1
|
Baek SU, Yoon JH. Long-term joint exposure of outdoor air pollutants and impaired kidney function in Korean adults: A mixture analysis based on a nationwide sample (2007-2019). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104712. [PMID: 40340001 DOI: 10.1016/j.etap.2025.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
We explored the association between exposure to air pollutant mixture and renal function. A nationwide sample of 69,066 Korean adults was analyzed. The 1-year moving averages of the concentrations of PM10, PM2.5, SO₂, NO₂, CO, and O₃ were estimated using the air pollution modeling. The outcome was estimated glomerular filtration rate (eGFR) value. Quantile-based G-computation analyses were performed to determine how a simultaneous increase in the air pollutant mixture by one quartile was associated with changes in eGFR levels. The mean of eGFR was 88.9 among the sample. In the quantile-based G-computation model, one-quartile increase in the levels of air pollutant mixture was linked to a decrease in eGFR by -0.85 (95 % CI: -1.14, -0.57), with CO and PM2.5 contributing 52.3 % and 37.3 %, respectively, to the negative association between the pollutant mixture and eGFR. Our results suggest that long-term exposure to air pollutant mixtures is linked to impaired renal function.
Collapse
Affiliation(s)
- Seong-Uk Baek
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Van Pee T, Engelen L, De Boevre M, Derrien M, Hogervorst J, Pero-Gascon R, Plusquin M, Poma G, Vich I Vila A, Covaci A, Vanhaecke L, De Saeger S, Raes J, Nawrot TS. Sex differences in the association between long-term ambient particulate air pollution and the intestinal microbiome composition of children. ENVIRONMENT INTERNATIONAL 2025; 199:109457. [PMID: 40273556 DOI: 10.1016/j.envint.2025.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
The intestinal microbiome is essential for gastrointestinal and overall health, yet its response to air pollution in children remains underexplored. In a study involving 412 young children from the ENVIRONAGE cohort, stool samples were analysed via Illumina Miseq sequencing to assess microbiome alpha diversity (observed richness, species evenness, and Shannon diversity) and composition. Exposure to previous year particulate air pollution (black carbon, PM2.5, coarse PM, and PM10) was modeled using high-resolution spatial-temporal interpolation models. Multiple linear regression models were adjusted for a priori selected covariables and stratified by sex. Furthermore, we performed a differential relative abundance analysis at family and genus level, while accounting for the same covariables. Statistically significant effect modification by sex was apparent for several intestinal alpha diversity indices and air pollutants. In boys, we observed negative associations between particulate air pollution exposure and intestinal microbiome richness (estimates ranging from -5.55 to -9.06 per interquartile range (IQR) increase in particulate air pollution exposure) and Shannon diversity (estimates ranging from -0.058 to -0.095 per IQR increase). Differently, in girls non-significant positive associations were observed with species evenness (estimates ranging from 0.019 to 0.020 per IQR increase) and Shannon diversity (estimate 0.065 per IQR increase in black carbon). After multiple testing correction, we reported several bacterial families and genera (Streptococcaceae, Clostridiales Incertae Sedis XIII, Coriobacteriaceae, Streptococcus, and Paraprevotella) to be oppositely associated with particulate air pollution exposure in boys and girls. Our findings show a sex-dependent association between particulate air pollution exposure and intestinal microbiome composition, highlighting boys as potentially more vulnerable to diversity loss associated with childhood exposure to particulate pollution.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Liesa Engelen
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Muriel Derrien
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven 3000 Leuven, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Roger Pero-Gascon
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Arnau Vich I Vila
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven 3000 Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, South Africa
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven 3000 Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Hu P, Lu W, Gao X, Li Y, Yang Y, Yin W, Dong L, Ren R, Wang X. Atmospheric carbon monoxide and hospitalization for mental and behavioral disorders: insights from a longitudinal study in Shijiazhuang. Front Psychol 2025; 16:1573556. [PMID: 40370374 PMCID: PMC12076220 DOI: 10.3389/fpsyg.2025.1573556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background and aim Carbon monoxide (CO), a prevalent environmental pollutant, has been implicated in adverse mental health outcomes, but the mechanistic relationship between atmospheric CO levels and hospital admissions for mental and behavioral disorders remains unclear. This study investigates the epidemiological link between atmospheric CO and hospitalizations for mental health conditions in Shijiazhuang, China. Methodology Clinical data from patients hospitalized with mental and behavioral disorders at The First Hospital of Hebei Medical University between January 2014 and December 2020 were analyzed. Daily atmospheric CO levels, temperature, and relative humidity were concurrently monitored. A generalized additive model (GAM) was used to explore the correlation between CO levels and hospital admissions. Blood samples from patients with depressive disorders were analyzed for MAPK3 expression, and a mouse model of CO-induced depression was employed to further explore the molecular mechanisms. Results A total of 15,890 hospitalization records were included. A significant positive correlation was identified between CO levels and the number of daily hospitalizations, with the strongest effects observed when CO concentrations exceeded 40 μg/m3. This association was most pronounced in males and individuals aged over 45, as well as during both warm and cold seasons. A two-pollutant model confirmed CO as a major factor affecting hospitalizations, independent of other pollutants like nitric oxide and sulfur dioxide. Additionally, elevated MAPK3 expression was found in the blood samples of depressed patients, and treatment with the MAPK inhibitor PD98059 alleviated CO-induced depression in a mouse model. Conclusion This study provides compelling evidence for a significant association between atmospheric CO and hospitalizations for mental and behavioral disorders. The findings suggest that CO exposure may exacerbate mental health conditions, particularly in vulnerable populations. These insights underline the importance of air quality management and highlight potential pathways for therapeutic interventions targeting CO-induced mental health disorders.
Collapse
Affiliation(s)
- Peihua Hu
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenting Lu
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xian Gao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yating Li
- Department of Nursing, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Yang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wanyi Yin
- Department of Hematology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Dong
- Department of Hospital Infection Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruojia Ren
- Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueyi Wang
- Institute of Mental Health, First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Chang Q, Zhang M, Yu Q, Yu S, Tang Y, Pan G, Cheng Y, Qin J, Wang X, Xia Y. Association between particulate air pollution, physical activity, and the risk of osteoporosis in the UK Biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118000. [PMID: 40068555 DOI: 10.1016/j.ecoenv.2025.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
As a major threat to global health, particulate air pollution has a great possibility of affecting bone metabolism. However, the results of limited studies examining the association between particulate air pollution and bone mineral density (BMD) as well as incident osteoporosis (OP) are conflicting, and the role of physical activity in the association above remains to be further studied. We evaluated the relationship between long-term exposure to Black Carbon (BC) and Particulate Matter (PM) (including PM1 (particles with aerodynamic diameter < 1 μm), PM2.5 (particles with aerodynamic diameter < 2.5 μm) and PM10 (particles with aerodynamic diameter < 10 μm)) and BMD together with OP risks, based on a total of 233,184 subjects from the UK Biobank. General linear regression, logistic regression and restricted cubic spline (RCS) methods were adopted to measure both linear and nonlinear relationship between particulate air pollution and BMD and OP prevalence. Stratified analyses were further utilized to evaluate the potential protective effect of physical activity on bone health under particulate air pollution exposure. BC, PM1 and PM2.5 exposure were negatively associated with BMD (BC: β = -2.35E-03, P = 1.78E-02; PM1: β = -1.57E-03, P = 9.04E-04; PM2.5: β = -9.38E-04; P = 2.98E-13) and positively associated with OP risk (BC: OR (95 %CI) = 1.300 (1.150,1.480), P < 0.001; PM1: OR (95 %CI) = 1.100 (1.040,1.170), P < 0.001; PM2.5: OR (95 %CI) = 1.020 (1.000,1.040), P = 0.019). The RCS analysis presented non-linear relationships between all included particulate air pollutants and incident OP. Higher intensity physical activity could alleviate the risks of BMD decline and OP prevalence caused by particulate air pollution. Our study concluded that particulate air pollution is a crucial threat to bone health, the effect of which can be receded by physical activity. Strengthening air pollution control measures and promoting public engagement in physical activity will contribute to reducing the disease burden associated with OP.
Collapse
Affiliation(s)
- Qianjing Chang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Clinical Medicine, Nanjing Medical University Tianyuan Honors School, Nanjing Medical University, Nanjing, China.
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qiurun Yu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Sirui Yu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Tang
- Department of Policy and Public Management, Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Washington DC 20005, USA.
| | - Gaoju Pan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jian Qin
- Orthopedics Department, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xu Wang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Ju M, Liu F, Deng T, Jia X, Xu W, Zhang F, Gong M, Li Y, Yin Y. Association between air pollution and osteoporosis: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41490. [PMID: 39993078 PMCID: PMC11856944 DOI: 10.1097/md.0000000000041490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Osteoporosis (OP) is a significant disease in the aging society, which poses a threat to the physical well-being of older adults. Some studies suggest that air pollution may contribute to an increased incidence of OP; however, this causal relationship has not been firmly established. To address this gap, we conducted Mendelian randomization (MR) analysis to assess the potential causal association between air pollution (including nitrogen dioxide [N = 456,380], nitrogen oxides [N = 456,380], particulate matter [PM]2.5 [N = 423,796], and PM10 [N = 455,314]) and total-body bone mineral density (BMD) (N = 56,284). We utilized summary data from IEU Open GWAS on the database of genome-wide association studies (GWAS) and employed inverse variance weighting (IVW) as our primary analytical approach. The findings from our MR study in the European population using the IVW method indicated a potential causal link between nitrogen oxides: β = -0.59, confidence interval (CI) = (-1.03 to -0.16), P = 0.008; PM2.5: β = -0.60, CI = (-1.12 to -0.08), P = .025. These results suggest that there might be a causative relationship between nitrogen oxides, PM2.5, and BMD with regards to OP development among individuals exposed to air pollution. Importantly, the observed associations passed all statistical tests without any evidence of heterogeneity or pleiotropy. Furthermore, the presence of air pollution was found to be associated with an elevated risk of developing OP. This study provides compelling evidence for a causal connection between nitrogen oxides, PM2.5, and OP, suggesting that reducing air pollution could play a crucial role in preventing OP development.
Collapse
Affiliation(s)
- Mingyan Ju
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanjie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuemin Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenchang Xu
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjun Zhang
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Menglin Gong
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuying Li
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Yin
- Acupuncture and Moxibustion Department, affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Jeong YW, Choi HM, Park Y, Lee Y, Jung JY, Kang DR. Association between exposure to particulate matter and heart rate variability in vulnerable and susceptible individuals. NPJ Digit Med 2025; 8:52. [PMID: 39856241 PMCID: PMC11760931 DOI: 10.1038/s41746-024-01373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health marker. This study examines PM1.0 (aerodynamic diameters <1 μm), PM2.5 (≥1 μm and <2.5 μm), and PM10 (≥2.5 μm and <10 μm) effects on HRV in patients with environmental diseases as chronic disease groups and vulnerable populations as control groups. PM levels were measured indoors and outdoors for five days in 97 participants, with 24-h HRV monitoring via wearable devices. PM exposure was assessed by categorizing daily cumulative PM concentrations into higher and lower exposure days, while daily average PM concentrations were used for analysis. Results showed significant negative associations between exposure to single and mixtures of different PM metrics and HRV across all groups, particularly in chronic airway disease and higher air pollution exposed groups. These findings highlight that even lower PM levels may reduce HRV, suggesting a need for stricter standards to protect sensitive individuals.
