1
|
Kovacik A, Helczman M, Arvay J, Jambor T, Kovacikova E. Toxic elements and fatty acid composition in the freshwater fish family Cyprinidae (Rafinesque 1815): balancing nutritional benefits and health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:676. [PMID: 40419816 DOI: 10.1007/s10661-025-14112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/11/2025] [Indexed: 05/28/2025]
Abstract
The aim of this study was to assess the toxicity of heavy metals/metalloids, including arsenic, cadmium, lead, and mercury accumulated in the muscle of commonly consumed fish from the Cyprinidae. We discussed the importance of fatty acids in the human diet and investigated their profile in the muscle of different fish species. Additionally, our goal was to evaluate the benefits of fish consumption in relation to its risks, not only by considering the advantages of fatty acids and the drawbacks of heavy metal toxicity but also by examining how these pollutants may alter the fatty acid profile in fish muscle, potentially reducing the quality of their nutritional benefits. We categorized these fatty acids based on their proportions in total lipids into muscle tissue of the SFA (saturated fatty acids), MUFA (monounsaturated fatty acids), and PUFA (polyunsaturated fatty acids) groups. Subsequently, we have described the toxic effects of selected elements on human health, reviewing that investigated exposure levels of these toxic elements in fish muscle and the safety of consumption through risk assessment tools such as total hazard quotient (THQ) and carcinogenic risk (CR) calculations. In the final section we focused on lipid metabolism, which is significantly affected by exposure to toxic elements. We searched for a possible relationship between the presence of toxic elements and changes in the fatty acid profile of fish muscle. The knowledge from other studies led us to the possibility of a lower PUFA content due to the damage of double bonds and the subsequent degradation of these fatty acids. Total fatty acid profile is a crucial factor in evaluating health risks and serve as an important indicator of fish meat quality. On the other hand, it can serve as a potential indicator of environmental contamination by these toxicants.
Collapse
Affiliation(s)
- Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Eva Kovacikova
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| |
Collapse
|
2
|
Mohamed DA, Ramadan AA, Mabrok HB, Ibrahim GE, Mohammed SE. Persea americana Peel: A Promising Source of Nutraceutical for the Mitigation of Cardiovascular Risk in Arthritic Rats Through the Gut-Joint Axis. Biomolecules 2025; 15:590. [PMID: 40305360 PMCID: PMC12025046 DOI: 10.3390/biom15040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the inflammation of synovial fluid. The incidence of cardiovascular diseases (CVDs) is increasing in RA patients. This research is the first report to investigate the anti-arthritic effect of avocado peel nutraceutical (APN) and its potential in mitigating the cardiovascular risk associated with RA. The antioxidant activity and phytochemical composition of APN were assessed. The potential interaction of APN's active compounds with protein tyrosine phosphatase non-receptor type 22 (PTPN22) was studied using molecular docking. The impact of APN on the plasma lipid profile, oxidative and inflammatory markers, and the indices of coronary risk and atherogenicity as CVD markers were evaluated. The gene expression of COX-2, IL-6, IL-1β, IL-10, and TNF-α in liver and spleen tissues were measured. The rat gut microbiota profile was investigated using 16S rRNA amplicon sequencing. APN exhibited high antioxidant activity, low atherogenicity and thrombogenicity indices, and a high ratio of hypocholesterolemic to hypercholesterolemic fatty acids indicating its cardioprotective potential. The administration of APN led to a reduction in oxidative stress markers, inflammatory markers, dyslipidemia, and CVD markers. APN administration downregulated the expression of COX-2, IL-6, IL-1β, and TNF-α genes, while the IL-10 gene was significantly upregulated in the liver and spleen. Treatment with APN was favorable in restoring eubiosis in the gut by modulating RA-associated bacterial taxa linked to impaired immune function and cardiometabolic diseases. In molecular docking, β-amyrin and ellagic acid showed the highest binding affinity for PTPN22. APN may represent a promising approach to ameliorating the cardiovascular risk of RA. The present results will be offering a foundation for future in-depth research in nutraceuticals from agriculture by-products. Additionally, they will be supporting the public health policies aimed at preventing and controlling rheumatoid arthritis.
Collapse
Affiliation(s)
- Doha A. Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Cairo 12622, Egypt; (A.A.R.); (H.B.M.); (S.E.M.)
| | - Asmaa A. Ramadan
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Cairo 12622, Egypt; (A.A.R.); (H.B.M.); (S.E.M.)
| | - Hoda B. Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Cairo 12622, Egypt; (A.A.R.); (H.B.M.); (S.E.M.)
| | - Gamil E. Ibrahim
- Chemistry of Aroma and Flavor Department, Food Industries and Nutrition Institute, National Research Centre, Cairo 12622, Egypt;
| | - Shaimaa E. Mohammed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Cairo 12622, Egypt; (A.A.R.); (H.B.M.); (S.E.M.)
| |
Collapse
|
3
|
Kahiel M, Wang K, Xu H, Du J, Li S, Shen D, Li C. Effect of Supplemental Essential Oils Blend on Broiler Meat Quality, Fatty Acid Profile, and Lipid Quality. Animals (Basel) 2025; 15:929. [PMID: 40218323 PMCID: PMC11987973 DOI: 10.3390/ani15070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
This investigation evaluates the impact of the EOB on chicken growth performance, meat quality, and lipid metabolism. Two hundred and fifty-six one-day-old, white-feathered broilers were randomly allocated to four groups. Each group was subdivided into eight replicates, each with eight unsexed chicks, including the control group (CON), EOB150, EOB250, and EOB350, with 0, 150, 250, and 350 mg/L of the EOB added to the drinking water, respectively. The expression levels of genes associated with antioxidants and lipid metabolism were analyzed using real-time polymerase chain reaction (RT-PCR). Additionally, the FA profile of the breast muscle was determined using gas chromatography. The data displayed that those birds in the EOB250 group had a higher breast muscle index compared to the CON group. The breast meat in the EOB groups showed that there is increased yellowness, water holding capacity (WHC), and polyunsaturated fatty acids (PUFAs), while cooking losses, drip losses, and saturated fatty acids (SFAs) were reduced compared to the CON. The application of supplements for the EOB250 and EOB350 groups increased antioxidant indices as well as the expression of antioxidant-related genes in the liver and muscles. However, these groups decreased the concentrations of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL-C) in serum and liver compared to the EOB150 and CON groups. These EOB groups downregulated expression of some genes linked to liver FA synthesis and elevated the expressions of lipid β-oxidation-related genes compared to the CON. It can be concluded that the supplementation with 250 mg/L of the EOB has the potential as an alternative water additive in the broiler industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.K.); (K.W.); (H.X.); (J.D.); (S.L.)
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.K.); (K.W.); (H.X.); (J.D.); (S.L.)
| |
Collapse
|
4
|
Kılınç GE, Vergi Y. Nutritional Approach to Diabetic Sarcopenia: A Comprehensive Review. Curr Nutr Rep 2025; 14:48. [PMID: 40106009 PMCID: PMC11922993 DOI: 10.1007/s13668-025-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF THE REVIEW The aim of this review is to discuss and evaluate diabetic sarcopenia (DS) and its relationship with nutrition by discussing the mechanisms of diabetic sarcopenia in detail and comprehensively reviewing the literature. RECENT FINDINGS Type 2 diabetes (T2DM) affects approximately 25% of people aged 50 years and over and indicates a significant the cost of health for the elderly. Nutrition is an important part of these treatment approaches, and in this review, the literature was comprehensively reviewed, focusing on understanding the mechanisms of DS and discussing its relationship with nutrition. A comprehensive search was conducted on Web of Science, Google Scholar, Scopus, Science Direct, and PubMed from inception up to July 2024. The aim of nutritional treatment for DS is to improve muscle mass, muscle strength and physical performance while improving diabetes-related metabolic risk and glucose levels. In this context, it is important to determine energy intake in individuals with DS according to calorie intake exceeding 30 kcal/kg. For these individuals, a protein intake of at least 1-1.2 g/kg/day is recommended, with an emphasis on the number and timing of meals and a nutritional pattern rich in branched chain amino acids (BCAA). In addition, it is important to adopt a diet rich in antioxidants and to choose diet patterns that contain sufficient levels of macro and micronutrients. The Mediterranean diet model can be a good diet option for individuals with DS. Comprehensive studies in this field are needed so that clinicians can make specific dietary recommendations for DS.
Collapse
Affiliation(s)
- Gül Eda Kılınç
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun, Turkey.
| | - Yeliz Vergi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
6
|
Martín-Mateos MJ, Delgado-Adámez J, Díaz-Ponce M, Tejerina D, Ramírez-Bernabé MR. Frankfurters Manufactured with Valorized Grape Pomace as a Substitute of Nitrifying Salts. Foods 2025; 14:391. [PMID: 39941984 PMCID: PMC11816958 DOI: 10.3390/foods14030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the use of grape/wine pomace as a potential substitute for nitrifying salts in the production and preservation of frankfurters. Red wine pomace (RWP) from Tempranillo and white wine pomace (WWP) from Cayetana grapes were added to frankfurters made with Iberian pig backfat-an underutilized fat rich in oleic acid-at two levels (0.5% and 3% w/w). These new formulations were compared with a control (containing only meat, salt, and spices) and a commercial formulation containing nitrites and ascorbic acid. Analyses were conducted immediately after production and following 45 days of refrigerated storage to evaluate microbiological, color, physicochemical, and textural changes in the frankfurters. The addition of pomace slightly reduced the pH of the frankfurters but did not affect microbial counts during the manufacturing process. Frankfurters with pomace displayed a similar color to the control but showed lower redness compared to the commercial formulation with nitrites. Importantly, pomace reduced lipid and protein oxidation during production and storage. The reduction in lipid oxidation due to the pomace was comparable to the effect of nitrites and ascorbic acid. Furthermore, pomace effectively reduced protein oxidation, unlike nitrites and ascorbic acid, which primarily targeted lipid oxidation. Significant differences in texture were observed between commercial frankfurters and those containing pomace. Despite these variations in the appearance and the texture, the strong protective effect of pomace against oxidative reactions highlights its potential as a natural alternative to synthetic additives, offering a promising solution for the meat industry.
