1
|
Martins RX, Gomes C, Carvalho M, Souza JADCR, Souza T, Farias D. A network toxicology and molecular docking-based approach revealed shared hepatotoxic mechanisms and targets between the herbicide 2,4-D and its metabolite 2,4-DCP. Toxicology 2025; 513:154086. [PMID: 39954767 DOI: 10.1016/j.tox.2025.154086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its major environmental metabolite 2,4-dichlorophenol (2,4-DCP) are pollutants associated with hepatotoxicity, whose molecular mechanisms remain poorly understood. This study investigated the molecular pathways and targets involved in 2,4-D and 2,4-DCP-induced hepatotoxicity using protein-protein interaction (PPI) network analyses and molecular docking. Target genes were identified using PharmMapper and SwissTargetPrediction, and cross-referenced with hepatotoxicity-related genes from GeneCards and OMIM databases. The PPI network, constructed via STRING and visualized in Cytoscape, revealed 12 critical hub nodes, including HSP90AA1, RXRA, EGFR, SRC, CREBBP, PIK3R1, ESR1, AKT1, RAF1, IGF1R, MDM2, and MAPK14. Gene Ontology (GO) analysis indicated processes such as apoptosis, oxidative stress, mitochondrial dysfunction, and lipid metabolism impairment, while Reactome pathway analysis highlighted disruptions in PI3K/AKT and nuclear receptors signaling. Molecular docking confirmed significant interactions of 2,4-D and 2,4-DCP with key proteins, including SRC, AKT, RXRA, MDM2, and HSP90AA1. These results suggest that 2,4-D and 2,4-DCP share similar toxic mechanisms, providing new insights into their hepatotoxicity pathways for the first time.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Cleyton Gomes
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Juliana Alves da Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil.
| |
Collapse
|
2
|
Quds R, Hashmi MA, Sharma M, Mahmood R. A spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of human hemoglobin with 2,4-dichlorophenoxyacetic acid. J Biomol Struct Dyn 2025:1-13. [PMID: 40289668 DOI: 10.1080/07391102.2025.2496770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 04/30/2025]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a systemic herbicide widely used to control dicotyledonous weeds. The general population is routinely exposed to 2,4-D due to consumption of contaminated food and water. 2,4-D is known to damage cellular components in human erythrocytes. This study investigated in detail the interaction of 2,4-D with human hemoglobin (Hb), the major protein in erythrocytes (>95%), and characterized the binding properties utilizing multi-spectrometric and in silico techniques. The UV-visible spectra suggested that 2,4-D interacts with Hb. The fluorescence quenching studies at three different temperatures further showed the binding of 2,4-D to Hb and the formation of a ground-state complex. The results indicated that 2,4-D binds spontaneously to a single moderate-affinity binding site on Hb. Furthermore, the binding process involved van der Waals forces and hydrogen bonding. Circular dichroism and synchronous fluorescence spectra showed that the binding of 2,4-D altered the conformation of Hb and decreased the polarity around its tryptophan residues. 2,4-D binding inhibited the inherent esterase activity of Hb. Computational analysis demonstrated that the Hb-2,4-D complex was stable and identified the amino acid residues at the binding site. Thus, 2,4-D interacts with Hb, modifies the protein conformation and consequently impairs its functions.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Monika Sharma
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Riaz Mahmood
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Knani S, Khemis IB, Fuhr ACFP, Lefi N, Mahmoud SA, Dotto GL, Alenazi A, Selmi R. Theoretical modeling of 2,4-dichlorophenoxyacetic acid on acid-treated peanut skin: microscopic analysis via statistical physics treatment. Sci Rep 2025; 15:14238. [PMID: 40274840 PMCID: PMC12022058 DOI: 10.1038/s41598-025-92567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
In this study, the experimental adsorption isotherms of 2,4-dichlorophenoxyacetic acid (2,4-DA) on peanut skin treated with sulfuric acid were analyzed under different temperatures and characterized by Fourier transform infrared spectroscopy. The adsorption mechanism was interpreted based on statistical physics theory using the homogeneous double-layer model with one energy (HDLM1E). The modeling results indicated that the removal of 2,4-DA molecules occurred through a multi-interactive adsorption mechanism at temperatures of 25, 35, and 45 °C (0.76 < n < 0.99). In comparison, at 55 °C, a monomolecular adsorption mechanism was observed (n = 1.00). At 25 °C, the adsorbent demonstrated excellent performance in the 2,4-DA removal, with a maximum capacity of 244.33 mg/g. The increase in temperature reduced the adsorbent's performance in removing 2,4-DA molecules because it increased thermal collisions, which harmed the system. From an energetic point of view, the adsorbent showed less effectiveness in removing the herbicide at high temperatures, indicating an exothermic adsorption process. The surface adsorption energies ranged from 4.72 to 6.06 kJ/mol, indicating the predominance of a physisorption mechanism. Therefore, the adsorption process at low temperatures is essential for industrial applications to ensure efficient wastewater treatment. This result is possible using an adsorbent from peanut skin subjected to acid treatment. Finally, the creation of an adsorbent from acid-treated peanut (Arachis hypogaea) skin presents an excellent alternative, yielding exceptional results in removing the 2,4-DA herbicide.
Collapse
Affiliation(s)
- Salah Knani
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia.
| | - Ismahene Ben Khemis
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, LR 18 ES 18, Environment Street, 5019, Monastir, Tunisia.
| | - Ana Carolina Ferreira Piazzi Fuhr
- Materials Science and Engineering Graduate Program, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nizar Lefi
- Department of Physics, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Safwat A Mahmoud
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Abdulaziz Alenazi
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Ridha Selmi
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Kostina-Bednarz M, Płonka J, Perkons I, Bartkevics V, Barchanska H. Pesticides of natural origin as safer alternatives to synthetic pesticides: Identification of hinokitiol, tebuconazole and 2,4-D metabolites and evaluation of their impact on cereals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179177. [PMID: 40121918 DOI: 10.1016/j.scitotenv.2025.179177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The persistence of synthetic pesticides in ecosystems and the accumulation of their metabolites, which may have unknown toxicological properties, pose significant ecological and health risks. These compounds disrupt key plant metabolic pathways, affecting the synthesis of amino acids, secondary metabolites, and phytohormones, ultimately influencing plant growth, development, and food quality. Natural allelochemical compounds, such as hinokitiol (β-thujaplicin), present promising alternatives due to their biopesticidal properties and lower environmental persistence. This study, for the first time, verifies the hypothesis that pesticides of natural origin are metabolized more rapidly and cause less disruption to plant metabolism compared to synthetic pesticides, thereby reducing ecological and health risks. This study evaluated the metabolic effects of applying hinokitiol, and synthetic pesticides, 2,4-dichlorophenoxyacetic acid and tebuconazole (1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol), to wheat and barley under controlled conditions. A metabolic fingerprinting liquid chromatography-mass spectrometry (LC-MS)/MS approach was applied to comprehensively assess the global metabolic response of the plants to both natural and synthetic pesticides. High-resolution LC-Full-MS/ddMS2 was employed to identify pesticide metabolites and track their degradation kinetics over a four-week period. This study evaluated the influence of biopesticides on the biosynthesis of amino acids, L-phenylalanine, L-tyrosine, and L-tryptophan, in treated plants. Hinokitiol induced modest changes in biogenic amine profiles (up to 50 % alterations), in contrast to the significant modifications observed with tebuconazole, which led to changes up to 270 % relative to the blank control. This research highlights a breakthrough in sustainable crop protection by demonstrating the lower ecological footprint and metabolic impact of natural pesticides compared to synthetic ones.
Collapse
Affiliation(s)
- Marianna Kostina-Bednarz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego Street 6, 44-100 Gliwice, Poland.
| | - Joanna Płonka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego Street 6, 44-100 Gliwice, Poland.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia.
