1
|
Wijerathna-Yapa A, Isaac KS, Combe M, Hume S, Sokolenko S. Re-imagining human cell culture media: Challenges, innovations, and future directions. Biotechnol Adv 2025; 81:108564. [PMID: 40101881 DOI: 10.1016/j.biotechadv.2025.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
The development of optimized culture media is pivotal to advancements in human cell culture, underpinning progress in regenerative medicine, cell therapies, and personalized medicine. While foundational formulations like Eagle's Minimum Essential Medium (MEM) and Dulbecco's Modified Eagle Medium (DMEM) have historically enabled significant biological research, these media were primarily designed for non-human cells and do not adequately address the unique metabolic and functional requirements of human cells. This review examines the evolution of cell culture media, identifying persistent challenges in reproducibility, scalability, and ethical concerns, particularly regarding the reliance on animal-derived components such as fetal bovine serum (FBS). We highlight innovations in serum-free and chemically defined media that offer promising alternatives by enhancing consistency, aligning with Good Manufacturing Practices, and addressing ethical concerns. Emerging approaches, including omics-based profiling, high-throughput screening, and artificial intelligence (AI)-driven media design, are reshaping media optimization by enabling precise tailoring to the needs of specific human cell types and patient-derived cells. Furthermore, we discuss economic and regulatory challenges, emphasizing the need for cost-effective and scalable solutions to facilitate clinical translation. Looking forward, integrating advanced biotechnological tools such as 3D bioprinting, organ-on-a-chip systems, and personalized media formulations presents a transformative opportunity for human cell culture. These innovations, aligned with ethical and clinical standards, can drive the development of human-specific media systems that ensure reproducibility, scalability, and enhanced therapeutic potential, thereby advancing both research and clinical applications.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kathy Sharon Isaac
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michelle Combe
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samuel Hume
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Bos TA, Polyakova E, van Gils JM, de Vries AAF, Goumans MJ, Freund C, DeRuiter MC, Jongbloed MRM. A systematic review and embryological perspective of pluripotent stem cell-derived autonomic postganglionic neuron differentiation for human disease modeling. eLife 2025; 14:e103728. [PMID: 40071727 PMCID: PMC11961123 DOI: 10.7554/elife.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
Collapse
Affiliation(s)
- Thomas A Bos
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Elizaveta Polyakova
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Janine Maria van Gils
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical CentreLeidenNetherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Leiden hiPSC Centre, Leiden University Medical CentreLeidenNetherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| | - Monique RM Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Department of Cardiology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| |
Collapse
|
3
|
Smith L, Quelch-Cliffe R, Liu F, Aguilar AH, Przyborski S. Evaluating Strategies to Assess the Differentiation Potential of Human Pluripotent Stem Cells: A Review, Analysis and Call for Innovation. Stem Cell Rev Rep 2025; 21:107-125. [PMID: 39340737 PMCID: PMC11762643 DOI: 10.1007/s12015-024-10793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Pluripotent stem cells have the ability to differentiate into all cells and tissues within the human body, and as a result they are attractive resources for use in basic research, drug discovery and regenerative medicine. In order to successfully achieve this application, starting cell sources ideally require in-depth characterisation to confirm their pluripotent status and their ability to differentiate into tissues representative of the three developmental germ layers. Many different methods to assess potency are employed, each having its own distinct advantages and limitations. Some aspects of this characterisation process are not always well standardised, particularly techniques used to assess pluripotency as a function. In this article, we consider the methods used to establish cellular pluripotency and subsequently analyse characterisation data for over 1590 human pluripotent cell lines from publicly available repositories in the UK and USA. In particular, we focus on the teratoma xenograft assay, its use and protocols, demonstrating the level of variation and the frequency with which it is used. Finally, we reflect on the implications of the findings, and suggest in vitro alternatives using modern innovative technology as a way forward.
Collapse
Affiliation(s)
- Lucy Smith
- Department of Biosciences, Durham University, Durham, England
| | | | - Felicity Liu
- Department of Biosciences, Durham University, Durham, England
| | | | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, England.
- Reprocell Europe Ltd, NETPark, Sedgefield, England.
| |
Collapse
|
4
|
Andrews PW. Germ cell tumors, cell surface markers, and the early search for human pluripotent stem cells. Bioessays 2024; 46:e2400094. [PMID: 39115324 PMCID: PMC11589668 DOI: 10.1002/bies.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 11/27/2024]
Abstract
Many strands of research by different groups, starting from teratocarcinomas in the laboratory mouse, later moving the corresponding human tumors, contributed to the isolation and description of human pluripotent stem cells (PSCs). In this review, I highlight the contributions from my own research, particularly at the Wistar Institute during the 1980s, when with my colleagues we characterized one of the first clonal lines of pluripotent human embryonal carcinoma (EC) cells, the stem cells of teratocarcinomas, and identified key features including cell surface antigen markers that have since found a place in the study and exploitation of human PSC. Much of this research depended upon close teamwork with colleagues, many in other laboratories, who contributed different expertise and experience. It was also often driven by circumstance and chance rather than pursuit of a grand design.
Collapse
Affiliation(s)
- Peter W. Andrews
- The Centre for Stem Cell BiologyThe School of BiosciencesThe University of SheffieldWestern BankSheffieldUK
| |
Collapse
|
5
|
Zehra B, Mohamed N, Farhat A, Bru-Mercier G, Satsangi D, Tambi R, Kamarudheen R, Kumail M, Khalil R, Pessia M, D'Adamo MC, Berdiev BK, Uddin M. Integrative analysis of long isoform sequencing and functional data identifies distinct cortical layer neuronal subtypes derived from human iPSCs. J Neurophysiol 2024; 132:653-665. [PMID: 38988287 DOI: 10.1152/jn.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, β tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).
Collapse
Affiliation(s)
- Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nesrin Mohamed
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Gilles Bru-Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dharana Satsangi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richa Tambi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rihana Kamarudheen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Muhammad Kumail
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| |
Collapse
|
6
|
Tian Z, Liu Q, Lin HY, Zhu YR, Ling L, Sung TC, Wang T, Li W, Gao M, Cheng S, Renuka RR, Subbiah SK, Fan G, Wu GJ, Higuchi A. Effects of ECM protein-coated surfaces on the generation of retinal pigment epithelium cells differentiated from human pluripotent stem cells. Regen Biomater 2024; 11:rbae091. [PMID: 39233867 PMCID: PMC11374035 DOI: 10.1093/rb/rbae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui-Yu Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Yu-Ru Zhu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Ling Ling
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wanqi Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sitian Cheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, China
| |
Collapse
|
7
|
Zheng J, Park K, Jang J, Son D, Park J, Kim J, Yoo JE, You S, Kim IY. Utilizing stem cell-secreted molecules as a versatile toolbox for skin regenerative medicine. J Control Release 2024; 370:583-599. [PMID: 38729435 DOI: 10.1016/j.jconrel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jonggun Kim
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
8
|
Hirai T, Yasuda S, Umezawa A, Sato Y. Country-specific regulation and international standardization of cell-based therapeutic products derived from pluripotent stem cells. Stem Cell Reports 2023; 18:1573-1591. [PMID: 37557074 PMCID: PMC10444560 DOI: 10.1016/j.stemcr.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 08/11/2023] Open
Abstract
Currently, many types of cell-based therapeutic products (CTPs) derived from pluripotent stem cells (PSCs) are being developed in a lot of countries, some of which are in clinical trial stages. CTPs are classified differently in different countries and regions. The evaluation of their efficacy, safety, and quality also differs from that for conventional small-molecule drugs and biopharmaceuticals, which reflects the complex properties of living cells and unmet medical needs. Since there are no international guidelines to evaluate CTPs, including PSC-derived products, it is necessary to be aware of differences in relevant laws and regulations in different countries and regions. International consortia are organized and actively working to standardize/harmonize the evaluation methods and regulations to facilitate the development and global distribution of PSC-derived CTPs. In this paper, we outline the regulations related to PSC-derived CTPs in the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use founding regions (US, EU/UK, Japan) and introduce representative consortia working on their standardization.