Collapse
Affiliation(s)
| | | | | | | | - María Rosario Ramírez-Bernabé
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario de Extremadura (INTAEX), Avda Adolfo Suárez s/n, 06071 Badajoz, Spain; (M.J.M.-M.); (D.T.)
| |
Collapse
|
7
|
Qiao H, Li Y, Cui F, Zhang W, Zhang Z, Li H. Nutrition, Flavor, and Microbial Communities of Two Traditional Bacterial Douchi from Gansu, China. Foods 2024; 13:3519. [PMID: 39517303 PMCID: PMC11545533 DOI: 10.3390/foods13213519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Douchi has attracted attention for its unique taste and rich health functions. This study investigated the nutrition, flavor and correlation between the flavor and microorganisms of two traditional bacterial douchi from the province of Gansu in northwest China. The findings reveal significant variations in nutrition, flavor compounds, and the microbiota between Longnan and Qingyang douchi. Three dominant bacterial genera (Carnobacterium, Ignatzschineria, and Bacillus) and one dominant bacterial genus (Pichia) were found in the QY douchi, while four bacterial genera (Bacillus, Ignatzschineria, Proteus, and Providencia) and three fungal genera (Pichia, Candida, and Rhodosporidium) were dominant in samples of the LN douchi. For flavor substances, a total of 48 volatile components were detected in Longnan douchi and 41 in Qingyang douchi. Using the relative odor activity value (ROAV), we identified five key flavor compounds in Longnan douchi and four key flavor compounds in Qingyang douchi. The correlation analysis showed that there were certain positive or negative correlations between the key microorganisms and the flavor of the two traditional bacterial douchi. The results of this study can serve as a theoretical reference for improving the quality and flavor of traditional douchi.
Collapse
Affiliation(s)
- Haijun Qiao
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yaping Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Fengyun Cui
- Science and Technology Research Center of China Customs, Beijing 100026, China;
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhongming Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
8
|
Colbert T, Bothma C, Pretorius W, du Toit A. Developing an Acceptable Nixtamalised Maize Product for South African Consumers: Sensory, Survey and Nutrient Analysis. Foods 2024; 13:2896. [PMID: 39335825 PMCID: PMC11431607 DOI: 10.3390/foods13182896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
South Africa produces high-quality maize, yet food insecurity and malnutrition are prevalent. Maize is a staple for most South Africans and is often eaten as pap, gruel cooked from maize meal (corn flour) and water without diet diversification. Considering the reliance on maize in low-income communities, could nixtamalised maize products be developed that are nutritious, homemade and consumer-acceptable? Nixtamalisation could offer a solution. However, its acceptability and nutritional benefits remain in question. We aimed to develop a product using consumer-led methods. Consumer panels evaluated and selected products using overall acceptability (9-point hedonic scale), Just-About-Right (JAR) and penalty analysis. Consumer-acceptable nixtamalised chutney-flavoured maize chips were moderately liked (7.35) and reached acceptable JAR scores (74.2%). The nixtamalised products were liked and liked very much (56%), 61% of panel members agreed and strongly agreed to purchase and prepare, and 50% to consume nixtamalised products. Nutrient analysis of the chutney chips showed high energy (2302 kJ/100 g) and total fats (23.72), of which saturated fats were 11.47%. Total fibre (17.19 g/100 g), protein (6.64 g/100 g), calcium (163.3) and magnesium (53.67 g/100 g) were promising, while high phosphorous (566.00 mg/100 g) may indicate anti-nutrients present. Nixtamalisation can alleviate food insecurity and malnutrition in countries such as South Africa.
Collapse
Affiliation(s)
| | | | | | - Alba du Toit
- Department of Sustainable Food Systems and Development, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; (T.C.); (C.B.); (W.P.)
| |
Collapse
|
9
|
Marović R, Badanjak Sabolović M, Brnčić M, Ninčević Grassino A, Kljak K, Voća S, Karlović S, Rimac Brnčić S. The Nutritional Potential of Avocado By-Products: A Focus on Fatty Acid Content and Drying Processes. Foods 2024; 13:2003. [PMID: 38998508 PMCID: PMC11241566 DOI: 10.3390/foods13132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these components were investigated and the health benefits of the main fatty acids contained in avocados were highlighted. The samples were subjected to three drying processes: hot air (HAD), vacuum (VD), and hot-air microwave (HAMD). In all parts of fresh avocado, oleic acid was the most abundant (41.28-57.93%), followed by palmitic acid (19.90-29.45%) and linoleic acid (8.44-14.95%). Drying led to a significant reduction in the oleic acid content, with palmitic acid showing the greatest stability. HAD resulted in higher levels of oleic acid and linoleic acid in dried pulp and peel samples compared with VD and HAMD, while HAMD had the highest content of α-linolenic acid in all parts. In addition, HAMD had the shortest drying time. HAMD duration was 35 min, which was 76.7% shorter than HAD (150 min) and 82.5% shorter than VD (200 min). Considering fatty acid retention and drying efficiency, HAMD appears to have been the most effective method, especially for the avocado peel. Remarkably, the avocado peel consistently contained higher total tocopherol, with δ-tocopherol generally being the most abundant form. The high content of tocopherols, oleic acid, and linoleic acid in the avocado peel suggests promising health benefits.
Collapse
Affiliation(s)
- Roko Marović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marija Badanjak Sabolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sven Karlović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Mazı IB. Comparative analysis of nutritional quality and color properties of flours derived from Locusta migratoria at different developmental stages. FOOD SCI TECHNOL INT 2024:10820132241254976. [PMID: 38751138 DOI: 10.1177/10820132241254976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
This study was conducted to determine the variation in the chemical composition of flours derived from Locusta migratoria at two distinct developmental stages: the fourth instar and adult stages. Adult locust flour exhibited approximately two times higher fat content, similar protein content, ash content, CHNS elemental composition, and 45.7% lower total phenolic content compared to fourth instar locust flour. The flour from the adult locust was lighter, more red, and yellow than the fourth instar locust flour. Nineteen fatty acids were detected in both flours, with oleic acid, palmitic acid, and linoleic acid being the major ones. The ΣPUFA/ΣSFA of fourth instar and adult locusts was 0.82 and 0.78, respectively. The ratio of ω-6/ω-3 fatty acids was 2.1 for the fourth instar locust flour and 1.7 for the adult locust flour. Apart from gamma-aminobutyric acid (GABA), similar amino acids were found in both the flours. However, significant differences were detected in the levels of some of these amino acids between the fourth instar and adult locust flours. Of particular interest, adult locust flour showcased a GABA content of 25.4 mg/100 g dry weight, making it a valuable alternative protein source in developing innovative and nutritious food products.
Collapse
Affiliation(s)
- Işıl Barutçu Mazı
- Department of Food Engineering, Agricultural Faculty, Ordu University, Ordu, Turkey
| |
Collapse
|
11
|
Zhang S, Huang Y, Zheng C, Wang L, Zhou Y, Chen W, Duan Y, Shan T. Leucine improves the growth performance, carcass traits, and lipid nutritional quality of pork in Shaziling pigs. Meat Sci 2024; 210:109435. [PMID: 38246121 DOI: 10.1016/j.meatsci.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Leucine is involved in promoting fatty acid oxidation and lipolysis, mediating lipid metabolism and energy homeostasis, thus it has been widely used in livestock production. However, the effects of leucine on fat deposition and nutrition in Shaziling pigs remain unclear. A total of 72 Shaziling pigs (150 days old, weight 35.00 ± 1.00 kg) were randomly divided into 2 groups and fed with basal diet (control group) or basal diet containing 1% leucine (leucine group) for 60 days. The results showed that leucine significantly increased the average daily feed intake but decreased the ratio of feed to gain (P < 0.05), increased the loin muscle area and serum glucose content (P < 0.05) of Shaziling pigs. Besides, leucine regulated the re-distribution of fatty acids from adipose tissue to muscle as it significantly increased the contents of C18:1n-9 and C22:6n-3 (DHA) in the longissimus thoracis while decreased the contents of C22:5n-3 (DPA), C20:5n-3 (EPA), and DHA in the adipose tissue of Shaziling pigs (P < 0.05). Lipidomic analysis showed that the contents of phosphatidylethanolamines (PEs), cardiolipins (CLs), and phosphatidylglycerols (PGs) in the longissimus thoracis and the contents of lysophosphatidylethanolamines (LPEs), ceramides (Cers), phosphatidylinositols (PIs) in adipose tissue of Shaziling pigs were decreased in leucine group (P < 0.05). Collectively, this study clarified that dietary addition of 1% leucine have a better effect on growth performance and the deposition of beneficial fatty acids in the muscle of Shaziling pigs, which is conductive to the production of high quality and healthy pork. In addition, leucine altered the lipid composition of muscle and fat in Shaziling pigs. The related results provide a theoretical basis and application guidance for regulating fat deposition in Shaziling pigs, which is important for the healthy breeding of Shaziling pigs.
Collapse
Affiliation(s)
- Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yehui Duan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
12
|
Wang Y, Jin J, Wu G, Wei W, Jin Q, Wang X. Omega-9 monounsaturated fatty acids: a review of current scientific evidence of sources, metabolism, benefits, recommended intake, and edible safety. Crit Rev Food Sci Nutr 2024; 65:1857-1877. [PMID: 38343184 DOI: 10.1080/10408398.2024.2313181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Castillo-Carrión M, Martínez-Espinosa R, Pérez-Álvarez JÁ, Fernández-López J, Viuda-Martos M, Lucas-González R. Nutritional, Fatty Acids, (Poly)phenols and Technological Properties of Flower Powders from Fuchsia hybrida and Alcea rosea. Foods 2024; 13:237. [PMID: 38254537 PMCID: PMC10814466 DOI: 10.3390/foods13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Fuchsia hybrida (pena pena) and Alcea rosea L. (malvagoma) are predominant flowers in the "Horchata" infusion, a traditional beverage in southern Ecuador, to which some medicinal properties are attributed. However, there is very little published information about these two flower species. The current study aimed to obtain two dehydrated powders of these flowers and to determine their chemical composition, physicochemical and technological properties, polyphenols, and fatty acids profile. In both powdered flowers, carbohydrates predominated, with a significant content of dietary fiber and fructose. The fat content was low, mainly comprising polyunsaturated fats (62% pena pena and 52% malvagoma), with a significant presence of omega-3 (C18:3n-3,6,9) and omega-6 (C18:2n-6,9) fatty acids, showing a better n-6/n-3 balance in the malvagoma flowers. Pena pena flowers are highlighted by high anthocyanin and ellagic acid amounts, whereas malvagoma contains a high content of flavanones. In conclusion, the studied powder flowers, could be used in the formulation of new foods or as source of anthocyanins as food colorants.
