications. In this study, mesoporous silica nanoparticles (MSNs) were prepared as a carrier of selenium nanoparticles. Pluronic F68 (PF68) was used for the surface modification of the compounds to prevent the leakage of the selenium nanoparticles. The prepared MSN@Se@PF68 nanoparticles were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering, X-ray photoelectron spectroscopy, confocal micro-Raman spectroscopy, and Fourier transform infrared spectroscopy. The MSN@Se@PF68 nanoparticles showed excellent antioxidant activity in HeLa tumor cells and zebrafish larvae. The cytotoxicity of MSN@Se@PF68 nanoparticles was concentration- and time-dependent in HeLa tumor cells. The MSN@Se@PF68 nanoparticles showed a negligible cytotoxicity of ≤2 μg/mL at 48 h. At a concentration of 50 μg/mL, the cell viability of the HeLa tumor cells decreased to about 50%. The results indicated that the MSN@Se@PF68 nanoparticles could be a potential antitumor agent. The embryonic development of zebrafish cocultured with the MSN@Se@PF68 nanoparticles showed that there was no lethal or obvious teratogenic toxicity. The results implied that the MSN@Se@PF68 nanoparticles could be a safe selenium supplement and have the potential for antioxidant and antitumor activity.
Collapse
Affiliation(s)
- Meng Wang
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Xiangling Sun
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Ying Wang
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Xuan Deng
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Jianing Miao
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Donghe Zhao
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Kunqi Sun
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Minrui Li
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Xiaoyi Wang
- School
of Public Health, Jining Medical University, Jining 272067, P. R. China
| | - Wenlong Sun
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Jie Qin
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| |
Collapse
|
23
|
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 2022; 42:68-94. [PMID: 35491930 PMCID: PMC9126591 DOI: 10.1080/01652176.2022.2073399] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/06/2022] Open
Abstract
The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Dziergowska
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
24
|
Liu J, Shi L, Tuo X, Ma X, Hou X, Jiang S, Lv J, Cheng Y, Guo D, Han B. Preparation, characteristic and anti-inflammatory effect of selenium nanoparticle-enriched probiotic strain Enterococcus durans A8-1. J Trace Elem Med Biol 2022; 74:127056. [PMID: 35939922 DOI: 10.1016/j.jtemb.2022.127056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Elemental selenium, a new type of selenium supplement, can be biosynthesized via microorganisms. This study is to characterize a patent probiotic bacteria Enterococcus durans A8-1, capable of reducing selenite (Se6+ or Se4+) to elemental selenium (Se0) with the formation of Se nanoparticles (SeNPs). METHODS The selenium nanoparticles synthesized from A8-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron energy (XPS). The Caco2 cells were used to investigate the effects of Se-enriched A8-1 on the viability, membrane integrity, and the regulation of cellular inflammation through MTT and ELISA assays. The selenium-enriched metabolic function of A8-1 was analyzed by transcriptome sequencing. RESULTS E. durans A8-1 has the ability to synthesize intracellular SeNPs that are incubated with 60 mg/L sodium selenite for 18 h at 37 °C with 7 % inoculum under aerobic conditions. The selenium-enriched transformation rate increased to 43.46 %. After selenium enrichment, there were no significant morphological changes in E. durans A8-1 cells. The cells also exhibited no cytotoxicity when incubated with Caco-2 cells, and increased cellular proliferation. Furthermore, Se-enriched A8-1 cells antagonize the adhesion of S. typhimurium ATCC14028 onto the surface of Caco-2 cells protecting cell membrane integrity and was assessed by measuring LDH and AKP activities (P <0.001, P <0.001). Moreover, Se-enriched A8-1 could protect Caco-2 cells from inflammation induced by lipopolysaccharide and help the cells alleviate the inflammation through the reduced expression of cytokine IL-8 (P = 0.0012, P <0.001) and TNF-α (P <0.001, P <0.001). Based on transcriptome sequencing in Se-enriched E. durans A8-1 cells, there were 485 up-regulated genes and 322 down-regulated genes (Padj < 0.05). There were 19 predicted up-regulated genes that are highly related to the potential selenium metabolism pathway, which focuses on the transportation of Na2SeO3 by membrane proteins, and gradually reduces Na2SeO3 to elemental selenium aggregates that are deposited onto the membrane surface via the intracellular redox response. CONCLUSION E. durans A8-1 could convert extracellular selenite into intracellular biological SeNPs via redox pathway with strong selenium-rich metabolism, and its biological SeNPs have anti-inflammatory properties, which have the potential for the development of composite selenium nanomaterials and can be further studied for the function of SeNPs with potential applications.
