1
|
Mathew J, Zhou B, Haney RS, Kunz KA, Do Amaral LS, Roy Chowdhury R, Butler JH, Li H, Chakraborty AJ, Tabassum A, Bremers EK, Merino EF, Coyle R, Lee MCS, Baud D, Brand S, Totrov M, Cassera MB, Carlier PR. β-Carboline-3-carboxamide Antimalarials: Structure-Activity Relationship, ADME-Tox Studies, and Resistance Profiling. ACS Infect Dis 2024; 10:3951-3962. [PMID: 39466084 PMCID: PMC11973535 DOI: 10.1021/acsinfecdis.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of parasite resistance to both artemisinin derivatives and their partner drugs jeopardizes the effectiveness of the artemisinin combination therapy. Thus, the discovery of new antimalarial drugs, with new mechanisms of action, is urgently needed. We recently disclosed that β-carboline 1a was orally efficacious in Plasmodium berghei-infected mice and that it showed low cross-resistance between susceptible Plasmodium falciparum and four different drug-resistant strains. In this report, we describe the synthesis and in vitro antimalarial evaluation of 91 new derivatives of 1a. The asexual blood stage growth inhibition data show a clear preference for a 3,4-dihalogenated, 3,5-dihalogenated, 3,4,5-trichloro-, or 4-trifluoromethyphenyl ring at the C1-position. The most potent compound, 3,4,5-trichlorophenyl-substituted 42a, is twice as potent as 1a. Six potent analogues were assessed for their drug-like properties, and four of these were subjected to in vitro barcoded cross-resistance profiling. Compounds 1a, 1m, 42a, and 42m showed no cross-resistance to 32 resistance mutations on the Dd2 genetic background and 10 resistance mutations on the 3D7 genetic background. These data suggest that compounds in this scaffold possess a novel mechanism of antimalarial action.
Collapse
Affiliation(s)
- Jopaul Mathew
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Bo Zhou
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Reagan S Haney
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 E. Green Street, Athens, Georgia 30602, United States
| | - Kevin A Kunz
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Leticia S Do Amaral
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 E. Green Street, Athens, Georgia 30602, United States
| | - Rudraneel Roy Chowdhury
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Joshua H Butler
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 E. Green Street, Athens, Georgia 30602, United States
| | - Haibo Li
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Amarraj J Chakraborty
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Anika Tabassum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Emily K Bremers
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 E. Green Street, Athens, Georgia 30602, United States
| | - Emilio F Merino
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 E. Green Street, Athens, Georgia 30602, United States
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 4HN, U.K
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, U.K
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 4HN, U.K
| | - Delphine Baud
- Medicines for Malaria Venture, Geneva 1215, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, Geneva 1215, Switzerland
| | - Maxim Totrov
- Molsoft LLC, 11999 Sorrento Valley Road, San Diego, California 92121, United States
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, 120 E. Green Street, Athens, Georgia 30602, United States
| | - Paul R Carlier
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA. Iranian traditional medicinal plants for management of chronic heart failure: A review. Medicine (Baltimore) 2023; 102:e33636. [PMID: 37171363 PMCID: PMC10174410 DOI: 10.1097/md.0000000000033636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic heart failure is a public health problem with a high prevalence worldwide and an important topic in clinical cardiology. Despite of advances in the drug treatment strategy for heart failure, the number of deaths from this condition continues to rise. It will be a renewed focus on preventing heart failure using proven and perhaps novel drugs. Management will also focus on comorbid conditions that may influence the progression of the disease. Traditional medicine has a potential to introduce different approaches for treatment of some disorders. We here reviewed top medicinal plants, according to traditional medicine to experimental studies, and their potency for the treatment of chronic heart failure based on the evidence of their functions.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Vahedi MM, Shahini A, Mottahedi M, Garousi S, Shariat Razavi SA, Pouyamanesh G, Afshari AR, Ferns GA, Bahrami A. Harmaline exerts potentially anti-cancer effects on U-87 human malignant glioblastoma cells in vitro. Mol Biol Rep 2023; 50:4357-4366. [PMID: 36943605 DOI: 10.1007/s11033-023-08354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Harmaline is a β-carboline alkaloid that can be extracted from the seeds of Peganum harmala. Harmaline has been shown to exhibit a potent cytotoxic effect against tumor cells. In this study, the anti-glioblastoma activity of harmaline was investigated in vitro. METHODS AND RESULTS Cell viability, apoptosis, and cell cycle arrest were assessed in U-87 cells treated with harmaline at different doses. Reactive oxygen species (ROS) generation and the mRNA expression of apoptosis-associated genes were assessed. The anti-metastatic effect of harmaline on U-87 cells was evaluated by gelatin zymography assay where matrix metalloproteinase [MMP]-2/-9 enzymatic activity was measured, and the scratch assay was used to assess migratory responses. Flow cytometry demonstrated that harmaline could suppress the proliferation and induce sub-G1 cell cycle arrest and apoptotic cell death in glioblastoma cells. Harmaline treatment was also associated with an upregulation of the cell cycle-related genes, p21 and p53, and pro-apoptotic Bax, as well as the induction of ROS. The zymography assay indicated that the essential steps of metastasis were potently suppressed by harmaline through inhibiting the expression of MMP-2 and - 9. In addition, the migration of U-87 cells was significantly reduced after harmaline treatment. CONCLUSION Our data suggest a basis for further research of harmaline which has potential cytotoxic activities in glioblastoma cells; inducing cell cycle arrest and apoptosis, repression of migration, possibly invasion, and metastasis.
Collapse
Affiliation(s)
- Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Pouyamanesh
- Department of medical laboratory science, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Kushwaha P, Kumar V, Saha B. Current development of β-carboline derived potential antimalarial scaffolds. Eur J Med Chem 2023; 252:115247. [PMID: 36931118 DOI: 10.1016/j.ejmech.2023.115247] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
β-Carboline alkaloids are an eminent class of nitrogen-based natural alkaloids and therapeutic molecules which exert various pharmacological activities through diverse mechanisms. A lot of attention has recently been directed towards this moiety in order to develop effective antimalarial drugs. "Malaria", an acute febrile illness caused by diverse Plasmodium parasites, is a continuing and escalating problem that devastates economically less developed countries by significantly increased morbidity and mortality rates. The mounting parasite resistance towards the antimalarial drugs and augmenting the 'habitat of the insect vector' are creating a catastrophe, indicating an urgent need for new efficacious therapeutics to combat this tropical disease. This article comprehensively encapsulates the clinical and preclinical antimalarial scaffolds comprising β-carboline moiety in their structure. Herein, various classes of natural and semi-synthetic analogues of β-carbolines reported in the last decade (2011-2021) have been extensively studied and illustrated. This review will help the readers to develop an insight into the β-carboline based antimalarials and molecular mechanisms lying behind their mode of action, which is anticipated to be beneficial for the future development of new β-carboline based therapeutics.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India
| | - Vipin Kumar
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India.
| |
Collapse
|
5
|
Collection of Hairy Roots as a Basis for Fundamental and Applied Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228040. [PMID: 36432139 PMCID: PMC9695355 DOI: 10.3390/molecules27228040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Due to population growth, instability of climatic conditions, and reduction of the areas of natural ecosystems, it becomes necessary to involve modern biotechnological approaches to obtain highly productive plant material. This statement applies both to the creation of plant varieties and the production of new pharmaceutical raw materials. Genetic transformation of valuable medicinal plants using Agrobacterium rhizogenes ensures the production of stable and rapidly growing hairy roots cultures that have a number of advantages compared with cell culture and, above all, can synthesize root-specific substances at the level of the roots of the intact plant. In this regard, special attention should be paid to the collection of hairy roots of the Institute of Plant Physiology RAS, Russian Academy of Sciences, the founder of which was Dr. Kuzovkina I.N. Currently, the collection contains 38 hairy roots lines of valuable medicinal and forage plants. The review discusses the prospects of creating a hairy roots collection as a basis for fundamental research and commercial purposes.
Collapse
|
6
|
Zhu Z, Zhao S, Wang C. Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. Molecules 2022; 27:molecules27134161. [PMID: 35807407 PMCID: PMC9268262 DOI: 10.3390/molecules27134161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases have always been the number one enemy threatening health and well-being. With increasing numbers of infectious diseases, growing resistance of pathogens, and declining roles of antibiotics in the treatment of infectious diseases, it is becoming increasingly difficult to treat new infectious diseases, and there is an urgent need to develop new antibiotics to change the situation. Natural products tend to exhibit many special biological properties. The genus Peganum (Zygophyllaceae) has been used, for a long time, to treat cough, asthma, lumbago, hypertension, diabetes, and Alzheimer’s disease. Over the past two decades, a growing number of studies have shown that components from Peganum harmala Linn and its derivatives can inhibit a variety of microorganisms by inducing the accumulation of ROS in microorganisms, damaging cell membranes, thickening cell walls, disturbing cytoplasm, and interfering with DNA synthesis. In this paper, we provide a review on the antibacterial, antifungal, antiviral, and antiparasitic activities of P. harmala, with a view to contribute to research on utilizing P. harmala for medicinal applicaitons and to provide a reference in the field of antimicrobial and a basis for the development of natural antimicrobial agents for the treatment of infectious diseases.