Collapse
Affiliation(s)
- Maritza Castillo-Carrión
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador; (M.C.-C.); (R.M.-E.)
| | - Ruth Martínez-Espinosa
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador; (M.C.-C.); (R.M.-E.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Juana Fernández-López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Raquel Lucas-González
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avda. Galicia No. 4, 32900 Ourense, Spain
| |
Collapse
|
14
|
Ismail AMA, El-Azeim ASA, Saif HFAEA. Effect of aerobic exercise alone or combined with Mediterranean diet on dry eye in obese hypertensive elderly. Ir J Med Sci 2023; 192:3151-3161. [PMID: 37160570 PMCID: PMC10692261 DOI: 10.1007/s11845-023-03387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lifestyle modification is a newly recommended complementary treatment for dry eye (DE) disorder. OBJECTIVE To investigate the effect of a 6-month high-intensity interval aerobic exercise (HIIAE) (conducted 30 min, 3 times weekly) alone or combined with a caloric-restriction approach, the Mediterranean diet (MD), on DE parameters in obese hypertensive elderly. THE DESIGN, SETTINGS, PARTICIPANTS, AND INTERVENTION This is a randomized controlled trial included sixty obese hypertensive elderly with DE based on university-based hospital recruitment. Elderly were randomly assigned to the experimental group (n = 30 elderly received HIIAE plus MD) and control group (n = 30 elderly received only HIIAE). Besides anthropometry (abdominal circumference, body weight, and body mass index) and blood pressure (measured in systole and diastole), DE parameters (tear film break-up time, DE scoring system, ocular surface disability index questionnaire, Schirmer's test, and Oxford grading system) were evaluated. RESULTS Significant improvements in anthropometry, blood pressure, and DE parameters were higher in the experimental group than in the control group. CONCLUSION Aging-related DE symptoms and signs can be prevented and/or treated with HIIAE alone or combined with MD in obese hypertensive elderly with DE disorder.
Collapse
Affiliation(s)
- Ali Mohamed Ali Ismail
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt.
| | | | | |
Collapse
|
15
|
Nikpayam O, Jafari A, Safaei E, Naghshi N, Najafi M, Sohrab G. Effect of chia product supplement on anthropometric measures, blood pressure, glycemic-related parameters, lipid profile and inflammatory indicators: A systematic and meta-analysis. J Funct Foods 2023; 110:105867. [DOI: 10.1016/j.jff.2023.105867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
16
|
Pourrajab B, Sharifi-Zahabi E, Soltani S, Shahinfar H, Shidfar F. Comparison of canola oil and olive oil consumption on the serum lipid profile in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2023; 63:12270-12284. [PMID: 35866510 DOI: 10.1080/10408398.2022.2100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS Several randomized clinical trials have investigated the effects of canola oil (CO) compared to olive oil (OO) on the serum lipid profiles in adults. However, the results of these studies are inconsistent. Thus, this study aimed to assess the comparison of CO and OO consumption on the serum lipid components in adults. METHODS AND RESULTS The following online databases were searched until February 4th, 2022: PubMed/Medline, Scopus, Clarivate Analytics Web of Science, Cochrane Central Register of Controlled Trials, and Google Scholar. The effect sizes were stated as the weighted mean difference (WMD) with 95% confidence intervals (CI). A total of 13 eligible trials were included in this meta-analysis. The results showed that the CO consumption, significantly reduced serum LDL-c (WMD: -6.13 mg/dl, 95%CI: -9.79, -2.46, p = 0.001), TC (WMD: -8.92 mg/dl, 95% CI: -13.52, -4.33, P < 0.001) and LDL-c/HDL-c ratio (WMD: -0.30; 95% CI, -0.53, -0.06, p = 0.01) levels compared to OO. There were no significant changes in the other components of the blood lipids. CONCLUSION The results of this review suggest that CO consumptionhas beneficial effects on LDL-c, TC, and LDL-c/HDL-c ratio compared to OO. Therefore, its replacement with OO can have cardioprotective impacts.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Sharifi-Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Shahinfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Cutrupi F, De Luca A, Di Zazzo A, Micera A, Coassin M, Bonini S. Real Life Impact of Dry Eye Disease. Semin Ophthalmol 2023; 38:690-702. [PMID: 37095685 DOI: 10.1080/08820538.2023.2204931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
Dry Eye Disease (DED) is an increasingly common condition that affects between 5% and 50% of the global population. Even though DED is most frequently diagnosed in older people, it has also been diagnosed in young adults and adolescents more frequently in recent years (employees, gamers). People can experience different types of symptoms and find it challenging to read, watch TV, cook, climb stairs, and meet friends. Mild and severe dry eye can reduce quality of life similarly to mild psoriasis and moderate-to-severe angina. Furthermore, DED patients experience serious difficulties driving vehicles, especially at night, and show a decrease in work productivity, which, when combined with the relevant indirect cost that this condition produces, poses a serious challenge in our days. In addition, DED patients are more likely to develop depression and suicidal ideations and experience frequent sleep disorders. Finally, it is discussed how lifestyle changes, such as increased physical activity, blinking exercises, and a proper diet, have positive implications for the management of this condition. Our aim is to draw attention to the negative effects of dry eye in real life, which are unique to each patient, especially as they relate to the non-visual symptoms experienced by DED patients.
Collapse
Affiliation(s)
- Francesco Cutrupi
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Andrea De Luca
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Antonio Di Zazzo
- Research Laboratories in Ophthalmology, IRCCS Bietti Foundation, Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS Bietti Foundation, Rome, Italy
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Stefano Bonini
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
18
|
Yang WC, Hsieh HM, Chen JP, Tsai SF, Chiu HF, Chung MC, Huang ST, Chen YY, Chen CH. Efficacy and Safety of a High-Energy, Low-Protein Formula Replacement Meal for Pre-Dialysis Chronic Kidney Disease Patients: A Randomized Controlled Trial. Nutrients 2023; 15:4506. [PMID: 37960159 PMCID: PMC10648072 DOI: 10.3390/nu15214506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
High-energy, low-protein formulas (HE-LPFs) are commonly used as oral nutritional supplements (ONSs) to help provide extra calories to patients who are adhering to a low-protein diet (LPD) after diagnosis with chronic kidney disease (CKD). This randomized controlled trial aimed to evaluate the efficacy and safety of an HE-LPF as either a partial or a total replacement for one meal in pre-dialysis CKD patients. Stage 4-5 CKD patients received either a once-daily HE-LPF (HE-LPF group) or normal food (control group) for a period of 4 weeks while following an LPD. Overall, 73 patients who completed the study were included in the intention-to-treat population. After analyzing the 3-day food records, the HE-LPF group experienced a significant decrease in the percentage of energy derived from protein (p < 0.05) and an increase in the percentage of energy derived from fat (p < 0.05) compared to the control group. The two groups had no significant differences in body weight, body composition, grip strength, renal function, electrolytes, or metabolic markers. The HE-LPF group had a high adherence (94.9% at week 4), and no adverse effects were observed. HE-LPFs are safe to employ as meal replacements for pre-dialysis CKD patients adhering to an LPD.
Collapse
Affiliation(s)
- Wen-Ching Yang
- Department of Food and Nutrition, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (W.-C.Y.); (H.-M.H.)
| | - Hui-Min Hsieh
- Department of Food and Nutrition, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (W.-C.Y.); (H.-M.H.)
| | - Jun-Peng Chen
- Biostatistics Group, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (J.-P.C.); (Y.-Y.C.)
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-F.T.); (H.-F.C.); (M.-C.C.); (S.-T.H.)
- Department of Life Science, Tunghai University, Taichung 407224, Taiwan
- Department of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University School of Medicine, Taichung 40227, Taiwan
| | - Hsien-Fu Chiu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-F.T.); (H.-F.C.); (M.-C.C.); (S.-T.H.)
| | - Mu-Chi Chung
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-F.T.); (H.-F.C.); (M.-C.C.); (S.-T.H.)
| | - Shih-Ting Huang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-F.T.); (H.-F.C.); (M.-C.C.); (S.-T.H.)
| | - Yun-Yu Chen
- Biostatistics Group, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (J.-P.C.); (Y.-Y.C.)
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-F.T.); (H.-F.C.); (M.-C.C.); (S.-T.H.)