Collapse
Affiliation(s)
- Takamasa Hirai
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan.
| |
Collapse
|
9
|
Chen HJC, Mazzaferro S, Tian T, Mali I, Merkle FT. Differentiation, Transcriptomic Profiling, and Calcium Imaging of Human Hypothalamic Neurons. Curr Protoc 2023; 3:e786. [PMID: 37272700 PMCID: PMC7614736 DOI: 10.1002/cpz1.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurons in the hypothalamus orchestrate homeostatic physiological processes and behaviors essential for life. Human pluripotent stem cells (hPSCs) can be differentiated into many types of hypothalamic neurons, progenitors, and glia. This updated unit includes published studies and protocols with new advances in the differentiation, maturation, and interrogation by transcriptomic profiling and calcium imaging of human hypothalamic cell populations. Specifically, new methods to freeze and thaw hypothalamic progenitors after they have been patterned and before substantial neurogenesis has occurred are provided that will facilitate experimental flexibility and planning. Also included are updated recipes and protocols for neuronal maturation, with details on the equipment and methods for examining their transcriptomic response and cell-autonomous properties in culture in the presence of synaptic blockers. Together, these protocols facilitate the adoption and use of this model system for fundamental biological discovery and therapeutic translation to human diseases such as obesity, diabetes, sleep disorders, infertility, and chronic stress. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: hPSC maintenance Basic Protocol 2: Hypothalamic neuron differentiation Support Protocol 1: Cortical neuron (control) differentiation Basic Protocol 3: Neuronal maturation Support Protocol 2: Cryopreservation and thawing of neuronal progenitors Support Protocol 3: Quality control: Confirmation of hypothalamic patterning and neurogenesis Support Protocol 4: Bulk RNA sequencing of hypothalamic cultures Basic Protocol 4: Calcium imaging of hypothalamic neurons using Fura-2 AM Alternate Protocol: Calcium imaging of green fluorescent hypothalamic neurons using Rhod-3 AM.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Simone Mazzaferro
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Tian Tian
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Iman Mali
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Florian T. Merkle
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Dias TP, Baltazar T, Pinto SN, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS. Xeno-Free Integrated Platform for Robust Production of Cardiomyocyte Sheets from hiPSCs. Stem Cells Int 2022; 2022:4542719. [PMID: 36467280 PMCID: PMC9712013 DOI: 10.1155/2022/4542719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be efficiently differentiated into cardiomyocytes (CMs), which can be used for cardiac disease modeling, for drug screening, and to regenerate damaged myocardium. Implementation of xeno-free culture systems is essential to fully explore the potential of these cells. However, differentiation using xeno-free adhesion matrices often results in low CM yields and lack of functional CM sheets, capable of enduring additional maturation stages. Here, we established a xeno-free CM differentiation platform using TeSR/Synthemax, including a replating step and integrated with two versatile purification/enrichment metabolic approaches. Results showed that the replating step was essential to reestablish a fully integrated, closely-knit CM sheet. In addition, replating contributed to increase the cTnT expression from 65% to 75% and the output from 2.2 to 3.1 CM per hiPSC, comparable with the efficiency observed when using TeSR/Matrigel. In addition, supplementation with PluriSin1 and Glu-Lac+ medium allowed increasing the CM content over 80% without compromising CM sheet integrity or functionality. Thus, this xeno-free differentiation platform is a reliable and robust method to produce hiPSC-derived CMs, increasing the possibility of using these cells safely for a wide range of applications.
Collapse
Affiliation(s)
- Tiago P. Dias
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tânia Baltazar
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago G. Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Xiao L, Zhu J, Liu Z, Wu B, Zhou X, Wei Y, Sun F, Wang Z, Quan S, Li Q, Wang J, Huang L, Ma Y. Different transcriptional profiles of human embryonic stem cells grown in a feeder-free culture system and on human foreskin fibroblast feeder layers. Aging (Albany NY) 2022; 14:7443-7454. [PMID: 36103219 PMCID: PMC9550256 DOI: 10.18632/aging.204282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Feeder cells provide an optimal microenvironment for the propagation of human embryonic stem cells (hESCs) by supplying currently known or unknown factors. However, the hESCs grown on feeder cells are not suitable for the purpose of clinical application because of the risk of contamination. In recent years, the feeder-free culture method has been developed to eliminate contamination, but some studies show that hESCs exhibit poor growth patterns in a feeder-free culture system. Regarding this phenomenon, we speculate that some genes related to hESC propagation were differently expressed in hESCs grown on feeder cells. To test this hypothesis, 3 hESC lines (NF4, NF5 and P096) were efficiently expanded in a feeder-free culture system or on human foreskin fibroblast (HFF) cells. The different gene expression patterns of hESCs in these 2 conditions were analyzed through microarrays. The results revealed that the hESCs cultured in both conditions maintained the expression of stemness markers and the ability to spontaneously differentiate into the 3 germ layers. The analysis of gene expression profiles revealed that 23 lncRNA and 15 genes were significantly differentially expressed in these two culture conditions. Furthermore, GO analyses showed that these genes were involved in such biological processes as growth factor stimuli, cell growth, and stem cell maintenance. To summarize, our study demonstrated that the hESCs grown on the HFF showed different gene expression patterns compared to those grown in a feeder-free culture system, suggesting that these differently expressed lncRNAs and genes played important roles in maintaining hESC propagation.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Xiaohua Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Jun Wang
- Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| |
Collapse
|
12
|
Nakashima Y, Tsukahara M. Laminin-511 activates the human induced pluripotent stem cell survival via α6β1 integrin-Fyn-RhoA-ROCK signaling. Stem Cells Dev 2022; 31:706-719. [PMID: 35726387 DOI: 10.1089/scd.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In human induced pluripotent stem cells (hiPSCs), laminin-511/α6β1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the PI3K-dependent signaling pathway. The interaction between laminin-511/α6β1 integrin and E-cadherin, an intercellular adhesion molecule, results in protection against apoptosis via the proto-oncogene tyrosine-protein kinase Fyn(Fyn)-RhoA-ROCK signaling pathway and the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathway for cell death). In this paper, the impact of laminin-511 on hiPSC on α6β1 integrin-Fyn-RhoA-ROCK signaling is discussed and explored along with validation experiments. PIK3CA mRNA (mean [standard deviation {SD}]: iMatrix-511, 1.00 [0. 61]; collagen+MFGE8, 0.023 [0.02]; **P<0.01; n=6) and PIK3R1 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 79]; collagen+MFGE8, 0.040 [0.06]; *P<0.05; n=6) were upregulated by iMatrix-511 resulting from an increased expression of Integrin α6 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 42]; collagen+MFGE8, 0.23 [0.05]; **P<0.01; n=6). iMatrix-511 increased the expression of p120-Catenin mRNA (mean [SD]: iMatrix-511, 1.00 [0. 71]; collagen+MFGE8, 0.025 [0.03]; **P<0.01; n=6) and RAC1 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 28]; collagen+MFGE8, 0.39 [0.15]; **P<0.01; n=6) by increasing the expression of E-cadherin mRNA (mean [SD]: iMatrix-511, 1.00 [0. 38]; collagen+MFGE8, 0.16 [0.11]; **P<0.01; n=6). As a result, iMatrix-511 increased the expression of P190 RhoGAP (GTPase-activating proteins) mRNA, such as ARHGAP1 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 57]; collagen+MFGE8, 0.032 [0.03]; **P<0.01; n=6), ARHGAP4 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 56]; collagen+MFGE8, 0.039 [0.049]; **P<0.01; n=6), and ARHGAP5 mRNA (mean [SD]: iMatrix-511, 1.00 [0. 39]; collagen+MFGE8, 0.063 [0.043]; **P<0.01; n=6). Western blotting showed that phospho-Rac1 remained in the cytoplasm and phospho-Fyn showed nuclear transition in iPSCs cultured on iMatrix-511. Proteome analysis showed that PI3K signaling was enhanced and cytoskeletal actin was activated in iPSCs cultured on iMatrix-511. In conclusion, laminin-511 strongly activated the cell survival by promoting α6β1 integrin-Fyn-RhoA-ROCK signaling in hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto Research Park KISTIC Building Room 501, 5th floor, KISTIC building,, Kyoto Research Park KISTIC Building Room 501, 5th floor, KISTIC building, 134 Chudoji Minami-cho,, Shimogyo-ku,, Kyoto, Kyoto, Japan, 600-8813;
| | - Masayoshi Tsukahara
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), kyoto, Kyoto, Japan;
| |
Collapse
|
13
|
Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, Mojica-Perez S, Erliandri I, Rocha AMD, Cadigan K, Smith GD, Kalantry S. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun 2022; 13:2516. [PMID: 35523820 PMCID: PMC9076865 DOI: 10.1038/s41467-022-30259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation is a paradigm of epigenetic transcriptional regulation. Female human embryonic stem cells (hESCs) often undergo erosion of X-inactivation upon prolonged culture. Here, we investigate the sources of X-inactivation instability by deriving new primed pluripotent hESC lines. We find that culture media composition dramatically influenced the expression of XIST lncRNA, a key regulator of X-inactivation. hESCs cultured in a defined xenofree medium stably maintained XIST RNA expression and coating, whereas hESCs cultured in the widely used mTeSR1 medium lost XIST RNA expression. We pinpointed lithium chloride in mTeSR1 as a cause of XIST RNA loss. The addition of lithium chloride or inhibitors of GSK-3 proteins that are targeted by lithium to the defined hESC culture medium impeded XIST RNA expression. GSK-3 inhibition in differentiating female mouse embryonic stem cells and epiblast stem cells also resulted in a loss of XIST RNA expression. Together, these data may reconcile observed variations in X-inactivation in hESCs and inform the faithful culture of pluripotent stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura Keller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brandon Lee
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aaron Williams
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra Mojica-Perez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Indri Erliandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine & Cardiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gary D Smith
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Chen CXQ, Abdian N, Maussion G, Thomas RA, Demirova I, Cai E, Tabatabaei M, Beitel LK, Karamchandani J, Fon EA, Durcan TM. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc 2021; 4:mps4030050. [PMID: 34287353 PMCID: PMC8293472 DOI: 10.3390/mps4030050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from human somatic cells have created new opportunities to generate disease-relevant cells. Thus, as the use of patient-derived stem cells has become more widespread, having a workflow to monitor each line is critical. This ensures iPSCs pass a suite of quality-control measures, promoting reproducibility across experiments and between labs. With this in mind, we established a multistep workflow to assess our newly generated iPSCs. Our workflow tests four benchmarks: cell growth, genomic stability, pluripotency, and the ability to form the three germline layers. We also outline a simple test for assessing cell growth and highlight the need to compare different growth media. Genomic integrity in the human iPSCs is analyzed by G-band karyotyping and a qPCR-based test for the detection of common karyotypic abnormalities. Finally, we confirm that the iPSC lines can differentiate into a given cell type, using a trilineage assay, and later confirm that each iPSC can be differentiated into one cell type of interest, with a focus on the generation of cortical neurons. Taken together, we present a multistep quality-control workflow to evaluate newly generated iPSCs and detail the findings on these lines as they are tested within the workflow.
Collapse
Affiliation(s)
- Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Narges Abdian
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Gilles Maussion
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Rhalena A. Thomas
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Iveta Demirova
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Eddie Cai
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Mahdieh Tabatabaei
- The Neuro’s Clinical Biological Imaging and Genetic Repository (C-BIG), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (M.T.); (J.K.)
| | - Lenore K. Beitel
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Jason Karamchandani
- The Neuro’s Clinical Biological Imaging and Genetic Repository (C-BIG), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (M.T.); (J.K.)
| | - Edward A. Fon
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (C.X.-Q.C.); (N.A.); (G.M.); (R.A.T.); (I.D.); (E.C.); (L.K.B.); (E.A.F.)
- Correspondence: ; Tel.: +1-514-398-6933
| |
Collapse
|
15
|
Ren Z, Zhong H, Song C, Deng C, Hsieh HT, Liu W, Chen G. Insulin Promotes Mitochondrial Respiration and Survival through PI3K/AKT/GSK3 Pathway in Human Embryonic Stem Cells. Stem Cell Reports 2020; 15:1362-1376. [PMID: 33186539 PMCID: PMC7724469 DOI: 10.1016/j.stemcr.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin is an essential growth factor for the survival and self-renewal of human embryonic stem cells (hESCs). Although it is best known as the principal hormone promoting glycolysis in somatic cells, insulin's roles in hESC energy metabolism remain unclear. In this report, we demonstrate that insulin is essential to sustain hESC mitochondrial respiration that is rapidly decreased upon insulin removal. Insulin-dependent mitochondrial respiration is stem cell specific, and mainly relies on pyruvate and glutamine, while glucose suppresses excessive oxidative phosphorylation. Pharmacologic and genetic manipulations reveal that continuous insulin signal sustains mitochondrial respiration through PI3K/AKT activation and downstream GSK3 inhibition. We further show that insulin acts through GSK3 inhibition to suppress caspase activation and rescue cell survival. This study uncovers a critical role of the AKT/GSK3 pathway in the regulation of mitochondrial respiration and cell survival, highlighting insulin as an essential factor for accurate assessment of mitochondrial respiration in hESCs. Insulin is continuously required to sustain mitochondrial respiration in hESCs Insulin-dependent mitochondrial respiration is substrate specific GSK3 is a major regulator of insulin-dependent respiration and cell survival Insulin is essential for accurate assessment of mitochondrial respiration in hESCs
Collapse
Affiliation(s)
- Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hui Zhong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hsun-Ting Hsieh
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
16
|
Endogenous IGF Signaling Directs Heterogeneous Mesoderm Differentiation in Human Embryonic Stem Cells. Cell Rep 2020; 29:3374-3384.e5. [PMID: 31825822 DOI: 10.1016/j.celrep.2019.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
During embryogenesis, various cell types emerge simultaneously from their common progenitors under the influence of intrinsic signals. Human embryonic stem cells can differentiate to diverse cell types of three embryonic lineages, making them an excellent system for understanding the regulatory mechanism that maintains the balance of different cell types in embryogenesis. In this report, we demonstrate that insulin-like growth factor (IGF) proteins are endogenously expressed during differentiation, and their temporal expression contributes to the cell fate diversity in mesoderm differentiation. Small molecule LY294002 inhibits the IGF pathway to promote cardiomyocyte differentiation while suppressing epicardial and noncardiac cell fates. LY294002-induced cardiomyocytes demonstrate characteristic cardiomyocyte features and provide insights into the molecular mechanisms underlying cardiac differentiation. We further show that LY294002 induces cardiomyocytes through CK2 pathway inhibition. This study elucidates the crucial roles of endogenous IGF in mesoderm differentiation and shows that the inhibition of the IGF pathway is an effective approach for generating cardiomyocytes.
Collapse
|
17
|
Khalil AS, Xie AW, Johnson HJ, Murphy WL. Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion. Biomaterials 2020; 248:120007. [PMID: 32302801 PMCID: PMC8445021 DOI: 10.1016/j.biomaterials.2020.120007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Translation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation. We show that the MCMs stabilize bFGF against thermally induced activity loss and provide more efficient sustained release of active growth factor compared to polymeric carriers commonly used for growth factor delivery. Using a statistically driven optimization approach called Design of Experiments, we generated a bFGF-loaded MCM formulation that supported hPSC expansion over 25 passages without the need for additional bFGF supplementation to the media, resulting in greater than 80% reduction in bFGF usage compared to standard approaches. This materials-based strategy to stabilize and sustain delivery of a thermolabile growth factor has broad potential to reduce costs associated with recombinant protein supplements in scalable biomanufacturing of emerging cell therapies.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
18
|
Horii M, Touma O, Bui T, Parast MM. Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction 2020; 160:R1-R11. [PMID: 32485667 PMCID: PMC7286067 DOI: 10.1530/rep-19-0428] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Appropriate human trophoblast lineage specification and differentiation is crucial for the establishment of normal placentation and maintenance of pregnancy. However, due to the lack of proper modeling systems, the molecular mechanisms of these processes are still largely unknown. Much of the early studies in this area have been based on animal models and tumor-derived trophoblast cell lines, both of which are suboptimal for modeling this unique human organ. Recent advances in regenerative and stem cell biology methods have led to development of novel in vitro model systems for studying human trophoblast. These include derivation of human embryonic and induced pluripotent stem cells and establishment of methods for the differentiation of these cells into trophoblast, as well as the more recent derivation of human trophoblast stem cells. In addition, advances in culture conditions, from traditional two-dimensional monolayer culture to 3D culturing systems, have led to development of trophoblast organoid and placenta-on-a-chip model, enabling us to study human trophoblast function in context of more physiologically accurate environment. In this review, we will discuss these various model systems, with a focus on human trophoblast, and their ability to help elucidate the key mechanisms underlying placental development and function. This review focuses on model systems of human trophoblast differentiation, including advantages and limitations of stem cell-based culture, trophoblast organoid, and organ-on-a-chip methods and their applications in understanding placental development and disease.