Collapse
|
7
|
In vitro antioxidant activities of five β-carboline alkaloids, molecular docking, and dynamic simulations. Struct Chem 2022. [DOI: 10.1007/s11224-022-01886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chemical constituents from the aerial part of Peganum multisectum. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Doskaliyev A, Seidakhmetova R, Tutai DS, Goldaeva K, Surov V, Adekenov S. Alkaloids of Peganum harmala L. and their Pharmacological Activity. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Peganum harmala L. contains 17 alkaloids of quinazoline and indole structure types. Of these, harmaline, harmine, harmalol and L-peganin (vazicin) are pharmacologically active. It was established that of the alkaloids contained in the seeds, 50-95% is dominated by harmaline, harmine is dominated in the roots (67-74% of the total of extractive substances), and in the aerial part, the main mass is peganin (up to 78% of the total of alkaloids). Beta-carboline alkaloids of Peganum harmala L. inhibit monoamine oxidase, thereby exerting a neuroprotective effect.
This article is devoted to the results of studies of the neurotropic action of harmine hydrochloride, when compared with the activity of the reference drug “Amitriptyline”. It was shown that the use of harmine hydrochloride helps to reduce the level of anxiety in animals under conditions of experimental psychoemotional chronic stress with prolonged administration. In the study of acute and chronic toxicity, it was determined that harmine hydrochloride belongs to the category of moderately toxic substances (hazard class II). According to the results of molecular docking, the presence of strong bonds in harmine hydrochloride with the serotonin 5-HT2C receptor, dopamine D2 receptor, as well as monoamine oxidase A and B was revealed, which indicates the implementation of the mechanism of neurotropic action of harmine hydrochloride at the level of synaptic neurotransmission of monoamines (dopamine, serotonin and others). It was also established that harmine hydrochloride eliminates haloperidol-induced catalepsy in rats, reduces oligokinesia and rigidity in the Parkinson’s test, has antihypoxic activity in the hypobaric hypoxia test, and exhibits pronounced antidepressant activity in the Porsolt’s test. In the course of the study of pharmacokinetics and bioavailability, it was revealed that with the administration of harmine hydrochloride, the quantitative content is quickly achieved and the concentration of the active substance in the blood significantly increases. The relative bioavailability of harmine hydrochloride is 112.7%.
Collapse
|
10
|
Norouzi FH, Foroughifar N, Khajeh-Amiri A, Pasdar H. A novel superparamagnetic powerful guanidine-functionalized γ-Fe 2O 3 based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3 H)-one derivatives in Green media. RSC Adv 2021; 11:29948-29959. [PMID: 35480261 PMCID: PMC9040894 DOI: 10.1039/d1ra05560g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
The novel organic–inorganic nanohybrid superparamagnetic (γ-Fe2O3@CPTMS–guanidine@SO3H) nanocatalyst modified with sulfonic acid represents an efficient and green catalyst for the one-pot synthesis of quinazolin-4(3H)-one derivatives via three-component condensation reaction between anthranilic acid, acetic anhydride and different amines under microwave irradiation and solvent-free conditions (4a–q). XRD, FT-IR, FE-SEM, TGA, VSM and EDX were used to characterize this new magnetic organocatalyst. Outstanding performance, short response time (15–30 min), simple operation, easy work-up procedure, and avoidance of toxic catalysts can be regarded as its significant advantages. Moreover, it can be easily separated from the reaction solution through magnetic decantation using an external magnet, and recycled at least six times without notable reduction in its activity. A novel organic–inorganic nanohybrid superparamagnetic nanocatalyst (γ-Fe2O3@CPTMS–guanidine@SO3H) represents an efficient and green catalyst for the one-pot synthesis of quinazolin-4(3H)-one derivatives via a three-component condensation reaction.![]()
Collapse
Affiliation(s)
- Fateme Haji Norouzi
- Department of Chemistry, Tehran North Branch, Islamic Azad University Tehran Iran
| | - Naser Foroughifar
- Department of Chemistry, Tehran North Branch, Islamic Azad University Tehran Iran
| | | | - Hoda Pasdar
- Department of Chemistry, Tehran North Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
11
|
Chin LT, Liu KW, Chen YH, Hsu SC, Huang L. Cell-based assays and molecular simulation reveal that the anti-cancer harmine is a specific matrix metalloproteinase-3 (MMP-3) inhibitor. Comput Biol Chem 2021; 94:107556. [PMID: 34384998 DOI: 10.1016/j.compbiolchem.2021.107556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The biological activities of harmine have been a much clearer picture in recent years, which include anti-tumor, anti-inflammation and cytotoxic properties. Numerous in vitro and in vivo animal models have confirmed its activities, but its mode of action remains a relative unsolved issue. We therefore investigated harmine for its effects on MMP-3 and the molecular interaction was also simulated. The human glioma cancer cell line, U-87 MG cells, was subjected to different concentrations (1-10 μM) of harmine for 24 h. Methylthiazol tetrazolium (MTT) test, half maximal inhibitory concentration (IC50), western blot analysis, enzyme-linked immunosorbent assay and molecular docking through BIOVIA DiscoveryStudio™ were performed. These results showed that although harmine stimulation in vitro has very little or no effects on MMP-3 expression by U-87 MG cells, the treatment of harmine decreases MMP-3 activity in a dose dependent manner. It was further calculated that 7.9 μM is the IC50 towards MMP-3. Using a molecular dynamic simulation approach, we identified the N2, methyl of C1 and benzene ring of harmine interact with Zn2+ (2.4 Å), His205 (2.4 Å) and His211 (2.4 Å) as well as Val163 (2.7 Å) at the active site of MMP-3, respectively, and thus conferred a striking specific binding advantage. Taken altogether, the present study evidences that harmine acts as an MMP-3 inhibitor specially targeting the enzymatic active site and possibly efficiently ameliorates MMP-3-driven malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Li-Te Chin
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, 11400, Taiwan, ROC
| | - Ke-Wei Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Yi-Han Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Shu-Ching Hsu
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC
| | - Lin Huang
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC.
| |
Collapse
|
12
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA, Madaeni S. Therapeutic effects of medicinal plants on isoproterenol-induced heart failure in rats. Biomed Pharmacother 2020; 134:111101. [PMID: 33338752 DOI: 10.1016/j.biopha.2020.111101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
AIMS Natural products still serves as a hope for some illnesses which modern medicine fails to cure. Many people, either knowing their effects or not, are using these herbal products. Treatment of chronic heart failure (CHF) is yet a complicated clinical challenge and there is need to improve or make new therapeutic targets. Finding new agents for CHF is an important subject in cardiovascular drug research. In this study, we evaluated the effects of ten herbals on treatment of CHF on isoproterenol-induced model. METHODS AND RESULTS Ninety-six male Wistar rats (16 weeks old) were used in 12 groups. Transthoracic echocardiography was performed on the rats for confirmation of CHF model by decreasing ejection fraction. After 4 weeks' treatment, hearts were removed and blood samples were collected in tubes to measure plasma levels of laboratory findings. Our results showed that the mean of ejection fraction in model rats was 51.82 ± 3.49 percent and all of our used natural products could significantly increase the ejection fraction (P < 0.01). The most effective herbals in improving the ejection fraction were Allium sativum (30.69 %), Peganum harmala (26.08 %) and Apium graveolens (24.09 %). The best results in decreasing NT-ProBNP, was obtained from Allium sativum, Peganum harmala and Berberis vulgaris respectively. Our results showed that none of natural products had toxic effect on renal and liver tissues. CONCLUSION Our results showed that Allium sativum, Peganum harmala and Berberis vulgaris could significantly improve cardiac function by improvement of left ventricular remodeling, lowering hs-CRP and NT-ProBNP and echocardiographic indexes without liver or renal side effects.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeid Madaeni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Ahmad I, Fakhri S, Khan H, Jeandet P, Aschner M, Yu ZL. Targeting cell cycle by β-carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chem Biol Interact 2020; 330:109229. [PMID: 32835667 DOI: 10.1016/j.cbi.2020.109229] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/25/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Cell cycle dysregulation is the mainstay of aberrant cell proliferation, which leads to tumor progression. Mutations in tumor cells initiate various dysregulated pathways and spontaneous over-proliferation with genomic/chromosomal instability. Despite advances in cancer therapy, it has remained a medicinal challenge to treat. Besides, the complexity of pathophysiological pathways behind cancer raises the need for novel multi-target agents, possessing fewer side effects. Alkaloid-based therapies have been explored so far to target cell division in cancer, including vinca alkaloids. As a class of hopeful β-carboline derivatives, growing evidence has indicated their auspicious roles in combating cancer by inhibiting topoisomerase (TOPO), kinesin Eg5, telomerase, cyclin-dependent kinase (CDK), IκB kinase (IKK), and polo-like kinase-1 (PLK1) in the transition phases of cell cycle. In this review, in vitro potential of β-carboline has been revealed through targeting cell division cycle at different phases. In conclusion, β-carboline alkaloids could be introduced as novel candidates in cancer therapy.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences University of Reims Champagne-Ardenne, Reims Cedex, 51687, France.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209 1300 Morris Park Avenue Bronx, NY, 10461, USA.