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia.
| | - Hanna Barchanska
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego Street 6, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego Street 8, 44-100 Gliwice, Poland.
| |
Collapse
|
5
|
Tricase A, Catacchio M, Marchianò V, Macchia E, Bollella P, Torsi L. Ultrasensitive detection of 2,4-dichlorophenoxyacetic acid by inhibiting alkaline phosphatase immobilized onto a highly porous gold nanocoral electrode. NANOSCALE 2025; 17:9197-9204. [PMID: 40130359 PMCID: PMC11934013 DOI: 10.1039/d4nr04857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025]
Abstract
Herein, we describe the design and implementation of an ultrasensitive enzyme inhibition-based biosensor for 2,4-dichlorophenoxyacetic acid (2,4-D) detection. The biosensor utilizes alkaline phosphatase (AlP), immobilized on a photo-crosslinked polymer matrix of poly(vinyl alcohol) functionalized with N-methyl-4(4'-formylstyryl)pyridinium (PVA-SbQ), supported by electrodes coated with highly porous gold nanocorals (hPGNCs). After preliminary electrochemical and morphological characterization, the PVA-SbQ/AlP/hPGNC electrode was tested for inhibition studies employing ascorbate 2-phosphate (A2P) as the initial substrate. The biosensor preparation/sensing time from electrode preparation to final results is approximately 45 minutes, which enables the possibility to easily scale up the electrode production process on a daily basis with a reliable analytical result in only 5 minutes of amperometric measurement. Following the initial kinetic studies and evaluation of analytical performance, the PVA-SbQ/AlP/hPGNC platform demonstrated a linear detection range from 0.002 to 22 ppt, with a sensitivity of 0.121 ± 0.006 ppt-1 (RSD = 4.9%, R2 = 0.996, and N = 6) and a limit of detection (LoD) of 0.7 ppq. This sensitivity is 7-8 orders of magnitude below the regulatory thresholds in Europe and the USA. Furthermore, the biosensor was validated using 19 homogenized wheat leaf sample extracts, prepared in line with European Food Safety Authority (EFSA) guidelines, achieving average recoveries exceeding 96% and RSD values under 9.8%. The biosensor also exhibited robust operational and storage stability, maintaining 84% (30 hours of continuous operation) and 94% (120 days) of its initial response, respectively. These results highlight the potential of the PVA-SbQ/AlP/hPGNC biosensor for on-site 2,4-D monitoring in agricultural crops and its feasibility for integration with artificial intelligence for advanced diagnostics.
Collapse
Affiliation(s)
- Angelo Tricase
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.
| | - Michele Catacchio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.
| | - Verdiana Marchianò
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.
| | - Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy.
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4-70125 Bari, Italy
| |
Collapse
|
6
|
Hui Y, Liu R, Mei Z, Xu A. Engineering efficient carrageenan materials for simultaneously removing herbicide, eight anionic/cationic dyes and metal ion contaminants and adsorption mechanism. Int J Biol Macromol 2025; 302:140551. [PMID: 39903989 DOI: 10.1016/j.ijbiomac.2025.140551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Developing highly efficient biomass-based adsorbents capable of simultaneously removing various water contaminants is highly desired amidst the growing depletion of fossil resources. Herein, a versatile κ-carrageenan/polyethyleneimine/glycerol triglycidyl ether (KC/PEI/GTE) biomass adsorbent was engineered and succeeded in removing herbicide, eight anionic/cationic dyes and metal ion from solutions. Systematic investigations examined the effects of adsorption conditions on the carrageenan adsorbent's performance towards these contaminants from five perspectives. Additionally, the impacts of four cationic chloride salts and four anionic sodium salts in solutions on contaminant adsorption and adsorbent recyclability were evaluated. Attractingly, the KC/PEI/GTE demonstrates exceptional adsorption performance, recycling capability and application potential, notably outperforming most reported adsorbents (adsorption capacities (removal efficiencies) of sodium 2,4-dichlorophenoxyacetate (2,4-D), acid blue-25 (AB25), methyl orange (MO) and methylene blue (MB) are 365 mg g-1 (91 %), 2357 mg g-1 (91 %), 743 mg g-1 (93 %) and 91 mg g-1 (90 %), respectively). A thermodynamic, four kinetic and four isothermal models, SEM, FT-IR and XPS analyses revealed that hydrogen bonding and electrostatic interactions are the primary driving forces for contaminants removals. Benefiting from its outstanding advantages, the adsorbent developed in this study shows a great potential for applications in wastewater purification.
Collapse
Affiliation(s)
- Yao Hui
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zijing Mei
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Airong Xu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, PR China.
| |
Collapse
|
7
|
Li X, Nie M, Yang K, Qi X, Yang L. Association between exposure to a mixture of dichlorophenol and parabens and lung function in adults from NHANES, 2007-2012. Heart Lung 2025; 72:32-41. [PMID: 40121927 DOI: 10.1016/j.hrtlng.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Few studies have examined the effects of dichlorophenol and parabens on lung function, with most focusing on individual chemicals. OBJECTIVES This study analyzes the effects of these chemicals on single or mixed exposures on lung function in adults. METHODS We utilized data from the 2007-2012 National Health and Nutrition Examination Survey (NHANES), focusing on urinary levels of dichlorophenol, parabens, and lung function measures. The generalized linear regression (GLM), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were applied to assess the impact of chemical exposure on lung function. RESULTS A total of 2,599 adults with complete data were included in the analysis. Detection rates exceeding 75 % for 2,5-Dichlorophenol (2,5-DCP), 2,4-Dichlorophenol (2,4-DCP), methyl paraben, and propyl paraben were observed. In GLMs, 2,5-DCP was significantly negatively associated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), either as a continuous (FVC: β = -0.012, 95 % CI = -0.018, -0.006; FEV1: β = -0.010, 95 % CI = -0.017, -0.004) or quartile variable (FVC: β = -0.027, 95 % CI = -0.039, -0.016; FEV1: β = -0.024, 95 % CI = -0.036, -0.011). The WQS regression confirmed a negative effect of the chemical mixture on lung function, with significant associations for both FVC (β = -0.013, 95 % CI = -0.018, -0.008) and FEV1 (β = -0.013, 95 % CI = -0.017, -0.007). These results were consistent in BKMR models. CONCLUSION Exposure to dichlorophenol and parabens, either individually or in combination, is associated with decreased lung function in humans.
Collapse
Affiliation(s)
- Xinwei Li
- Department of Geriatrics, Shanghai Fourth People's Hospital affiliated to Tongji University, Shanghai, China
| | - Meiyun Nie
- Department of Geriatrics, Shanghai Fourth People's Hospital affiliated to Tongji University, Shanghai, China
| | - Keke Yang
- Department of Geriatrics, Shanghai Fourth People's Hospital affiliated to Tongji University, Shanghai, China
| | - Xiaodong Qi
- Department of Geriatrics, Shanghai Fourth People's Hospital affiliated to Tongji University, Shanghai, China
| | - Ling Yang
- Department of Geriatrics, Shanghai Fourth People's Hospital affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Marambio OG, Martin-Trasancos R, Sánchez J, Ramos FA, Pizarro GDC. Fabrication of Functional Polymers with Gradual Release of a Bioactive Precursor for Agricultural Applications. Gels 2025; 11:90. [PMID: 39996633 PMCID: PMC11854728 DOI: 10.3390/gels11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Biodegradable and biocompatible polymeric materials and stimulus-responsive hydrogels are widely used in the pharmaceutical, agricultural, biomedical, and consumer sectors. The effectiveness of these formulations depends significantly on the appropriate selection of polymer support. Through chemical or enzymatic hydrolysis, these materials can gradually release bioactive agents, enabling controlled drug release. The objective of this work is to synthesize, characterize, and apply two controlled-release polymeric systems, focusing on the release of a phyto-pharmaceutical agent (herbicide) at varying pH levels. The copolymers were synthesized via free radical polymerization in solution, utilizing tetrahydrofuran (THF) as the organic solvent and benzoyl peroxide (BPO) as the initiator, without the use of a cross-linking agent. Initially, the herbicide was grafted onto the polymeric chains, and its release was subsequently tested across different pH environments in a heterogeneous phase using an ultrafiltration (UF) system. The development of these two controlled-release polymer systems aimed to measure the herbicide's release across different pH levels. The goal is to adapt these materials for agricultural use, enhancing soil quality and promoting efficient water usage in farming practices. The results indicate that the release of the herbicide from the conjugate systems exceeded 90% of the bioactive compound after 8 days at pH 10 for both systems. Furthermore, the two polymeric systems demonstrated first-order kinetics for herbicide release in aqueous solutions at different pH levels. The kinetic constant was found to be higher at pH 7 and 10 compared to pH 3. These synthetic hydrogels are recognized as functional polymers suitable for the sustained release of herbicides in agricultural applications.