Collapse
Affiliation(s)
- Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Ojeni Touma
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Ma R, Ren Z, Li B, Siu SWI, Chen G, Kwok HF. Novel venom-based peptides (P13 and its derivative-M6) to maintain self-renewal of human embryonic stem cells by activating FGF and TGFβ signaling pathways. Stem Cell Res Ther 2020; 11:243. [PMID: 32552810 PMCID: PMC7302175 DOI: 10.1186/s13287-020-01766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
Background In our previous study, a venom-based peptide named Gonearrestide (also named P13) was identified and demonstrated with an effective inhibition in the proliferation of colon cancer cells. In this study, we explored if P13 and its potent mutant M6 could promote the proliferation of human embryonic stem cells and even maintain their self-renewal. Methods The structure-function relationship analysis on P13 and its potent mutant M6 were explored from the molecular mechanism of corresponding receptor activation by a series of inhibitor assay plus molecular and dynamics simulation studies. Results An interesting phenomenon is that P13 (and its potent mutant M6), an 18AA short peptide, can activate both FGF and TGFβ signaling pathways. We demonstrated that the underlying molecular mechanisms of P13 and M6 could cooperate with proteoglycans to complete the “dimerization” of FGFR and TGFβ receptors. Conclusions Taken together, this study is the first research finding on a venom-based peptide that works on the FGF and TGF-β signaling pathways to maintain the self-renewal of hESCs.
Collapse
Affiliation(s)
- Rui Ma
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.,Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Zhili Ren
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.,Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Bin Li
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.,Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Shirley W I Siu
- Department of Computer and Information Science, Faculty of Science and Technology University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Guokai Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.,Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
20
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
21
|
Setien MB, Smith KR, Howard K, Williams K, Suhr ST, Purcell EK. Differentiation and characterization of neurons derived from rat iPSCs. J Neurosci Methods 2020; 338:108693. [DOI: 10.1016/j.jneumeth.2020.108693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022]
|
22
|
Dhar P, Narendren S, Gaur SS, Sharma S, Kumar A, Katiyar V. Self-propelled cellulose nanocrystal based catalytic nanomotors for targeted hyperthermia and pollutant remediation applications. Int J Biol Macromol 2020; 158:1020-1036. [PMID: 32353506 DOI: 10.1016/j.ijbiomac.2020.04.204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023]
Abstract
Inspired from biological motors, cellulose nanocrystals (CNCs) are strategically modified to induce self-propulsion behavior with the capabilities to catalytically degrade pollutants along with magnetic hyperthermia to clean arterial plaques during its course of propulsion. CNCs derived from renewable biomass, are decorated with catalytically active, magneto-responsive nanomaterials (Fe2O3/Pd nanoparticles) through sustainable routes. CNC nanomotors show improved propulsion at lowered peroxide concentrations with remotely controlled trajectory through chemo-magnetic field gradients and ideal surface-wettability characteristics, overcoming the requirement of surfactants, as with traditional nanomotors. We observed that nanomotors undergo motion through heterogeneous bubble propulsion mechanism, with capability to in situ degrade pollutants and generate local heat through hyperthermia, enhancing the rate of degradation process in real time. As proof of concept, we demonstrate that the dynamics of nanomotors can be controlled in a microfluidic channel through site-directed magnetic field and induction of pH gradient, mimicking the chemotaxis in cell-like environment and as swarm of nano-surgeons removes plaques from clogged arteries. Our study shows that strategic modification of CNCs results in fabrication of nanomotors with efficient propulsion system infused with multi-functional characteristics of high catalytic activity and magnetic hyperthermia which opens up new avenues for utilization of bio-based nanomotors derived from lignocellulose for myriad applications.
Collapse
Affiliation(s)
- Prodyut Dhar
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, 00076 Helsinki, Finland; Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Soundararajan Narendren
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Surendra Singh Gaur
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Saksham Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
23
|
Zheng J, Yun W, Park J, Kang PJ, Lee G, Song G, Kim IY, You S. Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. J Biomed Sci 2020; 27:56. [PMID: 32312260 PMCID: PMC7171822 DOI: 10.1186/s12929-020-00642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. Methods Induced keratinocyte-like cells (iKCs) were directly reprogrammed from human urine cells by retroviral transduction of two lineage-specific transcription factors BMI1 and △NP63α (BN). Expression of keratinocyte stem cell or their differentiation markers were assessed by PCR, immunofluorescence and RNA-Sequencing. Regeneration capacity of iKCs were assessed by reconstitution of a human skin equivalent under air-interface condition. Results BN-driven iKCs were similar to primary keratinocytes (pKCs) in terms of their morphology, protein expression, differentiation potential, and global gene expression. Moreover, BN-iKCs self-assembled to form stratified skin equivalents in vitro. Conclusions This study demonstrated an approach to generate human iKCs that could be directly reprogrammed from human somatic cells and extensively expanded in serum- and feeder cell-free systems, which will facilitate their broad applicability in an efficient and patient-specific manner.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junghyun Park
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Phil Jun Kang
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gilju Lee
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. .,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Bobrovskaya L, Xiong LL, Zhou XF. Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation. Stem Cells Dev 2020; 29:463-474. [PMID: 32106778 DOI: 10.1089/scd.2019.0288] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) have a potential to treat various neurological diseases, such as Parkinson's Disease, Alzheimer's Disease, and Spinal Cord Injury. However, the limitation of NSPC sources and the difficulty to maintain their stemness or to differentiate them into specific therapeutic cells are the main hurdles for clinical research and application. Thus, for obtaining a therapeutically relevant number of NSPCs in vitro, it is important to understand factors regulating their behaviors and to establish a protocol for stable NSPC proliferation and differentiation. Coating materials for cell culture, such as Matrigel, laminin, collagen, and other coating materials, can significantly affect NSPC characteristics. This article provides a review of coating materials for NSPC culturing in both two dimensions and three dimensions, and their functions in NSPC proliferation and differentiation, and presents a useful guide to select coating materials for researchers.
Collapse
Affiliation(s)
- Donghui Liu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Liu-Lin Xiong
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
25
|
Silva TP, Bekman EP, Fernandes TG, Vaz SH, Rodrigues CAV, Diogo MM, Cabral JMS, Carmo-Fonseca M. Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-culture. Front Bioeng Biotechnol 2020; 8:70. [PMID: 32117945 PMCID: PMC7033648 DOI: 10.3389/fbioe.2020.00070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 11/29/2022] Open
Abstract
The cerebellum plays a critical role in all vertebrates, and many neurological disorders are associated with cerebellum dysfunction. A major limitation in cerebellar research has been the lack of adequate disease models. As an alternative to animal models, cerebellar neurons differentiated from pluripotent stem cells have been used. However, previous studies only produced limited amounts of Purkinje cells. Moreover, in vitro generation of Purkinje cells required co-culture systems, which may introduce unknown components to the system. Here we describe a novel differentiation strategy that uses defined medium to generate Purkinje cells, granule cells, interneurons, and deep cerebellar nuclei projection neurons, that self-formed and differentiated into electrically active cells. Using a defined basal medium optimized for neuronal cell culture, we successfully promoted the differentiation of cerebellar precursors without the need for co-culturing. We anticipate that our findings may help developing better models for the study of cerebellar dysfunctions, while providing an advance toward the development of autologous replacement strategies for treating cerebellar degenerative diseases.