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
14
|
Gorki V, Walter NS, Singh R, Chauhan M, Dhingra N, Salunke DB, Kaur S. β-Carboline Derivatives Tackling Malaria: Biological Evaluation and Docking Analysis. ACS OMEGA 2020; 5:17993-18006. [PMID: 32743172 PMCID: PMC7391373 DOI: 10.1021/acsomega.0c01256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
Increasing resistance to presently available antimalarial drugs urges the need to look for new promising compounds. The β-carboline moiety, present in several biologically active natural products and drugs, is an important scaffold for antimalarial drug discovery. The present study explores the antimalarial activity of a β-carboline derivative (1R,3S)-methyl 1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (9a) alone in vitro against Plasmodium falciparum and in vivo in combination therapy with the standard drug artesunate against Plasmodium berghei. Compound 9a inhibited both 3D7 and RKL-9 strains of P. falciparum with half-maximal inhibitory concentration (IC50) < 1 μg/mL, respectively. The compound was nontoxic (50% cytotoxic concentration (CC50) > 640 μg/mL) to normal dermal fibroblasts. Selectivity index was >10 against both the strains. The compound exhibited considerable in vivo antimalarial activity (median effective dose (ED50) = 27.74 mg/kg) in monotherapy. The combination of 9a (100 mg/kg) and artesunate (50 mg/kg) resulted in 99.69% chemosuppression on day 5 along with a mean survival time of 25.8 ± 4.91 days with complete parasite clearance. Biochemical studies indicated the safety of the HIT compound to hepatic and renal functions of mice. Molecular docking also highlighted the suitability of 9a as a potential antimalarial candidate.
Collapse
Affiliation(s)
- Varun Gorki
- Parasitology
Laboratory, Department of Zoology, Panjab
University, Chandigarh 160014, India
| | - Neha Sylvia Walter
- Parasitology
Laboratory, Department of Zoology, Panjab
University, Chandigarh 160014, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Monika Chauhan
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Neelima Dhingra
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology
Laboratory, Department of Zoology, Panjab
University, Chandigarh 160014, India
| |
Collapse
|
15
|
Li H, Wang Z, Wang Y, Xu J, He X. Triterpenoids with anti-proliferative effects from the seeds of Peganum harmala L. PHYTOCHEMISTRY 2020; 174:112342. [PMID: 32172018 DOI: 10.1016/j.phytochem.2020.112342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Three undescribed lupane-type triterpenoids (1-3), three undescribed oleanane-type triterpenoids (4-6), and ten known pentacyclic triterpenoids (7-16) were isolated from the seeds of Peganum harmala L. (Zygophyllaceae). Their structures were elucidated using various spectroscopic methods (IR, HR-ESI-MS, 1D, and 2D NMR). All the triterpenoids were screened for anti-proliferative activity against HeLa, HepG2, and SGC-7901 cells using the MTT method. Except compounds 1, 2, and 13, all the other triterpenoids exhibited potent cytotoxic activities against tumour cells. Compounds 3, 6, and 15 inhibited the proliferation of HeLa cells in a dose-dependent manner, as observed by the colony formation assay. When HeLa cells were treated with different doses of compounds 3, 6, and 15, the cell nuclei changed shape to a crescent form and were condensed and fragmented, as observed by Hoechst 33258 staining. Additionally, these three triterpenoids induced the apoptosis in HeLa cells, which was detected by Western blot analysis.
Collapse
Affiliation(s)
- Haiyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhe Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
16
|
L. Javeres MN, Nurulain SM, Hamadama OG, Bello HJ, Muazu A. In vivo Anti-Plasmodium Activity and Toxicity of Afzelia bipindensis and Senna Siamea Extracts: A Murine Model. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2019. [DOI: 10.2174/1874104501913010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Malaria, a parasitosis affecting man, remains a public health problem in developing countries where morbidity and mortality are very high. Afzelia bipindensis and Senna siamea are two plants used in the treatment of malaria in different African countries including Cameroon.
Objective:
The aim of the present study was to evaluate the antiplasmodial activity of hydroethanolic leaves extracts of Afzelia bipindensis and Senna siamea, from Northern Cameron using Plasmodium berghei and to investigate the acute and sub-acute toxicity of leaves extracts in a rodent model.
Methods:
The four days Peter’s suppressive test was used to evaluate the antiplasmodial activity and the OCDE 423 and 412 guidelines were applied to evaluate acute and sub-acute toxicity. Biochemical tests related to hepatic, cardiac and renal toxicity were also assessed.
Results:
The leaves’ extracts of Afzelia bipindensis at doses 180, 360, 720 mg/kg and Senna siamea at doses of 100, 200, 400 mg/kg have shown significant antiplasmodial activity (P) with parasite reduction ≈ 50%. No mortality of rats was observed at the tested doses. The biochemical analysis did not reveal any statistically significant difference when compared with control. However, ALT was statistically increased at a higher dose (720 mg/kg) of Afzelia bipindensis leaves extract. On the other hand, there was a significant decrease in triglycerides at 360 mg/kg and 720 mg/kg
Conclusion:
It is concluded that daily consumption of leaves extract of Afzelia bipindensis and Senna siamea are without significant risks to human health, favoring the use of these products in the treatment of malaria.
Collapse
|
17
|
Wang Y, Wang H, Zhang L, Zhang Y, Sheng Y, Deng G, Li S, Cao N, Guan H, Cheng X, Wang C. Subchronic toxicity and concomitant toxicokinetics of long-term oral administration of total alkaloid extracts from seeds of Peganum harmala Linn: A 28-day study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111866. [PMID: 30970283 DOI: 10.1016/j.jep.2019.111866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Peganum harmala Linn, in which the most abundant active compounds are harmaline and harmine, have been widely used as a traditional medicine in various countries to treat a broad spectrum of diseases including asthma, cough, depression, Parkinson's and Alzheimer's diseases. However, few studies on long-term or subchronic toxicity of seeds of P. harmala were reported after overdose. AIM OF THE STUDY To investigate the subchronic toxicity and concomitant toxicokinetics of total alkaloid extracts from seeds of P. harmala (TAEP) after oral administration for four weeks in rats. MATERIALS AND METHODS The subchronic toxicity and concomitant toxicokinetics of TAEP were evaluated after 28-day oral administration in rats at daily dose levels of 15, 45, and 150 mg/kg. The signs of toxicity and mortality were monitored and recorded daily. The body weight and average food consumption were measured weekly. The analyses of hematology, biochemistry, urine, relative organ weights and histopathology were conducted at the termination of treatment and recovery phase. For concomitant toxicokinetics study, the plasma toxicokinetic parameters, tissue distribution, and excretion of predominant ingredients harmaline and harmine in TAEP and metabolites harmalol and harmol were tested. RESULTS Following initial repeated exposure to high-dose (150 mg/kg/day) of TAEP excitotoxic reaction, such as tremor, was observed, but tolerated on the fourth day after multiple dosing. The significant alterations in blood glucose and lipid metabolism in liver were observed, but recovered after four weeks of drug withdrawal. The no-observed-adverse-effect level (NOAEL) of TAEP was considered to be 45 mg/kg/day under the present study conditions. There were no significant gender differences in most indexes of subchronic toxicity throughout the experimental period with the exception of food consumption and body weight. In concomitant toxicokinetics study, the alterations of dynamic characteristic for harmaline, harmine and metabolite harmol after multiple oral administration at three doses had been observed. Harmaline, harmine and metabolites harmalol and harmol were widely distributed in organs and there was no accumulation in the tissues examined. The reduction of harmaline and metabolite harmalol in brain after multiple dosing at dose of 150 mg/kg might be closely related to the tremor tolerance. The main excretory pathway for metabolites harmalol and harmol was urinary excretion via kidney. CONCLUSIONS The results revealed that TAEP at doses of 15 and 45 mg/kg/day in rats might be safe. Excitotoxic reaction such as tremor occurred initially at dose of 150 mg/kg/day, however, the toxicity was tolerant and reversible. In addition, harmaline and harmine in TAEP had a quick absorption into blood and metabolized to harmalol and harmol, and there was no drug accumulation in the detected tissues. Further studies should be investigated to clarify the mechanisms of tremor tolerance and neurotoxicity of TAEP.