Collapse
Affiliation(s)
- Jin Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohong Tuo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Dagang Guo
- School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
| |
Collapse
|
25
|
Rehman HFU, Zaneb H, Masood S, Yousaf MS, Hayat K, Majeed KA, Zeeshan M, Ashraf S, Khan I, Khan A, Rehman H. Effect of Selenium Nanoparticles and Mannan Oligosaccharide Supplementation on Growth Performance, Stress Indicators, and Intestinal Microarchitecture of Broilers Reared under High Stocking Density. Animals (Basel) 2022; 12:ani12212910. [PMID: 36359034 PMCID: PMC9654113 DOI: 10.3390/ani12212910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The current study investigated the potential of selenium nanoparticles (SeNPs) and mannan-oligosaccharide (MOS) supplementation in ameliorating high stocking density (HSD) stress in broilers. A total of 392 day-old male chicks were divided into seven groups with eight replicates (n = 7): NSD [basal diet (BD) + normal stocking density: 10 bird/m2], HSD [BD + high stocking density: 16 bird/m2], Se−HSD [BD + Selenium (Se) 0.15 mg/kg], MOS−HSD (BD + MOS 5 gm/kg), Se−MOS−HSD (BD + Se 0.15 mg/kg and MOS 5 gm/kg), SeNPs−HSD (BD + SeNPs 0.15 mg/kg) and SeNPs−MOS−HSD (BD + SeNPs 0.15 mg/kg and MOS-5 gm/kg). HSD stress decreased (p < 0.05) weekly body weight and body weight gain and increased (p < 0.05) FCR compared to the NSD group. Supplementation with SeNPs and the SeNPs−MOS combination improved (p < 0.05) the weekly body weight and FCR in HSD-stressed broilers during the 5th and 6th weeks. On day 21, HSD stress decreased (p < 0.05) duodenal villus height (VH) and villus surface area (VSA) and increased (p < 0.05) serum corticosterone and cholesterol compared to the NSD group. Supplementation with the SeNPs−MOS combination increased (p < 0.05) duodenal VH and VH:CD, and jejunal total goblet cell (TGC) density and decreased (p < 0.05) serum corticosterone and cholesterol and ileal intra-epithelial lymphocyte (IEL) density in HSD-stressed broilers. On day 42, HSD stress decreased (p < 0.05) duodenal and jejunal VH, VSA, VH:CD, PCNA positive cell density and TGC density, Ileal VSA and TGC density, and increased (p < 0.05) serum cholesterol and ileal IEL density compared to the NSD group. Supplementation with the SeNPs−MOS combination increased (p < 0.05) spleen and bursa absolute weights, duodenal VH, VSA, VH:CD, PCNA positive cell density and jejunal VH, VH:CD, and decreased (p < 0.05) serum cholesterol and ileal IEL density in HSD-stressed broilers. Our findings signify that HSD is stressful for broilers particularly during the finishing phase. Supplementation with the SeNPs−MOS combination mitigated HSD stress by partially improving the gut microarchitecture, gut barrier function and performance indicators.
Collapse
Affiliation(s)
- Hafiz Faseeh ur Rehman
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Correspondence:
| | - Saima Masood
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Khizar Hayat
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Khalid Abdul Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Zeeshan
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Saima Ashraf
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imad Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25000, Pakistan
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
26
|
Nie X, Xing Y, Li Q, Gao F, Wang S, Liu P, Li X, Tan Z, Wang P, Shi H. ARTP mutagenesis promotes selenium accumulation in Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Bano I, Skalickova S, Arbab S, Urbankova L, Horky P. Toxicological effects of nanoselenium in animals. J Anim Sci Biotechnol 2022; 13:72. [PMID: 35710460 PMCID: PMC9204874 DOI: 10.1186/s40104-022-00722-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/14/2022] [Indexed: 01/28/2023] Open
Abstract
The productivity and sustainability of livestock production systems are heavily influenced by animal nutrition. To maintain homeostatic balance in the body of the animal at different phases of life, the percentage of organically active minerals in livestock feed must be optimized. Selenium (Se) is a crucial trace mineral that is required for the maintenance of many functions of the body. Se nanoparticles (SeNPs) attracted considerable interest from researchers for a variety of applications a decade ago, owing to their extraordinary properties. SeNPs offer significant advantages over larger-sized materials, by having a comparatively wider surface area, increased surface energy, and high volume. Despite its benefits, SeNP also has toxic effects, therefore safety concerns must be taken for a successful application. The toxicological effects of SeNPs in animals are characterized by weight loss, and increased mortality rate. A safe-by-strategy to certify animal, human and environmental safety will contribute to an early diagnosis of all risks associated with SeNPs. This review is aimed at describing the beneficial uses and potential toxicity of SeNPs in various animals. It will also serve as a summary of different levels of SeNPs which should be added in the feed of animals for better performance.
Collapse
Affiliation(s)
- Iqra Bano
- Department of Physiology and Biochemistry, Faculty of Bioscience, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, 67210, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lenka Urbankova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
28
|
The Role and Mechanism of Essential Selenoproteins for Homeostasis. Antioxidants (Basel) 2022; 11:antiox11050973. [PMID: 35624837 PMCID: PMC9138076 DOI: 10.3390/antiox11050973] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
Selenium (Se) is one of the essential trace elements that plays a biological role in the body, mainly in the form of selenoproteins. Selenoproteins can be involved in the regulation of oxidative stress, endoplasmic reticulum (ER) stress, antioxidant defense, immune and inflammatory responses and other biological processes, including antioxidant, anti-inflammation, anti-apoptosis, the regulation of immune response and other functions. Over-loading or lack of Se causes certain damage to the body. Se deficiency can reduce the expression and activity of selenoproteins, disrupt the normal physiological function of cells and affect the body in antioxidant, immunity, toxin antagonism, signaling pathways and other aspects, thus causing different degrees of damage to the body. Se intake is mainly in the form of dietary supplements. Due to the important role of Se, people pay increasingly more attention to Se-enriched foods, which also lays a foundation for better research on the mechanism of selenoproteins in the future. In this paper, the synthesis and mechanism of selenoproteins, as well as the role and mechanism of selenoproteins in the regulation of diseases, are reviewed. Meanwhile, the future development of Se-enriched products is prospected, which is of great significance to further understand the role of Se.