Collapse
Affiliation(s)
- Yong Whi Jeong
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju, South Korea
| | - Hayon Michelle Choi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Youhyun Park
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju, South Korea
| | - Yongjin Lee
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Dae Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, South Korea.
| |
Collapse
|
7
|
Li Y, Han Z, Zhao X, Liu Y, Wu Z, Wang J, Li X, Guo X, Tao L. Association between joint exposure to ambient air pollutants and carotid plaque: The mediating role of cardiometabolic risk factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117755. [PMID: 39854868 DOI: 10.1016/j.ecoenv.2025.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Research has shown that exposure to joint air pollution is related to atherosclerosis, but little evidence has been found for carotid plaques. Our objective is to assess the association between exposure to joint air pollutants and carotid plaque and explore the mediating role of cardiometabolic factors in this relationship. METHODS The Beijing Health Management Cohort (BMHC) study followed participants recruited from 2013 to 2014 until December 31, 2020. All participants underwent carotid ultrasound and were free of carotid plaque at baseline. A satellite-based land-use regression (LUR) model was applied to estimate air pollution exposure. The joint exposure to air pollutants was assessed by incorporating a weighted air pollution score. A modified Poisson regression model was conducted to investigate the relationship between exposure to air pollution and carotid plaque occurrence. Mediation analysis explored how cardiometabolic factors mediate the relationships between exposure to joint air pollution and carotid plaque risk. RESULTS During an average follow-up period 4 years, 1240 cases of carotid plaque were identified among 7358 participants. Each interquartile range (IQR) increase in air pollutants was associated with the following relative risk (RR) and 95 % confidence intervals (95 % CIs) for carotid plaque: 2.5-micrometer particulate matter (PM2.5), 1,04 (1.01, 1.07), 10-micrometer particulate matter (PM10), 1.10 (1.01, 1.20), sulfur dioxide (SO2), 1.28 (1.15, 1.42), ozone (O3), 1.18 (1.01, 1.37), and carbon monoxide (CO), 1.32 (1.15, 1.50). Joint exposure to air pollution was positively and linearly associated with the occurrence of carotid plaque, with low-density cholesterol (LDL-C) and mean arterial pressure (MAP) mediating 2.24 % and 4.28 % of the association, respectively. CONCLUSIONS Long-term joint exposure to ambient air pollutants elevates the risk of developing carotid plaque. LDL-C and MAP suggest partial mediating effects of joint air pollution on carotid plaques. Our results emphasize the need to thoroughly evaluate various air pollutants concerning carotid plaque.
Collapse
Affiliation(s)
- Yunfei Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Ze Han
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Xiaoyu Zhao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Yueruijing Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Zhiyuan Wu
- Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia.
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Yu C, Xu J, Xu S, Tang L, Zhang X, Chen W, Yu T. The impacts of noise and air pollution on breast cancer risk in European and East Asian populations: Insights from genetic evidence. Public Health 2025; 238:197-205. [PMID: 39675203 DOI: 10.1016/j.puhe.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES Previous studies have reported associations of noise and air pollution with breast cancer (BC) risk, but the causality remains unclear. This study aimed to explore the effects of noise and air pollution on BC from a genetic perspective. STUDY DESIGN Genetic association study. METHODS We began our investigation by visualizing the development trends in this field through bibliometric analysis. Subsequently, we conducted Mendelian randomization analyses to assess the effects of noise (daytime and evening) and air pollution (NO2, NOx, PM2.5, PM2.5-10, and PM10) on BC. Genetic variants extracted from genome-wide association studies (GWAS) robustly associated with noise and air pollution were used as instrumental variables. The GWAS data for BC in European and East Asian populations were obtained from the Breast Cancer Association Consortium and the Biobank Japan, respectively. RESULTS The effects of noise and air pollution on BC are receiving increasing attention. In the European population, genetically predicted exposure to NO2 (OR: 1.9381; 95% CI: 1.2873-2.9180; P = 0.0015) and PM10 (OR: 1.4187; 95% CI: 1.0880-1.8500; P = 0.0098) were positively associated with overall BC risk. Subtype analyses showed that PM10 was significantly related to the risks of both ER+ (OR: 1.6165; 95% CI: 1.1778-2.2186; P = 0.0030) and ER- (OR: 1.6228; 95% CI: 1.0175-2.5881; P = 0.0421) BC. Additionally, NO2 only increased the risk of ER+ BC (OR: 1.7429; 95% CI: 1.0679-2.8444; P = 0.0262), but not ER- BC. In East Asians, genetically predicted NO2 was positively related to BC risk (OR: 1.1394; 95% CI: 1.0082-1.2877; P = 0.0366). CONCLUSIONS Our study gave new evidence from a genetic standpoint underscoring that improving the environmental quality of residential areas is conducive to reducing BC risk.
Collapse
Affiliation(s)
- Chengdong Yu
- Department of Medical Oncology, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, China; Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Jiawei Xu
- Department of Medical Oncology, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, China; Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siyi Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lei Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaofang Zhang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China.
| | - Ting Yu
- Department of Medical Oncology, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, China.
| |
Collapse
|
9
|
Shu Z, Qing S, Yang X, Ma P, Wu Y, Li B, Fang F, Yao R. A molecular toxicological study to explore potential health risks associated with ultrafine particle exposure in cold and humid indoor environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117638. [PMID: 39752917 DOI: 10.1016/j.ecoenv.2024.117638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Environmental pollutants including ultrafine particulate matter (UFPs) and adverse meteorological conditions pose significant public health impacts, particularly affecting respiratory health. This study aims to elucidate the synergistic effects of cold-humid conditions and UFPs exposure on respiratory health, utilizing Carbon Black Nanoparticles (CB-NPs) as surrogates for UFPs. Through comprehensive lung function tests, histopathological examinations, and biomarker analyses, this research focuses on the modulation of oxidative stress signaling pathways and NF-κB activation. Male Balb/c mice were exposed to specific concentrations of CB-NPs (30-50 nm in diameter, 0.184 mg/(kg·day)) in a controlled environmental chamber mimicking cold (10°C/14°C) and humid (90 % RH) conditions over three weeks. The results indicate that exposure to CB-NPs alone increased lung function, oxidative stress (ROS, GSH, MDA), inflammation (IL-6, TNF-α, IL-1β), apoptosis (Caspase 3, Caspase 8, Caspase 9), and histopathological alterations in lung tissue. Furthermore, these effects were notably more severe under combined exposure with cold-humid conditions. These results suggest that the adverse effects of pollutants are not solely concentration-dependent but are exacerbated by specific environmental contexts. It is evident that Vitamin E (100 mg/kg/day) can attenuate these adverse effects, underscoring its potential as a protective agent against environmental stressor-induced air pollutants and cold humid conditions. Our findings suggest that the synergistic effects of environmental factors and pollutant exposure significantly impact respiratory health, providing valuable insights for the design of healthier indoor environments and the development of strategies to mitigate these risks.
Collapse
Affiliation(s)
- Ziyu Shu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Shuo Qing
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China; Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Fangxin Fang
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Runming Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; School of the Built Environment, University of Reading, Reading RG6 6DB, UK.
| |
Collapse
|
10
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 PMCID: PMC12032588 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
11
|
Campbell SJ, Barth A, Chen GI, Tremper AH, Priestman M, Ek D, Gu S, Kelly FJ, Kalberer M, Green DC. High time resolution quantification of PM 2.5 oxidative potential at a Central London roadside supersite. ENVIRONMENT INTERNATIONAL 2024; 193:109102. [PMID: 39520930 DOI: 10.1016/j.envint.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The oxidative potential (OP) of airborne particulate matter (PM) is gaining increasing attention as a health-relevant metric to describe the capacity of PM to promote oxidative stress and cause adverse health effects. To date, most OP studies use filter-based approaches to sample PM and quantify OP, which have relatively poor time resolution (∼24 h) and underestimate the contribution of reactive components to OP due to the time delay between sample collection and analysis. To address this important limitation, we have developed a novel instrument which uses a direct-to-reagent sampling approach, providing robust, continuous, high time resolution (5 min) OP quantification, hence overcoming analytical limitations of filter-based techniques. In this study, we deployed this instrument in the Marylebone Road Air Quality Monitoring Station in London, UK, alongside a broad suite of high time resolution PM2.5 composition measurements for three months continuous measurement during Summer 2023. High time resolution OP quantification reveals dynamic changes in volume-normalised (OPv) and mass normalised (OPm) OP evolving over ∼hourly timescales, observed at an average PM2.5 mass concentration of 7.1 ± 4.2 µg m-3, below the WHO interim 4 target of 10 µg m-3. In addition, high time resolution data facilitates directional analysis, allowing us to determine the influence of wind speed and wind direction on OP, and the identification of PM2.5 chemical components and sources which drive dynamic changes in OP; this includes traffic emissions, as well as emissions from the London Underground into the ambient airshed. These results demonstrate the capacity of high time resolution measurements to provide new insights into the temporal evolution of OP, as well as the composition and emission sources which drive OP, developing our understanding of the characteristics of PM2.5 which may promote adverse health impacts.
Collapse
Affiliation(s)
- Steven J Campbell
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| | - Alexandre Barth
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Gang I Chen
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Max Priestman
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - David Ek
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Shuming Gu
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| |
Collapse
|
12
|
Bhetraratana M, Orozco LD, Bennett BJ, Luna K, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particle extract elicits an oxPAPC-like transcriptomic profile in macrophages across multiple mouse strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124415. [PMID: 38908672 DOI: 10.1016/j.envpol.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Karla Luna
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Biology, College of Science and Math, California State University-Northridge, 18111 Nordhoff Street, Northridge, CA, 91330, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, 612 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Institute for Quantitative and Computational Biosciences, UCLA, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Kamis A, Gadia N, Luo Z, Ng SX, Thumbar M. Obtaining the Most Accurate, Explainable Model for Predicting Chronic Obstructive Pulmonary Disease: Triangulation of Multiple Linear Regression and Machine Learning Methods. JMIR AI 2024; 3:e58455. [PMID: 39207843 PMCID: PMC11393512 DOI: 10.2196/58455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019. OBJECTIVE We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD. METHODS We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods. RESULTS The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level. CONCLUSIONS This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.