Collapse
Affiliation(s)
- Oscar G. Marambio
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile;
| | - Rudy Martin-Trasancos
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Felipe A. Ramos
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile;
| | - Guadalupe del C. Pizarro
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile;
| |
Collapse
|
9
|
Marambio OG, Muñoz A, Martin-Trasancos R, Sánchez J, Pizarro GDC. The Design of a Controlled-Release Polymer of a Phytopharmaceutical Agent: A Study on the Release in Different PH Environments Using the Ultrafiltration Technique. Polymers (Basel) 2024; 16:3492. [PMID: 39771344 PMCID: PMC11728549 DOI: 10.3390/polym16243492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA-co-IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA-co-IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character. In addition, the swelling behavior (Wt%) was studied at different pH values using Liquid-phase Polymer Retention (LPR) in an ultrafiltration system. The acid hydrolysis of the herbicide from the conjugates follows a first-order kinetic, showing higher kinetic constants as the pH increases. The base-catalyzed hydrolysis reaction of the herbicide follows a zero-order kinetic, where the basic medium acts as a catalyst, accelerating the release rate of the herbicide and showing higher kinetic constants as the pH increases. The differences in the release rates found for the hydrogel herbicide at different pH values can be correlated with the difference in their swelling capacity, where the release rate generally increases with an increase in the swelling capacity from water solution at higher pH values. The study of the release process revealed that all samples in distilled water at a pH of 10 are representative of agricultural systems. It showed first-order swelling kinetics and an absorption capacity that conforms to the parameters for hydrogels for agricultural applications, which supports their potential for these purposes.
Collapse
Affiliation(s)
- Oscar G. Marambio
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile
| | - Alejandro Muñoz
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Rudy Martin-Trasancos
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Guadalupe del C. Pizarro
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile
| |
Collapse
|
10
|
Duque TS, Pinheiro RA, Souza IM, Silva GG, Soares MA, Barbosa Dos Santos J. Herbicides and bio-inputs: Compatibility and challenges for sustainable agriculture. CHEMOSPHERE 2024; 369:143878. [PMID: 39638133 DOI: 10.1016/j.chemosphere.2024.143878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
With population growth and the contamination of ecosystems by pesticides and chemical fertilisers, agriculture faces the challenge of increasing productivity in a sustainable manner. In response to this demand, the global ecological transition has promoted the use of bio-inputs, such as fungi and bacteria, which are essential for agricultural sustainability. However, the extensive use of herbicides in modern agriculture may compromise the effectiveness of these bio-inputs by interfering with their biochemical pathways. This review compiles and analyses information on the compatibility between herbicides and bio-inputs, focusing on the effects of herbicides on microbiological control agents and biofertilising bacteria. Based on scientific publications from the past four decades, the results indicate that herbicides can significantly interfere with different groups of microorganisms, depending on the variables assessed and the selectivity of the products. To mitigate these impacts, the prioritised use of selective herbicides, bio-inputs protected by specific molecules, and management practices that avoid direct contact between herbicides and bio-inputs is suggested. This study contributes to the understanding of interactions between herbicides and bio-inputs, promoting more sustainable agricultural practices aligned with global objectives for food security and environmental preservation.
Collapse
Affiliation(s)
- Tayna Sousa Duque
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Rodrigo Almeida Pinheiro
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Iasmim Marcella Souza
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Gabriele Gonçalves Silva
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| | - Marcus Alvarenga Soares
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil
| | - José Barbosa Dos Santos
- Department of Agronomy, Federal University of Vales do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Flafel HM, Rafatullah M, Lalung J, Kapoor RT, Siddiqui MR, Qutob M. Enhancing the efficiency of phytoremediation using water hyacinth (Eichhornia crassipes) for 2,4-dichlorophenoxyacetic acid removal with modified biochar as an assisted agent. CHEMOSPHERE 2024; 367:143591. [PMID: 39442577 DOI: 10.1016/j.chemosphere.2024.143591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
This study explores an innovative integrated system for removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from aquatic environments, utilizing a combination by modified biochar derived from waste biomass of palm kernel shells (PKS-BM) and water hyacinth (Eichhornia crassipes). The characterization of the biochar revealed significant surface functional groups, a substantial surface area, and a mesoporous structure conducive to adsorption application. Biochar-assisted phytoremediation demonstrated markedly higher removal efficiencies of 2,4-D as compared to phytoremediation alone, achieving up to 98.7%, 96.9%, and 90.3% removal efficiency for 2,4-D concentrations of 50 mg/L, 100 mg/L, and 150 mg/L, respectively. Additionally, the presence of biochar significantly enhanced the morphological growth of Eichhornia crassipes, particularly under higher concentrations of 2,4-D, by mitigating toxic effects and supporting healthier plant development. These findings suggest that integrating biochar into phytoremediation system offers a promising, sustainable approach for effectively removing herbicides from contaminated water bodies while also promoting plant health and growth.
Collapse
Affiliation(s)
- Hamza Mohamed Flafel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia; Libyan Center for Studies and Research in Environmental Science and Technology, Brack Al-Shatti, Libya; Department of Environmental Science, Faculty of Environment & Natural Resources, Wadi Al-Shatti University, Brack Al-Shatti, Libya
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Japareng Lalung
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
12
|
Lin Y, Li G, Rivera MS, Jiang T, Cotto I, Carpenter CMG, Rich SL, Giese RW, Helbling DE, Padilla IY, Rosario-Pabón Z, Alshawabkeh AN, Pinto A, Gu AZ. Long-term impact of Hurricane Maria on point-of-use drinking water quality in Puerto Rico and associated potential adverse health effects. WATER RESEARCH 2024; 265:122213. [PMID: 39173351 PMCID: PMC11749518 DOI: 10.1016/j.watres.2024.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Drinking water security in Puerto Rico (PR) is increasingly challenged by both regulated and emerging anthropogenic contaminants, which was exacerbated by the Hurricane Maria (HM) due to impaired regional water cycle and damaged water infrastructure. Leveraging the NIEHS PROTECT (Puerto Rico Testsite for Exploring Contamination Threats) cohort, this study assessed the long-term tap water (TW) quality changes from March 2018 to November 2018 after HM in PR, by innovatively integrating two different effect-based quantitative toxicity assays with a targeted analysis of 200 organic and 22 inorganic pollutants. Post-hurricane PR TW quality showed recovery after >6-month period as indicated by the decreased number of contaminants showing elevated average concentrations relative to pre-hurricane samples, with significant difference of both chemical and toxicity levels between northern and southern PR. Molecular toxicity profiling and correlation revealed that the HM-accelerated releases of certain pesticides and PPCPs could exert increased cellular oxidative and/or AhR (aryl hydrocarbon receptor)-mediated activities that may persist for more than six months after HM. Maximum cumulative ratio and adverse outcome pathway (AOP) assessment identified the top ranked detected TW contaminants (Cu, Sr, V, perfluorooctanoic acid) that potentially associated with different adverse health effects such as inflammation, impaired reproductive systems, cancers/tumors, and/or organ toxicity. These insights can be incorporated into the regulatory framework for post-disaster risk assessment, guiding water quality control and management for public health protection.
Collapse
Affiliation(s)
- Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Maria Sevillano Rivera
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Corey M G Carpenter
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Stephanie L Rich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Ingrid Y Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, Puerto Rico 00682, United States
| | - Zaira Rosario-Pabón
- University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
13
|
Luis E, Conde-Maldonado V, García-Nieto E, Juárez-Santacruz L, Alvarado M, Anaya-Hernández A. Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D. J Xenobiot 2024; 14:1450-1464. [PMID: 39449422 PMCID: PMC11503356 DOI: 10.3390/jox14040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and steroidogenesis. The thyroid axis and Ca2+-permeable ion channels play a key role in these processes, and their disruption can lead to reproductive issues and even infertility. This study evaluated the short-term effects of exposure to commercial herbicides based on paraquat and 2,4-D on gene expression in rat testes. At the molecular level, exposure to paraquat increased the expression of the thyroid hormone transporters monocarboxylate transporter 8 (Mct8) and organic anion-transporting polypeptide 1C1 (Oatp1c1) and the thyroid receptor alpha (TRα), suggesting a possible endocrine disruption. However, it did not alter the expression of the sperm-associated cation channels (CatSper1-2) or vanilloid receptor-related osmotically activated channel (Trpv4) related to sperm motility. In contrast, exposure to 2,4-D reduced the expression of the Mct10 transporter, Dio2 deiodinase, and CatSper1, which could affect both the availability of T3 in testicular cells and sperm quality, consistent with previous studies. However, 2,4-D did not affect the expression of CatSper2 or Trpv4. Deregulation of gene expression could explain the alterations in male reproductive processes reported by exposure to paraquat and 2,4-D. These thyroid hormone-related genes can serve as molecular biomarkers to assess endocrine disruption due to exposure to these herbicides, aiding in evaluating the health risks of pesticides.