Collapse
Affiliation(s)
- Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Liuhong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuchen Sheng
- Drug Safety Evaluation and Research Center of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Ning Cao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
18
|
Ferraz CAA, de Oliveira Júnior RG, Picot L, da Silva Almeida JRG, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia 2019; 137:104196. [PMID: 31175948 DOI: 10.1016/j.fitote.2019.104196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
Depressive disorders remain a current public health problem whose prevalence has increased in the past decades. In the constant search for new therapeutic alternatives, β-carboline alkaloids have been identified as good candidates for new antidepressant drugs. In this systematic review, we summarized all pre-clinical investigations involving the use of natural or semisynthetic β-carboline in depression models. A literature search was conducted in August 2018, using PubMed, Scopus and Science Direct databases. All reports were carefully analyzed, and data extraction was conducted through standardized forms. Methodological quality assessment of in vivo studies was also performed. The entire systematic review was performed according to PRISMA statement. From a total of 373 articles, 26 met all inclusion criteria. In vitro and in vivo studies have evaluated a wide variety of β-carbolines through enzymatic and binding assays, and acute or chronic animal models. Most of the in vivo and in vitro studies is concentrated on two molecules: harman and harmine. They have been investigated in several animal models and some mechanisms of action have been proposed for their antidepressant activity. In general, β-carbolines modulate 5-HT and GABA systems, promote neurogenesis, induce neuroendocrine response and restore astrocytic function, being effective when administrated acutely or chronically in different animal models, including chronic mild stress protocols. In short, β-carbolines are multi-target antidepressant compounds and may be useful in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil
| | | | - Laurent Picot
- Littoral Environnement et Sociétés (LIENSs), Université de La Rochelle, UMRi CNRS 7266, La Rochelle 17042, France
| | | | - Xirley Pereira Nunes
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil.
| |
Collapse
|
19
|
Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Mol Divers 2019; 24:61-67. [PMID: 30820742 PMCID: PMC7223885 DOI: 10.1007/s11030-019-09932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
Abstract An effective technique for one-stage synthesis of new polycyclic nitrogen-containing compounds has been developed. The procedure involves refluxing mixtures of camphoric acid with aliphatic or aromatic diamine without catalysts. In cases where the starting amine has a low boiling point (less than 200 °C), phenol is used as a solvent, as it is the most optimal one for obtaining products with good yields. It has been shown that the use of Lewis acids as catalysts reduces the yield of the reaction products. A set of compounds have been synthesized, which can be attributed to synthetic analogues of alkaloids. In vitro screening for activity influenza virus A was carried out for the obtained compounds. The synthesized quinazoline-like agent 14 has inhibitory activity against different strains of influenza viruses. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-019-09932-9) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Wang X, Wang M, Yan J, Chen M, Wang A, Mei Y, Si W, Yang C. Design, Synthesis and 3D-QSAR of New Quinazolin-4(3H
)-one Derivatives Containing a Hydrazide Moiety as Potential Fungicides. ChemistrySelect 2018. [DOI: 10.1002/slct.201801575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Mengqi Wang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Jinghua Yan
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Yudong Mei
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Weijie Si
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| |
Collapse
|
21
|
Wang Z, Kang D, Jia X, Zhang H, Guo J, Liu C, Meng Q, Liu W. Analysis of alkaloids from Peganum harmala L. sequential extracts by liquid chromatography coupled to ion mobility spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:73-79. [PMID: 30149297 DOI: 10.1016/j.jchromb.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
An orthogonal two dimensional analysis method based on high performance liquid chromatography (HPLC) separation and electrospray ionization-ion mobility spectrometry (ESI-IMS) detection was developed for the analysis of alkaloid compounds from Peganum harmala L. seeds. Reverse phase (RP) and hydrophilic interaction chromatography (HILIC) were compared for the most optimal performance using three different chromatographic columns. The experimental results suggest that HILIC mode is a better option for combining with the ESI-IMS system for higher sensitivity and ease in hyphenating. Under optimized conditions, alkaloids from different extraction phases were determined by means of the established HPLC-IMS method. More compounds from Peganum harmala L. seed extracts were differentiated on the HPLC-ESI-IMS system by their retention time and drift time than by HPLC or ESI-IMS alone, and thirteen alkaloids were tentatively identified based on m/z and fragment ions using ultra-high-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Hence, our results indicate that this method can be considered to be advantageous over traditional absorbance detection methods for resolving complex mixtures because of complementary separation steps, elevated peak capacity, and higher sensitivity.
Collapse
Affiliation(s)
- Zhiyan Wang
- College of Life Science, Tarim University, Alar, Xinjiang 843300, China
| | - Dianao Kang
- College of Life Science, Tarim University, Alar, Xinjiang 843300, China
| | - Xu Jia
- College of Life Science, Tarim University, Alar, Xinjiang 843300, China
| | - Hanghang Zhang
- College of Life Science, Tarim University, Alar, Xinjiang 843300, China
| | - Jianheng Guo
- College of Pharmacy, Southwest MinZu University, Chengdu 610041, China
| | - Chunlin Liu
- College of Pharmacy, Southwest MinZu University, Chengdu 610041, China
| | - Qingyan Meng
- College of Life Science, Tarim University, Alar, Xinjiang 843300, China; Xinjiang Production & Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Wenjie Liu
- College of Life Science, Tarim University, Alar, Xinjiang 843300, China; Xinjiang Production & Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| |
Collapse
|
22
|
Huang HM, Adams RW, Procter DJ. Reductive cyclisations of amidines involving aminal radicals. Chem Commun (Camb) 2018; 54:10160-10163. [DOI: 10.1039/c8cc05178j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first general study of aminal radical cyclisations, triggered by reduction of amidines with SmI2, delivers quinazolinones with complete diastereocontrol.
Collapse
Affiliation(s)
- Huan-Ming Huang
- School of Chemistry
- Oxford Road
- University of Manchester
- Manchester
- UK
| | - Ralph W. Adams
- School of Chemistry
- Oxford Road
- University of Manchester
- Manchester
- UK
| | - David J. Procter
- School of Chemistry
- Oxford Road
- University of Manchester
- Manchester
- UK
| |
Collapse
|
23
|
Mohammadi Ziarani G, Gholamzadeh P, Badiei A, Fathi Vavsari V. The role of pyruvic acid as starting material in some organic reactions in the presence of SBA-Pr-SO3H nanocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2018; 44:277-288. [DOI: 10.1007/s11164-017-3103-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Hashempur MH, Khademi F, Rahmanifard M, Zarshenas MM. An Evidence-Based Study on Medicinal Plants for Hemorrhoids in Medieval Persia. J Evid Based Complementary Altern Med 2017; 22:969-981. [PMID: 29228790 PMCID: PMC5871264 DOI: 10.1177/2156587216688597] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/28/2016] [Accepted: 12/11/2016] [Indexed: 01/27/2023] Open
Abstract
Hemorrhoids is one of the most common gastrointestinal diseases. There are several therapeutic options associated with some complications. Therefore, researchers look for traditional medicines as a potential resource for introduction of new natural drugs. The current study reports an evidence-based review of herbal remedies for hemorrhoids in traditional Persian medicine. A comprehensive survey about hemorrhoids on the most important manuscripts of traditional Persian medicine was done. Then, scientific data banks were searched for possible related properties of each herb in the conventional medicine. We reported some historical aspects of traditional Persian medicine view on classification, examination, and predisposing factors of hemorrhoids. In addition, we have reported 105 medicinal plants belonging to 51 families. More than half of the reported herbs exhibited anti-inflammatory and analgesic effects. Although lack of human studies regarding the mentioned herbs is noted, positive results from experimental findings can be considered for new drug discovery supported by traditional and medieval experiences.
Collapse
Affiliation(s)
- Mohammad Hashem Hashempur
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Essence of Parsiyan Wisdom Institute, Traditional Medicine and Medicinal Plant Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khademi
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rahmanifard
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia 2017; 119:136-149. [PMID: 28495308 DOI: 10.1016/j.fitote.2017.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022]
Abstract
Quinazolinones belong to a family of heterocyclic nitrogen compounds that have attracted increasing interest because of their broad spectrum of biological functions. This review describes three types of natural quinazolinones and their synthesized derivatives and summarizes their various pharmacological activities, including antifungal, anti-tumor, anti-malaria, anticonvulsant, anti-microbial, anti-inflammatory and antihyperlipidemic activities. In addition, structure-activity relationships of quinazolinone derivatives are also reviewed.