Collapse
Affiliation(s)
- Arnold Kamis
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Nidhi Gadia
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Zilin Luo
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Shu Xin Ng
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| | - Mansi Thumbar
- Brandeis International Business School, Brandeis University, Waltham, MA, United States
| |
Collapse
|
15
|
Jiang R, Qu Q, Wang Z, Luo F, Mou S. Association between air pollution and bone mineral density: a Mendelian randomization study. Arch Med Sci 2024; 20:1334-1338. [PMID: 39439701 PMCID: PMC11494361 DOI: 10.5114/aoms/192628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The association of air pollution with bone mineral density (BMD) has attracted increasing attention. However, establishing a causal relationship remains uncertain. Methods We conducted a Mendelian randomization (MR) study employing PM2.5, PM2.5-10, PM10, nitrogen dioxide, and nitrogen oxides as exposures and BMD as the outcome to explore the causality between air pollution and the occurrence of decreased BMD. Results By employing the IVW method, we identified a negative causality between air pollution (PM2.5, PM10, and nitrogen oxides) and BMD. Conclusions Our findings demonstrate that PM2.5, PM10 and nitrogen oxides exposure may contribute to decreased BMD.
Collapse
Affiliation(s)
- Rui Jiang
- Graduate School, Hubei University of Traditional Chinese Medicine, Wuhan, China
- Department of Orthopedics, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
| | - Qi Qu
- Department of Orthopedics, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
- Medical College, Hubei Minzu University, Enshi, China
| | - Zhiyu Wang
- Department of Orthopedics, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
- Medical College, Hubei Minzu University, Enshi, China
| | - Feng Luo
- Department of Rehabilitation, Huanggang Central Hospital, Huanggang, China
| | - Shuanglin Mou
- Department of Orthopedics, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
| |
Collapse
|
16
|
Kurtz M, Lezón C, Masci I, Boyer P, Brites F, Bonetto J, Bozal C, Álvarez L, Tasat D. Air pollution induces morpho-functional, biochemical and biomechanical vascular dysfunction in undernourished rats. Food Chem Toxicol 2024; 190:114777. [PMID: 38824989 DOI: 10.1016/j.fct.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Air pollution (gases and particulate matter -PM) and child undernutrition are globally recognized stressors with significant consequences. PM and its components breach the respiratory alveolar-capillary barrier, entering the vasculature transporting not only harmful particles and its mediators but, altering vascular paracrine and autocrine functions. The aim of this study was to investigate the effects of Residual Oil Fly Ash (ROFA), on the vasculature of young animals with nutritional growth retardation (NGR). Weanling rats were fed a diet restricted 20% (NGR) compared to ad libitum intake (control-C) for 4 weeks. Rats were intranasally instilled with 1 mg/kg BW of ROFA. After 24h exposure, histological and immunohistochemical, biochemical and contractile response to NA/ACh were evaluated in aortas. ROFA induced changes in the tunica media of the aorta in all groups regarding thickness, muscular cells and expression of Connexin-43. ROFA increased TGF-β1 and decreased eNOs levels and calcium channels in C and NGR animals. An increment in cytokines IL-6 and IL-10 was observed in C, with no changes in NGR. ROFA exposure altered the vascular contractile capacity. In conclusion, ROFA exposure could increase the risk for CVD through the alteration of vascular biochemical parameters, a possible step of the endothelial dysfunction.
Collapse
Affiliation(s)
- Melisa Kurtz
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina.
| | - Christian Lezón
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ivana Masci
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Patricia Boyer
- Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julián Bonetto
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina
| | - Carola Bozal
- Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Álvarez
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Deborah Tasat
- Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín- CONICET, Buenos Aires, Argentina; Cátedra de Histología y Embriología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Liu M, Vaartjes I, Hoek G, Jaddoe VWV, Santos S, Schreuder A, Vrijkotte TGM, Grobbee DE, Timmermans EJ. Longitudinal associations of air pollution and green space with cardiometabolic risk factor clustering among children in the Netherlands. ENVIRONMENT INTERNATIONAL 2024; 190:108852. [PMID: 38943924 DOI: 10.1016/j.envint.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND This study examines longitudinal associations of air pollution and green space with cardiometabolic risk among children in the Netherlands. METHODS Three Dutch prospective cohorts with a total of 13,822 participants aged 5 to 17 years were included: (1) the Amsterdam Born Children and their Development (ABCD) study from Amsterdam (n = 2,547), (2) the Generation R study from Rotterdam (n = 5,431), and (3) the Lifelines study from northern Netherlands (n = 5,844). Air pollution (PM2.5, PM10, NO2, and elemental carbon (EC)) and green space exposures (density in multiple Euclidean buffer sizes) from 2006 to 2017 at home address level were used. Cardiometabolic risk factor clustering was assessed by a MetScore, which was derived from a confirmatory factor analysis of six cardiometabolic risk factors to assess the overall risk. Linear regression models with change in Metscore as the dependent variable, adjusted for multiple confounders, were conducted for each cohort separately. Meta-analyses were used to pool cohort-specific estimates. RESULTS Exposure to higher levels of NO2 and EC was significantly associated with increases in MetScore in Lifelines (per SD higher exposure: βNO2 = 0.006, 95 % CI = 0.001 to 0.010; βEC = 0.008, 95 % CI = 0.002 to 0.014). In the other two cohort studies, these associations were in the same direction but these were not significant. Higher green space density in 500-meter buffer zones around participants' residential addresses was not significantly associated with decreases of MetScore in all three cohorts. Higher green space density in 2000-meter buffer zones was significantly associated with decreases of MetScore in ABCD and Lifelines (per SD higher green space density: βABCD = -0.008, 95 % CI = -0.013 to -0.003; βLifelines = -0.002, 95 % CI = -0.003 to -0.00003). The pooled estimates were βNO2 = 0.003 (95 % CI = -0.001 to 0.006) for NO2, βEC = 0.003 (95 % CI = -0.001, 0.007) for EC, and β500m buffer = -0.0014 (95 % CI = -0.0026 to -0.0001) for green space. CONCLUSIONS More green space exposure at residence was associated with decreased cardiometabolic risk in children. Exposure to more NO2 and EC was also associated with increased cardiometabolic risk.
Collapse
Affiliation(s)
- Mingwei Liu
- The Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ilonca Vaartjes
- The Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Vincent W V Jaddoe
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no. 135 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, no. 135 4050-600, Porto, Portugal
| | - Anton Schreuder
- Department of Public and Occupational Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Tanja G M Vrijkotte
- Department of Public and Occupational Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Diederick E Grobbee
- The Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Erik J Timmermans
- The Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Tiekwe JE, Ongbayokolak N, Dabou S, Natheu CK, Goka MS, Nya Biapa PC, Annesi-Maesano I, Telefo PB. Respiratory Symptoms and Changes of Oxidative Stress Markers among Motorbike Drivers Chronically Exposed to Fine and Ultrafine Air Particles: A Case Study of Douala and Dschang, Cameroon. J Clin Med 2024; 13:3816. [PMID: 38999382 PMCID: PMC11242172 DOI: 10.3390/jcm13133816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Recent studies revealed that the high production of reactive oxidative species due to exposure to fine or ultrafine particles are involved in many chronic respiratory disorders. However, the poor standard of clinical data in sub-Saharan countries makes the assessment of our knowledge on the health impacts of air pollution in urban cities very difficult. Objective: The aim of this study was to evaluate the distribution of respiratory disorders associated with exposure to fine and ultrafine air particles through the changes of some oxidative stress biomarkers among motorbike drivers from two cities of Cameroon. Methods: A cross-sectional survey using a standardized questionnaire was conducted in 2019 on 191 motorcycle drivers (MDs) working in Douala and Dschang. Then, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) were measured using colorimetric methods. The data of participants, after being clustered in Microsoft Excel, were analyzed and statistically compared using SPSS 20 software. Results: The motorbike drivers recruited from both cities were from 21 to 40 years old, with a mean age of 29.93 (±0.82). The distribution of respiratory disorders, such as a runny nose, cold, dry cough, chest discomfort, and breathlessness, was significantly increased among MDs in Douala. According to the results of biological assays, SOD and MDA were significantly greater among the MDs recruited in Douala compared to those of Dschang. The change in these oxidative stress markers was significantly positively correlated with the mobilization of monocytes and negatively correlated with neutrophils, showing the onset and progression of subjacent inflammatory reactions, and it seemed to be significantly influenced by the location MDs lived in. Conclusions: Through this study, we have confirmed the evidence supporting that the onset and progression of oxidative stress is caused by the long-term exposure to fine or ultrafine air particles among working people living in urban cities. Further studies should be conducted to provide evidence for the cellular damage and dysfunction related to the chronic exposure to fine particulate matter (PM) in the air among working people in the metropolitan sub-Saharan Africa context.
Collapse
Affiliation(s)
- Joseph Eloge Tiekwe
- Department of Biochemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
- Division of Pharmacology and Toxicology, Faculty of Medicine, University of Leipzig, 04109 Leipzig, Germany
| | - Nadine Ongbayokolak
- Department of Biochemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Solange Dabou
- Department of Biochemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Cerge Kamhoua Natheu
- Department of Biochemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Marie Stéphanie Goka
- Department of Biochemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | | | - Isabella Annesi-Maesano
- Desbrest Institute of Epidemiology and Public Health, University Montpellier, INSERM, 34090 Montpellier, France
- Division of Respiratory Medicine, Allergology, and Thoracic Oncology, University Hospital of Montpellier, 34295 Montpellier, France
| | - Phélix Bruno Telefo
- Department of Biochemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| |
Collapse
|
19
|
Goričar K, Debevec T, Dolžan V, Martin A, Pialoux V, Millet GP, Osredkar D. Antioxidant and neurodevelopmental gene polymorphisms in prematurely born individuals influence hypoxia-related oxidative stress. Sci Rep 2024; 14:14956. [PMID: 38942829 PMCID: PMC11213937 DOI: 10.1038/s41598-024-65647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Preterm born (PTB) infants are at risk for injuries related to oxidative stress. We investigated the association between antioxidant and neurodevelopmental gene polymorphisms and oxidative stress parameters in PTB male young adults and their term-born counterparts at rest and during exercise. Healthy young PTB (N = 22) and full-term (N = 15) males underwent graded exercise tests in normobaric normoxic (FiO2 = 0.21) and hypoxic (FiO2 = 0.13) conditions. CAT rs1001179 was associated with decrease in nitrites in the whole group and in PTB individuals (P = 0.017 and P = 0.043, respectively). GPX1 rs1050450 was associated with decrease in ferric reducing antioxidant power in the whole group and in full-term individuals (P = 0.017 and P = 0.021, respectively). HIF1A rs11549465 was associated with decrease in nitrotyrosine and increase in malondialdehyde (P = 0.022 and P = 0.018, respectively). NOTCH4 rs367398 was associated with increase in advanced oxidation protein products and nitrites (P = 0.002 and P = 0.004, respectively) in hypoxia. In normoxia, NOTCH4 rs367398 was associated with increase in malondialdehyde in the whole group (P = 0.043). BDNF rs6265 was associated with decreased nitrites/nitrates in the whole group and in PTB individuals (P = 0.009 and P = 0.043, respectively). Polymorphisms in investigated genes and PTB might influence oxidative stress response after exercise in normoxic or hypoxic conditions far beyond the neonatal period in young male adults.