Collapse
Affiliation(s)
- Enoch Luis
- Investigadores por México CONAHCYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico;
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico
| | - Vanessa Conde-Maldonado
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Edelmira García-Nieto
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Libertad Juárez-Santacruz
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Mayvi Alvarado
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | - Arely Anaya-Hernández
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| |
Collapse
|
14
|
Sigal Carriço MR, Diaz Rodrigues M, Piaia Ramborger B, Cristofari Gayer M, Kanaan SHH, Moreira Farias F, Gasparotto Denardin EL, Roehrs R. Influence of light-emitting diodes (LEDs) on the 2,4-diclorophenoxyacetic acid phytoremediation by plectranthus neochilus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1815-1823. [PMID: 38800998 DOI: 10.1080/15226514.2024.2357639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide widely used in crops against broadleaf weeds. However, 2,4-D residues are considered an environmental pollutant in bodies of water. Phytoremediation with Plectranthus neochilus is a substantial strategy to remove 2,4-D from the aquatic environment. The objective of this study was to verify the efficiency of the association of the photostimulus by Light Emitting Diodes (LED) with P. neochilus to improve phytoremediation of 2,4-D in water. Phytoremediation was evaluated with the following samples: natural light, white LED, blue LED, and red LED, with and without the plant as controls. The data corresponding to the validation of the method were in accordance with the required parameters: R2: 0.9926; RSD: 1.74%; LOD: 0.075 mg.L-1; LOQ: 0.227 mg.L-1 and recovery by SPE was 76.57%. The efficiency of the association of LED with P. neochilus in the 28 days was: ambient light + plant (47.0%); white light + plant (37.10%); blue light + plant (26.80%); red light + plant (3.32%). This study demonstrated, for the first time, the efficiency of using LEDs light in association with P. neochilus for the phytoremediation of 2,4-D in water.
Collapse
|
15
|
da Rosa Salles T, Zancanaro LV, da Silva Bruckmann F, Garcia WJ, de Oliveira AH, Baumann L, Rhoden DSB, Muller EI, Martinez DST, Mortari SR, Rhoden CRB. Magnetic graphene derivates for efficient herbicide removal from aqueous solution through adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25437-25453. [PMID: 38472573 DOI: 10.1007/s11356-024-32845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide and is among the most widely distributed pollutant in the environment and wastewater. Herein is presented a complete comparison of adsorption performance between two different magnetic carbon nanomaterials: graphene oxide (GO) and its reduced form (rGO). Magnetic functionalization was performed employing a coprecipitation method, using only one source of Fe2+, requiring low energy, and potentially allowing the control of the amount of incorporated magnetite. For the first time in literature, a green reduction approach for GO with and without Fe3O4, maintaining the magnetic behavior after the reaction, and an adsorption performance comparison between both carbon nanomaterials are demonstrated. The nanoadsorbents were characterized by FTIR, XRD, Raman, VSM, XPS, and SEM analyses, which demonstrates the successful synthesis of graphene derivate, with different amounts of incorporate magnetite, resulting in distinct magnetization values. The reduction was confirmed by XPS and FTIR techniques. The type of adsorbent reveals that the amount of magnetite on nanomaterial surfaces has significant influence on adsorption capacity and removal efficiency. The procedure demonstrated that the best performance, for magnetic nanocomposites, was obtained by GO∙Fe3O4 1:1 and rGO∙Fe3O4 1:1, presenting values of removal percentage of 70.49 and 91.19%, respectively. The highest adsorption capacity was reached at pH 2.0 for GO∙Fe3O4 1:1 (69.98 mg g-1) and rGO∙Fe3O4 1:1 (89.27 mg g-1), through different interactions: π-π, cation-π, and hydrogen bonds. The adsorption phenomenon exhibited a high dependence on pH, initial concentration of adsorbate, and coexisting ions. Sips and PSO models demonstrate the best adjustment for experimental data, suggesting a heterogeneous surface and different energy sites, respectively. The thermodynamic parameters showed that the process was spontaneous and exothermic. Finally, the nanoadsorbents demonstrated a high efficiency in 2,4-D adsorption even after five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Theodoro da Rosa Salles
- Laboratory of Nanostructured Magnetic Materials, LaMMaN, Franciscan University (UFN), Santa Maria, RS, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Leonardo Vidal Zancanaro
- Laboratory of Nanostructured Magnetic Materials, LaMMaN, Franciscan University (UFN), Santa Maria, RS, Brazil
| | | | - Wagner Jesus Garcia
- Department of Industrial Design, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Luiza Baumann
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Edson Irineu Muller
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Diego Stefani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Sergio Roberto Mortari
- Postgraduate Program in Nanoscience, Franciscan University (UFN), Santa Maria, RS, Brazil
| | - Cristiano Rodrigo Bohn Rhoden
- Laboratory of Nanostructured Magnetic Materials, LaMMaN, Franciscan University (UFN), Santa Maria, RS, Brazil.
- Postgraduate Program in Nanoscience, Franciscan University (UFN), Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Caldara M, Gullì M, Graziano S, Riboni N, Maestri E, Mattarozzi M, Bianchi F, Careri M, Marmiroli N. Microbial consortia and biochar as sustainable biofertilisers: Analysis of their impact on wheat growth and production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170168. [PMID: 38244628 DOI: 10.1016/j.scitotenv.2024.170168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The European Union is among the top wheat producers in the world, but its productivity relies on adequate soil fertilisation. Biofertilisers, either alone or in combination with biochar, can be a preferable alternative to chemical fertilisers. However, the addition of biofertilisers, specifically plant growth promoting microbes (PGPM), could modify grain composition, and/or deteriorate the soil composition. In this study, the two wheat cultivars Triticum aestivum (Bramante) and T. durum (Svevo) were cultivated in open fields for two consecutive years in the presence of a commercial PGPM mix supplied alone or in combination with biochar. An in-depth analysis was conducted by collecting physiological and agronomic data throughout the growth period. The effects of PGPM and biochar were investigated in detail; specifically, soil chemistry and rhizosphere microbial composition were characterized, along with the treatment effects on seed storage proteins. The results demonstrated that the addition of commercial microbial consortia and biochar, alone or in combination, did not modify the rhizospheric microbial community; however, it increased grain yield, especially in the cultivar Svevo (increase of 6.8 %-13.6 %), even though the factors driving the most variations were associated with both climate and cultivar. The total gluten content of the flours was not affected, whereas the main effect of the treatments was a variation in gliadins and low-molecular-weight-glutenin subunits in both cultivars when treated with PGPM and biochar. This suggested improved grain quality, especially regarding the viscoelastic properties of the dough, when the filling period occurred in a dry climate. The results indicate that the application of biofertilisers and biochar may aid the effective management of sustainable wheat cultivation, to support environmental health without altering the biodiversity of the resident microbiome.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
17
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
18
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
19
|
Oliveira RD, Sant'Ana AC. Plasmonic photocatalytic degradation of tebuconazole and 2,4-dichlorophenoxyacetic acid by Ag nanoparticles-decorated TiO 2 tracked by SERS analysis. CHEMOSPHERE 2023; 338:139490. [PMID: 37451641 DOI: 10.1016/j.chemosphere.2023.139490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Chemical oxidation technologies have been notably used for the mineralization of organic pollutants from aqueous effluents, been especially relevant for the degradation of pesticides. In this context, both tebuconazole (TEB) and 2,4-dichlorophenoxyacetic acid (2,4-D) pesticides were photodegraded by a combined catalyst of TiO2 and silver nanoparticles irradiated by UV-A light (λmax = 368 nm), and the experiments were tracked by surface-enhanced Raman scattering (SERS) spectroscopy. For 2,4-D, the degradation of about 70% was observed after almost 200 min, while for TEB, a decrease of 80% of the initial concentration was observed after approximately 100 min. The SERS monitoring allowed the proposal of some by-products, such as oxidized aliphatic chain and triazole from TEB besides glycolic, glyoxylic and dihydroxyacetic acids from 2,4-D. Their toxicities were predicted through ECOSAR software, verifying that most of them were not harmful to populations of fish, Daphnia and green algae. Thus, the performed oxidative process was efficient in the photodecomposition of TEB and 2,4-D pesticides, inclusive in terms of the decreasing of the toxicity of contaminated effluents.