- Department of Life Science, Tunghai University, Taichung 407224, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University School of Medicine, Taichung 40227, Taiwan
| |
Collapse
|
19
|
Elkin RG, Harvatine KJ. A review of recent studies on the enrichment of eggs and poultry meat with omega-3 polyunsaturated fatty acids: novel findings and unanswered questions. Poult Sci 2023; 102:102938. [PMID: 37572619 PMCID: PMC10428063 DOI: 10.1016/j.psj.2023.102938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/14/2023] Open
Abstract
Studies from our laboratory over the past decade have yielded new information with regard to the dietary enrichment of eggs and poultry meat with omega-3 (n-3) polyunsaturated fatty acids (PUFA) but have also generated a number of unanswered questions. In this review, we summarize the novel findings from this work, identify knowledge gaps, and offer possible explanations for some perplexing observations. Specifically discussed are: 1) Why feeding laying hens and broilers an oil rich in stearidonic acid (SDA; 18:4 n-3), which theoretically bypasses the putative rate-limiting step in the hepatic n-3 PUFA biosynthetic pathway, does not enrich egg yolks and tissues with very long-chain (VLC; ≥20 C) n-3 PUFA to the same degree as obtained by feeding birds oils rich in preformed VLC n-3 PUFA; 2) Why in hens fed an SDA-rich oil, SDA fails to accumulate in egg yolk but is readily incorporated into adipose tissue; 3) How oils rich in oleic acid (OA; 18:1 n-9), when co-fed with various sources of n-3 PUFA, attenuates egg and tissue n-3 PUFA contents or rescues egg production when co-fed with a level of docosahexaenoic acid (DHA; 22:6 n-3) that causes severe hypotriglyceridemia; and 4) Why the efficiency of VLC n-3 PUFA deposition into eggs and poultry meat is inversely related to the dietary content of α-linolenic acid (ALA; 18:3 n-3), SDA, or DHA.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Flynn MM, Tierney A, Itsiopoulos C. Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients 2023; 15:2916. [PMID: 37447242 DOI: 10.3390/nu15132916] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Most chronic diseases are preventable with a healthy diet, although there is debate about the optimal dietary approach. Increasingly more countries are focusing on food-based guidelines rather than the traditional nutrient-based approach. Although there is good agreement on plant foods, controversy remains about the types and amounts of fats and oils. This narrative review aims to systematically summarize and evaluate the latest evidence on the protective effects of extra virgin olive oil (EVOO) on disease risk factors. A systematic search of the relevant literature using PubMed, Cochrane Library, and Embase databases was conducted for the years 2000 through December 2022. A narrative synthesis was then undertaken. Of 281 retrieved articles, 34 articles fulfilled our inclusion criteria and were included. Compared with other dietary fats and low-fat diets, EVOO is superior in the management of clinical biomarkers including lowering blood pressure and LDL-c, increasing protective HDL-c, improving glycemic control, and weight management. The protective effects of EVOO are likely due to its polyphenol content rather than the monounsaturated fat content. It is therefore important to promote the regular use of EVOO in the context of healthy dietary patterns such as the Mediterranean diet for maximal health benefit.
Collapse
Affiliation(s)
- Mary M Flynn
- Department of Medicine, The Miriam Hospital, Brown University, 164 Summit Ave., Providence, RI 02912, USA
| | - Audrey Tierney
- Health Implementation Science and Technology Research Group, Human Nutrition and Dietetics School of Allied Health, Health Research Institute, University of Limerick, Castletroy, V94 T9PX Limerick, Ireland
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
21
|
Characteristics of composite gels composed of citrus insoluble nanofiber and amylose and their potential to be used as fat replacers. Food Chem 2023; 409:135269. [PMID: 36586258 DOI: 10.1016/j.foodchem.2022.135269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Here, we prepared novel composite gels composed of citrus insoluble nanofiber and amylose, and examined their potential to be used as fat replacers and inhibit lipid digestion. We further evaluated the effect of different nanofiber/amylose ratios on the texture, thermal stability, water distribution, microstructure and lipid digestion of the composite gels. The addition of nanofiber improved the hardness, gumminess, viscoelasticity, thermal stability, and water-holding capacity of the composite gels, as well as strengthen their interpenetrating three-dimensional network. The gel prepared at a nanofiber/amylose ratio of 1:4 could provide an oral sensory perception similar to that of cream and therefore can be used as a potential fat replacer. Moreover, the emulsion stabilized by nanofiber/amylose could well inhibit lipid digestion, and the nanofiber/amylose ratio of 1:4 could achieve the minimum release amount of free fatty acids (55.81%). These findings provide a reference for the development of potential fat replacers.
Collapse
|
22
|
Jardim T, Domingues MRM, Alves E. An overview on lipids in nuts and oily fruits: oil content, lipid composition, health effects, lipidomic fingerprinting and new biotechnological applications of their by-products. Crit Rev Food Sci Nutr 2023; 64:9132-9160. [PMID: 37178132 DOI: 10.1080/10408398.2023.2208666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tree nuts and oily fruits are used as a diet complement and are highly consumed worldwide. The production and consumption of these foods have been increasing, and an enormous global market value is forecasted for 2023. Besides their high nutritional value and lipid content, they provide health benefits to fat metabolism, heart, skin, and brain. The industrial by-products of these oily foods represent promising raw materials for many industries. However, the lipidomic analysis of nuts and oily fruits is still in its early stages. State-of-the-art analytical approaches for the lipid profiling and fingerprinting of nuts and oily fruits have been developed using high-performance liquid chromatography and high-resolution mass spectrometry for the accurate identification and structural characterization at the molecular species level. It is expected to bring a new understanding of these everyday foods' nutritional and functional value. This review comprises the oil content and lipid composition of various nuts and oily fruits, particularly those mostly consumed worldwide and having recognized beneficial health effects, biological activities associated with the lipids from different oily foodstuffs, analytical methodologies to analyze lipids in nuts and oily fruits, and the potential biotechnological applications of their industrial by-products for a lipid-based commercial valorization.
Collapse
Affiliation(s)
- Tiago Jardim
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
23
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
24
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Study of Yak Colostrum Nutritional Content Based on Foodomics. Foods 2023; 12:foods12081707. [PMID: 37107501 PMCID: PMC10137867 DOI: 10.3390/foods12081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The utilization of yak milk is still in a primary stage, and the nutrition composition of yak colostrum is not systematically characterized at present. In this study, the lipids, fatty acids, amino acids and their derivatives, metabolites in yak colostrum, and mature milk were detected by the non-targeted lipidomics based on (ultra high performance liquid chromatography tandem quadrupole mass spectrometer) UHPLC-MS, the targeted metabolome based on gas chromatography-mass spectrometer (GC-MS), the targeted metabolome analysis based on UHPLC-MS, and the non-targeted metabolome based on ultra high performance liquid chromatography tandem quadrupole time of flight mass spectrometer (UHPLC-TOF-MS), respectively. Meanwhile, the nutrition composition of yak colostrum was compared with the data of cow mature milk in the literatures. The results showed that the nutritive value of yak colostrum was higher by contrast with yak and cow mature milk from the perspective of the fatty acid composition and the content of Σpolyunsaturated fatty acids (PUFAs), Σn-3PUFAs; the content of essential amino acid (EAA) and the ratio of EAA/total amino acid (TAA) in yak colostrum were higher than the value in yak mature milk; and the content of functional active lipids including phosphatidylcholines (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), lyso-phosphatidylcholine (LPC), lyso-phosphatidylglycerol (LPG), lyso-phosphatidylinositol (LPI), sphingomyelin (SM), ganglioside M3 (GM3), ganglioside T3 (GT3), and hexaglycosylceramide (Hex1Cer) in yak colostrum, was higher than the value of yak mature milk. Moreover, the differences of nutritive value between yak colostrum and mature milk were generated by the fat, amino acids and carbohydrate metabolism that were regulated by the ovarian hormone and referencesrenin-angiotensin-aldosterone system in yaks. These research results can provide a theoretical basis for the commercial product development of yak colostrum.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| |
Collapse
|
25
|
Hariri Z, Afzalzade F, Sohrab G, Saadati S, Yari Z. The effects of rice bran supplementation for management of blood lipids: A GRADE-assessed systematic review, dose-response meta-analysis, and meta-regression of randomized controlled trials. Syst Rev 2023; 12:65. [PMID: 37046340 PMCID: PMC10091523 DOI: 10.1186/s13643-023-02228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND We aimed to conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) to investigate the effects of rice bran supplementation on serum lipid profile levels. METHODS We searched PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar using related keywords. Published RCTs exploring the effects of rice bran consumption on lipid profile were searched up to June 2022. Evidence certainty was assessed on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. The data were pooled using a random-effects model and reported as weighted mean difference (WMD) and 95% confidence interval (CI) for each outcome. RESULTS Meta-analysis of eight RCTs (with 11 effect sizes) showed no significant effect of rice bran supplementation on serum levels of triglyceride (WMD: -11.38 mg/dl; 95% CI: -27.73, 4.96; P = 0.17), total cholesterol (WMD: -0.68 mg/dl; 95% CI: -7.25, 5.88; P = 0.834), low-density lipoprotein cholesterol (WMD: -1.68 mg/dl; 95% CI: -8.46, 5.09; P = 0.627) and high-density lipoprotein cholesterol (WMD: 0.16 mg/dl; 95% CI: -1.52, 1.85; P = 0.848) compared to control group. CONCLUSION Our meta-analysis suggests that rice bran supplementation has no significant effects on serum levels of lipid profile components. However, larger studies with longer durations and improved methodological quality are needed before firm conclusions can be reached.
Collapse
Affiliation(s)
- Zahra Hariri
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Afzalzade
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Sharake Qods, West Arghavan St. Farahzadi Blvd, Tehran, Iran.
| |
Collapse
|
26
|
de Souza Aquino J, Batista KS, Araujo-Silva G, dos Santos DC, de Brito NJN, López JA, da Silva JA, das Graças Almeida M, Pincheira CG, Magnani M, de Pontes Pessoa DCN, Stamford TLM. Antioxidant and Lipid-Lowering Effects of Buriti Oil ( Mauritia flexuosa L.) Administered to Iron-Overloaded Rats. Molecules 2023; 28:2585. [PMID: 36985557 PMCID: PMC10056315 DOI: 10.3390/molecules28062585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The indiscriminate use of oral ferrous sulfate (FeSO4) doses induces significant oxidative damage to health. However, carotene-rich foods such as buriti oil can help the endogenous antioxidant defense and still maintain other body functions. This study aimed to assess the effects of buriti oil intake in iron-overloaded rats by FeSO4 administration. Buriti oil has β-carotene (787.05 mg/kg), α-tocopherol (689.02 mg/kg), and a predominance of monounsaturated fatty acids (91.30 g/100 g). Wistar rats (n = 32) were subdivided into two control groups that were fed a diet containing either soybean or buriti oil; and two groups which received a high daily oral dose of FeSO4 (60 mg/kg body weight) and fed a diet containing either soybean (SFe) or buriti oil (Bfe). The somatic and hematological parameters, serum lipids, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were determined after 17 days of iron overload. Somatic parameters were similar among groups. BFe showed a decrease in low-density lipoprotein (38.43%) and hemoglobin (7.51%); an increase in monocytes (50.98%), SOD activity in serum (87.16%), and liver (645.50%) hepatic GPx (1017.82%); and maintained serum GPx compared to SFe. Buriti oil showed systemic and hepatic antioxidant protection in iron-overloaded rats, which may be related to its high carotenoid, tocopherol, and fatty acid profile.