Collapse
Affiliation(s)
- Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Agnès Martin
- Univ Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Université Claude Bernard Lyon 1, Faculté de Médecine Rockefeller, 69008, Lyon, France
| | - Vincent Pialoux
- Univ Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Université Claude Bernard Lyon 1, Faculté de Médecine Rockefeller, 69008, Lyon, France
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, University Medical Centre Ljubljana, Bohoričeva 20, 1525, Ljubljana, Slovenia.
- Center for Developmental Neuroscience, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Chen D, Wei H, Zhang Y, Yang X, Xu Y, Guan Q, Zhang M, Hang B, Xia Y. Effects of indoor air pollution from household solid fuel use on the risk of gastrointestinal and liver diseases in middle aged and elderly adults. ENVIRONMENT INTERNATIONAL 2024; 188:108738. [PMID: 38749122 DOI: 10.1016/j.envint.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 08/27/2024]
Abstract
Solid fuels are widely used in China and increase the concentrations of indoor air pollutants. Nevertheless, there is limited longitudinal evidence linking solid fuel use and Gastrointestinal (GI) and liver diseases. This study aimed to prospectively investigate the association between household solid fuel use and the risk of GI and liver diseases in middle aged and elderly adults. This work was based on the China Health and Retirement Longitudinal Study (CHARLS). Longitudinal data incorporate with cross-sectional data were analyzed. Compared with individuals using clean fuel for cooking, solid fuel users were observed to have higher risk of GI diseases (OR in 2011, 2013, 2015, 2018 wave separately: 1.37, 95 % CI: 1.24-1.50, P < 0.001; 1.24, 95 % CI: 1.11-1.39, P < 0.001; 1.18, 95 % CI: 1.06-1.33, P < 0.001; 1.23, 95 % CI: 1.04-1.45, P < 0.05). The associations between solid fuel use and liver diseases were not significant in most of the groups. Participants transforming from solid to clean cooking fuels had lower risk of GI and liver diseases than persistent solid fuel users. Moreover, biomass cooking fuel users were at a significant higher risk of both liver and GI diseases compared with clean fuel users. Overall, household solid fuel use, especially for cooking, was related to higher risk of GI and liver diseases, while switching from solid to clean fuels could reduce this risk. Using biomass for cooking was identified to be more associated with the increasing risk of GI and liver diseases than cooking with coal.
Collapse
Affiliation(s)
- Danrong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuepei Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
21
|
Ahmed Z, Chaudhary F, Agrawal DK. Epidemiology, Mechanisms and Prevention in the Etiology of Environmental Factor-Induced Cardiovascular Diseases. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2024; 8:59-69. [PMID: 38911615 PMCID: PMC11192553 DOI: 10.26502/jesph.96120206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cardiovascular diseases are a significant cause of mortality worldwide, and their prevalence can be amplified by a range of environmental factors. This review article critically evaluated the published information on the epidemiology and pathophysiological mechanisms of various environmental factors such as air indoor and outdoor air pollution, water pollution, climate change, and soil pollution. Preventative measures to mitigate these effects including public health responses are discussed with gaps in our knowledge for future studies.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Fihr Chaudhary
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
22
|
Chang C, Gupta R, Sedighian F, Louie A, Gonzalez DM, Le C, Cho JM, Park SK, Castellanos J, Ting TW, Dong TS, Arias-Jayo N, Lagishetty V, Navab M, Reddy S, Sioutas C, Hsiai T, Jacobs JP, Araujo JA. Subchronic inhalation exposure to ultrafine particulate matter alters the intestinal microbiome in various mouse models. ENVIRONMENTAL RESEARCH 2024; 248:118242. [PMID: 38242419 PMCID: PMC11737635 DOI: 10.1016/j.envres.2024.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 μg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, β-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.
Collapse
Affiliation(s)
- Candace Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Farzaneh Sedighian
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Allen Louie
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - David M Gonzalez
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Collin Le
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jocelyn Castellanos
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - To-Wei Ting
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, Los Angeles, CA, USA
| | - Nerea Arias-Jayo
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Srinivasa Reddy
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California (USC) Viterbi School of Engineering, Los Angeles, CA, USA
| | - Tzung Hsiai
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, Los Angeles, CA, USA.
| | - Jesus A Araujo
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Zhao Y, Liu Q, Chen Y, Kwok TCY, Leung JCS, Feng H, Wong SYS. Trajectories of depressive symptom and its association with air pollution: evidence from the Mr. OS and Ms. OS Hong Kong cohort study. BMC Geriatr 2024; 24:318. [PMID: 38580934 PMCID: PMC10996234 DOI: 10.1186/s12877-024-04731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Depression is a global health priority. Maintaining and delaying depressive symptoms in older adults is a key to healthy aging. This study aimed to identify depressive symptom trajectories, predictors and mortality, while also exploring the relationship between air quality and depressive symptoms in older adults in the Hong Kong community over 14 years. METHODS This study is a longitudinal study in Hong Kong. The target population was community-dwelling older adults over age 65. Depressive symptoms were measured by the Geriatric Depression Scale (GDS-15). Group-based trajectory model was used to identify heterogeneity in longitudinal changes over 14 years and examine the associations between baseline variables and trajectories for different cohort members using multinomial logistic regression. The Kaplan-Meier method was employed to conduct survival analysis and explore the variations in survival probabilities over time among different trajectory group. Linear mixed model was used to explore the relationship between air quality and depressive symptoms. RESULTS A total of 2828 older adults were included. Three different trajectories of depressive symptoms in older people were identified: relatively stable (15.4%), late increase (67.1%) and increase (17.5%). Female, more number of chronic diseases, poor cognitive function, and poor health-related quality of life (HRQOL) were significantly associated with other less favorable trajectories compared with participants with stable levels of depressive symptoms. The late increase group had a lower mortality rate than the relatively stable and increased groups. Lower baseline ambient air pollutant exposure to NO2 over 14 years was significantly associated with fewer depressive symptoms. CONCLUSIONS In this study, we found that a late increase in depressive symptoms was the predominant trend in older Chinese people in Hong Kong. Poorer HRQOL was predictive of less favorable trajectories of depressive symptoms. Ambient air pollution was associated with depressive symptoms. This novel observation strengthens the epidemiological evidence of longitudinal changes in depressive symptoms and associations with late-life exposure to air pollution.
Collapse
Affiliation(s)
- Yinan Zhao
- Xiangya School of Nursing, Central South University, Changsha, Hunan Province, China
| | - Qingcai Liu
- Xiangya School of Nursing, Central South University, Changsha, Hunan Province, China
| | - Yifei Chen
- Xiangya School of Nursing, Central South University, Changsha, Hunan Province, China
| | - Timothy C Y Kwok
- Department of Medicine & Therapeutics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Jason C S Leung
- Department of Medicine & Therapeutics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hui Feng
- Xiangya School of Nursing, Central South University, Changsha, Hunan Province, China.
- Xiangya-Oceanwide Health Management Research Institute, Central South University, Changsha, Hunan Province, China.
| | - Samuel Yeung Shan Wong
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
24
|
Anand K, Walia GK, Mandal S, Menon JS, Gupta R, Tandon N, Narayan KMV, Ali MK, Mohan V, Schwartz JD, Prabhakaran D. Longitudinal associations between ambient PM 2.5 exposure and lipid levels in two Indian cities. Environ Epidemiol 2024; 8:e295. [PMID: 38617424 PMCID: PMC11008625 DOI: 10.1097/ee9.0000000000000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/10/2024] [Indexed: 04/16/2024] Open
Abstract
Background Exposure to ambient PM2.5 is known to affect lipid metabolism through systemic inflammation and oxidative stress. Evidence from developing countries, such as India with high levels of ambient PM2.5 and distinct lipid profiles, is sparse. Methods Longitudinal nonlinear mixed-effects analysis was conducted on >10,000 participants of Centre for cArdiometabolic Risk Reduction in South Asia (CARRS) cohort in Chennai and Delhi, India. We examined associations between 1-month and 1-year average ambient PM2.5 exposure derived from the spatiotemporal model and lipid levels (total cholesterol [TC], triglycerides [TRIG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]) measured longitudinally, adjusting for residential and neighborhood-level confounders. Results The mean annual exposure in Chennai and Delhi was 40 and 102 μg/m3 respectively. Elevated ambient PM2.5 levels were associated with an increase in LDL-C and TC at levels up to 100 µg/m3 in both cities and beyond 125 µg/m3 in Delhi. TRIG levels in Chennai increased until 40 µg/m3 for both short- and long-term exposures, then stabilized or declined, while in Delhi, there was a consistent rise with increasing annual exposures. HDL-C showed an increase in both cities against monthly average exposure. HDL-C decreased slightly in Chennai with an increase in long-term exposure, whereas it decreased beyond 130 µg/m3 in Delhi. Conclusion These findings demonstrate diverse associations between a wide range of ambient PM2.5 and lipid levels in an understudied South Asian population. Further research is needed to establish causality and develop targeted interventions to mitigate the impact of air pollution on lipid metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Kritika Anand
- Centre for Chronic Disease Control, New Delhi, India
| | | | | | - Jyothi S. Menon
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| | - Ruby Gupta
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | - K. M. Venkat Narayan
- Emory Global Diabetes Research Center of the Woodruff Health Sciences Center, Atlanta, Georgia
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mohammed K. Ali
- Emory Global Diabetes Research Center of the Woodruff Health Sciences Center, Atlanta, Georgia
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Joel D. Schwartz
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Dorairaj Prabhakaran
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| |
Collapse
|
25
|
Vitucci ECM, Simmons AE, Martin EM, McCullough SD. Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure. Part Fibre Toxicol 2024; 21:15. [PMID: 38468337 PMCID: PMC10926573 DOI: 10.1186/s12989-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Alysha E Simmons
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shaun D McCullough
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA.