Collapse
Affiliation(s)
- Teresa P Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Evguenia P Bekman
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Wamaitha SE, Grybel KJ, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, Mahadevaiah SK, Healy L, Lea RA, Molina-Arcas M, Devito LG, Elder K, Snell P, Christie L, Downward J, Turner JMA, Niakan KK. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat Commun 2020; 11:764. [PMID: 32034154 PMCID: PMC7005693 DOI: 10.1038/s41467-020-14629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular, Cell and Developmental Biology, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Katarzyna J Grybel
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gregorio Alanis-Lobato
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sugako Ogushi
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Lyn Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Liani G Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | | | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
27
|
Abstract
Stem cells are an immortal cell population capable of self-renewal; they are essential for human development and ageing and are a major focus of research in regenerative medicine. Despite considerable progress in differentiation of stem cells in vitro, culture conditions require further optimization to maximize the potential for multicellular differentiation during expansion. The aim of this study was to develop a feeder-free, serum-free culture method for human embryonic stem cells (hESCs), to establish optimal conditions for hESC proliferation, and to determine the biological characteristics of the resulting hESCs. The H9 hESC line was cultured using a homemade serum-free, feeder-free culture system, and growth was observed. The expression of pluripotency proteins (OCT4, NANOG, SOX2, LIN28, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) in hESCs was determined by immunofluorescence and western blotting. The mRNA expression levels of genes encoding nestin, brachyury and α-fetoprotein in differentiated H9 cells were determined by RT-PCR. The newly developed culture system resulted in classical hESC colonies that were round or elliptical in shape, with clear and neat boundaries. The expression of pluripotency proteins was increased, and the genes encoding nestin, brachyury, and α-fetoprotein were expressed in H9 cells, suggesting that the cells maintained in vitro differentiation capacity. Our culture system containing a unique set of components, with animal-derived substances, maintained the self-renewal potential and pluripotency of H9 cells for eight passages. Further optimization of this system may expand the clinical application of hESCs.
Collapse
|
28
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
29
|
Bolander J, Herpelinck T, Chaklader M, Gklava C, Geris L, Luyten FP. Single-cell characterization and metabolic profiling of in vitro cultured human skeletal progenitors with enhanced in vivo bone forming capacity. Stem Cells Transl Med 2019; 9:389-402. [PMID: 31738481 PMCID: PMC7031650 DOI: 10.1002/sctm.19-0151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cell populations and their interplay provide the basis of a cell‐based regenerative construct. Serum‐free preconditioning can overcome the less predictable behavior of serum expanded progenitor cells, but the underlying mechanism and how this is reflected in vivo remains unknown. Herein, the cellular and molecular changes associated with a cellular phenotype shift induced by serum‐free preconditioning of human periosteum‐derived cells were investigated. Following BMP‐2 stimulation, preconditioned cells displayed enhanced in vivo bone forming capacity, associated with an adapted cellular metabolism together with an elevated expression of BMPR2. Single‐cell RNA sequencing confirmed the activation of pathways and transcriptional regulators involved in bone development and fracture healing, providing support for the augmentation of specified skeletal progenitor cell populations. The reported findings illustrate the importance of appropriate in vitro conditions for the in vivo outcome. In addition, BMPR2 represents a promising biomarker for the enrichment of skeletal progenitor cells for in vivo bone regeneration.
Collapse
Affiliation(s)
- Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Malay Chaklader
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Charikleia Gklava
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico medicine, University of Liege, Liège, Belgium
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Dewi CU, O'Connor MD. Use of Human Pluripotent Stem Cells to Define Initiating Molecular Mechanisms of Cataract for Anti-Cataract Drug Discovery. Cells 2019; 8:E1269. [PMID: 31627438 PMCID: PMC6830331 DOI: 10.3390/cells8101269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023] Open
Abstract
Cataract is a leading cause of blindness worldwide. Currently, restoration of vision in cataract patients requires surgical removal of the cataract. Due to the large and increasing number of cataract patients, the annual cost of surgical cataract treatment amounts to billions of dollars. Limited access to functional human lens tissue during the early stages of cataract formation has hampered efforts to develop effective anti-cataract drugs. The ability of human pluripotent stem (PS) cells to make large numbers of normal or diseased human cell types raises the possibility that human PS cells may provide a new avenue for defining the molecular mechanisms responsible for different types of human cataract. Towards this end, methods have been established to differentiate human PS cells into both lens cells and transparent, light-focusing human micro-lenses. Sensitive and quantitative assays to measure light transmittance and focusing ability of human PS cell-derived micro-lenses have also been developed. This review will, therefore, examine how human PS cell-derived lens cells and micro-lenses might provide a new avenue for development of much-needed drugs to treat human cataract.
Collapse
Affiliation(s)
- Chitra Umala Dewi
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
31
|
Godoy‐Parejo C, Deng C, Liu W, Chen G. Insulin Stimulates PI3K/AKT and Cell Adhesion to Promote the Survival of Individualized Human Embryonic Stem Cells. Stem Cells 2019; 37:1030-1041. [PMID: 31021484 PMCID: PMC6852186 DOI: 10.1002/stem.3026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Insulin is present in most maintenance media for human embryonic stem cells (hESCs), but little is known about its essential role in the cell survival of individualized cells during passage. In this article, we show that insulin suppresses caspase cleavage and apoptosis after dissociation. Insulin activates insulin-like growth factor (IGF) receptor and PI3K/AKT cascade to promote cell survival and its function is independent of rho-associated protein kinase regulation. During niche reformation after passaging, insulin activates integrin that is essential for cell survival. IGF receptor colocalizes with focal adhesion complex and stimulates protein phosphorylation involved in focal adhesion formation. Insulin promotes cell spreading on matrigel-coated surfaces and suppresses myosin light chain phosphorylation. Further study showed that insulin is also required for the cell survival on E-cadherin coated surface and in suspension, indicating its essential role in cell-cell adhesion. This work highlights insulin's complex roles in signal transduction and niche re-establishment in hESCs. Stem Cells 2019;37:1030-1041.
Collapse
Affiliation(s)
- Carlos Godoy‐Parejo
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| | - Chunhao Deng
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| | - Weiwei Liu
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
- Bioimaging and Stem Cell Core Facility, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| | - Guokai Chen
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
- Bioimaging and Stem Cell Core Facility, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
- Institute of Translational Medicine, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| |
Collapse
|
32
|
Song C, Xu F, Ren Z, Zhang Y, Meng Y, Yang Y, Lingadahalli S, Cheung E, Li G, Liu W, Wan J, Zhao Y, Chen G. Elevated Exogenous Pyruvate Potentiates Mesodermal Differentiation through Metabolic Modulation and AMPK/mTOR Pathway in Human Embryonic Stem Cells. Stem Cell Reports 2019; 13:338-351. [PMID: 31353224 PMCID: PMC6700476 DOI: 10.1016/j.stemcr.2019.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Pyruvate is a key metabolite in glycolysis and the tricarboxylic acid (TCA) cycle. Exogenous pyruvate modulates metabolism, provides cellular protection, and is essential for the maintenance of human preimplantation embryos and human embryonic stem cells (hESCs). However, little is known about how pyruvate contributes to cell-fate determination during epiblast stage. In this study, we used hESCs as a model to demonstrate that elevated exogenous pyruvate shifts metabolic balance toward oxidative phosphorylation in both maintenance and differentiation conditions. During differentiation, pyruvate potentiates mesoderm and endoderm lineage specification. Pyruvate production and its mitochondrial metabolism are required in BMP4-induced mesoderm differentiation. However, the TCA-cycle metabolites do not have the same effect as pyruvate on differentiation. Further study shows that pyruvate increases AMP/ATP ratio, activates AMPK, and modulates the mTOR pathway to enhance mesoderm differentiation. This study reveals that exogenous pyruvate not only controls metabolism but also modulates signaling pathways in hESC differentiation.