Collapse
|
26
|
Li S, Cheng X, Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:127-162. [PMID: 28359849 DOI: 10.1016/j.jep.2017.03.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Peganum have a long history as a Chinese traditional medicine for the treatment of cough, hypertension, diabetes, asthma, jaundice, colic, lumbago, and many other human ailments. Additionally, the plants can be used as an amulet against evil-eye, dye and so on, which have become increasingly popular in Asia, Iran, Northwest India, and North Africa. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interaction of the genus Peganum in order to assess the ethnopharmacological use and to explore therapeutic potentials and future opportunities for research. MATERIALS AND METHODS Information on studies of the genus Peganum was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pudmed, Web of Science, CNKI and EMBASE) and libraries. Additionally, information was also obtained from some local books, PhD and MS's dissertations. RESULTS The genus Peganum has played an important role in traditional Chinese medicine. The main bioactive metabolites of the genus include alkaloids, flavonoids, volatile oils, etc. Scientific studies on extracts and formulations revealed a wide range of pharmacological activities, such as cholinesterase and monoamine oxidase inhibitory activities, antitumor, anti-hypertension, anticoagulant, antidiabetic, antimicrobial, insecticidal, antiparasidal, anti-leishmaniasis, antioxidant, and anti-inflammatory. CONCLUSIONS Based on this review, there is some evidence for extracts' pharmacological effects on Alzheimer's and Parkinson's diseases, cancer, diabetes, hypertension. Some indications from ethnomedicine have been confirmed by pharmacological effects, such as the cholinesterase, monoamine oxidase and DNA topoisomerase inhibitory activities, hypoglycemic and vasodilation effects of this genus. The available literature showed that most of the activities of the genus Peganum can be attributed to the active alkaloids. Data regarding many aspects of the genus such as mechanisms of actions, metabolism, pharmacokinetics, toxicology, potential drug interactions with standard-of-care medications is still limited which call for additional studies particularly in humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China.
| |
Collapse
|
27
|
Tabari MA, Youssefi MR, Moghadamnia AA. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in pigeon (Columba livia domestica). Br Poult Sci 2017; 58:236-241. [DOI: 10.1080/00071668.2017.1280725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. A. Tabari
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - M. R. Youssefi
- Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran
| | - A. A. Moghadamnia
- Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
28
|
Bournine L, Bensalem S, Fatmi S, Bedjou F, Mathieu V, Iguer-Ouada M, Kiss R, Duez P. Evaluation of the cytotoxic and cytostatic activities of alkaloid extracts from different parts of Peganum harmala L. (Zygophyllaceae). Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Shirani-Boroujeni M, Heidari-Soureshjani S, Keivani Hafshejani Z. Impact of oral capsule of Peganum harmala on alleviating urinary symptoms in men with benign prostatic hyperplasia; a randomized clinical trial. J Renal Inj Prev 2016; 6:127-131. [PMID: 28497089 PMCID: PMC5423280 DOI: 10.15171/jrip.2017.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/29/2016] [Indexed: 01/18/2023] Open
Abstract
Introduction: Benign prostatic hyperplasia (BPH) is considered as a major cause of lower urinary tract symptoms (LUTS) in older men and its most common sign is nocturia.
Objectives: This study aimed to determine the effect of the seeds of Peganum harmala compared with tamsulosin on alleviating urinary symptoms in patients with BPH.
Patients and Methods: In this single blind clinical trial study, 90 patients diagnosed with BPH and LUTS, based on international prostate standard survey (IPSS) were divided into three groups. The first group was received oral capsule of P. harmala, the second group was administered tamsulosin with oral P. harmala seed and the third group was received tamsulosin drug and they were evaluated after 4 weeks.
Results: The results showed that the difference between mean scores of IPSS was significant after the intervention (P=0.001). Besides, the mean of IPSS in the three groups was significantly different (P=0.001) (the first group 41.9±5.3, the second group 21.0±4.4 ,the third group 16.5±3.7 respectively). However, after the intervention, patients in the second group had the lowest average on most indicators of IPSS but the difference was only significant about urinary frequency, nocturia and intermittency(P<0.05).
Conclusion: Application of Peganum harmala seed can be useful in reducing urinary symptoms in patients with BPH.
Collapse
|
30
|
Apostolico I, Aliberti L, Caputo L, De Feo V, Fratianni F, Nazzaro F, Souza LF, Khadhr M. Chemical Composition, Antibacterial and Phytotoxic Activities of Peganum harmala Seed Essential Oils from Five Different Localities in Northern Africa. Molecules 2016; 21:molecules21091235. [PMID: 27649128 PMCID: PMC6273081 DOI: 10.3390/molecules21091235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022] Open
Abstract
Peganum harmala L., also known as Syrian rue or Pègano, is a herbaceous plant belonging to the Zygohpyllaceae family, and is widely used in traditional medicine. The chemical composition of essential oils of P. harmala seeds from five different regions of Northern Africa (Algeria, Egypt, Libya, Morocco and Tunisia) was studied by GC and GC-MS analyses. A total of 105 compounds were identified, the main components being oxygenated monoterpenes and oxygenated sesquiterpenes. Eugenol is the main component in all oils. The antimicrobial activity of the essential oils was assayed against some bacterial strains: Staphylococcus aureus (DSM 25693), Bacillus cereus (DSM 4313), Bacillus cereus (DSM4384), Escherichia coli (DMS 857) and Pseudomonas aeruginosa (ATCC 50071). All the oils showed different inhibitory activity. In the twentieth century this is an important result; we need possible new botanical drugs because the problem of resistance to antimicrobial drugs has become apparent. Moreover, the essential oils were evaluated for their possible in vitro phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Lepidium sativum L., and Ruta graveolens L. The results showed that both germination and radical elongation were sensitive to the oils.
Collapse
Affiliation(s)
- Ida Apostolico
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Luigi Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Florinda Fratianni
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (ISA-CNR), via Roma 64, 83100 Avellino, Italy.
| | - Filomena Nazzaro
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (ISA-CNR), via Roma 64, 83100 Avellino, Italy.
| | - Lucèia Fàtima Souza
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
- Post-doctoral by National Counsel of Technological and Scientific Development, (CNPq/Brazil), 70000-000 Brasília, Brazil.
| | - Maroua Khadhr
- Unité de Recherche de Biochimie des Lipides et Principes Actifs des Plantes, 2092 Faculté des Sciences de Tunis, Tunisia.
| |
Collapse
|
31
|
Moazeni M, Saadaty Ardakani ZS, Saharkhiz MJ, Jalaei J, Khademolhoseini AA, Shams Esfand Abad S, Mootabi Alavi A. In vitro ovicidal activity of Peganum harmala seeds extract on the eggs of Fasciola hepatica. J Parasit Dis 2016; 41:467-472. [PMID: 28615861 DOI: 10.1007/s12639-016-0830-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/22/2016] [Indexed: 10/21/2022] Open
Abstract
Peganum harmala seeds extract has been previously reported to have antimicrobial and other medicinal properties. The aim of this study was to evaluate the ovicidal activity of the methanolic extract of P. harmala seeds against the eggs of F. hepatica. The phenolic compounds of the methanolic extract of P. harmala seeds were identified by HPLC analysis. Catechin, rutin, p-Coumaric acid, chloregenic acid and hesperetin were found to be the major phenolic compounds. F. hepatica eggs were collected from the gall bladder of naturally infected sheep. The eggs were exposed to two concentrations of P. harmala seeds extract (1 and 3 mg/mL) for 24 and 48 h. To investigate the effect of the P. harmala seeds extract on the miracidial formation, the treated eggs were incubated at 28 °C for 14 days. The results indicated that F. hepatica eggs were susceptible to the methanolic extract of P. harmala seeds. Following 24 h exposure of the eggs to P. harmala seeds extract with concentrations of 1 and 3 mg/mL, the miracidial formation reduced to 5 and 2.2 % respectively (compared with 60 % for the control group). Following 48 h of exposure of the eggs to P. harmala seeds extract with 1 mg/mL concentration, the miracidial formation reduced to 0.5 %. In this exposure time, no miracidial formation was observed in the eggs exposed to P. harmala seeds extract with concentration of 3 mg/mL. Therefore, the results of this study indicated that P. harmala seeds extract has high ovicidal activity against the eggs of F. hepatica. Accordingly, this extract may have the potential flukicidal activity against the immature and mature F. hepatica.