Collapse
|
29
|
Garza-García JJO, Hernández-Díaz JA, Zamudio-Ojeda A, León-Morales JM, Guerrero-Guzmán A, Sánchez-Chiprés DR, López-Velázquez JC, García-Morales S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol Trace Elem Res 2022; 200:2528-2548. [PMID: 34328614 DOI: 10.1007/s12011-021-02847-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an essential micronutrient for diverse organisms such as mammals, bacteria, some insects and nematodes, archaea, and algae, as it is involved in a large number of physiological and metabolic processes and is part of approximately 25 selenoproteins in mammals. In plants, Se has no essential metabolic role, high concentrations of inorganic Se can lead to the formation of Se-amino acids, and its incorporation into selenoproteins can generate toxicity. Conversely, low doses of Se can trigger a variety of beneficial effects as an antioxidant, antimicrobial, or stress-modulating agent without being an essential element. Therefore, Se can generate toxicity depending on the dose and the chemical form in which it is supplied. Selenium nanoparticles (SeNPs) have emerged as an approach to reduce this negative effect and improve its biological properties. In turn, SeNPs have a wide range of potential advantages, making them an alternative for areas such as agriculture and food technology. This review focuses on the use of SeNPs and their different applications as antimicrobial agents, growth promoters, crop biofortification, and nutraceuticals in agriculture. In addition, the utilization of SeNPs in the generation of packaging with antioxidant and antimicrobial traits and Se enrichment of animal source foods for human consumption as part of food technology is addressed. Additionally, possible action mechanisms and potential adverse effects are discussed. The concentration, size, and synthesis method of SeNPs are determining factors of their biological properties.
Collapse
Affiliation(s)
- Jorge J O Garza-García
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - José A Hernández-Díaz
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Adalberto Zamudio-Ojeda
- Physics, Universidad de Guadalajara, Boulevard Gral. Marcelino García Barragán 1421, 44430, Jalisco, Guadalajara, México
| | - Janet M León-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México
| | - Andrea Guerrero-Guzmán
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - David R Sánchez-Chiprés
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - Julio C López-Velázquez
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Soledad García-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México.
| |
Collapse
|
30
|
Deng S, Hu S, Xue J, Yang K, Zhuo R, Xiao Y, Fang R. Productive Performance, Serum Antioxidant Status, Tissue Selenium Deposition, and Gut Health Analysis of Broiler Chickens Supplemented with Selenium and Probiotics-A Pilot Study. Animals (Basel) 2022; 12:ani12091086. [PMID: 35565512 PMCID: PMC9103767 DOI: 10.3390/ani12091086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The effect and interaction of dietary selenium (Se) and probiotics on three yellow chicken growth performance, tissue Se content, antioxidant capacity, and gut health were studied from 0 to 70 days of age. A total of 400 one-day-old broilers were distributed into four groups (I-Se, O-Se, I-Se + pros, and O-Se + pros groups) consisting of a 2 × 2 factorial design. The main factors were the source of Se (I-Se = inorganic Se: 0.2 mg/kg sodium selenite; O-Se = organic Se: 0.2 mg/kg Selenium yeast) and the level of probiotics (0.5% EM or 0% EM, the component of EM mainly includes Lactobacillus and Yeast at the dose of 2 × 108 cfu/kg and 3 × 107 cfu/kg, respectively). Each treatment had 5 duplicates consisting of 20 broilers. The results showed that the I-Se group had a greater (p < 0.05) ratio of feed: weight gain (F/G) of broilers at Starter (0−35 d) than the other treatments. Compared to the I-Se group, the O-Se group increased (p < 0.05) Se concentrations in the liver, pancreas, breast muscles, thigh muscle, and the activity of total antioxidative capacity (T-AOC) in serum, as well as the relative abundance of Barnesiella and Lactobacillus in cecum. Meanwhile, probiotics enhanced (p < 0.05) Se concentrations in the pancreas, thigh muscle, serum, and the activity of T-AOC and glutathione peroxidase (GSH-Px), the duodenum’s ratio of villi height to crypt depth (V/C), the jejunum villus height and V/C, and the ileum’s villus height. Furthermore, the significant interactions (p < 0.05) between Se sources and the level of probiotics were observed in Se concentrations in the pancreas, thigh muscle, serum, crypt depth of duodenum, and villus height of jejunum of birds, and Barnesiella abundance in the cecal. In conclusion, our results demonstrate that the combination of O-Se + pros can improve broiler early growth performance, tissue Se content in the pancreas, thigh muscle, and serum, promote intestinal development, and regulate the composition of intestinal flora, suggesting a better combination. These findings provide an effective method of nutrient combination addition to improving the performance of three yellow chickens.
Collapse
Affiliation(s)
- Shengting Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Shengjun Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence:
| |
Collapse
|
31
|
Effects of Selenium Nanoparticles on Preventing Patulin-Induced Liver, Kidney and Gastrointestinal Damage. Foods 2022; 11:foods11050749. [PMID: 35267382 PMCID: PMC8909330 DOI: 10.3390/foods11050749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Patulin (PAT) is a toxic fungal metabolite, and oxidative damage was proved to be its important toxicity mechanism. Selenium nanoparticles (SeNPs) were prepared by reducing sodium selenite with chitosan as a stabilizer and used for preventing PAT-induced liver, kidney and gastrointestinal damage. SeNPs have good dispersibility, in vitro antioxidant activity, and are much less cytotoxic than sodium selenite. Cell culture studies indicated that SeNPs can effectively alleviate PAT-induced excessive production of intracellular ROS, the decline of glutathione peroxidase activity, and the suppression of cell viability. Evaluation of serum biochemical parameters, histopathology, oxidative stress biomarkers and activities of antioxidant enzymes in a mouse model showed that pre-treatment with SeNPs (2 mg Se/kg body weight) could ameliorate PAT-induced oxidative damage to the liver and kidneys of mice, but PAT-induced gastrointestinal oxidative damage and barrier dysfunction were not recovered by SeNPs, possibly because the toxin doses suffered by the gastrointestinal as the first exposed tissues exceeded the regulatory capacity of SeNPs. These results suggested that a combination of other strategies may be required to completely block PAT toxicity.