Collapse
Affiliation(s)
- Rafael de Oliveira
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| |
Collapse
|
20
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
21
|
Fang L, Luo X, Wang Z, Yang W, Li H, Song S, Xie H, Hu J, Chen W, Liu Q. Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage. Biomimetics (Basel) 2023; 8:430. [PMID: 37754181 PMCID: PMC10526935 DOI: 10.3390/biomimetics8050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The widespread use of chemical herbicides has jeopardized concerns about food safety and ecological consequences. To address these issues and reduce reliance on chemical herbicides, a physical weed control device was developed for the tillering stage in paddy fields. This device features a biomimetic duckbill-like vibration chain that effectively controls weed outbreaks. The chain penetrates the soft surface soil of the paddy field under gravity and rapidly stirs the soil through vibration, leading to the detachment of the weed roots anchored in the surface layer. Simultaneously, the device avoids mechanical damage to rice seedlings rooted in deeper soil. This study aimed to investigate the effects of chain structural parameters (the number of chain rows, vibration amplitude, and length of chains) and operational parameters (vibration frequency and working velocity) on weed control efficiency and rice seedling damage. Through a central composite regression field test, the optimal device structure and operational parameters were determined. The optimization results demonstrated that a vibration amplitude of 78.8 mm, a chain length of 93.47 cm, and 3.4 rows of chains, along with a vibration frequency and working velocity ranging from 0.5 to 1.25 m/s, achieved an optimal weeding effect. Under the optimal parameter combination, field test results demonstrated that approximately 80% of the weeds in the field were effectively cleared. This indicates that the design of the biomimetic duckbill-like vibration chain weeding device exhibits a relatively superior weeding performance, offering a practical solution for the management of weeds in rice fields.
Collapse
Affiliation(s)
- Longyu Fang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiwen Luo
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Huangpu Innovation Research Institute, South China Agricultural University, Guangzhou 510725, China
| | - Zaiman Wang
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Huangpu Innovation Research Institute, South China Agricultural University, Guangzhou 510725, China
| | - Wenwu Yang
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Huangpu Innovation Research Institute, South China Agricultural University, Guangzhou 510725, China
| | - Hui Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shiyu Song
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Haoyang Xie
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jianhao Hu
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Weiman Chen
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qinghai Liu
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Blachnio M, Kusmierek K, Swiatkowski A, Derylo-Marczewska A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023; 28:5404. [PMID: 37513275 PMCID: PMC10385827 DOI: 10.3390/molecules28145404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Krzysztof Kusmierek
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Andrzej Swiatkowski
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
23
|
Wang Y, Tian YS, Gao JJ, Xu J, Li ZJ, Fu XY, Han HJ, Wang LJ, Zhang WH, Deng YD, Qian C, Zuo ZH, Wang B, Peng RH, Yao QH. Complete biodegradation of the oldest organic herbicide 2,4-Dichlorophenoxyacetic acid by engineering Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131099. [PMID: 36868133 DOI: 10.1016/j.jhazmat.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
After nearly 80 years of extensive application, the oldest organic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has caused many problems of environmental pollution and ecological deterioration. Bioremediation is an ideal method for pollutant treatment. However, difficult screening and preparation of efficient degradation bacteria have largely hindered its application in 2,4-D remediation. We have created a novel engineering Escherichia coli with a reconstructed complete degradation pathway of 2,4-D to solve the problem of screening highly efficient degradation bacteria in this study. The results of fluorescence quantitative PCR demonstrated that all nine genes in the degradation pathway were successfully expressed in the engineered strain. The engineered strains can quickly and completely degrade 0.5 mM 2, 4-D within 6 h. Inspiring, the engineered strains grew with 2,4-D as the sole carbon source. By using the isotope tracing method, the metabolites of 2,4-D were found incorporated into the tricarboxylic acid cycle in the engineering strain. Scanning electron microscopy showed that 2,4-D had less damage on the engineered bacteria than the wild-type strain. Engineered strain can also rapidly and completely remedy 2,4-D pollution in natural water and soil. Assembling the metabolic pathways of pollutants through synthetic biology was an effective method to create pollutant-degrading bacteria for bioremediation.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Sheng Tian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jian-Jie Gao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Xu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhen-Jun Li
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Yan Fu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong-Juan Han
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li-Juan Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen-Hui Zhang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Dong Deng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Cen Qian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhi-Hao Zuo
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Ri-He Peng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Quan-Hong Yao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
24
|
Zhang X, Liu Y, Qu L, Han R. Adsorption of 2,4-dichlorophenoxyacetic acid and glyphosate from water by Fe 3O 4-UiO-66-NH 2 obtained in a simple green way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60574-60589. [PMID: 37032407 DOI: 10.1007/s11356-023-26737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
In this study, a green adsorbent (Fe3O4-UiO-66-NH2) with the ability of addressing the issues of separation and recovery of UiO-66-NH2 is obtained using a simple co-precipitation method under environmentally benign conditions. Various characterization techniques are utilized for evaluating the properties of the developed adsorbent. The capability of Fe3O4-UiO-66-NH2 towards 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate (GP) from solution is explored. The results revealed that the magnetization process did not destroy the crystal structure of UiO-66-NH2, which ensured that Fe3O4-UiO-66-NH2 had good adsorption performance for 2,4-D and GP. The adsorption processes showed a wide pH application range, high salt tolerance, and regeneration performance as well as an excellent adsorption rate. Results from thermodynamic study showed that both processes were spontaneous and endothermic. The unit uptake ability of Fe3O4-UiO-66-NH2 for 2,4-D and GP reached up to 249 mg·g-1 and 183 mg·g-1 from Langmuir model at 303 K, respectively. When solid-liquid ratio was 2 g·L-1, Fe3O4-UiO-66-NH2 can reduce the content of 2,4-D or GP with the initial density of 100 mg·L-1 below the drinking water requirement limit. In addition, the reusability efficiency of Fe3O4-UiO-66-NH2 towards 2,4-D and GP was found to be 86% and 80% using 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples indicated that Fe3O4-UiO-66-NH2 could achieve the single or simultaneous removal of 2,4-D and GP from wastewater. Summarily, Fe3O4-UiO-66-NH2 as a green adsorbent can serve as an alternative for removing 2,4-D and GP from water body.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
25
|
Boughattas I, Zitouni N, Mkhinini M, Missawi O, Helaoui S, Hattab S, Mokni M, Bousserrhine N, Banni M. Combined toxicity of Cd and 2,4-dichlorophenoxyacetic acid on the earthworm Eisenia andrei under biochar amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34915-34931. [PMID: 36525191 DOI: 10.1007/s11356-022-24628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Due to anthropogenic activities, various pollutants can be found in agricultural soil, such as cadmium (Cd) and 2,4-dichlorophenoxyacetic acid (2,4-D). They are highly toxic and can have a negative impact on soil fertility. For remediation strategies, biochar has acquired considerable attention due to its benefits for agriculture. However, we should recognize the ecological risk posed by biochar use. In addition, little is known about its non-desirable effects on soil organisms such as earthworms, especially in the case of soil remediation. In this study, earthworms (Eisenia andrei) were exposed to soil contaminated with Cd (0.7 mg/kg), (2,4-D) (7 mg/kg), and a mixture of the two in the presence and absence of biochar (2%). A 7- and 14-day incubation experiment was carried out for this purpose. Cd and 2,4-D uptakes in earthworms' tissues, oxidative stress, cytotoxic response, DNA damage, histopathological changes, and gene expression level were assessed. Results suggested that biochar increased the bioavailability of Cd and 2,4-D and the frequency of micronuclei (MNi) and decreased the lysosomal membrane stability (LMS) in earthworms. Also, histopathological examination detected numerous alterations in animals exposed to the contaminants without any amelioration when biochar was added. The biochemical response of earthworms in terms of oxidative stress demonstrates that in the presence of biochar, animals tend to alleviate the toxicity of Cd and 2,4-D. This was also supported by transcriptomic analyses where expression gene levels related to oxidative stress were upregulated in earthworms exposed to Cd and 2,4-D + biochar. The present investigation brought new insights concerning the use of biochar in agriculture.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia.
- Regional Field Crops Research Center of Beja, Beja, Tunisia.