Collapse
Affiliation(s)
- Mohammad Moazeni
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | | | | | - Jafar Jalaei
- Department of Pharmacology and Toxicology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Shahab Shams Esfand Abad
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | - Amir Mootabi Alavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| |
Collapse
|
32
|
Anwar MA, Al Disi SS, Eid AH. Anti-Hypertensive Herbs and Their Mechanisms of Action: Part II. Front Pharmacol 2016; 7:50. [PMID: 27014064 PMCID: PMC4782109 DOI: 10.3389/fphar.2016.00050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/22/2016] [Indexed: 01/20/2023] Open
Abstract
Traditional medicine has a history extending back to thousands of years, and during the intervening time, man has identified the healing properties of a very broad range of plants. Globally, the use of herbal therapies to treat and manage cardiovascular disease (CVD) is on the rise. This is the second part of our comprehensive review where we discuss the mechanisms of plants and herbs used for the treatment and management of high blood pressure. Similar to the first part, PubMed and ScienceDirect databases were utilized, and the following keywords and phrases were used as inclusion criteria: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine, endothelial cells, nitric oxide (NO), vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B (NF-κB), oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with plant or herb in question, and where possible with its constituent molecule(s). This part deals in particular with plants that are used, albeit less frequently, for the treatment and management of hypertension. We then discuss the interplay between herbs/prescription drugs and herbs/epigenetics in the context of this disease. The review then concludes with a recommendation for more rigorous, well-developed clinical trials to concretely determine the beneficial impact of herbs and plants on hypertension and a disease-free living.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Sara S Al Disi
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
33
|
Gopalakrishnan A, Maji C, Dahiya R, Suthar A, Kumar R, Gupta A, Dimri U, Kumar S. In vitro growth inhibitory efficacy of some target specific novel drug molecules against Theileria equi. Vet Parasitol 2016; 217:1-6. [DOI: 10.1016/j.vetpar.2015.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
|
34
|
Wang Y, Wang C, Jiang C, Zeng H, He X. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells. Sci Rep 2015; 5:18613. [PMID: 26678950 PMCID: PMC4683523 DOI: 10.1038/srep18613] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunhua Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chenguang Jiang
- Huangshan Jingzhi Pharmaceutical Company of Nanjing Tongrentang Group, Huangshan 245999, China
| | - Hong Zeng
- Xinjiang Production &Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim 843300, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
35
|
Zhong Z, Tao Y, Yang H. Treatment with harmine ameliorates functional impairment and neuronal death following traumatic brain injury. Mol Med Rep 2015; 12:7985-91. [PMID: 26496827 PMCID: PMC4758275 DOI: 10.3892/mmr.2015.4437] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/17/2015] [Indexed: 11/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality in young individuals, and results in motor and cognitive deficiency. Excitotoxicity is an important process during neuronal cell death, which is caused by excessive release of glutamate following TBI. Astrocytic glutamate transporters have a predominant role in maintaining extracellular glutamate concentrations below excitotoxic levels, and glutamate transporter 1 (GLT-1) may account for >90% of glutamate uptake in the brain. The β-carboline alkaloid harmine has been demonstrated to exert neuroprotective actions in vivo, and the beneficial effects were specifically due to elevation of GLT-1. However, whether harmine provides neuroprotection following TBI remains to be elucidated. The present study performed intraperitoneal harmine injections in rats (30 mg/kg per day for up to 5 days), in order to investigate whether harmine treatment attenuates brain edema and improves functional recovery in a rat model of TBI. The neuronal survival ratio and the protein expression of apoptosis-associated caspase 3 were also assessed in the hippocampus of the rat brain. Furthermore, the expression levels of GLT-1 and inflammatory cytokines were detected, in order to determine the underlying mechanisms. The results of the present study demonstrated that administration of harmine significantly attenuated cerebral edema, and improved learning and memory ability. In addition, harmine significantly increased the protein expression of GLT-1, and markedly attenuated the expression levels of interleukin-1β and tumor necrosis factor-α, thereby attenuating apoptotic neuronal death in the hippocampus. These results provided in vivo evidence that harmine may exert neuroprotective effects by synergistically reducing excitotoxicity and inflammation following TBI.
Collapse
Affiliation(s)
- Zeqi Zhong
- Department of Neurosurgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yuan Tao
- Department of Neurology, Research Institute of Field Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
36
|
Abedi Gaballu F, Abedi Gaballu Y, Moazenzade Khyavy O, Mardomi A, Ghahremanzadeh K, Shokouhi B, Mamandy H. Effects of a triplex mixture of Peganum harmala, Rhus coriaria, and Urtica dioica aqueous extracts on metabolic and histological parameters in diabetic rats. PHARMACEUTICAL BIOLOGY 2015; 53:1104-1109. [PMID: 25612773 DOI: 10.3109/13880209.2014.960943] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Several therapeutic effects such as antioxidant and blood glucose-lowering activities have been reported for Peganum harmala L (Zygophyllaceae) (PH) seeds, Rhus coriaria L (Anacardiaceae) (RC) fruits, and Urtica dioica L (Urticaceae) (UD) leaves. OBJECTIVE This study investigates the effects of a triplex mixture (1:1:1) of these medicinal plants on metabolic and histological parameters in diabetic rats. MATERIALS AND METHODS Aqueous extracts of PH, RC and UD were administered as either monotherapy or in combination at a final dose of 200 mg/kg to alloxan-induced diabetic rats by daily gavage. Biochemical parameters including blood glucose, liver function-related enzymes, lipid profile, and creatinine were estimated by spectrophotometric methods. Tissues from the liver and kidney stained with hematoxylin/eosin were histologically examined. The results obtained from the exposure groups were compared to either healthy or diabetic control groups. RESULTS Compared with the diabetic control rats, all aqueous extracts (ED50 = 11.5 ± 2.57 mg/ml) led to significant decreases in the levels of ALP (1.39-2.23-fold, p < 0.05), low-density lipoprotein cholesterol (LDL-C) (1.79-3.26-fold, p < 0.05), and blood glucose (1.27-4.16-fold, p < 0.05). The serum concentrations of TG was decreased only by treatment with UD and triplex mixture (1.25- and 1.20-fold, respectively, p < 0.05). Among the studied parameters, alanine aminotransferase (ALT), LDL-C, TG, and creatinine recovered to healthy control levels after 4 weeks of treatment with the extract mixture. CONCLUSION This study showed that PH, RC, and UD extracts, especially their combination, had significant antidiabetic, hypolipidemic, and liver and renal damage recovering effects.
Collapse
|
37
|
Yavari N, Emamian F, Yarani R, Reza Mohammadi-Motlagh H, Mansouri K, Mostafaie A. In vitro inhibition of angiogenesis by heat and low pH stable hydroalcoholic extract of Peganum harmala seeds via inhibition of cell proliferation and suppression of VEGF secretion. PHARMACEUTICAL BIOLOGY 2015; 53:855-861. [PMID: 25471082 DOI: 10.3109/13880209.2014.946057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Progression of cancer cells is completely dependent on its angiogenesis. Inhibition of tumor angiogenesis has shed new light on cancer treatment. As a result, anti-angiogenesis therapy represents one of the most significant advances in clinical oncology. Peganum harmala L. (Zygophyllaceae) is a native plant from the eastern Iranian region, which is used as a traditional folk medicine. Although some biological properties of this plant are determined, its effect on angiogenesis is still unclear. OBJECTIVE We investigated the anti-angiogenic effects of heat and low pH stable hydroalcoholic extract of P. harmala seeds on endothelial cells (ECs) proliferation and VEGF secretion. MATERIALS AND METHODS Dried Peganum seeds were purchased from Kermanshah Traditional Bazar in 2011. Hydroalcoholic extract of dried seeds (0, 10, 20, 40, 60, 80, 100, 120, and 150 μg/ml) was used for in vitro evaluation of its cytotoxicity, anti-proliferative, and anti-angiogenic effects on ECs. In vitro effect of the extract on VEGF secretion was assayed using ELISA. RESULTS Treatment with hydroalcoholic extract at seven different concentrations resulted in significant decrease of ECs proliferation and angiogenesis with an ID50 of ∼ 85 μg/ml. VEGF secretion was (inhibited) decreased by the extracts at concentrations higher than 10 μg/ml. DISCUSSION AND CONCLUSION Herbal plant extracts still attract attention owing to their fewer side effects comparing to synthetic drug agents. Current study indicated that hydroalcoholic extract of P. harmala seeds contains a potent anti-angiogenic component, which exerts its inhibitory effect mainly through down-regulation of essential mediators such as VEGF.
Collapse
Affiliation(s)
- Niloofar Yavari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | | | | | | |
Collapse
|
38
|
Bourogaa E, Jarraya RM, Damak M, Elfeki A. Hepatoprotective activity of Peganum harmala against ethanol-induced liver damages in rats. Arch Physiol Biochem 2015; 121:62-7. [PMID: 25974007 DOI: 10.3109/13813455.2015.1016974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we investigated the protective effects of Peganum harmala seeds extract (CPH) against chronic ethanol treatment. Hepatotoxicity was induced in male Wistar rats by administrating ethanol 35% (4 g/kg/day) for 6 weeks. CPH was co-administered with ethanol, by intraperitonial (IP) injection, at a dose of 10 mg/kg bw/day. Control rats were injected by saline solution (NaCl 9‰). Chronic ethanol administration intensified lipid peroxidation monitored by an increase of TBARS level in liver. Ethanol treatment caused also a drastic alteration in antioxidant defence system; hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. A co-administration of CPH during ethanol treatment inhibited lipid peroxidation and improved antioxidants activities. However, treatment with P. harmala extract protects efficiently the hepatic function of alcoholic rats by the considerable decrease of aminotransferase contents in serum of ethanol-treated rats.