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Mulat E, Tamiru D, Abate KH. Impact of indoor Air Pollution on the Linear growth of children in Jimma, Ethiopia. BMC Public Health 2024; 24:488. [PMID: 38365615 PMCID: PMC10870508 DOI: 10.1186/s12889-024-17975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Stunting in children is the term for reduced linear growth and development, which is frequently brought on by a persistently inadequate diet, recurrent infections and chronic diseases or poor health conditions. Apart from the classic covariates of stunting, which include diet and illness, the relative contribution of household air pollution to chronic nutrition conditions is least studied. Hence, this study is conducted to investigate the impact of household air pollution on the linear growth of under-five children in Jimma town, Ethiopia. METHODS A prospective cohort study was employed to collect data from 280 under-five children who lived in households using solid fuel (exposed group, n = 140) and clean fuel (unexposed group, n = 140). Height-for-age Z scores were compared in both groups over a 12-month follow-up period. The difference in differences estimators were used for comparison of changes in the height-for-age Z scores from baseline to end line in exposed and non-exposed groups. The independent effect of the use of solid fuels on height-for-age Z scores was analyzed through a multivariable linear regression model. Statistical Significances were declared at P < 0.05 and 95% CI level. RESULTS In an unadjusted model (Model 1), compared with the clean fuel type, the mean difference in the height-for-age Z score of children in households using solid fuel was lower by 0.54 (-0.54, 95% CI -0.97, -0.12, P = 0.011). The beta coefficient remained negative after adjusting for age and sex (Model 2 -0.543, 95% CI -1.373, -0.563) and sociodemographic variables (Model 3: -0.543, 95% CI -1.362, -0.575). In the final model (Model 4), which adjusted for wealth quantile, dietary practice, water, sanitation and hygiene status and household food insecurity access scale, the beta coefficient held the same and significant (beta: -0.543, 95% CI -1.357, -0.579, P < 0.001). Higher HAZ scores were observed among female child (β: = 0.48, 95%CI: 0.28, 0.69), Child with father attended higher education (β: = 0.304 95%CI: 0.304, 95% CI 0.19, 0.41) as compared to male gender and those who did not attend a formal education, respectively. In contrast, child living in households with poor hygiene practices had lower HAZ score (β: -0.226, 95% CI: -0.449, -0.003), P < 0.001. CONCLUSIONS Exposure to indoor air pollution was inversely related to linear growth. Furthermore, sex, educational status and hygiene were found relevant predictors of linear growth. In such a setting, there is a need to step up efforts to design and implement public education campaigns regarding the health risks associated with exposure to household air pollution. Promoting improvements to kitchen ventilation and the use of improved cooking stoves, which will help to mitigate the detrimental effects of indoor air pollution on child growth impairment and its long-term effects.
Collapse
Affiliation(s)
- Elias Mulat
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Dessalegn Tamiru
- Department of Nutrition and Dietetics, Food and Nutrition Research Institute, Jimma University, Jimma, Ethiopia
| | - Kalkidan Hassen Abate
- Department of Nutrition and Dietetics, Food and Nutrition Research Institute, Jimma University, Jimma, Ethiopia
| |
Collapse
|
27
|
Ellwanger JH, Chies JAB. Toxicogenomics of the C-C chemokine receptor type 5 (CCR5): Exploring the potential impacts of chemical-CCR5 interactions on inflammation and human health. Food Chem Toxicol 2024; 186:114511. [PMID: 38360389 DOI: 10.1016/j.fct.2024.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
This article explores the impact of environmental chemicals on CCR5 expression and related inflammatory responses based on curated data from the Comparative Toxicogenomics Database (CTD). A total of 143 CCR5-interacting chemicals was found, with 229 chemical interactions. Of note, 67 (29.3%) out of 229 interactions resulted in "increased expression" of CCR5 mRNA or CCR5 protein, and 42 (18.3%) chemical interactions resulted in "decreased expression". The top-5 CCR5-interacting chemicals were "Tetrachlorodibenzodioxin", "Lipopolysaccharides", "Benzo(a)pyrene", "Drugs, Chinese Herbal", and "Ethinyl Estradiol". Based on the number of interactions and importance as environmental contaminant, we then focused our analysis on Tetrachlorodibenzodioxin and Benzo(a)pyrene. There is some consistency in the data supporting an increase in CCR5 expression triggered by Tetrachlorodibenzodioxin; although data concerning CCR5-Benzo(a)pyrene interactions is limited. Considering the high linkage disequilibrium between CCR5 and CCR2 genes, we also search for chemicals that interact with both genes, which resulted in 72 interacting chemicals, representing 50.3% of the 143 CCR5-interacting chemicals and 37.5% of the 192 CCR2-interacting chemicals. In conclusion, CTD data showed that environmental contaminants indeed affect CCR5 expression, with a tendency towards increased expression. The interaction of environmental contaminants with other chemokine receptor genes may potentialize their toxic effects on the chemokine system, favoring inflammation.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| |
Collapse
|
28
|
Millen AE, Dighe S, Kordas K, Aminigo BZ, Zafron ML, Mu L. Air Pollution and Chronic Eye Disease in Adults: A Scoping Review. Ophthalmic Epidemiol 2024; 31:1-10. [PMID: 36864662 DOI: 10.1080/09286586.2023.2183513] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE We conducted a scoping review of studies examining ambient air pollution as a risk factor for chronic eye disease influencing the lens, retina, and intraocular pressure in adults. METHODS Terms related to air pollution and eye disease outcomes were used to search for publications on Embase, Web of Science Core Collection, Global Health, PubMed, and the Cochrane Central Register of Controlled Trials from January 1, 2010, through April 11, 2022. RESULTS We identified 27 articles, focusing on the following non-mutually exclusive outcomes: cataract (n = 9), presbyopia (n = 1), retinal vein occlusion or central retinal arteriolar and venular equivalents (n = 5), intraocular pressure (IOP) (n = 3), glaucoma (n = 5), age-related macular degeneration (AMD) (n = 5), diabetic retinopathy (n = 2), and measures of retinal morphology (n = 3). Study designs included cross-sectional (n = 16), case-control (n = 4), and longitudinal (n = 7). Air pollutants were measured in 50% and 95% of the studies on lens and retina or IOP, respectively, and these exposures were assigned to geographic locations. Most research was conducted in global regions with high exposure to air pollution. Consistent associations suggested a possibly increased risk of cataract and retina-associated chronic eye disease with increasing exposure to particulate matter (PM2.5-PM10), NO2, NOx, and SO2. Associations with O3 were less consistent. CONCLUSIONS Accumulating research suggests air pollution may be a modifiable risk factor for chronic eye diseases of the lens and retina. The number of studies on each specific lens- or retina-related outcome is limited. Guidelines regarding the role of air pollution in chronic eye disease do not exist.
Collapse
Affiliation(s)
- Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Shruti Dighe
- Department of Family Medicine, Allegheny Health Network Saint Vincent, Erie, PA, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Boma Zelma Aminigo
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Michelle L Zafron
- Health Sciences at Abbott Library, University Libraries, University at Buffalo, Buffalo, New York, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
29
|
Abdul-Rahman T, Roy P, Bliss ZSB, Mohammad A, Corriero AC, Patel NT, Wireko AA, Shaikh R, Faith OE, Arevalo-Rios ECE, Dupuis L, Ulusan S, Erbay MI, Cedeño MV, Sood A, Gupta R. The impact of air quality on cardiovascular health: A state of the art review. Curr Probl Cardiol 2024; 49:102174. [PMID: 37913932 DOI: 10.1016/j.cpcardiol.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Air pollution is a global health challenge, increasing the risk of cardiovascular diseases such as heart disease, stroke, and arrhythmias. Particulate matter (PM), particularly PM2.5 and ultrafine particles (UFP), is a key contributor to the adverse effects of air pollution on cardiovascular health. PM exposure can lead to oxidative stress, inflammation, atherosclerosis, vascular dysfunction, cardiac arrhythmias, and myocardial injury. Reactive oxygen species (ROS) play a key role in mediating these effects. PM exposure can also lead to hypertension, a significant risk factor for cardiovascular disease. The COVID-19 pandemic resulted in a significant reduction of air pollutants, leading to a decline in the incidence of heart attacks and premature deaths caused by cardiovascular diseases. This review highlights the relationship between environmental air quality and cardiovascular health, elucidating the pathways through which air pollutants affect the cardiovascular system. It also emphasizes the need for increased awareness, collective efforts to mitigate the adverse effects of air pollution, and strategic policies for long-term air quality improvement to prevent the devastating effects of air pollution on global cardiovascular health.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Poulami Roy
- Department of Research, Toufik's World Medical Association, Sumy, Ukraine; Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | | | - Neal T Patel
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Raheel Shaikh
- Broward Health Medical Center, Fort Lauderdale, FL, USA
| | | | | | - Léonie Dupuis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebahat Ulusan
- Medical School, Suleyman Demirel University, Isparta, Turkey
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA.
| |
Collapse
|
30
|
Ruan Y, Bao Q, Wang L, Wang Z, Zhu W, Wang J. Cardiovascular diseases burden attributable to ambient PM 2.5 pollution from 1990 to 2019: A systematic analysis for the global burden of disease study 2019. ENVIRONMENTAL RESEARCH 2024; 241:117678. [PMID: 37984788 DOI: 10.1016/j.envres.2023.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Ambient PM2.5 pollution (APMP2.5) was the leading environmental risk factor for cardiovascular diseases (CVDs) worldwide. An up-to-date comprehensive study is needed to provide global epidemiological patterns. METHODS Detailed data on CVDs burden attributable to APMP2.5 were obtained from the Global Burden of Disease Study (GBD) 2019. We calculated the estimated annual percentage change (EAPC) to assess temporal trends in age-standardized rates of deaths and disability-adjusted life years (DALYs) over 30 years. RESULTS Globally, CVDs attributable to APMP2.5 resulted in 2.48 million deaths and 60.91 million DALYs, with an increase of 122%, respectively from 1990 to 2019. In general, men suffered markedly higher burden than women, but the gap will likely turn narrow. As for age distribution, CVDs deaths and DALYs attributable to APMP2.5 mainly occurred in the elder group (>70 years). Low- and middle-income regions endured the higher CVDs burden due to the higher exposure to APMP2.5, and the gap may potentially expand further compared with high-income regions. For regions, the highest age-standardized rates of APMP2.5-related CVDs deaths and DALYs were observed mainly in Central Asia, while the lowest was observed in Australasia. At the national level, countries with the largest ASDR decline were clustered in western Europe, while Equatorial Guinea, Timor-Leste and Bhutan exhibited relatively rapid increases over this period. CONCLUSIONS The global CVDs burden attributable to APMP2.5 has contributed to the heterogeneity of spatial and temporal distribution. APMP2.5-related CVDs deaths have largely shifted from higher SDI regions to those with a lower SDI. Globally, APMP2.5-attributable CVDs pose a significant threat to public health and diseases burden has increased over time, particularly in male, old-aged populations. The governments and health systems should take measures to reduce air pollution to impede this rising trend.