Collapse
|
32
|
Rajendran D, Ezhuthupurakkal PB, Lakshman R, Gowda NKS, Manimaran A, Rao SBN. Application of encapsulated nano materials as feed additive in livestock and poultry: a review. Vet Res Commun 2022; 46:315-328. [DOI: 10.1007/s11259-022-09895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
33
|
Spirulina platensis and biosynthesized selenium nanoparticles improve performance, antioxidant status, humoral immunity and dietary and ileal microbial populations of heat-stressed broilers. J Therm Biol 2022; 104:103195. [DOI: 10.1016/j.jtherbio.2022.103195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
34
|
Qiu K, Zheng JJ, Obianwuna UE, Wang J, Zhang HJ, Qi GH, Wu SG. Effects of Dietary Selenium Sources on Physiological Status of Laying Hens and Production of Selenium-Enriched Eggs. Front Nutr 2021; 8:726770. [PMID: 34938756 PMCID: PMC8685220 DOI: 10.3389/fnut.2021.726770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new sources of organic selenium (Se) has potential benefits for animal production and human nutrition via animal-based foods enriched with Se. The objective of this study was to evaluate the effects of Se-enriched insect protein (SEIP) in comparison with other sources, such as sodium selenite (SS) and selenium-enriched yeast (SEY), on performance, egg quality, selenium concentration in eggs, serum biochemical indices, immune capacity, and intestinal morphology of laying hens. Four hundred and fifty 24-week-old Hy-Line Brown laying hens with 94.0 ± 1.5% laying rate were randomly allocated to five groups with six replicates of 15 hens each. The control diet was prepared without adding exogenous selenium (calculated basal Se content of 0.08 mg/kg). The normal group was fed basal diets supplemented with 0.3 mg/kg of Se provided by sodium selenite. Three treatment groups (SS, SEY, and SEIP, respectively) were fed basal diets supplemented with 2 mg/kg of Se provided by sodium selenite, Se-enriched yeast, and SEIP, respectively. The feeding trial lasted for 12 weeks. Results revealed that dietary supplementation of 2 mg/kg of Se increased egg weight, decreased feed conversion ratio, and enhanced the antioxidant capacity of eggs in laying hens relative to the control group, whereas no significant differences were observed among SS, SEY, and SEIP treatment groups for the same. The organic source of Se provided by SEY or SEIP showed higher bio efficiency, as indicated by higher selenium content in eggs of SEY and SEIP compared with SS, although higher content was observed in SEY compared with SEIP. Also, the organic Se source significantly improved antioxidant capacity and immune functions of laying hens than the inorganic Se source. Diets supplemented with SEIP and SS significantly improved jejunal morphology of the laying hens compared with SEY, whereas SEIP was more effective than SEY to improve the oviduct health of laying hens. The results of this work evidently points the additive effect and nontoxicity of SEIP. Thus, SEIP could be used as another organic source of Se in the diet of laying hens and production of selenium-enriched eggs for humans.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Zheng
- Beijing Agricultural Products Quality and Safety Center, Beijing, China
| | - Uchechukwu Edna Obianwuna
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Rana T. Prospects and future perspectives of selenium nanoparticles: An insight of growth promoter, antioxidant and anti-bacterial potentials in productivity of poultry. J Trace Elem Med Biol 2021; 68:126862. [PMID: 34555772 DOI: 10.1016/j.jtemb.2021.126862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
Nanoparticles have been attracted attention in poultry research due to their low toxicity, higher bio-availability, high surface area with sustained drug release. Dietary supplementation with selenium nanoparticles (Se-NPs) plays a regulatory role in maintaining growth performance, feed conversion ratio (FCR), antioxidant defense as well as microbial control. Se-NPs have emerging importance in modulating intestinal health through the maintenance of beneficial microbes (microflora) as well as the production of short-chain fatty acids (SCFA). Se-NPs regulate intrinsic redox status by scavenging free radicals. The antioxidant potentiality of Se-NPs is influenced by the activation of the seleno-enzymes such as thioredoxin reductase and glutathione peroxidase family (GPx) involved in scavenging of Reactive Oxygen Species (ROS). The emerging significance of Se-NPs on antimicrobial activity has been exploited due to their bio-accumulative effects and biocompatibility potentiality in the cellular systems against poultry pathogens. The present review highlights on growth performance, antioxidant defense, and anti-bacterial potentiality of Se-NPs in poultry and also provide insight into its significance in the poultry industry.
Collapse
Affiliation(s)
- Tanmoy Rana
- Department of Veterinary Clinical Complex (V.M.E.J.), West Bengal University of Animal & Fishery Sciences, Kolkata, India(1).