Collapse
Affiliation(s)
- Ezzeddine Bourogaa
- Laboratoire d'Ecophysiologie Animale, Faculté des Sciences de Sfax, University of Sfax , PB 1171 , 3000 Sfax Tunisie and
| | | | | | | |
Collapse
|
39
|
Mina CN, Farzaei MH, Gholamreza A. Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: a review. J TRADIT CHIN MED 2015; 35:104-9. [PMID: 25842736 DOI: 10.1016/s0254-6272(15)30016-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To review the pharmacological activities of Peganum harmala L. (P. harmala, Nitrariaceae) in traditional Iranian medicine (TIM) and modern phytotherapy. METHODS Opinions of TIM and modern phytotherapy about safety and acceptable dosage of this plant are discussed. Various medical properties of P. harmala were collected from important TIM references and added to scientific reports derived from modern medical databases like PubMed, Scirus, ScienceDirect and Scopus. RESULTS The main medicinal part of the plant is the seed. In TIM resources, this plant possesses various Pharmacological activities such as carminative, galactagogue, diuretic, emmenagogue, antithrombotic and analgesic. In modern phytotherapy, P. harmala demonstrated numerous medicinal effects including cardiovascular, neurologic, antimicrobial, insecticidal, antineoplasmic, antiproliferative, gastrointestinal and antidiabetic effects. Adverse events such as neuro-sensorial symptoms, visual hallucination, bradycardia, hypotension, agitation, tremors, ataxia, abortion and vomiting cause people to use this plant cautiously. P. harmala is contraindicated during pregnancy, due to its abortive and mutagenic activities. Because of increasing the expression of CYP1A2, 2C19, and 3A4 and inhibition of monoamine oxidase, the pharmacokinetic parameters of drugs which are mainly metabolized by these enzymes may be affected by P. harmala. CONCLUSION The medicinal properties declared for this plant in TIM are compared with those showed in modern phytotherapy. Some of the TIM properties were confirmed in modern phytotherapy like emetic and analgesic activities and some have not been evaluated in modern phytotherapy such as its therapeutic effects on paralysis, epilepsy and numbness. Finally, the current review provides the evidence for other researchers to use TIM properties of P. harmala as an efficacious natural drug. Further preclinical and clinical studies for adequate evaluating safety and therapeutic efficacy are recommended.
Collapse
|
40
|
Sun P, Zhang S, Li Y, Wang L. Harmine mediated neuroprotection via evaluation of glutamate transporter 1 in a rat model of global cerebral ischemia. Neurosci Lett 2014; 583:32-6. [DOI: 10.1016/j.neulet.2014.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 01/17/2023]
|
41
|
Deng C, Shao H, Pan X, Wang S, Zhang D. Herbicidal effects of harmaline from Peganum harmala on photosynthesis of Chlorella pyrenoidosa: probed by chlorophyll fluorescence and thermoluminescence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 115:23-31. [PMID: 25307462 DOI: 10.1016/j.pestbp.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 05/26/2023]
Abstract
The herbicidal effects of harmaline extracted from Peganum harmala seed on cell growth and photosynthesis of green algae Chlorella pyrenoidosa were investigated using chlorophyll a fluorescence and thermoluminescence techniques. Exposure to harmaline inhibited cell growth, pigments contents and oxygen evolution of C. pyrenoidosa. Oxygen evolution was more sensitive to harmaline toxicity than cell growth or the whole photosystem II (PSII) activity, maybe it was the first target site of harmaline. The JIP-test parameters showed that harmaline inhibited the donor side of PSII. Harmaline decreased photochemical efficiency and electron transport flow of PSII but increased the energy dissipation. The charge recombination was also affected by harmaline. Amplitude of the fast phase decreased and the slow phase increased at the highest level of harmaline. Electron transfer from QA(-) to QB was inhibited and backward electron transport flow from QA(-) to oxygen evolution complex was enhanced at 10 μg mL(-1) harmaline. Exposure to 10 μg mL(-1) harmaline caused appearance of C band in thermoluminescence. Exposure to 5 μg mL(-1) harmaline inhibited the formation of proton gradient. The highest concentration of harmaline treatment inhibited S3QB(-) charge recombination but promoted formation of QA(-)YD(+) charge pairs. P. harmala harmaline may be a promising herbicide because of its inhibition of cell growth, pigments synthesis, oxygen evolution and PSII activities.
Collapse
Affiliation(s)
- Chunnuan Deng
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Tourism and Geography, Yunnan Normal University, Kunming 650500, China
| | - Hua Shao
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiangliang Pan
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Shuzhi Wang
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyong Zhang
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
42
|
Discovery of deoxyvasicinone derivatives as inhibitors of NEDD8-activating enzyme. Methods 2014; 71:71-6. [PMID: 25196325 DOI: 10.1016/j.ymeth.2014.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/16/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
NEDD8-activating enzyme (NAE) controls the specific degradation of proteins regulated by cullin-RING ubiquitin E3 ligases, and has been considered as an attractive molecular target for the development of drugs against cancer. A pharmacophore model constructed from a training set of deoxyvasicinone derivatives was used to screen 376 compounds from an analogue database. From the initial screening, the valine-linked deoxyvasicinone derivative 9 and the N-isopropyl-linked deoxyvasicinone derivative 10 emerged as the top scoring candidates. Compounds 9 and 10 showed micromolar potencies in both cell-free and cell-based systems, with selectivity for NAE over the related enzymes SAE and UAE. Molecular modelling analysis suggested that 9 and 10 may inhibit NAE by blocking the ATP-binding domain. Thus, these deoxyvasicinone derivatives could be considered as promising lead molecules for the development of more potent inhibitors of NAE.
Collapse
|
43
|
Khoshzaban F, Ghaffarifar F, Jamshidi Koohsari HR. Peganum harmala Aqueous and Ethanol Extracts Effects on Lesions Caused by Leishmania major (MRHO/IR/75/ER) in BALB/c Mice. Jundishapur J Microbiol 2014; 7:e10992. [PMID: 25368792 PMCID: PMC4216572 DOI: 10.5812/jjm.10992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Leishmaniasis is one of the six most common parasitic infections in the tropical regions. There are different therapeutic modalities, however therapeutic resistance is developed and resulted in numerous problems. Therefore, evaluation of other therapeutic modalities is performed extensively. OBJECTIVES The current study aimed to compare the therapeutic response of cutaneous leishmaniasis with Glucantime and Peganum harmala extracts (aqueous and ethanol) in the animal model. MATERIALS AND METHODS The therapeutic response of Leishmania major to Glucantime and P. harmala extracts (aqueous and ethanol) in animal model was studied in BALB/c mice. These mice were divided into four groups according to receiving either one of these three agents, and the control group. The therapeutic response was evaluated according to the parasitic load before and after treatment and also with measuring the size of the lesions. RESULTS The results showed that ethanol extract of P. harmala had good therapeutic efficacy in treatment of lesions in mice (P < 0.05), and the efficacy was significant in the eighth week after the treatment. There was also a statistically significant difference between the groups regarding the parasitic load (P < 0.05). CONCLUSIONS According to the current study results, it may be concluded that ethanol extract of P. harmala is efficient in the treatment of cutaneous leishmaniasis, and the efficiency is comparable with that of Glucantime.
Collapse
Affiliation(s)
- Fariba Khoshzaban
- Department of Parasitology and Mycology, Faculty of Medical Sciences, Shahed University, Tehran, IR Iran
- Corresponding author: Fariba Khoshzaban, Department of Parasitology and Mycology, Faculty of Medical Sciences, Shahed University, Tehran, IR Iran. Tel: +982188964792, Fax: +982188966310, E-mail:
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | | |
Collapse
|
44
|
Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev 2014; 7:199-212. [PMID: 24347928 PMCID: PMC3841998 DOI: 10.4103/0973-7847.120524] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 12/28/2012] [Accepted: 10/25/2013] [Indexed: 11/07/2022] Open
Abstract
Wild Syrian rue (Peganum harmala L. family Zygophyllaceae) is well-known in Iran and various parts of this plant including, its seeds, bark, and root have been used as folk medicine. Recent years of research has demonstrated different pharmacological and therapeutic effects of P. harmala and its active alkaloids, especially harmine and harmaline. Analytical studies on the chemical composition of the plant show that the most important constituents of this plant are beta-carboline alkaloids such as harmalol, harmaline, and harmine. Harmine is the most studied among these naturally occurring alkaloids. In addition to P. harmala (Syrian rue), these beta-carbolines are present in many other plants such as Banisteria caapi and are used for the treatment of different diseases. This article reviews the traditional uses and pharmacological effects of total extract and individual active alkaloids of P. harmala (Syrian rue).