Collapse
Affiliation(s)
- Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Faxiang Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ya Meng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China; Center of Interventional Radiology, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Yiqi Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | | | - Edwin Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China; Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yang Zhao
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China; Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
33
|
Sogawa C, Eguchi T, Okusha Y, Ono K, Ohyama K, Iizuka M, Kawasaki R, Hamada Y, Takigawa M, Sogawa N, Okamoto K, Kozaki KI. A Reporter System Evaluates Tumorigenesis, Metastasis, β-catenin/MMP Regulation, and Druggability. Tissue Eng Part A 2019; 25:1413-1425. [PMID: 30734664 DOI: 10.1089/ten.tea.2018.0348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer invasion, metastasis, and therapy resistance are the crucial phenomena in cancer malignancy. The high expression of matrix metalloproteinase 9 (MMP9) is a biomarker as well as a causal factor of cancer invasiveness and metastatic activity. However, a regulatory mechanism underlying MMP9 expression in cancer is not clarified yet. In addition, a new strategy for anticancer drug discovery is becoming an important clue. In the present study, we aimed (i) to develop a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional tumoroid model and Mmp9 promoter and (ii) to examine pharmacological actions of anticancer medications using this reporter system. High expression and genetic amplification of MMP9 were found in colon cancer cases. We found that proximal promoter sequences of MMP9 in murine and human contained conserved binding sites for transcription factors β-catenin/TCF/LEF, glucocorticoid receptor (GR), and nuclear factor kappa-B (NF-κB). The murine Mmp9 promoter (-569 to +19) was markedly activated in metastatic colon cancer cells and additionally activated by tumoroid formation and by β-catenin signaling stimulator lithium chloride. The Mmp9 promoter-driven fluorescent reporter cells enabled the monitoring of activities of MMP9/gelatinase, tumorigenesis, invasion, and metastasis in syngeneic transplantation experiments. We also demonstrated pharmacological actions as follows: dexamethasone and hydrocortisone, steroidal medications binding to GR, inhibited the Mmp9 promoter but did not inhibit tumorigenesis. On the contrary, antimetabolite 5-fluorouracil, a gold standard for colon cancer chemotherapy, inhibited tumoroid formation but did not inhibit Mmp9 promoter activity. Notably, antimalaria medication artesunate inhibited both tumorigenesis and the Mmp9 promoter in vitro, potentially through inhibition of β-catenin/TCF/LEF signaling. Thus, this novel reporter system enabled monitoring tumorigenesis, invasiveness, metastasis, key regulatory signalings such as β-catenin/MMP9 axis, and druggability. Impact Statement Cancer invasion and metastasis have been shown to be driven by matrix metalloproteinase 9 (MMP9), whose expression mechanism is not clarified yet. In addition, a new strategy for anticancer drug discovery is becoming important. We established a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional (3D) tumoroid model and Mmp9 promoter. Using this reporter system, we demonstrated pharmacological actions of anticancer medications such as antimetabolite 5-fluorouracil (5-FU) and antimalaria medication artesunate (ART), which inhibited both tumorigenesis and β-catenin/MMP regulatory signaling. Our study impacts the translational fields of oncology, drug discovery, and organoid model.
Collapse
Affiliation(s)
- Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Motoharu Iizuka
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Ryu Kawasaki
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Yusaku Hamada
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Norio Sogawa
- Department of Dental Pharmacology, Matsumoto Dental University, Shiojiri, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken-Ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Koivisto JT, Gering C, Karvinen J, Maria Cherian R, Belay B, Hyttinen J, Aalto-Setälä K, Kellomäki M, Parraga J. Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20589-20602. [PMID: 31120238 PMCID: PMC6750838 DOI: 10.1021/acsami.8b22343] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/17/2019] [Indexed: 05/07/2023]
Abstract
To promote the transition of cell cultures from 2D to 3D, hydrogels are needed to biomimic the extracellular matrix (ECM). One potential material for this purpose is gellan gum (GG), a biocompatible and mechanically tunable hydrogel. However, GG alone does not provide attachment sites for cells to thrive in 3D. One option for biofunctionalization is the introduction of gelatin, a derivative of the abundant ECM protein collagen. Unfortunately, gelatin lacks cross-linking moieties, making the production of self-standing hydrogels difficult under physiological conditions. Here, we explore the functionalization of GG with gelatin at biologically relevant concentrations using semiorthogonal, cytocompatible, and facile chemistry based on hydrazone reaction. These hydrogels exhibit mechanical behavior, especially elasticity, which resembles the cardiac tissue. The use of optical projection tomography for 3D cell microscopy demonstrates good cytocompatibility and elongation of human fibroblasts (WI-38). In addition, human-induced pluripotent stem cell-derived cardiomyocytes attach to the hydrogels and recover their spontaneous beating in 24 h culture. Beating is studied using in-house-built phase contrast video analysis software, and it is comparable with the beating of control cardiomyocytes under regular culture conditions. These hydrogels provide a promising platform to transition cardiac tissue engineering and disease modeling from 2D to 3D.
Collapse
Affiliation(s)
- Janne T. Koivisto
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Christine Gering
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jennika Karvinen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Reeja Maria Cherian
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Birhanu Belay
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jari Hyttinen
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Heart
Hospital, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jenny Parraga
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
35
|
Sato Y, Yamada T, Hiroyama T, Sudo K, Hasegawa N, Hyodo I, Nakamura Y. A robust culture method for maintaining tumorigenic cancer stem cells in the hepatocellular carcinoma cell line Li-7. Cancer Sci 2019; 110:1644-1652. [PMID: 30784169 PMCID: PMC6500967 DOI: 10.1111/cas.13978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer tissues contain small populations of highly tumorigenic cells termed cancer stem cells (CSCs). Immortalized cell lines containing CSCs are valuable and powerful experimental tools for research into the characteristics of these stem cells. We previously reported that the hepatocellular carcinoma cell line Li‐7 includes abundant CD13+CD166−CSCs; however, the number of these cells decreases after long‐term culture as a result of differentiation to non‐CSC populations. To ensure consistent and reproducible results in experiments using Li‐7 cells, it is important that the CSC population is maintained stably regardless of culture duration and passage. In the present study, we found that a commercially available culture medium for maintenance of embryonic stem cells and induced pluripotent stem cells, mTeSR1, effectively prevented spontaneous differentiation by CD13+CD166− cells to CD13−CD166+ cells and therefore maintained the CSC population in Li‐7 cell cultures. CD13+CD166−CSCs maintained using this culture medium retained high tumorigenicity after transplantation into mice; they also showed the ability to differentiate in vitro into non‐CSC populations in RPMI‐1640 with 10% FBS medium. We analyzed gene expression profiles of CSC and non‐CSC populations in Li‐7 cultures using an RNA sequencing method. Genes such as FGFR, NOTCH1, and JAG1, that are associated with tumorigenicity and stemness, were upregulated in the CSC population. Our results suggest that CSCs can be maintained in immortalized cancer cell lines cultured over an extended period using a medium developed for culture of embryonic/induced pluripotent stem cells.
Collapse
Affiliation(s)
- Yukako Sato
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Takeshi Yamada
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Naoyuki Hasegawa
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ichinosuke Hyodo
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
36
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Ostblom J, Nazareth EJP, Tewary M, Zandstra PW. Context-explorer: Analysis of spatially organized protein expression in high-throughput screens. PLoS Comput Biol 2019; 15:e1006384. [PMID: 30601802 PMCID: PMC6331134 DOI: 10.1371/journal.pcbi.1006384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/14/2019] [Accepted: 11/08/2018] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence highlights the importance of the cellular microenvironment as a regulator of phenotypic and functional cellular responses to perturbations. We have previously developed cell patterning techniques to control population context parameters, and here we demonstrate context-explorer (CE), a software tool to improve investigation cell fate acquisitions through community level analyses. We demonstrate the capabilities of CE in the analysis of human and mouse pluripotent stem cells (hPSCs, mPSCs) patterned in colonies of defined geometries in multi-well plates. CE employs a density-based clustering algorithm to identify cell colonies. Using this automatic colony classification methodology, we reach accuracies comparable to manual colony counts in a fraction of the time, both in micropatterned and unpatterned wells. Classifying cells according to their relative position within a colony enables statistical analysis of spatial organization in protein expression within colonies. When applied to colonies of hPSCs, our analysis reveals a radial gradient in the expression of the transcription factors SOX2 and OCT4. We extend these analyses to colonies of different sizes and shapes and demonstrate how the metrics derived by CE can be used to asses the patterning fidelity of micropatterned plates. We have incorporated a number of features to enhance the usability and utility of CE. To appeal to a broad scientific community, all of the software’s functionality is accessible from a graphical user interface, and convenience functions for several common data operations are included. CE is compatible with existing image analysis programs such as CellProfiler and extends the analytical capabilities already provided by these tools. Taken together, CE facilitates investigation of spatially heterogeneous cell populations for fundamental research and drug development validation programs. Cell behavior is influenced by cues that cells receive from their surrounding environment such as signals secreted from other cells and cell-to-cell contact. These factors are spatially heterogeneous and cells at different positions within a colony will experience varying degrees of influence from such environmental cues. In vitro assays often do not allow control over environmental variables and there is a lack of easy to use software to investigate the effect of spatial variation in these factors. We have developed a software package to address this gap and facilitate the quantification of spatially heterogeneous cell responses. Our software accurately identifies colonies of cells within a well and individual cells can be grouped according to their position within these colonies, which enables quantification of cell response as a function of cellular location. To support broad scientific accessibility, the full functionality of the software is available through a graphical user interface. Using this software to analyze data from a screening-optimized micropatterning platform, we show that human pluripotent stem cell-derived colonies grown either under pluripotency maintenance or differentiation-inducing conditions exhibit cell responses that are dependent on spatial organization. This technology should enable more accurate and predictive context-dependent drug screening and cell-fate investigation.