Collapse
Affiliation(s)
- Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
- Experimental Nutrition Research Group, Vive Sano University Institute (IUVS), São Paulo 04304-000, SP, Brazil
| | - Darlan Coutinho dos Santos
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
| | | | - Jorge A. López
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
| | - João Andrade da Silva
- Department of Food Technology, Center for Technology and Regional Development, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Carla Guzmán Pincheira
- Experimental Nutrition Research Group, Vive Sano University Institute (IUVS), São Paulo 04304-000, SP, Brazil
- College of Health Care Sciences, Concepción Campus, San Sebastian University, Concepción 4030000, Chile
| | - Marciane Magnani
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | | | | |
Collapse
|
27
|
Classification of Common Food Lipid Sources Regarding Healthiness Using Advanced Lipidomics: A Four-Arm Crossover Study. Int J Mol Sci 2023; 24:ijms24054941. [PMID: 36902372 PMCID: PMC10003363 DOI: 10.3390/ijms24054941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Prospective studies have failed to establish a causal relationship between animal fat intake and cardiovascular diseases in humans. Furthermore, the metabolic effects of different dietary sources remain unknown. In this four-arm crossover study, we investigated the impact of consuming cheese, beef, and pork meat on classic and new cardiovascular risk markers (obtained from lipidomics) in the context of a healthy diet. A total of 33 young healthy volunteers (23 women/10 men) were assigned to one out of four test diets in a Latin square design. Each test diet was consumed for 14 days, with a 2-week washout. Participants received a healthy diet plus Gouda- or Goutaler-type cheeses, pork, or beef meats. Before and after each diet, fasting blood samples were withdrawn. A reduction in total cholesterol and an increase in high density lipoprotein particle size were detected after all diets. Only the pork diet upregulated plasma unsaturated fatty acids and downregulated triglycerides species. Improvements in the lipoprotein profile and upregulation of circulating plasmalogen species were also observed after the pork diet. Our study suggests that, within the context of a healthy diet rich in micronutrients and fiber, the consumption of animal products, in particular pork meat, may not induce deleterious effects, and reducing the intake of animal products should not be regarded as a way of reducing cardiovascular risk in young individuals.
Collapse
|
28
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
MA Y, BAO H, WU X, LI X, YAN H, DONG W. Study on sensory properties and efficacy evaluation of whole wheat biscuits supplemented with peony seed oil and chia seed. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | | | | | | | | | - Wenbin DONG
- Shaanxi University of Science and Technology, China
| |
Collapse
|
30
|
Sekgala MD, Opperman M, Mpahleni B, Mchiza ZJR. Association between Macronutrient and Fatty Acid Consumption and Metabolic Syndrome: A South African Taxi Driver Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15452. [PMID: 36497525 PMCID: PMC9737240 DOI: 10.3390/ijerph192315452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
We aimed to examine the association between macronutrient and fatty acid intake and metabolic syndrome (MetS) and its components in South African male mini-bus taxi drivers. One hundred and eighty-five (n = 185) male taxi drivers, aged 20 years and older, who operate in the Cape Town metropole, South Africa, were included. The International Diabetes Federation (IDF) algorithm was used to define MetS. The association between macronutrient and fatty acid intake (assessed using 24 h recall) and MetS were analyzed using multivariable nutrient density substitution models. Overall, protein consumption significantly increased the likelihood of high blood pressure (HBP) and significantly lowered the likelihood of having low levels of high-density lipoprotein cholesterol (HDL-C). In an isoenergetic state, the intake of protein instead of carbohydrates (CHOs) and total fat, reduced the likelihood of elevated triglycerides by 6.7% and 6.6%, respectively. The intake of CHOs instead of protein and total fat, reduced the likelihood of HBP by 2.2% and 2.8%, respectively. In the same isoenergetic state, the intake of saturated fatty acids (SFAs) instead of mono-unsaturated fatty acids (MUFAs) increased the likelihood of HBP by 9.8%, whereas the intake of polyunsaturated fatty acids (PUFAs) instead of SFAs decreased the likelihood of HBP by 9.4%. The current study showed that when total food energy intake is kept constant, a diet that is high in protein, CHOs and PUFAs reduces triglycerides and BP, whereas the intake of total fat and SFAs had the opposite effect. It should, however, be noted that these outcomes were produced using mathematical models, as such we recommend further prospective studies in real life that will reveal the actual associations between the consumption of macronutrients and fatty acids and MetS and its components.
Collapse
Affiliation(s)
- Machoene Derrick Sekgala
- School of Public Health, University of the Western Cape, Bellville 7535, South Africa
- Human and Social Capabilities, Human Sciences Research Council, Cape Town 8000, South Africa
| | - Maretha Opperman
- Functional Foods Research Unit, Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, Cape Town 7535, South Africa
| | - Buhle Mpahleni
- Functional Foods Research Unit, Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, Cape Town 7535, South Africa
| | - Zandile June-Rose Mchiza
- School of Public Health, University of the Western Cape, Bellville 7535, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
31
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
32
|
Davis KM, Petersen KS, Bowen KJ, Jones PJH, Taylor CG, Zahradka P, Letourneau K, Perera D, Wilson A, Wagner PR, Kris-Etherton PM, West SG. Effects of Diets Enriched with Conventional or High-Oleic Canola Oils on Vascular Endothelial Function: A Sub-Study of the Canola Oil Multi-Centre Intervention Trial 2 (COMIT-2), a Randomized Crossover Controlled Feeding Study. Nutrients 2022; 14:nu14163404. [PMID: 36014910 PMCID: PMC9416081 DOI: 10.3390/nu14163404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Partial replacement of saturated fatty acids (SFA) with unsaturated fatty acids is recommended to reduce cardiovascular disease (CVD) risk. Monounsaturated fatty acids (MUFA), including oleic acid, are associated with lower CVD risk. Measurement of flow-mediated dilation of the brachial artery (FMD) is the gold standard for measuring endothelial function and predicts CVD risk. This study examined the effect of partially replacing SFA with MUFA from conventional canola oil and high-oleic acid canola oil on FMD. Participants (n = 31) with an elevated waist circumference plus ≥1 additional metabolic syndrome criterion completed FMD measures as part of the Canola Oil Multi-Centre Intervention Trial 2 (COMIT-2), a multi-center, double-blind, three-period crossover, controlled feeding randomized trial. Diet periods were 6 weeks, separated by ≥4-week washouts. Experimental diets were provided during all feeding periods. Diets only differed by the fatty acid profile of the oils: canola oil (CO; 17.5% energy from MUFA, 9.2% polyunsaturated fatty acids (PUFA), 6.6% SFA), high-oleic acid canola oil (HOCO; 19.1% MUFA, 7.0% PUFA, 6.4% SFA), and a control oil blend (CON; 11% MUFA, 10% PUFA, 12% SFA). Multilevel models were used to examine the effect of the diets on FMD. No significant between-diet differences were observed for average brachial artery diameter (CO: 6.70 ± 0.15 mm, HOCO: 6.57 ± 0.15 mm, CON: 6.73 ± 0.14 mm; p = 0.72), peak brachial artery diameter (CO: 7.11 ± 0.15 mm, HOCO: 7.02 ± 0.15 mm, CON: 6.41 ± 0.48 mm; p = 0.80), or FMD (CO: 6.32 ± 0.51%, HOCO: 6.96 ± 0.49%, CON: 6.41 ± 0.48%; p = 0.81). Partial replacement of SFA with MUFA from CO and HOCO had no effect on FMD in participants with or at risk of metabolic syndrome.