Collapse
Affiliation(s)
- Milad Moloudizargari
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Mikaili
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Aghajanshakeri
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Jalal Shayegh
- Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| |
Collapse
|
45
|
Bensalem S, Soubhye J, Aldib I, Bournine L, Nguyen AT, Vanhaeverbeek M, Rousseau A, Boudjeltia KZ, Sarakbi A, Kauffmann JM, Nève J, Prévost M, Stévigny C, Maiza-Benabdesselam F, Bedjou F, Van Antwerpen P, Duez P. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:361-369. [PMID: 24746482 DOI: 10.1016/j.jep.2014.03.070] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/05/2014] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seeds and aerial parts of Peganum harmala L. are widely used in Algeria as anti-inflammatory remedies. Evaluation of Peganum harmala total alkaloids extracts and pure β-carboline compounds as an anti-inflammatory treatment by the inhibition of an enzyme key of inflammatory, myeloperoxidase (MPO) and HPLC quantification of the alkaloids from the different parts of plant. MATERIALS AND METHODS MPO inhibition was tested using taurine chloramine test. The inhibition of LDL oxidation induced by MPO was carried out. The molecular docking analysis of Peganum harmala alkaloids on MPO was performed using the Glide XP docking protocol and scoring function and the redox potential of alkaloids was determined using an Epsilon potentiostat. The concentration of harmala alkaloids was determined using HPLC analysis. RESULTS The HPLC profiling of the active total alkaloids indicates that β-carboline e.g. harmine, harmaline, harmane, harmol and harmalol are major components. As β-carbolines resemble tryptamine, of which derivatives are efficient inhibitors of MPO, the harmala alkaloids were tested for their activity on this enzyme. Total alkaloids of the seeds and of the aerial parts strongly inhibited MPO at 20µg/mL (97±5% and 43±4%, respectively) whereas, at the same concentration, those of the roots showed very low inhibition (15±6%). Harmine, harmaline and harmane demonstrated a significant inhibition of MPO at IC50 of 0.26, 0.08 and 0.72µM respectively. These alkaloids exerted a similar inhibition effects on MPO-induced LDL oxidation. Molecular docking analysis of Peganum harmala alkaloids on MPO showed that all active Peganum harmala alkaloids have a high affinity on the active site of MPO (predicted free energies of binding up to -3.1kcal/mol). Measurement of redox potentials versus the normal hydrogen electrode clearly differentiated (i) the high MPO inhibitory activity of harmine, harmaline and harmane (+1014, 1014 and 1003mV, respectively); and (ii) the low activity of harmalol and harmol (+629/778 and 532/644mV, respectively). A reverse phase HPLC method has been developed to determine simultaneously five alkaloids of Peganum harmala. Seeds contained all five β-carboline derivatives with the main active alkaloids, harmaline and harmine, being up to 3.8% and 2.9%, respectively. Up to 3.2% of harmine was determined in the roots. The four β-carboline derivatives, harmine, harmaline, harmane and harmalol were identified in the aerial parts. The highest inhibitory effect observed in seeds and the moderate effect of aerial parts could be explained by their harmine and harmaline content. In contrast, the very weak inhibition of the root extract, despite the presence of harmine, may tentatively be explained by the high concentration of harmol which can reduce Compound II of MPO to the native form. CONCLUSION The inhibition of MPO by Peganum harmala β-carboline alkaloids, herein reported for the first time, may explain the anti-inflammatory effect traditionally attributed to its herbal medicine.
Collapse
Affiliation(s)
- Sihem Bensalem
- Laboratoire Biotechnologie Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira de Bejaia, 06000 Bejaia, Algérie; Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique.
| | - Jalal Soubhye
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique.
| | - Iyas Aldib
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Lamine Bournine
- Laboratoire Biotechnologie Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira de Bejaia, 06000 Bejaia, Algérie
| | - Anh Tho Nguyen
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Michel Vanhaeverbeek
- Laboratoire de Médicine Expérimentale, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgique
| | - Alexandre Rousseau
- Laboratoire de Médicine Expérimentale, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgique
| | - Karim Zouaoui Boudjeltia
- Laboratoire de Médicine Expérimentale, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgique
| | - Ahmad Sarakbi
- Laboratoire de Chimie Analytique Instrumentale et Bioélectrochimie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Jean Michel Kauffmann
- Laboratoire de Chimie Analytique Instrumentale et Bioélectrochimie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Jean Nève
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Martine Prévost
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Caroline Stévigny
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Fadila Maiza-Benabdesselam
- Laboratoire Biotechnologie Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira de Bejaia, 06000 Bejaia, Algérie
| | - Fatiha Bedjou
- Laboratoire Biotechnologie Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira de Bejaia, 06000 Bejaia, Algérie
| | - Pierre Van Antwerpen
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique; Plateforme Analytique, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| | - Pierre Duez
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgique
| |
Collapse
|
46
|
Wen F, Cheng X, Liu W, Xuan M, Zhang L, Zhao X, Shan M, Li Y, Teng L, Wang Z, Wang C. Chemical fingerprint and simultaneous determination of alkaloids and flavonoids in aerial parts of genusPeganumindigenous to China based on HPLC-UV: application of analysis on secondary metabolites accumulation. Biomed Chromatogr 2014; 28:1763-73. [DOI: 10.1002/bmc.3218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/10/2013] [Accepted: 03/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Fangfang Wen
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Wei Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Min Xuan
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Lei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Xin Zhao
- Department of Pharmaceutical, College of Pharmacy; Xinjiang Medical University; 393 Xinyi Road, Urumqi 830011 Xinjiang People's Republic of China
| | - Meng Shan
- Department of Pharmaceutical, College of Pharmacy; Xinjiang Medical University; 393 Xinyi Road, Urumqi 830011 Xinjiang People's Republic of China
| | - Yan Li
- Department of Pharmaceutical, College of Pharmacy; Xinjiang Medical University; 393 Xinyi Road, Urumqi 830011 Xinjiang People's Republic of China
| | - Liang Teng
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
- Department of Pharmaceutical, College of Pharmacy; Xinjiang Medical University; 393 Xinyi Road, Urumqi 830011 Xinjiang People's Republic of China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine, Shanghai R&D Centre for Standardization of Chinese Medicines; 1200 Cailun Road Shanghai 201203 People's Republic of China
| |
Collapse
|
47
|
Zhang H, Sun K, Ding J, Xu H, Zhu L, Zhang K, Li X, Sun W. Harmine induces apoptosis and inhibits tumor cell proliferation, migration and invasion through down-regulation of cyclooxygenase-2 expression in gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:348-355. [PMID: 24176842 DOI: 10.1016/j.phymed.2013.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/28/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Kun Sun
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Jing Ding
- Department of Respiratory Medicine, the Affiliated Nanjing Children Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Huae Xu
- Department of Pharmacy, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Lingjun Zhu
- Department of Oncology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China.
| | - Weihao Sun
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
48
|
Deguchi J, Sasaki T, Hirasawa Y, Kaneda T, Kusumawati I, Shirota O, Morita H. Two novel tetracycles, cassibiphenols A and B from the flowers of Cassia siamea. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Zhao L, Wink M. The β-carboline alkaloid harmine inhibits telomerase activity of MCF-7 cells by down-regulating hTERT mRNA expression accompanied by an accelerated senescent phenotype. PeerJ 2013. [PMID: 24109558 DOI: 10.7717/peerj.174.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The end replication problem, which occurs in normal somatic cells inducing replicative senescence, is solved in most cancer cells by activating telomerase. The activity of telomerase is highly associated with carcinogenesis which makes the enzyme an attractive biomarker in cancer diagnosis and treatment. The indole alkaloid harmine has multiple pharmacological properties including DNA intercalation which can lead to frame shift mutations. In this study, harmine was applied to human breast cancer MCF-7 cells. Its activity towards telomerase was analyzed by utilizing the telomeric repeat amplification protocol (TRAP). Our data indicate that harmine exhibits a pronounced cytotoxicity and induces an anti-proliferation state in MCF-7 cells which is accompanied by a significant inhibition of telomerase activity and an induction of an accelerated senescence phenotype by over-expressing elements of the p53/p21 pathway.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Molecular and Experimental Medicine, Scripps Research Institute , La Jolla, CA , USA ; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University , Heidelberg , Germany
| | | |
Collapse
|
50
|
Afifi FU, Kasabri V. Pharmacological and phytochemical appraisal of selected medicinal plants from jordan with claimed antidiabetic activities. Sci Pharm 2013; 81:889-932. [PMID: 24482764 PMCID: PMC3867248 DOI: 10.3797/scipharm.1212-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 10/15/2013] [Indexed: 01/12/2023] Open
Abstract
Plant species have long been regarded as possessing the principal ingredients used in widely disseminated ethnomedical practices. Different surveys showed that medicinal plant species used by the inhabitants of Jordan for the traditional treatment of diabetes are inadequately screened for their therapeutic/preventive potential and phytochemical findings. In this review, traditional herbal medicine pursued indigenously with its methods of preparation and its active constituents are listed. Studies of random screening for selective antidiabetic bioactivity and plausible mechanisms of action of local species, domesticated greens, or wild plants are briefly discussed. Recommended future directives incurring the design and conduct of comprehensive trials are pointed out to validate the usefulness of these active plants or bioactive secondary metabolites either alone or in combination with existing conventional therapies.
Collapse
Affiliation(s)
- Fatma U. Afifi
- Faculty of Pharmacy, The University of Jordan, Queen Rania Al-Abdullah Street, 11942 Amman, Jordan
| | - Violet Kasabri
- Faculty of Pharmacy, The University of Jordan, Queen Rania Al-Abdullah Street, 11942 Amman, Jordan
| |
Collapse
|