| |
Collapse
|
36
|
Zhou W, Miao S, Zhu M, Dong X, Zou X. Effect of Glycine Nano-Selenium Supplementation on Production Performance, Egg Quality, Serum Biochemistry, Oxidative Status, and the Intestinal Morphology and Absorption of Laying Hens. Biol Trace Elem Res 2021; 199:4273-4283. [PMID: 33615395 DOI: 10.1007/s12011-020-02532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
The objective of this study was to investigate the feasibility of using glycine nano-selenium (NS-Gly) as a feed supplement and to evaluate its influence on production performance, egg quality, serum biochemistry, oxidative status, and the intestinal morphology and absorption of laying hens. A total of 864 hens at 40 weeks were randomly assigned into six groups including the basal diet (control, 0.13 mg Se/kg); basal diet + 0.30 mg Se/kg (Na2SeO3) diet; and basal diet + 0.15, 0.30, 0.45, and 0.60 mg Se/kg (NS-Gly) diet. After 8 weeks of Se supplementation, no difference was observed among the treatments on production performance and egg quality (P > 0.05). The levels of albumin (ALB) and alanine aminotransferase (GPT) were significantly influenced by dietary Se supplementation (P < 0.05). In the serum, the level of glutathione peroxide (GSH-Px) was significantly increased in the groups with the dietary NS-Gly supplementation (P < 0.05). The superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) levels in all groups of NS-Gly supplementation had a remarkable increase (P < 0.05). In the liver, GSH-Px was significantly increased in 0.45 and 0.60 mg/kg NS-Gly groups (P < 0.05). The activities of SOD and catalase (CAT) were significantly increased in the groups of 0.30 mg/kg NS-Gly diet (P < 0.05). The results of intestinal morphology showed that the crypt depth was affected by higher dose groups of NS-Gly diets in the duodenum, and the differences (P < 0.05) were obtained in villus height, the crypt depth, and the V/C in the jejunum. In the ileum, a significant increase (P < 0.05) of villus height was observed in 0.15 and 0.3 mg/kg Se-added groups. The V/C was the highest in the SS groups (P < 0.05). The mRNA levels of solute carrier family 3 member 1 (rBAT), solute carrier family 6 member 19 (B0AT1), and solute carrier family 15 member 1 (PepT1) increased at different degrees in the duodenum, especially in 0.15 and 0.60 mg/kg NS-Gly groups (P < 0.05). In the jejunum, the expression of B0AT1 was similar to that in the duodenum, and the expression of rBAT increased significantly in the 0.30 and 0.45 mg/kg NS-Gly groups (P < 0.05). The mRNA level of PepT1 increased significantly in the 0.30 mg/kg SS group. Conclusively, dietary NS-Gly supplementation could improve the antioxidant capacity, as well as the structure of small intestine in laying hens, although have no significant effects on the production performance and egg quality.
Collapse
Affiliation(s)
- Wenting Zhou
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Sasa Miao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Mingkun Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Xinyang Dong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Xiaoting Zou
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China.
| |
Collapse
|
37
|
Qiu K, Obianwuna UE, Wang J, Zhang HJ, Qi GH, Wu SG. Effects of Selenium Conjugated to Insect Protein on Pharmacokinetics of Florfenicol and Enrofloxacin in Laying Hens. Front Vet Sci 2021; 8:745565. [PMID: 34708103 PMCID: PMC8542898 DOI: 10.3389/fvets.2021.745565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
In the context of increasing awareness on the dietary supplementation of organic selenium in commercial poultry production and ensuring safe egg production, the present study investigated the effects of selenium on the pharmacokinetics of the therapeutic use of florfenicol and enrofloxacin from perspectives of laying performance, selenium deposition in eggs, and drug residue in plasma, organs, and eggs. A 2 × 3 factorial arrangement with two kinds of drugs (florfenicol vs. enrofloxacin, 200 mg/kg) and three levels of dietary organic selenium SCIP (selenium conjugated to insect protein) (0, 2, and 5 mg/kg) was designed together with a blank control group. Healthy Hy-Line Brown laying hens (n = 252, 40-week-old and 90.0 ± 1.7% of egg production rate) were randomly allocated into one of seven treatments with six replicates and six hens per replicate. The experiment lasted for 42 days and consisted of three periods (adjusted stage, depositional stage, and eliminating stage) of 14 days each. These stages entail feeding of the laying hens with basal diets, addition of drugs and selenium synchronously into the diets, drug withdrawal from diet, and supply of selenium uninterruptedly in the diet. Egg production and feed intake were recorded on daily and weekly bases, respectively. The selenium content in egg yolk, egg white, and whole eggs and the drug residues in eggs, plasma, liver, kidney, and breast muscle were determined on days 2, 3, 5, 6, 7, 9, 11, and 14 of the depositional and eliminating stages. There was no significant difference (p > 0.05) in egg production among the dietary treatments, but feed intake decreased significantly (p < 0.05) in the drug treatment group compared to other groups. Dietary organic selenium decreased the residue of drugs in tissues and eggs, while the metabolism and deposition of selenium in laying hens were suppressed due to drug effects. The results of the present study are of significance to enrich the knowledge of the pharmacokinetics of florfenicol and enrofloxacin in laying hens and ensure the quality of poultry products.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Uchechukwu Edna Obianwuna
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Ye R, Huang J, Wang Z, Chen Y, Dong Y. Trace Element Selenium Effectively Alleviates Intestinal Diseases. Int J Mol Sci 2021; 22:ijms222111708. [PMID: 34769138 PMCID: PMC8584275 DOI: 10.3390/ijms222111708] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Selenium (Se) is an essential trace element in the body. It is mainly used in the body in the form of selenoproteins and has a variety of biological functions. Intestinal diseases caused by chronic inflammation are among the most important threats to human health, and there is no complete cure at present. Due to its excellent antioxidant function, Se has been proven to be effective in alleviating intestinal diseases such as inflammatory bowel diseases (IBDs). Therefore, this paper introduces the role of Se and selenoproteins in the intestinal tract and the mechanism of their involvement in the mediation of intestinal diseases. In addition, it introduces the advantages and disadvantages of nano-Se as a new Se preparation and traditional Se supplement in the prevention and treatment of intestinal diseases, so as to provide a reference for the further exploration of the interaction between selenium and intestinal health.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100193, China;
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
- Correspondence:
| |
Collapse
|
39
|
Abd El-Ghany WA, Shaalan M, Salem HM. Nanoparticles applications in poultry production: an updated review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
40
|
Wu Z, Ren Y, Liang Y, Huang L, Yang Y, Zafar A, Hasan M, Yang F, Shu X. Synthesis, Characterization, Immune Regulation, and Antioxidative Assessment of Yeast-Derived Selenium Nanoparticles in Cyclophosphamide-Induced Rats. ACS OMEGA 2021; 6:24585-24594. [PMID: 34604640 PMCID: PMC8482516 DOI: 10.1021/acsomega.1c03205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 05/05/2023]
Abstract
This article introduces an environmentally friendly and more economical method for preparing red selenium nanoparticles (Se-NPs) with high stability, good biocompatibility, and narrow size using yeast as a bio-reducing agent with high antioxidant, immune regulation, and low toxicity than inorganic and organic Se. The yeast-derived Se-NPs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed spherical-shaped particles of Se-NPs with an average diameter of 71.14 ± 18.17 nm, an amorphous structure, and surface enhancement with an organic shell layer, that provide precise geometry and stability in the formation of bio-inert gray or black Se-NPs instead of red Se-NPs. Furthermore, the addition of 0.3-0.8 mg/kg Se-NPs in the feed significantly improved the health of mice. As Se-NPs stimulated the oxidative state of mice, it significantly increased the level of GSH-Px, SOD, and AOC, and decreased the level of MDA. The yeast-derived Se-NPs alleviated the immunosuppression induced by cyclophosphamide, whereas protected the liver, spleen, and kidney of mice, stimulated the humoral immune potential of the mice, and significantly increased the levels of I g M, IgA, and I g G. These results indicated that the yeast-derived Se-NPs, as a trace element feed additive, increased the defense of the animal against oxidative stress and infectious diseases and therefore Se-NPs can be used as a potential antibiotic substitute for animal husbandry.