Collapse
Affiliation(s)
- Yixin Ruan
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Qinyi Bao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Lingjun Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Zhuo Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Wei Zhu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
| |
Collapse
|
31
|
Sanchez-Rodriguez L, Galvez-Fernandez M, Rojas-Benedicto A, Domingo-Relloso A, Amigo N, Redon J, Monleon D, Saez G, Tellez-Plaza M, Martin-Escudero JC, Ramis R. Traffic Density Exposure, Oxidative Stress Biomarkers and Plasma Metabolomics in a Population-Based Sample: The Hortega Study. Antioxidants (Basel) 2023; 12:2122. [PMID: 38136241 PMCID: PMC10740723 DOI: 10.3390/antiox12122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants' residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Laura Sanchez-Rodriguez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Ayelén Rojas-Benedicto
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
- Department of Communicable Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Nuria Amigo
- Biosfer Teslab, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universidad de Rovira i Virgili, 43007 Tarragona, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, Clinical Analysis Service, Hospital Universitario Dr. Peset-FISABIO, Universitat de Valencia, 46020 Valencia, Spain;
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Juan Carlos Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, 47012 Valladolid, Spain;
| | - Rebeca Ramis
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
32
|
Adams S, Stapleton PA. Nanoparticles at the maternal-fetal interface. Mol Cell Endocrinol 2023; 578:112067. [PMID: 37689342 PMCID: PMC10591848 DOI: 10.1016/j.mce.2023.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The increasing production of intentional and unintentional nanoparticles (NPs) has led to their accumulation in the environment as air and ground pollution. The heterogeneity of these particles primarily relies on the NP physicochemical properties (i.e., chemical composition, size, shape, surface chemistry, etc.). Pregnancy represents a vulnerable life stage for both the woman and the developing fetus. The ubiquitous nature of these NPs creates a concern for developmental fetal exposures. At the maternal-fetal interface lies the placenta, a temporary endocrine organ that facilitates nutrient and waste exchange as well as communication between maternal and fetal tissues. Recent evidence in human and animal models identifies that gestational exposure to NPs results in placental translocation leading to local effects and endocrine disruption. Currently, the mechanisms underlying placental translocation and cellular uptake of NPs in the placenta are poorly understood. The purpose of this review is to assess the current understanding of the physiochemical factors influencing NP translocation, cellular uptake, and endocrine disruption at the maternal-fetal interface within the available literature.
Collapse
Affiliation(s)
- S Adams
- Department of Pharmacology and Toxicology, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, USA; Environmental Occupational and Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
33
|
Argacha JF. [Effects of air pollution on cardiovascular events in cardiac intensive care units]. Ann Cardiol Angeiol (Paris) 2023; 72:101663. [PMID: 37688973 DOI: 10.1016/j.ancard.2023.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Many environmental factors influence the occurrence of cardiovascular events. Among these, air pollution is certainly the most harmful, due to its dual composition and effects. Air pollution is both particulate and gaseous, and can vary in concentration and composition according to its source and type of emission. Moreover, clinical effects are not only observed at long-term but also at short-term, following rapid deterioration in air quality. Air pollution must therefore be seen both as a risk factor for atherosclerotic disease, and as a trigger for cardiovascular events. These acute effects are essentially mediated by an increased risk of acute coronary syndromes and heart failure. The effects of air pollution on admissions for ventricular arrhythmias and arterial hypertension are also possible. The cardiotoxicity of pollution is mainly mediated by sympatho-vagal imbalance, by the initiation and amplification of an oxidative, inflammatory and pro-aggregatory cascade, and by endothelial dysfunction and activation of metalloproteinases. Although now well established, the consequences of air pollution on acute cardiovascular events require further investigation. Environmental cardiology is an emerging discipline whose current vision still fails to integrate qualitative aspects, such as the oxidative potential of particulate matter, and the joint effects of multiple environmental exposures.
Collapse
Affiliation(s)
- J F Argacha
- Département de cardiologie, Universitair Ziekenhuis Brussel, VUB, Belgium.
| |
Collapse
|
34
|
Bonalumi F, Miragoli M. Invited Perspective: The Silent Threat-Air Pollution's Link to Arrhythmias. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:111301. [PMID: 37909724 PMCID: PMC10619429 DOI: 10.1289/ehp13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Flavia Bonalumi
- Center of Excellence for Toxicological Research (CERT), Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Miragoli
- Center of Excellence for Toxicological Research (CERT), Department of Medicine and Surgery, University of Parma, Parma, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
35
|
Tirandi A, Montecucco F, Liberale L. Heart and vessels 'on fire'. Eur J Clin Invest 2023; 53:e14052. [PMID: 37394695 DOI: 10.1111/eci.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
36
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour - a review of current status and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296785. [PMID: 37873310 PMCID: PMC10593044 DOI: 10.1101/2023.10.09.23296785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
| | - Soeren Hese
- Institute of Geography, Friedrich Schiller University Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | |
Collapse
|
37
|
Vallée A. Sex Associations Between Air Pollution and Estimated Atherosclerotic Cardiovascular Disease Risk Determination. Int J Public Health 2023; 68:1606328. [PMID: 37841972 PMCID: PMC10569126 DOI: 10.3389/ijph.2023.1606328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Objective: The purpose of this study was to investigate the sex correlations of particulate matters (PM2.5, PM10, PM2.5-10), NO2 and NOx with ASCVD risk in the UK Biobank population. Methods: Among 285,045 participants, pollutants were assessed and correlations between ASCVD risk were stratified by sex and estimated using multiple linear and logistic regressions adjusted for length of time at residence, education, income, physical activity, Townsend deprivation, alcohol, smocking pack years, BMI and rural/urban zone. Results: Males presented higher ASCVD risk than females (8.63% vs. 2.65%, p < 0.001). In males PM2.5, PM10, NO2, and NOx each were associated with an increased ASCVD risk >7.5% in the adjusted logistic models, with ORs [95% CI] for a 10 μg/m3 increase were 2.17 [1.87-2.52], 1.15 [1.06-1.24], 1.06 [1.04-1.08] and 1.05 [1.04-1.06], respectively. In females, the ORs for a 10 μg/m3 increase were 1.55 [1.19-2.05], 1.22 [1.06-1.42], 1.07 [1.03-1.10], and 1.04 [1.02-1.05], respectively. No association was observed in both sexes between ASCVD risk and PM2.5-10. Conclusion: Our findings may suggest the possible actions of air pollutants on ASCVD risk.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
38
|
Holzhausen EA, Kupsco A, Chalifour BN, Patterson WB, Schmidt KA, Mokhtari P, Lurmann F, Baccarelli AA, Goran MI, Alderete TL. Human milk EV-miRNAs: a novel biomarker for air pollution exposure during pregnancy. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:035002. [PMID: 37692372 PMCID: PMC10486183 DOI: 10.1088/2752-5309/ace075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 09/12/2023]
Abstract
Exposure to ambient and near-roadway air pollution during pregnancy has been linked with several adverse health outcomes for pregnant women and their babies. Emerging research indicates that microRNA (miRNA) expression can be altered by exposure to air pollutants in a variety of tissues. Additionally, miRNAs from breast tissue and circulating miRNAs have previously been proposed as a biomarker for breast cancer diagnosis and prognosis. Therefore, this study sought to evaluate the associations between pregnancy exposures to ambient (PM10, PM2.5, NO2, O3) and near-roadway air pollution (total NOx, freeway NOx, non-freeway NOx) with breast milk extracellular vesicle miRNA (EV-miRNA), measured at 1-month postpartum, in a cohort of 108 Latina women living in Southern California. We found that PM10 exposure during pregnancy was positively associated with hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-let-7c-5p, and was negatively associated with hsa-miR-378d. We also found that pregnancy PM2.5 exposure was positively associated with hsa-miR-200c-3p and hsa-miR-200b-3p. First and second trimester exposure to PM10 and PM2.5 was associated with several EV-miRNAs with putative messenger RNA targets related to cancer. This study provides preliminary evidence that air pollution exposure during pregnancy is associated with human milk EV-miRNA expression.
Collapse
Affiliation(s)
- Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - William B Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Kelsey A Schmidt
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Pari Mokhtari
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Michael I Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| |
Collapse
|
39
|
Zhu K, Hou Z, Huang C, Xu M, Mu L, Yu G, Kaufman JD, Wang M, Lu B. Assessing the timing and the duration of exposure to air pollution on cardiometabolic biomarkers in patients suspected of coronary artery disease. ENVIRONMENTAL RESEARCH 2023; 232:116334. [PMID: 37301499 PMCID: PMC10976318 DOI: 10.1016/j.envres.2023.116334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Air pollution can affect cardiometabolic biomarkers in susceptible populations, but the most important exposure window (lag days) and exposure duration (length of averaging period) are not well understood. We investigated air pollution exposure across different time intervals on ten cardiometabolic biomarkers in 1550 patients suspected of coronary artery disease. Daily residential PM2.5 and NO2 were estimated using satellite-based spatiotemporal models and assigned to participants for up to one year before the blood collection. Distributed lag models and generalized linear models were used to examine the single-day-effects by variable lags and cumulative effects of exposures averaged over different periods before the blood draw. In single-day-effect models, PM2.5 was associated with lower apolipoprotein A (ApoA) in the first 22 lag days with the effect peaking on the first lag day; PM2.5 was also associated with elevated high-sensitivity C-reactive protein (hs-CRP) with significant exposure windows observed after the first 5 lag days. For the cumulative effects, short- and medium-term exposure was associated with lower ApoA (up to 30wk-average) and higher hs-CRP (up to 8wk-average), triglycerides and glucose (up to 6 d-average), but the associations were attenuated to null over the long term. The impacts of air pollution on inflammation, lipid, and glucose metabolism differ by the exposure timing and durations, which can inform our understanding of the cascade of underlying mechanisms among susceptible patients.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Zhihui Hou
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Conghong Huang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA; College of Land Management, Nanjing Agricultural University, Nanjing, China
| | - Muwu Xu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Guan Yu
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, USA; Research and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY, USA.
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Shetty SS, D D, S H, Sonkusare S, Naik PB, Kumari N S, Madhyastha H. Environmental pollutants and their effects on human health. Heliyon 2023; 9:e19496. [PMID: 37662771 PMCID: PMC10472068 DOI: 10.1016/j.heliyon.2023.e19496] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.