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Sondes Helaoui
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
| | - Sabrine Hattab
- Regional Research Centre in Horticulture and Organic Agriculture, Chott Mariem, 4042, Sousse, Tunisia
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, cedex 94010, Creteil, France
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott Mariem, Sousse University, Sousse, Tunisia
- Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|
26
|
Zhang J, Duan G, Yang S, Yu L, Lu Y, Tang W, Yang Y. Improved Bioherbicidal Efficacy of Bipolaris eleusines through Herbicide Addition on Weed Control in Paddy Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:2659. [PMID: 36235525 PMCID: PMC9572137 DOI: 10.3390/plants11192659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Bipolaris eleusines was mixed with herbicides to improve the control of barnyardgrass (Echinochloa crus-galli), a noxious weed in rice fields. The compatibility of B. eleusines with herbicides was evaluated for toxic effects on spore germination and mycelium growth in vitro tests, and varied effects were observed with different chemical products. Briefly, 25 g/L penoxsulam OD plus 10% bensulfuron-methyl WP were much more compatible with B. eleusines, and there was no inhibition of spore germination but the promotion of mycelium growth of B. eleusines at all treatment rates. Under greenhouse conditions, the coefficient of the specificity of B. eleusines conidial agent was determined as 3.91, closer to the herbicidal control of 2.89, showing it is highly specific between rice and barnyardgrass. Field experiments in 2011 and 2012 showed that B. eleusines conidial agent displayed good activity on barnyardgrass, monochoria [Monochoria vaginalis (Burm.f.) Presl. Ex Kunth.], and small-flower umbrella sedge (Cyperus difformis L.) and had no negative impact on the rice plant. It also reduced the loss of rice yield when compared with the non-treated control and could make this pathogen a conidial agent for commercial bioherbicidal development in the future.
Collapse
Affiliation(s)
- Jianping Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guifang Duan
- Shanghai Greentech Laboratory Co., Ltd., Shanghai 201612, China
| | - Shuang Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuqing Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongliang Lu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongjie Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
27
|
da Silva VEC, Tadayozzi YS, Putti FF, Santos FA, Forti JC. Degradation of commercial glyphosate-based herbicide via advanced oxidative processes in aqueous media and phytotoxicity evaluation using maize seeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156656. [PMID: 35709990 DOI: 10.1016/j.scitotenv.2022.156656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is a herbicide that acts as a broad-spectrum, non-selective, post-emergence systemic pest controller. Its continuing, increasing, and excessive use in many countries in recent years poses a significant threat to the environment and human health due to the prevalence of this herbicide in water bodies and its impact on non-target organisms. In this context, it is essential to develop processes aimed at the non-selective degradation of glyphosate and its by-products. In this study, various advanced oxidative processes were applied: Fenton, electro-Fenton, photoelectro-oxidation, and photoelectro-Fenton, with the objective of oxidizing glyphosate in the commercial product Roundup®. The resultant oxidation products and the phytotoxicological effect on maize seed germination were also analyzed. Following each treatment, chemical oxygen demand (COD), total organic carbon (TOC), glyphosate degradation, and oxidation by-product formation were analyzed. The treated solutions were used to germinate maize seeds for 7 days in a germination chamber applying a photoperiod of 12 h at 24 °C. The % of germination, protein and hydrogen peroxide (H2O2) content, lipid peroxidation extent (MDA), and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were determined. The photoelectro-Fenton treatment was the most effective in degrading glyphosate, operating synergistically to break glyphosate bonds, thereby generating non-toxic short-chain molecules. Maize seed germination was satisfactory (> 50 %), but the persistent formation of reactive oxygen species (ROS) led to increased antioxidant activities of SOD, CAT, and POD enzymes acting in a compensatory manner against ROS, thus sustaining the photosynthetic apparatus. Hormesis, a stimulatory effect of glyphosate, was also observed in the presence of low concentrations of glyphosate.
Collapse
Affiliation(s)
- Victor E C da Silva
- São Paulo State University (UNESP), School of Sciences and Engineering, Biosystems Engineering Department, 17602-496 Tupã, SP, Brazil
| | - Yasmin S Tadayozzi
- São Paulo State University (UNESP), School of Sciences and Engineering, Biosystems Engineering Department, 17602-496 Tupã, SP, Brazil
| | - Fernando F Putti
- São Paulo State University (UNESP), School of Sciences and Engineering, Biosystems Engineering Department, 17602-496 Tupã, SP, Brazil
| | - Felipe A Santos
- São Paulo State University (UNESP), School of Sciences and Engineering, Biosystems Engineering Department, 17602-496 Tupã, SP, Brazil
| | - Juliane C Forti
- São Paulo State University (UNESP), School of Sciences and Engineering, Biosystems Engineering Department, 17602-496 Tupã, SP, Brazil.
| |
Collapse
|
28
|
White AM, Nault ME, McMahon KD, Remucal CK. Synthesizing Laboratory and Field Experiments to Quantify Dominant Transformation Mechanisms of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10838-10848. [PMID: 35856571 DOI: 10.1021/acs.est.2c03132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laboratory studies used to assess the environmental fate of organic chemicals such as pesticides fail to replicate environmental conditions, resulting in large errors in predicted transformation rates. We combine laboratory and field data to identify the dominant loss processes of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in lakes for the first time. Microbial and photochemical degradation are individually assessed using laboratory-based microcosms and irradiation studies, respectively. Field campaigns are conducted in six lakes to quantify 2,4-D loss following large-scale herbicide treatments. Irradiation studies show that 2,4-D undergoes direct photodegradation, but modeling efforts demonstrated that this process is negligible under environmental conditions. Microcosms constructed using field inocula show that sediment microbial communities are responsible for degradation of 2,4-D in lakes. Attempts to quantify transformation products are unsuccessful in both laboratory and field studies, suggesting that their persistence is not a major concern. The synthesis of laboratory and field experiments is used to demonstrate best practices in designing laboratory persistence studies and in using those results to mechanistically predict contaminant fate in complex aquatic environments.
Collapse
Affiliation(s)
- Amber M White
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michelle E Nault
- Wisconsin Department of Natural Resources Madison, Bureau of Water Quality, Madison, Wisconsin 53707, United States
| | - Katherine D McMahon
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We designed this review to describe a compilation of studies to enlighten the concepts of plant–microbe interactions, adopted protocols in smart crop farming, and biodiversity to reaffirm sustainable agriculture. The ever-increasing use of agrochemicals to boost crop production has created health hazards to humans and the environment. Microbes can bring up the hidden strength of plants, augmenting disease resistance and yield, hereafter, crops could be grown without chemicals by harnessing microbes that live in/on plants and soil. This review summarizes an understanding of the functions and importance of indigenous microbial communities; host–microbial and microbial–microbial interactions; simplified experimentally controlled synthetic flora used to perform targeted operations; maintaining the molecular mechanisms; and microbial agent application technology. It also analyzes existing problems and forecasts prospects. The real advancement of microbiome engineering requires a large number of cycles to obtain the necessary ecological principles, precise manipulation of the microbiome, and predictable results. To advance this approach, interdisciplinary collaboration in the areas of experimentation, computation, automation, and applications is required. The road to microbiome engineering seems to be long; however, research and biotechnology provide a promising approach for proceeding with microbial engineering and address persistent social and environmental issues.
Collapse
|
30
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
31
|
Pan L, Guo Q, Wang J, Shi L, Yang X, Zhou Y, Yu Q, Bai L. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128225. [PMID: 35032953 DOI: 10.1016/j.jhazmat.2022.128225] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Long-term and excessive herbicide use has led to some environmental concerns and especially, herbicide resistance evolution in weeds. Here, we confirmed acetolactate synthase (ALS) inhibiting herbicide penoxsulam resistance and cross resistance to acetyl-coenzyme carboxylase (ACCase) inhibiting herbicides (cyhalofop-butyl and metamifop) in a global weed Echinochloa crus-galli population resistant to these herbicides (R). Penoxsulam metabolism study indicated that degradation rate was significantly higher in R than susceptible E. crus-galli population (S). RNA-sequencing revealed that a cytochrome P450 (P450) gene, CYP81A68, expressed higher in R versus S. Rice seedlings overexpressing this CYP81A68 gene are resistant to penoxsulam, cyhalofop-butyl and metamifop, and penoxsulam resistance is due to enhanced metabolism via O-demethylation. Deletion analysis of the CYP81A68 gene promoter identified an efficient region, in which differential methylation of CpG islands occurred between R and S. Collectively, these results demonstrate that upregulation of E. crus-galli CYP81A68 gene endows generalist metabolic resistance to commonly used ALS- and ACCase-inhibiting herbicides in rice fields and epigenetic regulation may play a role in the resistance evolution. This research could contribute to strategies reducing herbicide environmental impacts by judicious selection of alternative herbicide and non-chemical control tactics.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiushuang Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Junzhi Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia.