Collapse
Affiliation(s)
- Ziqian Wu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
| | - Yanli Ren
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
| | - Yuejuan Liang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
| | - Liting Huang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
| | - Yuanting Yang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
| | - Ayesha Zafar
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Fujie Yang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
| | - Xugang Shu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, Guangdong Province, P.R. China
- Guangdong
Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong Province 510225, China
| |
Collapse
|
41
|
Wang CY, Xia WH, Wang L, Wang ZY. Manganese deficiency induces avian tibial dyschondroplasia by inhibiting chondrocyte proliferation and differentiation. Res Vet Sci 2021; 140:164-170. [PMID: 34481207 DOI: 10.1016/j.rvsc.2021.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Manganese (Mn) is an essential trace element for bone growth, and its deficiency has been shown to increase the incidence of leg abnormalities in fast-growing broilers, such as tibial dyschondroplasia (TD). Proliferation and differentiation of growth plate chondrocyte are critical for tibia development, but their roles in Mn deficiency-induced TD remains to be elucidated. Thirty 1-day-old Arbor Acres chicks were randomly divided into two groups and fed with control diet (60 mg Mn/kg diet) and Mn-deficiency diet (22 mg Mn/kg diet) for 42 days, respectively. Mn deficiency-induced TD model was successfully established and samples from proximal tibia metaphysis and growth plate were collected for assays. Pathological observation showed that Mn deficiency induced morphological abnormality and irregular arrangement of chondrocytes in proliferative and hypertrophic zone of tibial growth plate. Also, Mn deficiency decreased mRNA and protein expression levels of type II collagen and type X collagen in tibial growth plate, indicating the impairment of proliferating and hypertrophic chondrocytes. Moreover, down-regulated gene expression levels of Sox9, Tgf-β, Ihh, Runx2, Mef2c and Bmp-2 were shown in tibial growth plate of Mn-deficiency group, demonstrating that Mn deficiency inhibited the transcription levels of key regulators to disrupt chondrocyte proliferation and differentiation. Collectively, these findings confirmed that Mn deficiency affected the proliferation and differentiation of chondrocytes in tibial growth plate via inhibiting related regulatory factors, leading to TD in broilers.
Collapse
Affiliation(s)
- Cui-Yue Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wei-Hao Xia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China..
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China..
| |
Collapse
|
42
|
Meng TT, Lin X, Xie CY, He JH, Xiang YK, Huang YQ, Wu X. Nanoselenium and Selenium Yeast Have Minimal Differences on Egg Production and Se Deposition in Laying Hens. Biol Trace Elem Res 2021; 199:2295-2302. [PMID: 32845448 DOI: 10.1007/s12011-020-02349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to compare the effects of nanoselenium (NS) and selenium yeast (SY) on the performance, egg selenium (Se) concentration, and anti-oxidative capacity of hens. A total of 216 Brown Hy-line hens (29-week old) were randomly allocated into three treatments (6 replicate/treatment, 12 hens/replicate). The pre-trial period lasted 7 days, and the experimental period lasted 35 days. Dietary treatments included corn-soybean meal basal diet (containing 0.16 μg Se/g, as control group), and basal diet supplemented with 0.3 mg Se/kg diet (Se was from NS or SY), called as SY group or NS group, respectively. At the end of the experiment, one hen per replicate from each treatment was slaughtered. Liver, spleen, and kidney tissues were sampled for the determination of Se concentrations. The results showed that NS or SY supplement significantly improved feed conversion ratio (P < 0.05), soft broken egg rate (P < 0.05), and the serum T-AOC value (P < 0.05) when compared with control group. Remarkably, the deposition of Se increased significantly (P < 0.05) and equivalently in egg, liver, and kidney of hens supplemented with both NS and SY. Interestingly, SY supplement also enhanced the serum CAT and SOD activities (P < 0.05), NS but not SY significantly reduced serum MDA (P < 0.05), whereas RT-PCR results did not show significant differences in the mRNA levels of antioxidant genes among three groups (P > 0.05). Taken together, dietary supplemented with SY or NS improved the Se deposition in eggs, liver and kidney of laying hens, increased antioxidant activity, and NS supplement had greater Se deposition in the kidney tissue than SY supplement. SY or NS supplement could be considered to be applied for Se-enriched egg production.