Collapse
Affiliation(s)
- Kristin M. Davis
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kate J. Bowen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Peter J. H. Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Karen Letourneau
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Danielle Perera
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Angela Wilson
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Paul R. Wagner
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
- Correspondence:
| | - Sheila G. West
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
33
|
Sarri L, Balcells J, Seradj AR, Pena RN, Ramírez GA, Tor M, de la Fuente G. Age Evolution of Lipid Accretion Rate in Boars Selected for Lean Meat and Duroc Barrows. Animals (Basel) 2022; 12:ani12141868. [PMID: 35883414 PMCID: PMC9312254 DOI: 10.3390/ani12141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid (FA) deposition in growing–fattening pigs is mainly based on endogenous lipid synthesis, but also direct FA incorporation from the diet. To evaluate the direct fat incorporation rates and the endogenous desaturation action of the stearoyl-CoA desaturase (SCD) enzyme, a deuterium (D)-labeled saturated FA (d35-C18:0) was added to the diet. Sixteen three-way (3W) crossbred boars, and thirty-two purebred Duroc barrows homozygous for the SCD single nucleotide polymorphism rs80912566 (16 CC/16 TT), were used. Half of the animals of each genotype belonged to the growing and fattening phases. The fractional incorporation rate (FIR) of dietary fat in growing pigs was generally higher in adipose tissues, whereas in fattening pigs it was higher in the liver. Duroc pigs exhibited lower FIRs than 3W pigs, suggesting lower rates of endogenous synthesis by 3W pigs. Real fractional unsaturation rates (FURs) increased with age by the higher FIRs in 3W pigs and the de novo synthesis pathway in Duroc genotypes. Moreover, pigs carrying the SCD_T allele showed more enhanced oleic acid biosynthesis than Duroc CC pigs. In conclusion, suitable feeding protocols should be designed for each pig type to optimize production traits, considering that the metabolic pathway of FA for its deposition may differ.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Tor
- Correspondence: ; Tel.: +34-97-3702890
| | | |
Collapse
|
34
|
Zubiri-Gaitán A, Blasco A, Ccalta R, Satué K, Hernández P. Intramuscular Fat Selection in Rabbits Modifies the Fatty Acid Composition of Muscle and Liver Tissues. Animals (Basel) 2022; 12:ani12070893. [PMID: 35405882 PMCID: PMC8997145 DOI: 10.3390/ani12070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Intramuscular fat content improves the juiciness, tenderness, and flavor of meat, but it can also affect its nutritional quality. A divergent selection experiment for intramuscular fat content was performed on rabbits for 10 generations to study the metabolism of the selected and correlated traits. The direct response to selection and the correlated responses in the meat fatty acid content, in the liver fat and its fatty acid content, and in plasma metabolic markers related to liver metabolism were studied. Increasing intramuscular fat content led to higher fat deposition in the carcass, but not in the liver. The fatty acid contents of Longissimus thoracis et lumborum muscle and liver were modified after selection, for which the microbiome composition also played an important role. A higher concentration of plasma lipids was found in the low-IMF line, probably due to a lower uptake by the muscle and adipose tissue. Abstract This study was conducted on two rabbit lines divergently selected for intramuscular fat (IMF) content in the Longissimus thoracis et lumborum (LTL) muscle. The aim was to estimate the direct response to selection for IMF after 10 generations, and the correlated responses in carcass quality traits, meat fatty acid content, liver fat and its fatty acid content, and in plasma metabolic markers related to liver metabolism. Selection for IMF content was successful, showing a direct response equivalent to 3.8 SD of the trait after 10 generations. The high-IMF line (H) showed a greater dissectible fat percentage than the low-IMF line (L), with a relevant difference (DH-L = 0.63%, Pr = 1). No difference was found in liver fat content (DH-L = −0.04, P0 = 0.62). The fatty acid content of both LTL muscle and liver was modified after selection. The LTL muscle had greater saturated (SFA; DH-L = 5.05, Pr = 1) and monounsaturated fatty acids (MUFA; DH-L = 5.04, Pr = 1) contents in the H line than in the L line. No relevant difference was found in polyunsaturated fatty acids content (PUFA; Pr = 0.05); however, greater amounts of C18:2n6 (DH-L = 3.03, Pr = 1) and C18:3n3 (DH-L = 0.56, Pr = 1) were found in the H than in the L line. The liver presented greater MUFA (DH-L = 1.46) and lower PUFA (DH-L = −1.46) contents in the H than in the L line, but the difference was only relevant for MUFA (Pr = 0.86). The odd-chain saturated fatty acids C15:0 and C17:0 were more abundant in the liver of the L line than in the liver of the H line (DH-L = −0.04, Pr = 0.98 for C15:0; DH-L = −0.09, Pr = 0.92 for C17:0). Greater concentrations of plasma triglycerides (DH-L = −34) and cholesterol (DH-L = −3.85) were found in the L than in the H line, together with greater plasma concentration of bile acids (DH-L = −2.13). Nonetheless, the difference was only relevant for triglycerides (Pr = 0.98).
Collapse
Affiliation(s)
- Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.Z.-G.); (A.B.); (R.C.)
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.Z.-G.); (A.B.); (R.C.)
| | - Ruth Ccalta
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.Z.-G.); (A.B.); (R.C.)
| | - Katy Satué
- Department of Animal Medicine and Surgery, Universidad Cardenal Herrera-CEU, 46115 Moncada, Spain;
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (A.Z.-G.); (A.B.); (R.C.)
- Correspondence: ; Tel.: +34-96-387-9438
| |
Collapse
|
35
|
Nogoy KMC, Sun B, Shin S, Lee Y, Zi Li X, Choi SH, Park S. Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food Sci Anim Resour 2022; 42:18-33. [PMID: 35028571 PMCID: PMC8728510 DOI: 10.5851/kosfa.2021.e73] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Beef contains functional fatty acids such as conjugated linoleic acid and
long-chain fatty acids. This review summarizes results from studies comparing
the fatty acid composition of beef from cattle fed either grass or grain-based
feed. Since functional lipid components are contributed through dietary
consumption of beef, the fatty acid composition is reported on mg/100 g of meat
basis rather than on a percentage of total fat basis. Beef from grass-fed
contains lesser total fat than that from grain-fed in all breeds of cattle.
Reduced total fat content also influences the fatty acid composition of beef. A
100 g beef meat from grass-fed cattle contained 2,773 mg less total saturated
fatty acids (SFA) than that from the same amount of grain-fed. Grass-fed also
showed a more favorable SFA lipid profile containing less cholesterol-raising
fatty acids (C12:0 to C16:0) but contained a lesser amount of
cholesterol-lowering C18:0 than grain-fed beef. In terms of essential fatty
acids, grass-fed beef showed greater levels of trans-vaccenic acid and
long-chain n-3 polyunsaturated fatty acids (PUFA; EPA, DPA, DHA) than grain-fed
beef. Grass-fed beef also contains an increased level of total n-3 PUFA which
reduced the n-6 to n-3 ratio thus can offer more health benefits than grain-fed.
The findings signify that grass-fed beef could exert protective effects against
a number of diseases ranging from cancer to cardiovascular disease (CVD) as
evidenced by the increased functional omega-3 PUFA and decreased undesirable
SFA. Although grain-fed beef showed lesser EPA, DPA, and DHA, consumers should
be aware that greater portions of grain-fed beef could also achieve a similar
dietary intake of long-chain omega-3 fatty acids. Noteworthy, grain-fed beef
contained higher total monounsaturated fatty acid that have beneficial roles in
the amelioration of CVD risks than grass-fed beef. In Hanwoo beef, grain-fed
showed higher EPA and DHA than grass-fed beef.
Collapse
Affiliation(s)
| | - Bin Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Sangeun Shin
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yeonwoo Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Xiang Zi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Seong Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
36
|
Variability of Essential and Nonessential Fatty Acids of Irish Rapeseed Oils as an Indicator of Nutritional Quality. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:7934565. [PMID: 35071588 PMCID: PMC8769870 DOI: 10.1155/2022/7934565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
Abstract
The low saturated fatty acid content of rapeseed oil has resulted in it being classed as one of the most health-benefiting culinary oils. This study determines whether Irish rapeseed oils contain identical fatty acid profiles or whether distinct profiles exist between producers and producers' successive oil batches. The fatty acid content of Irish rapeseed oils was determined in terms of the desirable MUFA and PUFA and saturated content of these oils. The fatty acid composition demonstrated significant differences in individual unsaturated fatty acid content, while total saturation had insignificant differences. Saturated fatty acid content ranged from 6.10 to 15.8%, while unsaturated fatty acids ranged from 84.20 to 90.10%. Moreover, individual fatty acid content exhibited significant differences (p < 0.05). Oleic acid (C18:1), linoleic acid (C18:2), and stearic acid (C18:0) contents were considered significantly different from other fatty acids detected. The third successive batch from each producer exhibited lower oleic acid content, and the third batch contained higher linoleic acid content, at the same time maintaining a desirable unsaturated fatty acid composition. Studies suggest that differences in the fatty acid composition may be due to cultivation practices such as climate, soil composition, sowing and harvesting, processing techniques, and oxidation reactions.
Collapse
|
37
|
Emma EM, Amanda J. Dietary lipids from body to brain. Prog Lipid Res 2021; 85:101144. [PMID: 34915080 DOI: 10.1016/j.plipres.2021.101144] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Dietary habits have drastically changed over the last decades in Western societies. The Western diet, rich in saturated fatty acids (SFA), trans fatty acids (TFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and cholesterol, is accepted as an important factor in the development of metabolic disorders, such as obesity and diabetes type 2. Alongside these diseases, nutrition is associated with the prevalence of brain disorders. Although clinical and epidemiological studies revealed that metabolic diseases and brain disorders might be related, the underlying pathology is multifactorial, making it hard to determine causal links. Neuroinflammation can be a result of unhealthy diets that may cause alterations in peripheral metabolism. Especially, dietary fatty acids are of interest, as they act as signalling molecules responsible for inflammatory processes. Diets rich in n-6 PUFA, SFA and TFA increase neuroinflammation, whereas diets rich in monounsaturated fatty acids (MUFA), omega-3 (n-3) PUFA and sphingolipids (SL) can diminish neuroinflammation. Moreover, these pro- and anti-inflammatory diets might indirectly influence neuroinflammation via the adipose tissue, microbiome, intestine and vasculature. Here, we review the impact of nutrition on brain health. In particular, we will discuss the role of dietary lipids in signalling pathways directly applicable to inflammation and neuronal function.
Collapse
Affiliation(s)
- E M Emma
- Department of Medical Imaging, Anatomy, Radboud university medical center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - J Amanda
- Department of Medical Imaging, Anatomy, Radboud university medical center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
38
|
Sheashea M, Xiao J, Farag MA. MUFA in metabolic syndrome and associated risk factors: is MUFA the opposite side of the PUFA coin? Food Funct 2021; 12:12221-12234. [PMID: 34779464 DOI: 10.1039/d1fo00979f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Omega-9 fatty acids represent some of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They can be synthesized endogenously in the human body, but they do not fully provide all the body's requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including the prevention of metabolic syndrome (MetS) and its complications. This review concentrates on the major MUFA pharmacological activities in the context of MetS management, including alleviating cardiovascular disease (CVD) and dyslipidemia, central obesity, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes mellitus (T2DM). The beneficial effects of MUFA for CVD were found to be consistent with those of polyunsaturated fatty acids (PUFA) for the alleviation of systolic and diastolic blood pressure and high low density lipoprotein cholesterol (LDLc) and triacylglcerol (TAG) levels, albeit MUFA had a more favorable effect on decreasing night systolic blood pressure (SBP). To reduce the obesity profile, the use of MUFA was found to induce a higher oxidation rate with a higher energy expenditure, compared with PUFA. For NAFLD, PUFA was found to be a better potential drug candidate for the improvement of liver steatosis in children than MUFA. Any advantageous outcomes from using MUFA for diabetes and insulin resistance (IR) compared to using PUFA were found to be either non-significant or resulted from a small number of meta-analyses. Such an increase in the number of studies of the mechanisms of action require more clinical and epidemiological studies to confirm the beneficial outcomes, especially over a long-term treatment period.