Collapse
Affiliation(s)
- Shilpa S. Shetty
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Deepthi D
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Harshitha S
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Shipra Sonkusare
- Department of Obstetrics and Gynecology, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Prashanth B. Naik
- Department of Pediatrics, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Suchetha Kumari N
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
- Department of Biochemistry, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
41
|
Zhang X, Yu S, Zhang F, Zhu S, Zhao G, Zhang X, Li T, Yu B, Zhu W, Li D. Association between traffic-related air pollution and osteoporotic fracture hospitalizations in inland and coastal areas: evidences from the central areas of two cities in Shandong Province, China. Arch Osteoporos 2023; 18:96. [PMID: 37452267 DOI: 10.1007/s11657-023-01308-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Our result showed that short-term exposure to traffic-related air pollutants (TRAPs) might increase the risk of hospitalizations for osteoporotic fractures. It was suggested that government should formulate emission reduction policies to protect the health of citizens. INTRODUCTION As the main source of urban air pollution in China, exhaust emissions of motor vehicles have been linked to adverse health outcomes, but evidence of the relationship between short-term exposure to TRAPs and osteoporotic fractures is still relatively rare. METHODS In this study, a total of 5044 inpatients from an inland city (Jinan) and a coastal city (Qingdao), two cities with developed transportation in Shandong Province, were included. A generalized additive model (GAM) was used to investigate the association between TRAPs and hospitalizations for osteoporotic fractures. The stratified analyses were performed by gender and age. RESULTS Positive associations between TRAPs and osteoporotic fracture hospitalizations were observed. We found that short-term exposure to TRAPs was associated with increased numbers of hospitalizations for osteoporotic fractures. PM2.5 and PM10 were statistically significant associated with hospitalizations for osteoporotic fractures at both single-day and multiday lag structures only in Qingdao, with the strongest associations at lag06 and lag07 [RR=1.0446(95%CI: 1.0018,1.0891) for PM2.5, RR=1.0328(95%CI: 1.0084,1.0578) for PM10]. For NO2 and CO, we found significant associations at lag4 in the single lag structure in Jinan [RR=1.0354 (95%CI: 1.0071, 1.0646) for NO2, RR=1.0014 (95%CI: 1.0002, 1.0025) for CO], while only CO at lag4 was significantly associated with hospitalizations for osteoporotic fractures in Qingdao [1.0038 (1.0012, 1.0063)]. Stratified analyses indicated that the associations were stronger in females and older individuals (65 + years). CONCLUSION This study implied that short-term exposure to TRAPs pollution was associated with an increased risk of hospitalizations for osteoporotic fractures. Female patients and patients aged 65 + years appeared to be more vulnerable to TRAPs, suggesting that poor air quality is a modifiable risk factor for osteoporotic fractures.
Collapse
Affiliation(s)
- Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shengwen Yu
- Department of Orthopedics, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, 266033, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Bo Yu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Dejia Li
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
42
|
Smotherman C, Sprague B, Datta S, Braithwaite D, Qin H, Yaghjyan L. Association of air pollution with postmenopausal breast cancer risk in UK Biobank. Breast Cancer Res 2023; 25:83. [PMID: 37443054 PMCID: PMC10339564 DOI: 10.1186/s13058-023-01681-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND We investigated the association of several air pollution measures with postmenopausal breast cancer (BCa) risk. METHODS This study included 155,235 postmenopausal women (of which 6146 with BCa) from UK Biobank. Cancer diagnoses were ascertained through the linkage to the UK National Health Service Central Registers. Annual exposure averages were available from 2005, 2006, 2007, and 2010 for NO2, from 2007 and 2010 for PM10, and from 2010 for PM2.5, NOX, PM2.5-10 and PM2.5 absorbance. Information on BCa risk factors was collected at baseline. Cox proportional hazards regression was used to evaluate the associations of year-specific and cumulative average exposures with BCa risk, overall and with 2-year exposure lag, while adjusting for BCa risk factors. RESULTS PM10 in 2007 and cumulative average PM10 were positively associated with BCa risk (2007 PM10: Hazard ratio [HR] per 10 µg/m3 = 1.18, 95% CI 1.08, 1.29; cumulative average PM10: HR per 10 µg/m3 = 1.99, 95% CI 1.75, 2.27). Compared to women with low exposure, women with higher 2007 PM10 and cumulative average PM10 had greater BCa risk (4th vs. 1st quartile HR = 1.15, 95% CI 1.07, 1.24, p-trend = 0.001 and HR = 1.35, 95% CI 1.25, 1.44, p-trend < 0.0001, respectively). No significant associations were found for any other exposure measures. In the analysis with 2-year exposure lag, both 2007 PM 10 and cumulative average PM10 were positively associated with BCa risk (4th vs. 1st quartile HR = 1.19, 95% CI 1.10, 1.28 and HR = 1.29, 95% CI 1.19, 1.39, respectively). CONCLUSION Our findings suggest a positive association of 2007 PM10 and cumulative average PM10 with postmenopausal BCa risk.
Collapse
Affiliation(s)
- Carmen Smotherman
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Brian Sprague
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Susmita Datta
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dejana Braithwaite
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Huaizhen Qin
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| |
Collapse
|
43
|
Aminzadeh S, Salehcheh M, Khodayar MJ, Goudarzi G, Hemmati AA, Khorsandi LS, Asgharipour Dasht Bozorg N. The Impact of Metformin on Dust-Induced Histopathological Changes and Oxidative Stress in the Liver: An Insight into Dust Concentration and Liver Biomarkers in Animal Models. Rep Biochem Mol Biol 2023; 12:306-317. [PMID: 38317816 PMCID: PMC10838594 DOI: 10.61186/rbmb.12.2.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/15/2023] [Indexed: 02/07/2024]
Abstract
Background Environmental pollution has a profound impact on both human and animal life. Khuzestan province, which has been plagued by intense dust storms and pollution for decades, is the focus of this study. The research aims to investigate the protective effects of metformin against the toxicity of particulate matter in the livers of rats. Methods Male Wistar rats were selected for the study and divided into six groups: a control group, Metformin-treated groups, Iraqi dust-exposed group (Iraqi-D), Local dust-exposed group (Local-D), Iraqi dust-exposed with Metformin treatment group (Iraqi-D+Metformin), and Local dust-exposed with Metformin treatment group (Local-D+Metformin). The rats were exposed to local and Iraqi dust through a nebulizer and received oral metformin for a duration of 21 days. At the end of the intervention, liver biomarkers and oxidative stress factors were evaluated enzymatically. Results The study revealed that rats exposed to Iraqi and local dust experienced a significant increase in liver biomarkers, including aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALK) levels, alongside a decrease in glutathione (GSH) concentrations and an increase in malondialdehyde (MDA) levels. However, treatment with metformin was effective in preventing the increase in these biomarkers, restoring GSH levels, and averting the rise in MDA levels, as compared to the control group. Conclusions Exposure to particulate matter from Iraq and the local region can induce alterations in biomarkers and oxidative stress levels in the rat liver, and these effects can be mitigated through metformin treatment.
Collapse
Affiliation(s)
- Soheila Aminzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Salehcheh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Asghar Hemmati
- Department of Pharmacology, Faculty of Pharmacy, Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Laya sadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | |
Collapse
|
44
|
Liang D, Li Z, Vlaanderen J, Tang Z, Jones DP, Vermeulen R, Sarnat JA. A State-of-the-Science Review on High-Resolution Metabolomics Application in Air Pollution Health Research: Current Progress, Analytical Challenges, and Recommendations for Future Direction. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56002. [PMID: 37192319 PMCID: PMC10187974 DOI: 10.1289/ehp11851] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding the mechanistic basis of air pollution toxicity is dependent on accurately characterizing both exposure and biological responses. Untargeted metabolomics, an analysis of small-molecule metabolic phenotypes, may offer improved estimation of exposures and corresponding health responses to complex environmental mixtures such as air pollution. The field remains nascent, however, with questions concerning the coherence and generalizability of findings across studies, study designs and analytical platforms. OBJECTIVES We aimed to review the state of air pollution research from studies using untargeted high-resolution metabolomics (HRM), highlight the areas of concordance and dissimilarity in methodological approaches and reported findings, and discuss a path forward for future use of this analytical platform in air pollution research. METHODS We conducted a state-of-the-science review to a) summarize recent research of air pollution studies using untargeted metabolomics and b) identify gaps in the peer-reviewed literature and opportunities for addressing these gaps in future designs. We screened articles published within Pubmed and Web of Science between 1 January 2005 and 31 March 2022. Two reviewers independently screened 2,065 abstracts, with discrepancies resolved by a third reviewer. RESULTS We identified 47 articles that applied untargeted metabolomics on serum, plasma, whole blood, urine, saliva, or other biospecimens to investigate the impact of air pollution exposures on the human metabolome. Eight hundred sixteen unique features confirmed with level-1 or -2 evidence were reported to be associated with at least one or more air pollutants. Hypoxanthine, histidine, serine, aspartate, and glutamate were among the 35 metabolites consistently exhibiting associations with multiple air pollutants in at least 5 independent studies. Oxidative stress and inflammation-related pathways-including glycerophospholipid metabolism, pyrimidine metabolism, methionine and cysteine metabolism, tyrosine metabolism, and tryptophan metabolism-were the most commonly perturbed pathways reported in > 70 % of studies. More than 80% of the reported features were not chemically annotated, limiting the interpretability and generalizability of the findings. CONCLUSIONS Numerous investigations have demonstrated the feasibility of using untargeted metabolomics as a platform linking exposure to internal dose and biological response. Our review of the 47 existing untargeted HRM-air pollution studies points to an underlying coherence and consistency across a range of sample analytical quantitation methods, extraction algorithms, and statistical modeling approaches. Future directions should focus on validation of these findings via hypothesis-driven protocols and technical advances in metabolic annotation and quantification. https://doi.org/10.1289/EHP11851.
Collapse
Affiliation(s)
- Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jelle Vlaanderen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Roel Vermeulen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jeremy A. Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Hsieh SW, Chen SC, Chen CH, Wu MT, Hung CH. Risk of cognitive impairment from exposure to incense smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:231-242. [PMID: 34913383 DOI: 10.1080/09603123.2021.2014420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Incense is aromatic biotic material that releases fragrant smoke when burned. We aim to investigate the cognition risks from incense smoke. We obtained data from Taiwan Biobank in community. Cognition function was assessed by mini-mental state examination (MMSE). There were 978 participants in our study, including incense exposure (N = 131) and without incense exposure (N = 847). MMSE scores and registration sub-scores were lowered in incense exposure group than the other group. Incense exposure is one of the independent risk factors for cognitive decline in MMSE and registration sub-scores after adjusting confounding factors We concluded the risk of cognitive impairment, with predominant in registration in healthy individuals with incense exposure in community.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program of Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Chen
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan
- PhD Program of Environmental and Occupational Medicine and Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Roswall N, Poulsen AH, Hvidtfeldt UA, Hendriksen PF, Boll K, Halkjær J, Ketzel M, Brandt J, Frohn LM, Christensen JH, Im U, Sørensen M, Raaschou-Nielsen O. Exposure to ambient air pollution and lipid levels and blood pressure in an adult, Danish cohort. ENVIRONMENTAL RESEARCH 2023; 220:115179. [PMID: 36584852 DOI: 10.1016/j.envres.2022.115179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Air pollution is a well-recognized risk factor for cardiovascular disease. However, the mechanistic pathways underlying the association are not completely understood. Hence, further studies are required to shed light on potential mechanisms, through which air pollution may affect the development from subclinical to clinical cardiovascular disease. OBJECTIVES To investigate associations between short-term exposure to air pollution and high-density lipoprotein (HDL), non-high density lipoprotein (non-HDL), systolic and diastolic blood pressure. METHODS The study was conducted among 32,851 Danes from the Diet, Cancer and Health - Next Generations cohort, who had a blood sample taken and blood pressure measured. We measured HDL and non-HDL in the blood samples. We modelled exposure to fine particulate matter (PM2.5), ultrafine particles (UFP), elemental carbon (EC) and nitrogen dioxide (NO2) in time-windows from 24 h up to 90 days before blood sampling. Pollutants were modelled as total air pollution from all sources, and apportioned into contributions from non-traffic and traffic sources. We analyzed data using linear and logistic regression, with adjustment for socio-economic and lifestyle factors. RESULTS Air pollution exposure over 24 h to 30 days was generally adversely associated with lipid profile and blood pressure, e.g. for 30-day UFP-exposure, adjusted β-estimates were: -0.025 (-0.043; -0.006) for HDL, 0.086 (0.042; 0.130) for non-HDL, 2.45 (1.70; 3.11) for systolic and 1.56 (1.07; 20.4) for diastolic blood pressure, per 10,000 particles/cm3. The strongest associations were found for the non-traffic components of air pollution, and among those who were overweight/obese. DISCUSSION In this large study of air pollution and lipid levels and blood pressure, we found that 24-h to 30-day PM2.5, UFP, EC and NO2 concentrations were generally adversely associated with lipid profile and blood pressure, two important cardiovascular risk factors. The study suggests potential pathways, through which air pollution could affect the development of cardiovascular disease.