Collapse
Affiliation(s)
- Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Emanuel J. P. Nazareth
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Medicine by Design, A Canada First Research Excellence Program at the University of Toronto, Toronto, ON, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
38
|
Al Abbar A, Nordin N, Ghazalli N, Abdullah S. Generation of induced pluripotent stem cells by a polycistronic lentiviral vector in feeder- and serum- free defined culture. Tissue Cell 2018; 55:13-24. [DOI: 10.1016/j.tice.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
39
|
Zhou P, Yin B, Zhang R, Xu Z, Liu Y, Yan Y, Zhang X, Zhang S, Li Y, Liu H, Yuan YA, Wei S. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf B Biointerfaces 2018; 171:451-460. [DOI: 10.1016/j.colsurfb.2018.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
40
|
Namba Y, Sogawa C, Okusha Y, Kawai H, Itagaki M, Ono K, Murakami J, Aoyama E, Ohyama K, Asaumi JI, Takigawa M, Okamoto K, Calderwood SK, Kozaki KI, Eguchi T. Depletion of Lipid Efflux Pump ABCG1 Triggers the Intracellular Accumulation of Extracellular Vesicles and Reduces Aggregation and Tumorigenesis of Metastatic Cancer Cells. Front Oncol 2018; 8:376. [PMID: 30364132 PMCID: PMC6191470 DOI: 10.3389/fonc.2018.00376] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
The ATP-binding cassette transporter G1 (ABCG1) is a cholesterol lipid efflux pump whose role in tumor growth has been largely unknown. Our transcriptomics revealed that ABCG1 was powerfully expressed in rapidly metastatic, aggregative colon cancer cells, in all the ABC transporter family members. Coincidently, genetic amplification of ABCG1 is found in 10–35% of clinical samples of metastatic cancer cases. Expression of ABCG1 was further elevated in three-dimensional tumoroids (tumor organoids) within stemness-enhancing tumor milieu, whereas depletion of ABCG1 lowered cellular aggregation and tumoroid growth in vitro as well as hypoxia-inducible factor 1α in cancer cells around the central necrotic areas in tumors in vivo. Notably, depletion of ABCG1 triggered the intracellular accumulation of extracellular vesicles (EVs) and regression of tumoroids. Collectively, these data suggest that ABCG1 plays a crucial role in tumorigenesis in metastatic cancer and that depletion of ABCG1 triggers tumor regression with the accumulation of EVs and their derivatives and cargos, implicating a novel ABCG1-targeting therapeutic strategy by which redundant and toxic substances may be accumulated in tumors leading to their regression.
Collapse
Affiliation(s)
- Yuri Namba
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Itagaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Murakami
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun-Ichi Asaumi
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ken-Ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
41
|
Yamamoto Y, Miyazaki S, Maruyama K, Kobayashi R, Le MNT, Kano A, Kondow A, Fujii S, Ohnuma K. Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm. PLoS One 2018; 13:e0201960. [PMID: 30199537 PMCID: PMC6130871 DOI: 10.1371/journal.pone.0201960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023] Open
Abstract
Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial–mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial–mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Shota Miyazaki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Kenshiro Maruyama
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Ryo Kobayashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Ayumu Kano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Akiko Kondow
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Shuji Fujii
- Department of Materials Science and Technology, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
- * E-mail:
| |
Collapse
|
42
|
Luz AL, Tokar EJ. Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicol Sci 2018; 165:31-39. [PMID: 30169765 PMCID: PMC6111785 DOI: 10.1093/toxsci/kfy174] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Millions of children are born each year with a birth defect. Many of these defects are caused by environmental factors, although the underlying etiology is often unknown. In vivo mammalian models are frequently used to determine if a chemical poses a risk to the developing fetus. However, there are over 80 000 chemicals registered for use in the United States, many of which have undergone little safety testing, necessitating the need for higher-throughput methods to assess developmental toxicity. Pluripotent stem cells (PSCs) are an ideal in vitro model to investigate developmental toxicity as they possess the capacity to differentiate into nearly any cell type in the human body. Indeed, a burst of research has occurred in the field of stem cell toxicology over the past decade, which has resulted in numerous methodological advances that utilize both mouse and human PSCs, as well as cutting-edge technology in the fields of metabolomics, transcriptomics, transgenics, and high-throughput imaging. Here, we review the wide array of approaches used to detect developmental toxicants, suggest areas for further research, and highlight critical aspects of stem cell biology that should be considered when utilizing PSCs in developmental toxicity testing.
Collapse
Affiliation(s)
- Anthony L Luz
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
43
|
Daniszewski M, Nguyen Q, Chy HS, Singh V, Crombie DE, Kulkarni T, Liang HH, Sivakumaran P, Lidgerwood GE, Hernández D, Conquest A, Rooney LA, Chevalier S, Andersen SB, Senabouth A, Vickers JC, Mackey DA, Craig JE, Laslett AL, Hewitt AW, Powell JE, Pébay A. Single-Cell Profiling Identifies Key Pathways Expressed by iPSCs Cultured in Different Commercial Media. iScience 2018; 7:30-39. [PMID: 30267684 PMCID: PMC6135898 DOI: 10.1016/j.isci.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023] Open
Abstract
We assessed the pluripotency of human induced pluripotent stem cells (iPSCs) maintained on an automated platform using StemFlex and TeSR-E8 media. Analysis of transcriptome of single cells revealed similar expression of core pluripotency genes, as well as genes associated with naive and primed states of pluripotency. Analysis of individual cells from four samples consisting of two different iPSC lines each grown in the two culture media revealed a shared subpopulation structure with three main subpopulations different in pluripotency states. By implementing a machine learning approach, we estimated that most cells within each subpopulation are very similar between all four samples. The single-cell RNA sequencing analysis of iPSC lines grown in both media reports the molecular signature in StemFlex medium and how it compares to that observed in the TeSR-E8 medium.
Collapse
Affiliation(s)
- Maciej Daniszewski
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Hun S Chy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Vikrant Singh
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Duncan E Crombie
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Tejal Kulkarni
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Helena H Liang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Priyadharshini Sivakumaran
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Damián Hernández
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Alison Conquest
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Louise A Rooney
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Sophie Chevalier
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Stacey B Andersen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne Senabouth
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, WA 6009, Australia
| | | | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Joseph E Powell
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia; Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia.
| |
Collapse
|
44
|
Teramura T, Matsuda K, Takehara T, Shinohara K, Miyashita Y, Mieno Y, Mori T, Fukuda K, Suzuki K, Suemori H. Laser-assisted cell removing (LACR) technology contributes to the purification process of the undifferentiated cell fraction during pluripotent stem cell culture. Biochem Biophys Res Commun 2018; 503:3114-3120. [PMID: 30143262 DOI: 10.1016/j.bbrc.2018.08.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Purification of undifferentiated cells by removing differentiated parts is an essential step in pluripotent stem cell culture. This process has been traditionally performed manually using a fine glass capillary or plastic tip under a microscope, or by culturing in a selective medium supplemented with anti-differentiation inhibitors. However, there are several inevitable problems associated with these methods, such as contamination or biological side-effects. Here, we developed a laser-assisted cell removing (LACR) technology that enables precise, fast, and contact-less cell removal. Using LACR combined with computational image recognition/identification-discriminating technology, we achieved automatic cell purification (A-LACR). Practicability of A-LACR was evaluated by two demonstrations: selective removal of trophoblast stem (TS) cells from human iPS and TS cell co-cultures, and purification of undifferentiated iPS cells by targeting differentiated cells that spontaneously developed. Our results suggested that LACR technology is a novel approach for stem cell processing in regenerative medicine.