Collapse
Affiliation(s)
- Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
39
|
Hamedi-Kalajahi F, Zarezadeh M, Dehghani A, Musazadeh V, Kolahi A, Shabbidar S, Djafarian K. A systematic review and meta-analysis on the impact of oral vitamin E supplementation on apolipoproteins A1 and B100. Clin Nutr ESPEN 2021; 46:106-114. [PMID: 34857183 DOI: 10.1016/j.clnesp.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Cardiovascular diseases (CVDs) are the number one cause of mortality worldwide. Apolipoprotein B (ApoB), apolipoprotein A1 (ApoA1), and ApoB/ApoA1 ratio are considered as predictors of CVD alongside with lipid profile. Evidence suggest that nutrients with antioxidant properties, especially vitamin E, are essential for a healthy cardiovascular system. The aim of present meta-analysis was to determine the effect alpha-tocopherol on ApoA1 and ApoB levels. METHODS PubMed-Medline and SCOPUS databases and Google Scholar were searched up to July 2021. Random-effects model was employed to perform meta-analysis. In order to find heterogeneity sources, subgroup analysis was performed. Trim and fill analysis was performed in case of presence of publication bias. Quality assessment was performed using Cochrane Collaboration's tool. RESULTS Seven eligible studies, involving 1284 individuals were included. Mean age of participants ranged between 25.4 and 59 years. There was no significant effect of vitamin E supplementation on Apo A1 (SMD = 0.22 IU/d; 95% CI: -0.38, 0.28; P = 0.481) and Apo B levels (SMD = -0.62 IU/d; 95% CI: -1.94, 0.70; P = 0.360). CONCLUSION No remarkable effect of vitamin E supplementation was observed on ApoA1 and ApoB levels in adults. Additional studies investigating the influence of vitamin E on apolipoproteins as primary outcome with larger sample size are suggested.
Collapse
Affiliation(s)
- Fateme Hamedi-Kalajahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azadeh Dehghani
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Kolahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shabbidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Kourosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Xu E, Chen C, Fu J, Zhu L, Shu J, Jin M, Wang Y, Zong X. Dietary fatty acids in gut health: Absorption, metabolism and function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:1337-1344. [PMID: 34786506 PMCID: PMC8570925 DOI: 10.1016/j.aninu.2021.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
In biological responses, fatty acids (FA) are absorbed and metabolized in the form of substrates for energy production. The molecular structures (number of double bonds and chain length) and composition of dietary FA impact digestion, absorption and metabolism, and the biological roles of FA. Recently, increasing evidence indicates that FA are essentially utilized as an energy source and are signaling molecules that exert physiological activity of gut microbiota and immune responses. In addition, FA could serve as natural ligands for orphan G protein-coupled receptors (GPCR), also called free fatty acid receptors (FFAR), which intertwine metabolic and immune systems via multiple mechanisms. The present review explores the recent findings on FA absorption and its impact on gut health, particularly addressing the mechanism by which dietary FA potentially influences intestinal microbiota and epithelial functions. Also, this work attempts to uncover research ideas for devising future strategies for manipulating the composition of dietary FA to regulate gut health and support a normal immune system for metabolic and immune disorders.
Collapse
Affiliation(s)
- E. Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Aniaml Science, Guizhou University, 550025 Guiyang, China
| | - Chao Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Aniaml Science, Guizhou University, 550025 Guiyang, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Luoyi Zhu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Junlan Shu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Aniaml Science, Guizhou University, 550025 Guiyang, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
41
|
Effects of Different Levels of Inclusion of Apulo-Calabrese Pig Meat on Microbiological, Physicochemical and Rheological Parameters of Salami during Ripening. Animals (Basel) 2021; 11:ani11113060. [PMID: 34827792 PMCID: PMC8614485 DOI: 10.3390/ani11113060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
This study focused on the characterization of salami produced with meat from different pig breeds. The aim consisted in evaluating the added value of the inclusion of Apulo-Calabrese meat in the production of salami, which was characterized by production until the end of maturation (1, 30, 60, and 120 days). The experimental design involved three types of salami, two of which were produced by partial inclusion of 50 and 75% of the Italian breed pork meat (S50 and S75, respectively). Physicochemical (pH, aw, fatty acid analysis, and malondialdehyde concentration), rheological parameters (texture analyses and color measurement), and bacterial biodiversity were evaluated. Results showed that the partial inclusion of Apulo-Calabrese meat influences the fatty acid profile of final products, which were characterized by a higher percentage of monounsaturated fatty acids compared to traditional salami; however, due to the high content of unsaturated fatty acids, S50 and S75 showed higher values of secondary lipid oxidation up to the 120th day. The linoleic and palmitic acid content significantly affected hardness and brightness. Overall, the ripening process was able to control the microbiological profile and the S50 formulation appeared as a suitable choice that could satisfy consumers for nutritional expectations and sensory profiles.
Collapse
|
42
|
de Brito Medeiros L, Alves SPA, de Bessa RJB, Soares JKB, Costa CNM, de Souza Aquino J, Guerra GCB, de Souza Araújo DF, Toscano LT, Silva AS, Alves AF, Lemos MLP, de Araujo WJ, de Medeiros AN, de Oliveira CJB, de Cassia Ramos do Egypto Queiroga R. Ruminant fat intake improves gut microbiota, serum inflammatory parameter and fatty acid profile in tissues of Wistar rats. Sci Rep 2021; 11:18963. [PMID: 34556715 PMCID: PMC8460723 DOI: 10.1038/s41598-021-98248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
This study tested the hypothesis that naturally and industrially produced trans-fatty acids can exert distinct effects on metabolic parameters and on gut microbiota of rats. Wistar rats were randomized into three groups according to the diet: CONT-control, with 5% soybean oil and normal amount of fat; HVF-20% of hydrogenated vegetable fat (industrial); and RUM-20% of ruminant fat (natural). After 53 days of treatment, serum biochemical markers, fatty acid composition of liver, heart and adipose tissue, histology and hepatic oxidative parameters, as well as gut microbiota composition were evaluated. HVF diet intake reduced triglycerides (≈ 39.39%) and VLDL levels (≈ 39.49%). Trans-fatty acids levels in all tissue were higher in HVF group. However, RUM diet intake elevated amounts of anti-inflammatory cytokine IL-10 (≈ 14.7%) compared to CONT, but not to HVF. Furthermore, RUM intake led to higher concentrations of stearic acid and conjugated linoleic acid in all tissue; this particular diet was associated with a hepatoprotective effect. The microbial gut communities were significantly different among the groups. Our results show that ruminant fat reversed the hepatic steatosis normally caused by high fat diets, which may be related to the remodelling of the gut microbiota and its anti-inflammatory potential.
Collapse
Affiliation(s)
- Larissa de Brito Medeiros
- grid.411216.10000 0004 0397 5145Department of Nutrition, Federal University of Paraíba, João Pessoa, PB Brazil
| | - Susana Paula Almeida Alves
- grid.9983.b0000 0001 2181 4263Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Rui José Branquinho de Bessa
- grid.9983.b0000 0001 2181 4263Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Juliana Késsia Barbosa Soares
- grid.411182.f0000 0001 0169 5930Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG Brazil
| | - Camila Neves Meireles Costa
- grid.411216.10000 0004 0397 5145Department of Nutrition, Federal University of Paraíba, João Pessoa, PB Brazil
| | - Jailane de Souza Aquino
- grid.411216.10000 0004 0397 5145Department of Nutrition, Federal University of Paraíba, João Pessoa, PB Brazil
| | - Gerlane Coelho Bernardo Guerra
- grid.411233.60000 0000 9687 399XDepartment of Biophysics and Pharmacology, Biosciences Centre, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Daline Fernandes de Souza Araújo
- grid.411233.60000 0000 9687 399XFaculty of Health Sciences of Trairi, Federal University of Rio Grande Do Norte, Santa Cruz, Brazil
| | - Lydiane Tavares Toscano
- grid.411216.10000 0004 0397 5145Department of Physical Education, Health Sciences Centre, Federal University of Paraíba, João Pessoa, Brazil
| | - Alexandre Sérgio Silva
- grid.411216.10000 0004 0397 5145Department of Physical Education, Health Sciences Centre, Federal University of Paraíba, João Pessoa, Brazil
| | - Adriano Francisco Alves
- grid.411216.10000 0004 0397 5145Department of Physiology and Pathology, Federal University of Paraíba, João PessoaParaíba, 58051-900 Brazil
| | - Mateus Lacerda Pereira Lemos
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | - Wydemberg José de Araujo
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | - Ariosvaldo Nunes de Medeiros
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | - Celso José Bruno de Oliveira
- grid.411216.10000 0004 0397 5145Department of Animal Science, Centre for Agrarian Sciences, Federal University of Paraíba, Areia, PB Brazil
| | | |
Collapse
|
43
|
Elkin RG, El-Zenary ASA, Bomberger R, Harvatine KJ. Supplemental dietary oils rich in oleic acid or linoleic acid attenuate egg yolk and tissue n-3 polyunsaturated fatty acid contents in laying hens co-fed oils enriched in either stearidonic acid or α-linolenic acid. Prostaglandins Leukot Essent Fatty Acids 2021; 172:102322. [PMID: 34399187 DOI: 10.1016/j.plefa.2021.102322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
We previously reported that when laying hens were fed diets supplemented with oils enriched in α-linolenic acid (ALA) and oleic acid (OA), the deposition of n-3 PUFA in egg yolk was attenuated as compared to feeding hens a diet supplemented with the ALA-rich oil alone. The present work extends those findings to another n-3 PUFA-rich oil (stearidonic acid [SDA]-enriched soybean oil) and two other high-OA oils, suggesting that the effect is not plant oil-specific. Feeding hens a supplemental linoleic acid (LA)-rich oil plus an oil rich in either SDA or ALA also attenuated egg yolk ALA and SDA contents (Experiment 1), or egg yolk and liver ALA contents (Experiment 2), respectively, as compared to feeding the SDA- or ALA-rich oils alone. Future work should focus on the lack of neutrality of OA and LA in relation to n-3 PUFA nutrition.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Ahmed S A El-Zenary
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA; Permanent address: Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Rebecca Bomberger
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Silva LDA, Verneque BJF, Mota APL, Duarte CK. Chia seed ( Salvia hispanica L.) consumption and lipid profile: a systematic review and meta-analysis. Food Funct 2021; 12:8835-8849. [PMID: 34378609 DOI: 10.1039/d1fo01287h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chia (Salvia hispanica L.) is an annual herbaceous plant, originally from southern Mexico and northern Guatemala - nowadays grown all over the world. In recent years, there has been an increase in demand for plant foods with health-promoting properties, and chia is a main actor in this process due to its high nutritional and functional value and its chemical composition rich in PUFAs, mainly ω-3, as well as protein, dietary fiber, and bioactive compounds. Chia has been explored in different research models for health and the prevention of human diseases. Evidence has suggested potential for improving insulin resistance, disordered lipid profiles, glucose tolerance and even adiposity. The aim of this study was to evaluate the effect of consumption of chia seeds on the lipid profile, triglycerides, and serum ω-3 fatty acids in adults. This systematic review included all randomized controlled trials (parallel or crossover design) published up to August 2020 in the main databases Medline, Embase, Scopus, Web of Science, and Scielo. Two independent authors selected and extracted data from those articles. After the selection process, 10 clinical trials were included. Forest plots and summary tables were constructed to present data and sensitivity subgroup analyses were performed for some of the outcomes. The results showed that chia consumption suggests a protective effect on the lipid profile, decreasing TC (MD = -2.98, 95% CI = [-9.98; 4.02]), TG (MD = -14.09 mg dL-1, 95% CI = [-33.46; 5.28]), and LDL (MD = 2.07 mg dL-1; 95% CI = [-5.05; 9.19]) and increasing HDL (MD = -2.92 mg dL-1, 95% CI = [-5.91; 0.06]). Regarding serum fatty acids, chia reduced FFA and SFA and increased PUFAs, ALA, EPA, and LA. It has also reduced DHA while not changing DPA. The intake of chia appears to have a neutral or beneficial effect on some markers of the lipid and fatty acid profile.