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
32
|
Ogura AP, Moreira RA, da Silva LCM, Negro GS, Freitas JS, da Silva Pinto TJ, Lopes LFDP, Yoshii MPC, Goulart BV, Montagner CC, Espíndola ELG. Irrigation with Water Contaminated by Sugarcane Pesticides and Vinasse Can Inhibit Seed Germination and Crops Initial Growth. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:330-340. [PMID: 35138446 DOI: 10.1007/s00244-022-00914-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 μg L-1), the insecticide fipronil (63.5 μg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 μg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Giovana Spinelli Negro
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Juliane Silberschmidt Freitas
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
- Department of Biological Sciences, Minas Gerais State University (UEMG), Ituiutaba, Minas Gerais, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, São Paulo, Brazil
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
33
|
Nasab H, Rajabi S, Mirzaee M, Hashemi M. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30754-30763. [PMID: 34993832 PMCID: PMC8739350 DOI: 10.1007/s11356-021-18466-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can be a major risk factor for noncommunicable illnesses, especially when children are exposed to them. The purpose of this study was to assess the urine concentrations of triclosan (TCS), methyl triclosan (MTCS), triclocarban (TCC), and 2,4-dichlorophenol (2,4-DCP) and its association with anthropometric and demographic parameters in children and adolescents aged 6-18 living in Kerman, Iran, in 2020. A GC/MS instrument was used to measure the concentrations of the analytes. TCS, MTCS, TCC, and 2,4-DCP geometric mean concentrations (µg/L) were 4.32 ± 2.08, 1.73 ± 0.88, 4.66 ± 10.25, and 0.19 ± 0.14, respectively. TCS, MTCS, TCC, and 2,4-DCP were shown to have a positive and significant association with BMI z-score and BMI (p-value < 0.01). TCS and MTCS have a positive, strong, and substantial association (p-value < 0.01, r = 0.74). There was no significant association between the waist circumference (WC) and the analytes studied. In addition, there was a close association between analyte concentration and demographic parameters (smoking, education, income, etc.) overall. In Kerman, Iran, the current study was the first to look into the association between TCS, MTCS, TCC, and 2,4-DCP analytes and anthropometric and demographic data. The levels of urinary TCS, MTCS, TCC, 2,4-DCP, and anthropometric parameters in children and adolescents are shown to have a significant association in this study. However, because the current study is cross-sectional and it is uncertain if a single experiment accurately reflects long-term exposure to these analytes, more research is needed to determine the impact of these analyses on the health of children and adolescents.
Collapse
Affiliation(s)
- Habibeh Nasab
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
34
|
Ding J, Liu Y, Gao Y, Zhang C, Wang Y, Xu B, Yang Y, Wu Q, Huang Z. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. CHEMOSPHERE 2022; 289:133130. [PMID: 34863720 DOI: 10.1016/j.chemosphere.2021.133130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Pyrethroids are the third widespread used insecticides globally which have been extensively applied in agricultural or household environments. Due to continuous applications, pyrethroids have been detected both in living cells and environments. The permanent exposure to pyrethroids have caused substantial health risks and ecosystem concerns. In this work, a λ-cyhalothrin (one kind of pyrethroid insecticides) degrading bacterium Bacillus velezensis sd was isolated and a carboxylesterase gene, CarCB2 was characterized. A whole cell biocatalyst was developed for λ-cyhalothrin biodegradation by displaying CarCB2 on the surface of Escherichia coli cells. CarCB2 was successfully displayed and functionally expressed on E. coli cells with optimal pH and temperature of 7.5 and 30 °C, using p-NPC4 as substrate, respectively. The whole cell biocatalyst exhibited better stability than the purified CarCB2, and approximately 120%, 60% or 50% of its original activity at 4 °C, 30 °C or 37 °C over a period of 35 d was retained, respectively. No enzymatic activity was detected when incubated the purified CarCB2 at 30 °C for 120 h, or 37 °C for 72 h, respectively. Additionally, 30 mg/L of λ-cyhalothrin was degraded in citrate-phosphate buffer by 10 U of the whole cell biocatalyst in 150 min. This work reveals that the whole cell biocatalyst affords a promising approach for efficient biodegradation of λ-cyhalothrin, and might have the potential to be applied in further environmental bioremediation of other different kinds of pyrethroid insecticides.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| | - Yan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yanxiu Gao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yafei Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
35
|
Bourhane Z, Lanzén A, Cagnon C, Ben Said O, Mahmoudi E, Coulon F, Atai E, Borja A, Cravo-Laureau C, Duran R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126789. [PMID: 34365235 DOI: 10.1016/j.jhazmat.2021.126789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/21/2023]
Abstract
Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Christine Cagnon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Emmanuel Atai
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | | | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France.
| |
Collapse
|
36
|
Shahid M, Khan MS. Tolerance of pesticides and antibiotics among beneficial soil microbes recovered from contaminated rhizosphere of edible crops. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100091. [PMID: 34977827 PMCID: PMC8683648 DOI: 10.1016/j.crmicr.2021.100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Soil bacterial isolates were recovered from contaminated rhizosphere regions. Majority of bacterial isolatesshowed multifarious plant growth promoting (PGP) activities. Bacterial isolates exhibited a varied level of pesticide tolerance. Sensitivity/resistance pattern among isolates was variable Pesticides tolerance and antibiotic resistance among soil isolates were variably correlated
A total of 45 beneficial soil bacterial isolates (15 each of Pseudomonas, Azotobacter and phosphate solubilizing bacteria: PSB) recovered from polluted rhizosphere soils were morphologically and biochemically characterized. Bacterial isolates produced indole-3-acetic acid (IAA), phenolate siderophores; SA (salicylic acid) and 2, 3-dihydroxy benzoic acid (2, 3-DHBA), 1-amino cyclopropane 1-carboxylate (ACC) deaminase, solubilised insoluble phosphate (Pi), secreted exopolysaccharides (EPS) and produced ammonia and cyanogenic compound (HCN). Isolates were tested for their tolerance ability against 12 different agrochemicals (chemical pesticides) and 14 antibiotics. Among Pseudomonas, isolate PS1 showed maximum (2183 µg mL−1) tolerance to all tested agrochemicals. Likewise, among all Azotobacter isolates (n = 15), AZ12 showed maximum (1766 µg mL−1) while AZ7 had lowest (950 µg mL−1) tolerance ability to all tested agrochemicals. Moreover, among phosphate solubilizing bacterial isolates, maximum (1970 µg mL−1) and minimum (1308 µg mL−1) tolerance to agrochemicals was represented by PSB8 and PSB13 isolates, respectively. The antibiotic sensitivity/resistance among isolates varied considerably. As an example, Pseudomonas spp. was susceptible to several antibiotics, and inhibition zone differed between 10 mm (polymyxin B) to 34 mm (nalidixic acid). Also, isolate PS2 showed resistance to erythromycin, ciprofloxacin, methicillin, novobiocin and penicillin. The resistance percentage to multiple antibiotics among Azotobacter isolates varied between 7 and 33%. Among PSB isolates, inhibition zone differed between 10 and 40 mm and maximum and minimum resistance percentage to multiple antibiotics was recorded as 47% and 20%, respectively. The persistence of pesticides in agricultural soil may contribute to an increase in multidrug resistance among soil microorganisms. In conclusion, plant growth promoting (PGP) substances releasing soil microorganisms comprising of inherent/intrinsic properties of pesticides tolerance and antibiotics resistance may provide an attractive, agronomically feasible, and long-term prospective alternative for the augmentation of edible crops. However, in future, more research is needed to uncover the molecular processes behind the development of pesticide tolerance and antibiotic resistance among soil microorganisms.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
37
|
Wang J, Cao W, Guo Q, Yang Y, Bai L, Pan L. Resistance to mesosulfuron-methyl in Beckmannia syzigachne may involve ROS burst and non-target-site resistance mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113072. [PMID: 34922171 DOI: 10.1016/j.ecoenv.2021.113072] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Herbicide resistance to chemical herbicide is a global issue that presents an ongoing threat to grain production. Though it has been frequently implicated that the production of detoxification enzymes increased in resistance development, the mechanisms for overexpression of these genes employed by herbicide-resistant weeds remain complicated. In this study, a mesosulfuron-methyl resistant Beckmannia syzigachne population (R) was found to be cross-resistant to another herbicide pyriminobac-methyl. No known target-site mutations were detected in the R population. In contrast, the decreased uptake and enhanced metabolic rates of mesosulfuron-methyl were detected in the R than the susceptible (S) population. Two candidate ATP-binding cassette (ABC) transporter genes (ABCB25 and ABCC14) that were constitutively up-regulated in the R population were identified by RNA-sequencing and validated by RT-qPCR. Alteration of antioxidant enzyme activities and gene expressions implied that mesosulfuron-methyl-induced antioxidant defenses provoked reactive oxygen species (ROS) burst. ROS scavenger assay showed that ROS induces ABCB25 and ABCC14 expression. This study reported for the first time that ABC transporters mediated non-target-site resistance contributes to mesosulfuron-methyl resistance in a B. syzigachne population, and implicated that ROS burst might be involved in the overexpression of ABC transporter genes in weeds.