Collapse
Affiliation(s)
- Nina Roswall
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Aslak Harbo Poulsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | | | | | - Katja Boll
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | | | - Ulas Im
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
47
|
Prada D, Crandall CJ, Kupsco A, Kioumourtzoglou MA, Stewart JD, Liao D, Yanosky JD, Ramirez A, Wactawski-Wende J, Shen Y, Miller G, Ionita-Laza I, Whitsel EA, Baccarelli AA. Air pollution and decreased bone mineral density among Women's Health Initiative participants. EClinicalMedicine 2023; 57:101864. [PMID: 36820096 PMCID: PMC9938170 DOI: 10.1016/j.eclinm.2023.101864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Background Osteoporosis heavily affects postmenopausal women and is influenced by environmental exposures. Determining the impact of criteria air pollutants and their mixtures on bone mineral density (BMD) in postmenopausal women is an urgent priority. Methods We conducted a prospective observational study using data from the ethnically diverse Women's Health Initiative Study (WHI) (enrollment, September 1994-December 1998; data analysis, January 2020 to August 2022). We used log-normal, ordinary kriging to estimate daily mean concentrations of PM10, NO, NO2, and SO2 at participants' geocoded addresses (1-, 3-, and 5-year averages before BMD assessments). We measured whole-body, total hip, femoral neck, and lumbar spine BMD at enrollment and follow-up (Y1, Y3, Y6) via dual-energy X-ray absorptiometry. We estimated associations using multivariable linear and linear mixed-effects models and mixture effects using Bayesian kernel machine regression (BKMR) models. Findings In cross-sectional and longitudinal analyses, mean PM10, NO, NO2, and SO2 averaged over 1, 3, and 5 years before the visit were negatively associated with whole-body, total hip, femoral neck, and lumbar spine BMD. For example, lumbar spine BMD decreased 0.026 (95% CI: 0.016, 0.036) g/cm2/year per a 10% increase in 3-year mean NO2 concentration. BKMR suggested that nitrogen oxides exposure was inversely associated with whole-body and lumbar spine BMD. Interpretation In this cohort study, higher levels of air pollutants were associated with bone damage, particularly on lumbar spine, among postmenopausal women. These findings highlight nitrogen oxides exposure as a leading contributor to bone loss in postmenopausal women, expanding previous findings of air pollution-related bone damage. Funding US National Institutes of Health.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
- Instituto Nacional de Cancerología – México, Mexico City, Mexico
| | - Carolyn J. Crandall
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Allison Kupsco
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D. Yanosky
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Andrea Ramirez
- Instituto Nacional de Cancerología – México, Mexico City, Mexico
| | - Jean Wactawski-Wende
- School of Public Health and Health Professions, University at Buffalo, State University of New York, New York, USA
| | - Yike Shen
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gary Miller
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
48
|
Yu XH, Cao HW, Bo L, Lei SF, Deng FY. Air pollution, genetic factors and the risk of osteoporosis: A prospective study in the UK biobank. Front Public Health 2023; 11:1119774. [PMID: 37026121 PMCID: PMC10071034 DOI: 10.3389/fpubh.2023.1119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To reveal relationship between air pollution exposure and osteoporosis (OP) risk. Methods Based on large-scale data from the UK Biobank, we evaluated the relationship between OP risk and several air pollutants. Then air pollution scores (APS) were constructed to assess the combined effects of multiple air pollutants on OP risk. Finally, we constructed a genetic risk score (GRS) based on a large genome-wide association study of femoral neck bone mineral density and assessed whether single or combined exposure to air pollutants modifies the effect of genetic risk on OP and fracture risk. Results PM2.5, NO2, NOx, and APS were significantly associated with an increased risk of OP/fracture. OP and fracture risk raised with increasing concentrations of air pollutants: compared to the lowest APS quintile group, subjects in the highest quintile group had a hazard ratio (HR) (95% CI) estimated at 1.140 (1.072-1.213) for OP and 1.080 (1.026-1.136) for fracture. Moreover, participants with low GRS and the highest air pollutant concentration had the highest risk of OP, the HRs (95% CI) of OP were 1.706 (1.483-1.964), 1.658 (1.434-1.916), 1.696 (1.478-1.947), 1.740 (1.506-2.001) and 1.659 (1.442-1.908), respectively, for PM2.5, PM10, PM2.5-10, NO2, and NOx. Similar results were also observed for fractures. Finally, we assessed the joint effect of APS and GRS on the risk of OP. Participants with higher APS and lower GRS had a higher risk of developing OP. Similar results were observed in the joint effect of GRS and APS on fracture. Conclusions We found that exposure to air pollution, individually or jointly, could improve the risk of developing OP and fractures, and increased the risk by interacting with genetic factors.
Collapse
Affiliation(s)
- Xing-Hao Yu
- School of Public Health, Center for Genetic Epidemiology and Genomics, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
| | - Han-Wen Cao
- School of Public Health, Center for Genetic Epidemiology and Genomics, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shu-Feng Lei
- School of Public Health, Center for Genetic Epidemiology and Genomics, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
- Collaborative Innovation Center of Bone and Immunity Between Sihong Hospital and Soochow University, Jiangsu, China
- Shu-Feng Lei
| | - Fei-Yan Deng
- School of Public Health, Center for Genetic Epidemiology and Genomics, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, China
- *Correspondence: Fei-Yan Deng
| |
Collapse
|
49
|
Song R, Liu L, Wei N, Li X, Liu J, Yuan J, Yan S, Sun X, Mei L, Liang Y, Li Y, Jin X, Wu Y, Pan R, Yi W, Song J, He Y, Tang C, Liu X, Cheng J, Su H. Short-term exposure to air pollution is an emerging but neglected risk factor for schizophrenia: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158823. [PMID: 36116638 DOI: 10.1016/j.scitotenv.2022.158823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This meta-analysis aimed to explore the association between short-term exposure to air pollution and schizophrenia (SCZ)1, and investigate the susceptible population and the lag characteristics of different pollutants. METHODS A systematic review and meta-analysis was conducted by searching PubMed, Cochrane, Web of Sciences, and CNKI for relevant literature published up to 28 Feb 2022. Meta-analysis was performed separately to investigate the association of ambient particulates (diameter ≤ 2.5 μm (PM2.5)2, 2.5 μm < diameter < 10 μm (PMC)3, ≤10μm (PM10)4) and gaseous pollutants (nitrogen dioxide (NO2)5, sulfur dioxide (SO2)6, carbon monoxide (CO)7) with SCZ. Relative risk (RR)8 per 10 μg/m3 increase in air pollutants concentration was used as the effect estimate. Subgroup analyses were conducted by age, gender, country, median pollutant concentration, and median temperature. RESULTS We identified 17 articles mainly conducted in Asia, of which 13 were included in the meta-analysis. Increased risk of SCZ was associated with short-term exposure to PM2.5 (RR: 1.0050, 95 % confidence interval (CI)9: 1.0017, 1.0083), PMC (1.0117, 1.0023, 1.0211), PM10 (1.0047, 1.0025, 1.0070), NO2 (1.0275, 1.0132, 1.0420), and SO2 (1.0288, 1.0146, 1.0432) exposure. Subgroup analyses showed that females may be more susceptible to SO2 and NO2, and the young seem to be more sensitive to PM2.5 and PM10. Gaseous pollutants presented the immediate risk, and particulates showed the delayed risk. CONCLUSIONS The present meta-analysis suggests that short-term exposure to PM2.5, PMC, PM10, SO2, and NO2 exposure may be associated with an elevated risk of SCZ.
Collapse
Affiliation(s)
- Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
50
|
Li D, He R, Liu P, Jiang H. Differential effects of size-specific particulate matter on the number of visits to outpatient fever clinics: A time-series analysis in Zhuhai, China. Front Public Health 2022; 10:972818. [PMID: 36620254 PMCID: PMC9816473 DOI: 10.3389/fpubh.2022.972818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION While many studies have investigated the adverse effects of particulate matter (PM), few of them distinguished the different effects of PM2.5, PM10, and coarse PM (PMc) on outpatients with fever. Our study aimed to estimate and compare the acute cumulative effects of exposure to three size-specific particles on the number of visits to outpatient fever clinics. METHODS To examine the association between daily PM concentrations and outpatients in fever clinics, a generalized additive Poisson model was applied, stratified by sex, age, and season. RESULTS Our study included 56,144 outpatient visits in Zhuhai, from January 2020 to June 2021. On the current day, each 10 mg/m3 increment of PM10 and PMc were estimated to increase fever clinic visits by 1.74% (95% CI: 0.59%, 2.91%) and 4.42 % (2.30%, 6.58%), respectively. Cumulative effects enhanced from lag01 to lag05 for PM10 and PMc, and PMc had the strongest impact [ER = 8.92% (5.91%, 12.01%) at lag05]. Female outpatients and outpatients aged 14 years and above had an increased PM-related risk. During the cold season, significant effects could be observed for the three-size PM, while only PMc showed the impact during the warm season. DISCUSSION Overall, the three size-specific PM exerted different effects on the fever clinic visits. Strategies to control the concentrations of PM are still necessary, especially against PM10 and PMc.
Collapse
Affiliation(s)
- Duo Li
- Department of Operations, Zhuhai People's Hospital, Zhuhai, China
| | - Rui He
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Peixin Liu
- Department of Spine and Bone Disease, Zhuhai People's Hospital, Zhuhai, China
| | - Hong Jiang
- Department of Operations, Zhuhai People's Hospital, Zhuhai, China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| |
Collapse
|