Collapse
Affiliation(s)
| | | | - Ana Paula Lucas Mota
- Department of Clinical and Toxicological Analysis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Kümmel Duarte
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
45
|
Bodur M, Baspinar B, Özçelik AÖ. A cross-sectional evaluation of the relationship between social jetlag and diet quality. Chronobiol Int 2021; 38:1557-1568. [PMID: 34100312 DOI: 10.1080/07420528.2021.1935990] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to compare anthropometric measures of obesity and sleep qualities in individuals with/without social jetlag (SJL). In addition, it was aimed to compare the energy, macronutrient intake and diet qualities of individuals with/without SJL during school and non-school days. This study comprised 710 university students with mean age 21.58 ± 1.41 years. The presence of SJL was acknowledged if there was a difference of more than 1 hour between the middle of sleep time on school day and on non-school day. While the physical activity levels (PALs) of the individuals were determined with a 24-hour physical activity record, measurements such as waist circumference, neck circumference and body mass index were recorded for anthropometric measurements. Pittsburgh Sleep Quality Index was used to determine the sleep quality of the individuals. Energy, macronutrients intake, and diet quality were calculated from the 24-h dietary recall of the individuals, and recorded for the school days and non-school days. In this study, 76% of the individuals (n = 542) were determined as exposed to SJL. Although there was no significant difference in their PALs, individuals with SJL had a higher waist (p < .05) and neck (p < .05) circumference, as well as higher body mass index (p < .05). Individuals with SJL were found to have significantly poor sleep quality (OR:1.109, p < .031) and sleep latency (OR:1.130, p < .001) after adjustment for confounding factors. When compared to school days, in the individuals with SJL, energy (p < .001), fat (p < .001), saturated fatty acids (SFA) (p < .001), and mono unsaturated fatty acids (MUFA) (p < .001) were significantly increased; however, fiber intake (p < .001) was significantly reduced on non-school days. Although there was no significant difference in the diet quality scores between the groups on the school days, the diet quality of the individuals without SJL on non-school days was increased significantly (p < .05). In conclusion, SJL was associated with sleep loss, increased body mass index, and lowered diet quality in university students.
Collapse
Affiliation(s)
- Mahmut Bodur
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara University , Ankara, Turkey
| | - Busra Baspinar
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara University , Ankara, Turkey
| | - Ayşe Özfer Özçelik
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara University , Ankara, Turkey
| |
Collapse
|
46
|
Harvey DH, Whittaker A, Arnold K, Mills JF, Shchukin DG. Water-in-oil lecithin microcapsule production using an in-line mixer. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Da D, Nian Y, Zou B, Zhao D, Zhang Z, Li C. Influence of induction cooking on the flavor of fat cover of braised pork belly. J Food Sci 2021; 86:1997-2010. [PMID: 33884626 DOI: 10.1111/1750-3841.15710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
Fat has a great impact on texture and flavor of meat products, which is influenced by cooking methods. In this study, the profiles of fatty acids, volatile compounds, and texture of fat cover of braised pork belly were investigated after plane and concave induction cooking. The results showed that cooking time showed a great impact on fat content, textural properties, fatty acids composition, lipid oxidation, and volatile compounds of fat cover (p < 0.05). When cooking time was fixed, concave induction cooking caused lower hardness, chewiness, and saturated fatty acids but higher polyunsaturated fatty acids at 60 min than plane induction cooking. Electronic nose and GC-MS analyses showed that concave induction cooking had a greater impact on flavor of pork belly fat and produced a comparable flavor to plane induction cooked samples in a shorter time. Sensory evaluation showed that concave induction cooking had higher scores at 60 min. Thus, concave induction cooking could be a more efficient method for meat processing. PRACTICAL APPLICATION: Electromagnetic induction heating is an effective cooking technique. It is characterized by uniformity, efficiency, and safety of heating. The application of electromagnetic induction heating technology to the cooking of braised pork was studied, which provides information for further optimizing the cooking technology of braised pork and improving the quality of braised pork.
Collapse
Affiliation(s)
- Dandan Da
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Bo Zou
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Ze Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, P.R. China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
48
|
Ramos-Aguilar AL, Ornelas-Paz J, Tapia-Vargas LM, Gardea-Béjar AA, Yahia EM, Ornelas-Paz JDJ, Ruiz-Cruz S, Rios-Velasco C, Ibarra-Junquera V. Comparative study on the phytochemical and nutrient composition of ripe fruit of Hass and Hass type avocado cultivars. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Ramos-Aguilar AL, Ornelas-Paz J, Tapia-Vargas LM, Gardea-Béjar AA, Yahia EM, Ornelas-Paz JDJ, Ruiz-Cruz S, Rios-Velasco C, Escalante-Minakata P. Effect of cultivar on the content of selected phytochemicals in avocado peels. Food Res Int 2021; 140:110024. [PMID: 33648254 DOI: 10.1016/j.foodres.2020.110024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
The peels of ripe fruit of 'Hass' and 'Hass' type (HT) avocado cultivars were evaluated for phytochemical composition and other attributes. Peels represented from 8.78 to 14.11% of fruit weight. Their color ranged from homogeneous black to black with very small greenish spots. The oil content in the peels was low. Twelve fatty acids were identified in peel oil and the ratio of unsaturated to saturated fatty acids suggested that peel oil might contribute to human health. The phytochemical composition varied significantly with cultivar. However, many HT peels were superior than 'Hass' peel in their content of α-tocopherol, β-sitosterol, perseitol, and cyanidin-3-glucoside, which was up to 211.67, 45.92, 337.17, and 519.27% higher in HT peels, respectively. The content of some phenolic compounds, especially procyanidin B2 and epicatechin, was significantly lower in 'Hass' than in many HT peels. Few HT peels showed a higher content of carotenoids and chlorophyll than 'Hass' peels. Lutein was the most abundant carotenoid. Chlorophyll a and b were also abundant in peels and low concentrations of chlorophyll derivatives were observed. Avocado peels are an important source of bioactive compounds, including some carotenoids, acids, sterols, and volemitol, which were observed for the first time.
Collapse
Affiliation(s)
- Ana L Ramos-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - Juan Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - Luis M Tapia-Vargas
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Av. Latinoamericana No. 1101, Col. Revolución, CP. 60500 Uruapan, Michoacán, Mexico
| | - Alfonso A Gardea-Béjar
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Guaymas, Carretera al Varadero Nacional Km. 6.6, Col. Las Playitas, C.P. 85480 Guaymas, Sonora, Mexico
| | - Elhadi M Yahia
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias S/N, C.P. 76230 Juriquilla, Querétaro, Mexico
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico.
| | - Saúl Ruiz-Cruz
- Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias, 5 de febrero 818 sur, Colonia Centro, C.P. 85000 Ciudad Obregón, Sonora, Mexico
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico
| | - Pilar Escalante-Minakata
- Universidad de Colima, Laboratorio de Bioingeniería, Km. 9 carretera Coquimatlán-Colima, C.P. 28400 Coquimatlán, Colima, Mexico
| |
Collapse
|
50
|
Gutiérrez-Luna K, Astiasarán I, Ansorena D. Gels as fat replacers in bakery products: a review. Crit Rev Food Sci Nutr 2021; 62:3768-3781. [PMID: 33412906 DOI: 10.1080/10408398.2020.1869693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several strategies have been studied to replace or decrease fat content in bakery products aiming improving their nutritional profile. This paper reviewed the effect of different vehiculization systems (hydrogels, emulgels and oleogels) as fat replacers in different types of bakery goods, focusing on technological and nutritional properties of the reformulated products. The most commonly used fat source for replacement purposes were vegetable oils with high monounsaturated fatty acid content, such as olive oil and canola oil (44% of the revised papers used them), whereas high polyunsaturated fatty acid content oils were used in 34% of papers. Oleogelation was the most frequent used method of oil structuring, using waxes and fibers as stabilizers. Reductions of total fat between 19% and 46% and saturated fatty acid between 33% and 87% were achieved, enough to reach the minimum legal limit to state nutrition claims, under the EU legislation, on several products. Sensory evaluation results showed that partially replaced products (<75% replacement) were more appreciated by panelists than fully replaced ones. This review highlights the wide range of alternatives within gel-like fat replacers, that have potential to be applied in different bakery products and the challenge to produce nutritionally enhanced foods and technologically and sensory acceptable.
Collapse
Affiliation(s)
- Katherine Gutiérrez-Luna
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, IDISNA - Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, IDISNA - Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, IDISNA - Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|