Collapse
Affiliation(s)
- Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Japan.
| | | | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | | | | | | | - Tatsufumi Mori
- Kindai University Life Science Research Institute, Kindai University, Japan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | | | - Hirofumi Suemori
- Laboratory of Embryonic Stem Cell Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| |
Collapse
|
45
|
Synergistic effect of co-immobilized FGF-2 and vitronectin-derived peptide on feeder-free expansion of induced pluripotent stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:157-169. [PMID: 30274048 DOI: 10.1016/j.msec.2018.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022]
Abstract
Expansion of human induced pluripotent stem cells (h-iPSCs) on mouse derived feeder layers or murine cells secretions such as Matrigel hamper their clinical applications. Alternative methods have introduced novel substrates as stem cell niches or/and optimized combinations of humanized soluble factors as fully defined mediums. Accordingly vitronectin as a main part of ECM have been commercialized significantly as a stem cell niche-forming substrate. In this work, we used a functional peptide derived from vitronectin (VTN) and co-immobilized it with FGF-2 (as an indisputable ingredient of defined culture mediums) on chitosan film surface. After chemical and physical characterization of the pristine chitosan surface as well as ones modified by VTN or/and FGF-2, h-iPS cells were cultured on them at the xeno/feeder-free conditions. Our results demonstrated that co-immobilization of these two biomolecules has a synergistic effect on adhesion and clonal growth of h-iPS cells with maintained expression of pluripotency markers in a FGF-2 density-dependent manner. This is the first report of co-immobilization of an ECM derived molecule and a growth factor for stem cell culture.
Collapse
|
46
|
Controlling the Interfacial Chemical and Physical Properties for Stem Cell Culture. Top Catal 2018. [DOI: 10.1007/s11244-018-0925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Ovadia EM, Colby DW, Kloxin AM. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater Sci 2018; 6:1358-1370. [PMID: 29675520 PMCID: PMC6126667 DOI: 10.1039/c8bm00099a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are of interest for the study of disease, where these cells can be derived from patients and have the potential to be differentiated into any cell type; however, three-dimensional (3D) culture and differentiation of iPSCs within well-defined synthetic matrices for these applications remains limited. Here, we aimed to establish synthetic cell-degradable hydrogels that allow precise presentation of specific biochemical cues for 3D culture of iPSCs with relevance for hypothesis testing and lineage-specific differentiation. We synthesized poly(ethylene glycol)-(PEG)-peptide-based hydrogels by photoinitiated step growth polymerization and used them to test the hypothesis that the viability of iPSCs within these matrices could be rescued with appropriate biochemical cues inspired by proteins and integrins important for iPSC culture on Matrigel. Specifically, we selected a range of motifs inspired by iPSC binding to Matrigel, including laminin-derived IKVAV and YIGSR, α5β1-binding PHSRNG10RGDS, αvβ5-binding KKQRFRHRNRKG, and RGDS that is known to bind a variety of integrins for generally promoting cell adhesion. YIGSR and PHSRNG10RGDS resulted in the highest iPSC viability, where binding of β1 integrin was key, and these permissive compositions also allowed iPSC differentiation into neural progenitor cells (NPCs) (decreased oct4 expression and increased pax6 expression) in response to soluble factors. The resulting NPCs formed clusters of different sizes in response to each peptide, suggesting that matrix biochemical cues affect iPSC proliferation and clustering in 3D culture. In summary, we have established photopolymerizable synthetic matrices for the encapsulation, culture, and differentiation of iPSCs for studies of cell-matrix interactions and deployment in disease models.
Collapse
Affiliation(s)
- Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
48
|
Liu W, Ren Z, Lu K, Song C, Cheung ECW, Zhou Z, Chen G. The Suppression of Medium Acidosis Improves the Maintenance and Differentiation of Human Pluripotent Stem Cells at High Density in Defined Cell Culture Medium. Int J Biol Sci 2018; 14:485-496. [PMID: 29805300 PMCID: PMC5968841 DOI: 10.7150/ijbs.24681] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cell density has profound impacts on the cell culture practices of human pluripotent stem cells. The regulation of cell growth, cell death, pluripotency and differentiation converge at high density, but it is largely unknown how different regulatory mechanisms act at this stage. We use a chemically defined medium to systemically examine cellular activities and the impact of medium components in high-density culture. We show that medium acidosis is the main factor that alters cell cycle, gene expression and cellular metabolism at high cell density. The low medium pH leads to inhibition of glucose consumption, cell cycle arrest, and subsequent cell death. At high cell density, the suppression of medium acidosis with sodium bicarbonate (NaHCO3) significantly increases culture capacity for stem cell survival, derivation, maintenance and differentiation. Our study provides a simple and effective tool to improve stem cell maintenance and applications.
Collapse
Affiliation(s)
- Weiwei Liu
- University of Macau, Faculty of Health Sciences, Taipa, Macau
| | - Zhili Ren
- University of Macau, Faculty of Health Sciences, Taipa, Macau
| | - Kai Lu
- University of Macau, Faculty of Health Sciences, Taipa, Macau
| | - Chengcheng Song
- University of Macau, Faculty of Health Sciences, Taipa, Macau
| | | | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Guokai Chen
- University of Macau, Faculty of Health Sciences, Taipa, Macau
| |
Collapse
|
49
|
Optimization of culture conditions for the derivation and propagation of baboon (Papio anubis) induced pluripotent stem cells. PLoS One 2018; 13:e0193195. [PMID: 29494646 PMCID: PMC5832232 DOI: 10.1371/journal.pone.0193195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/06/2018] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer the possibility of cell replacement therapies using patient-matched cells to treat otherwise intractable diseases and debilitations. To successfully realize this potential, several factors must be optimized including i) selection of the appropriate cell type and numbers to transplant, ii) determination of the means of transplantation and the location into which the transplanted cells should be delivered, and iii) demonstration of the safety and efficacy of the cell replacement protocol to mitigate each targeted disease state. A majority of diseases or debilitations likely to be targeted by cell-based therapeutic approaches represent complex conditions or physiologies manifest predominantly in primates including humans. Nonhuman primates afford the most clinically relevant model system for biomedical studies and testing of cell-based therapies. Baboons have 92% genomic similarity with humans overall and especially significant similarities in their immunogenetic system, rendering this species a particularly valuable model for testing procedures involving cell transplants into living individuals. To maximize the utility of the baboon model, standardized protocols must be developed for the derivation of induced pluripotent stem cells from living adults and the long-term maintenance of these cells in culture. Here we tested four commercially available culture systems (ReproFF, mTeSR1, E8 and Pluristem) for competence to maintain baboon iPSCs in a pluripotent state over multiple passages, and to support the derivation of new lines of baboon iPSCs. Of these four media only Pluristem was able to maintain baboon pluripotency as assessed by morphological characteristics, immunocytochemistry and RT-qPCR. Pluristem also facilitated the derivation of new lines of iPSCs from adult baboon somatic cells, which had previously not been accomplished. We derived multiple iPS cell lines from adult baboon peripheral blood mononuclear cells cultured in Pluristem. These were validated by expression of the pluripotency markers OCT4, NANOG, SOX2, SSEA4 and TRA181, as well as the ability to differentiate into tissues from all three germ layers when injected into immunocompromised mice. These findings further advance the utility of the baboon as an ideal preclinical model system for optimizing iPS cell-based, patient-specific replacement therapies in humans.
Collapse
|
50
|
Eguchi T, Sogawa C, Okusha Y, Uchibe K, Iinuma R, Ono K, Nakano K, Murakami J, Itoh M, Arai K, Fujiwara T, Namba Y, Murata Y, Ohyama K, Shimomura M, Okamura H, Takigawa M, Nakatsura T, Kozaki KI, Okamoto K, Calderwood SK. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment. PLoS One 2018; 13:e0191109. [PMID: 29415026 PMCID: PMC5802492 DOI: 10.1371/journal.pone.0191109] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Murakami
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Diagnosis and Dent-maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Itoh
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Kazuya Arai
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Toshifumi Fujiwara
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuri Namba
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshiki Murata
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Radio Isotope Research Center, Okayama University Dental School, Okayama, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ken-ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|