Collapse
Affiliation(s)
- Tian-Tian Meng
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xue Lin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chun-Yan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-Hua He
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yang-Kui Xiang
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., Changsha, 410300, China
| | - Yi-Qiang Huang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., Changsha, 410300, China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
43
|
Application of Selenium Conjugated to Animal Protein in Laying Hens' Diet for the Production of Selenium-Enriched Eggs. Foods 2021; 10:foods10061224. [PMID: 34071289 PMCID: PMC8228457 DOI: 10.3390/foods10061224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The current experiment was conducted to investigate the application effects of selenium conjugated to insect protein (SCIP) in the production of selenium-enriched eggs. A total of 450 laying hens were randomly assigned to five dietary groups, each group consisting of six replicates. Hens in the control group received a diet without selenium supplementation, whereas hens in the other four groups received diets supplemented with either 1, 2, 5, or 10 mg/kg of selenium from SCIP. The productive performance, egg quality, antioxidant and immune capacity, biochemical indices, intestinal morphology, and oviduct health of laying hens were evaluated. The results showed that the supplementation of organic selenium provided by SCIP in the diets of laying hens enhanced performance and egg quality without any toxicity effect, even at the 10 mg/kg inclusion level. A level of 2 mg/kg of selenium provided by SCIP in diets tentatively improved the serum antioxidant and immune capacity, intestinal development, and oviduct health of laying hens in a conspicuous manner. Hence, the biosafety and positive effects of SCIP as a feed additive supplement in laying hens' diet have been demonstrated with the enhanced production of safe and selenium-enriched eggs.
Collapse
|
44
|
Nano-selenium on reproduction and immunocompetence: an emerging progress and prospect in the productivity of poultry research. Trop Anim Health Prod 2021; 53:324. [PMID: 33991248 DOI: 10.1007/s11250-021-02698-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Nanotechnology, an emerging and promising technology, has been implicated to revolutionize the poultry industry. The main aspect of nanotechnology was to modify or alter the particle size into nanometers and thereby alter the physical as well as chemical features of the particular molecules. Selenium (Se), an essential trace element, can play an immense role in the maintenance of diverse physiological functions, body metabolism and cellular homeostasis, and the performance of poultry. Selenium nanoparticles (Se-NPs) are of growing importance due to its nutrients digestibility, medicinal therapy, targeted drug delivery system, and production of vaccines. Se-nanoparticles are having importance due to its high bioavailability and digestive efficiency. Se-NPs have been implicated to increase relative weights of immune-related organs (burse and thymus) to enhance immunity and thereby modulate egg production as well as the reproductive performance of birds. The present review is highlighted on the significant role of nano-selenium on reproductive performance and immunocompetence in poultry as comparative advantages over conventional sources of Se in poultry diets.
Collapse
|
45
|
Moya-Andérico L, Vukomanovic M, Cendra MDM, Segura-Feliu M, Gil V, Del Río JA, Torrents E. Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology. CHEMOSPHERE 2021; 266:129235. [PMID: 33316472 DOI: 10.1016/j.chemosphere.2020.129235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/27/2023]
Abstract
The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity.
Collapse
Affiliation(s)
- Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marija Vukomanovic
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Maria Del Mar Cendra
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
46
|
Urbankova L, Skalickova S, Pribilova M, Ridoskova A, Pelcova P, Skladanka J, Horky P. Effects of Sub-Lethal Doses of Selenium Nanoparticles on the Health Status of Rats. TOXICS 2021; 9:toxics9020028. [PMID: 33546233 PMCID: PMC7913318 DOI: 10.3390/toxics9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
Selenium nanoparticles (SeNPs) are fast becoming a key instrument in several applications such as medicine or nutrition. Questions have been raised about the safety of their use. Male rats were fed for 28 days on a monodiet containing 0.5, 1.5, 3.0 and 5.0 mg Se/kg. Se content in blood and liver, liver panel tests, blood glucose, total antioxidant capacity (TAC), the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were analysed. Liver and duodenum were subjected to histopathology examination. The weight gain of rats showed no differences between tested groups. Se content in blood was higher in all treated groups compared to the control group. The liver concentration of Se in the treated groups varied in the range from 222 to 238 ng/g. No differences were observed in the activity of AST (aspartate aminotransferase), ALP (alkaline phosphatase) and TAS (total antioxidant status). A significant decrease in ALT activity compared to the control group was observed in the treated groups. GPx activity varied from 80 to 88 U/mL through tested groups. SOD activity in liver was decreased in the SeNP-treated group with 5 mg Se/kg (929 ± 103 U/mL). Histopathological examination showed damage to the liver parenchyma and intestinal epithelium in a dose-dependent manner. This study suggests that short-term SeNP supplementation can be safe and beneficial in Se deficiency or specific treatment.
Collapse
Affiliation(s)
- Lenka Urbankova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (L.U.); (M.P.); (J.S.); (P.H.)
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (L.U.); (M.P.); (J.S.); (P.H.)
- Correspondence:
| | - Magdalena Pribilova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (L.U.); (M.P.); (J.S.); (P.H.)
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (A.R.); (P.P.)
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (A.R.); (P.P.)
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (L.U.); (M.P.); (J.S.); (P.H.)