Collapse
Affiliation(s)
- Junzhi Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Wanfen Cao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiushuang Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
38
|
Li J, Li C, Ji X, Sun Q, Li Z, Liu H, Zhou L, Jing D, Gong J, Chen W. Combined virtual and experimental screening of multicomponent crystals of 2,4-dichlorophenoxyacetic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj00536k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient screening of 2,4-D multicomponent crystals by COSMO-RS and molecular complementarity analysis combined with liquid-assisted grinding.
Collapse
Affiliation(s)
- Jiulong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xu Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qin Sun
- Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, Liaoning 110021, P. R. China
| | - Zhi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - He Liu
- Beijing Chao-Yang Hospital affiliated with Beijing Capital Medical University, Beijing 100020, P. R. China
| | - Lina Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- National Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Dingding Jing
- Asymchem Life Science Tianjin Co, Ltd, Tianjin 300457, P. R. China
| | - Junbo Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- National Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Wei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- National Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
39
|
Lin YT, Ali HS, de Visser S. Biodegradation of herbicides by a plant nonheme iron dioxygenase: mechanism and selectivity of substrate analogues. Chemistry 2021; 28:e202103982. [PMID: 34911156 DOI: 10.1002/chem.202103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Aryloxyalkanoate dioxygenases are unique herbicide biodegrading nonheme iron enzymes found in plants and hence, from environmental and agricultural point of view they are important and valuable. However, they often are substrate specific and little is known on the details of the mechanism and the substrate scope. To this end, we created enzyme models and calculate the mechanism for 2,4-dichlorophenoxyacetic acid biodegradation and 2-methyl substituted analogs by density functional theory. The work shows that the substrate binding is tight and positions the aliphatic group close to the metal center to enable a chemoselective reaction mechanism to form the C 2 -hydroxy products, whereas the aromatic hydroxylation barriers are well higher in energy. Subsequently, we investigated the metabolism of R - and S -methyl substituted inhibitors and show that these do not react as efficiently as 2,4-dichlorophenoxyacetic acid substrate due to stereochemical clashes in the active site and particularly for the R -isomer give high rebound barriers.
Collapse
Affiliation(s)
- Yen-Ting Lin
- UoM: The University of Manchester, Chemical Engineering and Analytical Science, UNITED KINGDOM
| | - Hafiz S Ali
- UoM: The University of Manchester, Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
40
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
41
|
Chen H, Qin Y, Pu J, Hu J, Wen Y. Phytotoxicity of the chiral herbicide dichlorprop: Cross-talk between nitric oxide, reactive oxygen species and phytohormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147866. [PMID: 34134377 DOI: 10.1016/j.scitotenv.2021.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), reactive oxygen species (ROS), and phytohormones in plants often initiate responses to sources of abiotic stress. However, we have a poor understanding of the cross-talk between NO, ROS, and phytohormones during exogenous chiral auxin-induced phytotoxicity. In this study, the toxicity of the chiral synthetic auxin herbicide dichlorprop (DCPP) to Arabidopsis thaliana, as well as the mutual regulation of NO, hydrogen peroxide (H2O2), superoxide anion (O2.-), and phytohormones at the enantiomeric level was investigated. The ROS production exhibited an enantioselective manner, further, that was positively correlated with the change of the morphological indicators. This confirmed that ROS played an important role in the enantioselective effect of DCPP. The distribution of ROS and NO was partially overlapped, indicating that the production of NO may be affected by ROS, and also related to the degree of plant damage. In terms of phytohormones, the level of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in the whole plant increased as the (R)-DCPP concentration applied increased, however, the trend has changed, when the data of leaves and roots was discussed separately. The results revealed that the redistribution of phytohormones may exist between leaves and roots, caused by the joint action of ROS and NO. The differences in the biological activity identified between the two enantiomers in this study enhance our understanding of the toxicity mechanism of exogenous auxin via their effects on phytohormones.
Collapse
Affiliation(s)
- Hui Chen
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Yongxiang Qin
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Jiawei Pu
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Jinxing Hu
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Carbon Nano-Onion Peroxidase Composite Biosensor for Electrochemical Detection of 2,4-D and 2,4,5-T. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon nano-onions are emerging electrode materials in biosensing due to their high conductivity and biocompatibility. Phenoxy-based herbicides are a source of environmental contamination that can be detected using their property to inhibit the activity of some enzymes. Here we report a biosensor based on peroxidase immobilized on carbon nano-onions in a cyclodextrin polymer matrix for the amperometric detection of 2,4-D and 2,4,5-T. The inhibition mechanism of 2,4-D and 2,4,5-T on peroxidase activity was first elucidated by activity measurements and molecular docking. The biosensor was characterized by electrochemical and microscopy methods and applied to the amperometric detection of these herbicides. The incorporation of carbon nano-onions enhanced the sensitivity of the biosensor and improved its stability and repeatability. The application of the developed biosensor to the detection of 2,4-D in soil and 2,4,5-T in river water samples is also reported.
Collapse
|
43
|
Raffa CM, Chiampo F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel) 2021; 8:bioengineering8070092. [PMID: 34356199 PMCID: PMC8301097 DOI: 10.3390/bioengineering8070092] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Pesticides are chemical compounds used to eliminate pests; among them, herbicides are compounds particularly toxic to weeds, and this property is exploited to protect the crops from unwanted plants. Pesticides are used to protect and maximize the yield and quality of crops. The excessive use of these chemicals and their persistence in the environment have generated serious problems, namely pollution of soil, water, and, to a lower extent, air, causing harmful effects to the ecosystem and along the food chain. About soil pollution, the residual concentration of pesticides is often over the limits allowed by the regulations. Where this occurs, the challenge is to reduce the amount of these chemicals and obtain agricultural soils suitable for growing ecofriendly crops. The microbial metabolism of indigenous microorganisms can be exploited for degradation since bioremediation is an ecofriendly, cost-effective, rather efficient method compared to the physical and chemical ones. Several biodegradation techniques are available, based on bacterial, fungal, or enzymatic degradation. The removal efficiencies of these processes depend on the type of pollutant and the chemical and physical conditions of the soil. The regulation on the use of pesticides is strictly connected to their environmental impacts. Nowadays, every country can adopt regulations to restrict the consumption of pesticides, prohibit the most harmful ones, and define the admissible concentrations in the soil. However, this variability implies that each country has a different perception of the toxicology of these compounds, inducing different market values of the grown crops. This review aims to give a picture of the bioremediation of soils polluted with commercial pesticides, considering the features that characterize the main and most used ones, namely their classification and their toxicity, together with some elements of legislation into force around the world.
Collapse
|
44
|
Identification and Application of Bioactive Compounds from Garcinia xanthochymus Hook. for Weed Management. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The allelopathic potential of plant species and their related compounds has been increasingly reported to be biological tools for weed control. The allelopathic potential of Garcinia xanthochymus was assessed against several test plant species: lettuce, rapeseed, Italian ryegrass, and timothy. The extracts of G. xanthochymus leaves significantly inhibited all the test plants in a concentration- and species-specific manner. Therefore, to identify the specific compounds involved in the allelopathic activity of the G. xanthochymus extracts, assay-guided purification was carried out and two allelopathic compounds were isolated and identified as methyl phloretate {3-(4-hydroxyphenyl) propionic acid methyl ester} and vanillic acid (4-hydroxy-3-methoxybenzoic acid). Both of the substances significantly arrested the cress and timothy seedlings growth. I50 values (concentrations required for 50% inhibition) for shoots and roots growth of the cress and timothy were 113.6–104.6 and 53.3–40.5 μM, respectively, for methyl phloretate, and 331.6–314.7 and 118.8–107.4 μM, respectively, for vanillic acid, which implied that methyl phloretate was close to 3- and 2-fold more effective than vanillic acid against cress and timothy, respectively. This report is the first on the presence of methyl phloretate in a plant and its phytotoxic property. These observations suggest that methyl phloretate and vanillic acid might participate in the phytotoxicity of G. xanthochymus extract.
Collapse
|