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (L.U.); (M.P.); (J.S.); (P.H.)
| |
Collapse
|
47
|
Cheng Y, Huang Y, Liu K, Pan S, Qin Z, Wu T, Xu X. Cardamine hupingshanensis aqueous extract improves intestinal redox status and gut microbiota in Se-deficient rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:989-996. [PMID: 32761836 DOI: 10.1002/jsfa.10707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As an essential trace element for mammalian species, selenium (Se) possesses powerful antioxidant properties and is a potential regulator of intestinal microbiota. However, effects of Cardamine hupingshanensis aqueous extract (CE), rich in Se, on balancing the intestinal redox status and regulating gut microbiota have been neglected. RESULTS An Se-deficient rat model was established by feeding a low-Se diet (LD) for 5 weeks and CE was then supplemented to LD or normal-Se-diet (ND) rats. Antioxidant enzyme activities and short-chain fatty acids (SCFA) concentration were increased by CE in both LD and ND rats. CE improved the intestinal morphology of LD rats impaired by deficient Se. Intestinal microbiota demonstrated various changes; for example, Butyrivibrio was increased in LD rats, while Bacteroides, Christensenellaceae, Clostridiaceae and Blautia were enhanced in ND rats. CONCLUSION Our findings provide evidence that CE shows potential in improving intestinal redox status and regulating gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kunyuan Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhiguo Qin
- Enshi Institute of Natural Plant Selenium, Enshi, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
El-Kazaz SE, Abo-Samaha MI, Hafez MH, El-Shobokshy SA, Wirtu G. Dietary supplementation of nano-selenium improves reproductive performance, sexual behavior and deposition of selenium in the testis and ovary of Japanese quail. J Adv Vet Anim Res 2020; 7:597-607. [PMID: 33409302 PMCID: PMC7774789 DOI: 10.5455/javar.2020.g457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/03/2022] Open
Abstract
Objective Selenium (Se), as the form of selenite, is commonly supplemented in poultry diet, which has low bioavailability and high toxicity. Here, we compared the effects of the supplementation of the diet with Se nanoparticles (nano-Se) on the growth, sexual behavior, and reproductive performance (gonad size, sperm quality traits, and plasma testosterone levels for males and egg production for females) of Japanese quail (Coturnix coturnix japonica). Materials and Methods Quail chicks (n = 300) aging 14 days were divided into three groups: Group 1 (basal diet and Se at 0.2 mg/kg ration), Group 2 (basal diet and nano-Se at 0.2 mg/kg ration), and Group 3 (basal diet and nano-Se at 0.1 mg/kg ration). Several parameters relating to body weight and egg were measured. Sexual behaviors of the birds were observed by continuous visual scanning. The sperm viability, sperm morphology, and concentration of spermatozoa were determined after staining and microscopic examination. The plasma testosterone levels were determined by indirect enzyme immunoassay assay. The Se concentrations in the testicular, ovarian, and ration samples were measured by flame emission atomic absorption spectrophotometer. Results The type or concentration of nano-Se administration had no impact on body weight, feed efficiency, egg production, or egg weight. However, the total feed intake throughout the experiment was reduced in Group 2 at 0.2 mg/kg. Nano-Se supplementation significantly increased the sexual behavior. In general, the deposition of Se in the testicular and ovarian tissues increased with increasing supplement concentration. At the same supplement concentration, the tissue deposition of nano-Se was more enhanced than that of inorganic Se. Nano-Se supplementation improved the testicular functions by enhancing plasma testosterone level and sperm quality traits (sperm count, motility, and viability). This improvement was found more prominent with the lower supplement concentration (when comparing 0.1 vs. 0.2 mg/kg diet). Conclusion It is concluded that the use of nano-Se (at 0.1 mg/kg) in the ration of Japanese quail improves several reproductive performance parameters.
Collapse
Affiliation(s)
- Sara Elsayed El-Kazaz
- Animal and Poultry Behaviour and Management, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Magda Ismail Abo-Samaha
- Poultry Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mona Hafez Hafez
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Set A El-Shobokshy
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Gemechu Wirtu
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
49
|
Dalia AM, Loh TC, Sazili AQ, Samsudin AA. Influence of bacterial organic selenium on blood parameters, immune response, selenium retention and intestinal morphology of broiler chickens. BMC Vet Res 2020; 16:365. [PMID: 32993790 PMCID: PMC7526326 DOI: 10.1186/s12917-020-02587-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Several studies indicated that dietary organic selenium (Se) usually absorbed better than an inorganic source, with high retention and bioavailability. Dietary Se as an antioxidant element affects the immune system and hematological status in animals. Therefore, the aim of this study was to evaluate the effect of dietary supplementation of bacterial selenium as an organic source on hematology, immunity response, selenium retention, and gut morphology in broiler chickens. RESULTS The present results revealed that supplementation of inorganic Se was associated with the lowest level of RBC, HB, and PCV with significant difference than ADS18-Se. In the starter stage, both T2 and T5 were associated with the significantly highest IgG level compared to the basal diet, while all supplemented groups showed higher IgM levels compared to the control group. In the finisher phase, all Se supplemented groups showed significant (P ˂ 0.05) increases in IgG, IgA, and IgM levels compared to T1. Birds fed bacterial-Se showed high intestinal villus height and better Se retention more than sodium selenite. The organic selenium of ADS18 had a superior action in improving Se retention compared to ADS1 and ADS2 bacterial Se. CONCLUSIONS Bacterial organic Se had a beneficial effect on the villus height of small intestine led to high Se absorption and retention. Thus, it caused a better effect of Se on hematological parameters and immunity response.
Collapse
Affiliation(s)
- A. M. Dalia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan
| | - T. C. Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - A. Q. Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - A. A. Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
50
|
Pardechi A, Tabeidian SA, Habibian M. Comparative assessment of sodium selenite, selenised yeast and nanosized elemental selenium on performance response, immunity and antioxidative function of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1819896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Amirarsalan Pardechi
- Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sayed Ali Tabeidian
- Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Mahmood Habibian
- Young Researchers and Elite Club, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| |
Collapse
|