1
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Yang J, Liu S, Zhao Q, Li X, Jiang K. Gut microbiota-related metabolite alpha-linolenic acid mitigates intestinal inflammation induced by oral infection with Toxoplasma gondii. MICROBIOME 2023; 11:273. [PMID: 38087373 PMCID: PMC10714487 DOI: 10.1186/s40168-023-01681-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/27/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral infection with cysts is the main transmission route of Toxoplasma gondii (T. gondii), which leads to lethal intestinal inflammation. It has been widely recognized that T. gondii infection alters the composition and metabolism of the gut microbiota, thereby affecting the progression of toxoplasmosis. However, the potential mechanisms remain unclear. In our previous study, there was a decrease in the severity of toxoplasmosis after T. gondii α-amylase (α-AMY) was knocked out. Here, we established mouse models of ME49 and Δα-amy cyst infection and then took advantage of 16S rRNA gene sequencing and metabolomics analysis to identify specific gut microbiota-related metabolites that mitigate T. gondii-induced intestinal inflammation and analyzed the underlying mechanism. RESULTS There were significant differences in the intestinal inflammation between ME49 cyst- and Δα-amy cyst-infected mice, and transferring feces from mice infected with Δα-amy cysts into antibiotic-treated mice mitigated colitis caused by T. gondii infection. 16S rRNA gene sequencing showed that the relative abundances of gut bacteria, such as Lactobacillus and Bacteroides, Bifidobacterium, [Prevotella], Paraprevotella and Macellibacteroides, were enriched in mice challenged with Δα-amy cysts. Spearman correlation analysis between gut microbiota and metabolites indicated that some fatty acids, including azelaic acid, suberic acid, alpha-linolenic acid (ALA), and citramalic acid, were highly positively correlated with the identified bacterial genera. Both oral administration of ALA and fecal microbiota transplantation (FMT) decreased the expression of pro-inflammatory cytokines and restrained the MyD88/NF-κB pathway, which mitigated colitis and ultimately improved host survival. Furthermore, transferring feces from mice treated with ALA reshaped the colonization of beneficial bacteria, such as Enterobacteriaceae, Proteobacteria, Shigella, Lactobacillus, and Enterococcus. CONCLUSIONS The present findings demonstrate that the host gut microbiota is closely associated with the severity of T. gondii infection. We provide the first evidence that ALA can alleviate T. gondii-induced colitis by improving the dysregulation of the host gut microbiota and suppressing the production of pro-inflammatory cytokines via the MyD88/NF-κB pathway. Our study provides new insight into the medical application of ALA for the treatment of lethal intestinal inflammation caused by Toxoplasma infection. Video Abstract.
Collapse
Affiliation(s)
- Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Songhao Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Qian Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
4
|
Hu W, Yang X, Wang L, Zhu X. MADGAN:A microbe-disease association prediction model based on generative adversarial networks. Front Microbiol 2023; 14:1159076. [PMID: 37032881 PMCID: PMC10076708 DOI: 10.3389/fmicb.2023.1159076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Researches have demonstrated that microorganisms are indispensable for the nutrition transportation, growth and development of human bodies, and disorder and imbalance of microbiota may lead to the occurrence of diseases. Therefore, it is crucial to study relationships between microbes and diseases. In this manuscript, we proposed a novel prediction model named MADGAN to infer potential microbe-disease associations by combining biological information of microbes and diseases with the generative adversarial networks. To our knowledge, it is the first attempt to use the generative adversarial network to complete this important task. In MADGAN, we firstly constructed different features for microbes and diseases based on multiple similarity metrics. And then, we further adopted graph convolution neural network (GCN) to derive different features for microbes and diseases automatically. Finally, we trained MADGAN to identify latent microbe-disease associations by games between the generation network and the decision network. Especially, in order to prevent over-smoothing during the model training process, we introduced the cross-level weight distribution structure to enhance the depth of the network based on the idea of residual network. Moreover, in order to validate the performance of MADGAN, we conducted comprehensive experiments and case studies based on databases of HMDAD and Disbiome respectively, and experimental results demonstrated that MADGAN not only achieved satisfactory prediction performances, but also outperformed existing state-of-the-art prediction models.
Collapse
Affiliation(s)
- Weixin Hu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Xiaoyu Yang
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, China
| | - Lei Wang
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, China
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
- *Correspondence: Lei Wang,
| | - Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
- Xianyou Zhu,
| |
Collapse
|
5
|
Klain A, Dinardo G, Salvatori A, Indolfi C, Contieri M, Brindisi G, Decimo F, Zicari AM, Miraglia del Giudice M. An Overview on the Primary Factors That Contribute to Non-Allergic Asthma in Children. J Clin Med 2022; 11:6567. [PMID: 36362795 PMCID: PMC9654665 DOI: 10.3390/jcm11216567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 04/13/2024] Open
Abstract
The prevalence of non-allergic asthma in childhood is low, peaking in late adulthood. It is triggered by factors other than allergens, like cold and dry air, respiratory infections, hormonal changes, smoke and air pollution. In the literature, there are few studies that describe non-allergic asthma in pediatric age. Even though it is a less common disorder in kids, it is crucial to identify the causes in order to keep asthma under control, particularly in patients not responding to conventional treatments. In this review, we discuss non-IgE-mediated forms of asthma, collecting the latest research on etiopathogenesis and treatment.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra Salvatori
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marcella Contieri
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulia Brindisi
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Decimo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Maria Zicari
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
6
|
Busse WW, Melén E, Menzies-Gow AN. Holy Grail: the journey towards disease modification in asthma. Eur Respir Rev 2022; 31:31/163/210183. [PMID: 35197266 PMCID: PMC9488532 DOI: 10.1183/16000617.0183-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
At present, there is no cure for asthma, and treatment typically involves therapies that prevent or reduce asthma symptoms, without modifying the underlying disease. A “disease-modifying” treatment can be classed as able to address the pathogenesis of a disease, preventing progression or leading to a long-term reduction in symptoms. Such therapies have been investigated and approved in other indications, e.g. rheumatoid arthritis and immunoglobulin E-mediated allergic disease. Asthma's heterogeneous nature has made the discovery of similar therapies in asthma more difficult, although novel therapies (e.g. biologics) may have the potential to exhibit disease-modifying properties. To investigate the disease-modifying potential of a treatment, study design considerations can be made, including: appropriate end-point selection, length of trial, age of study population (key differences between adults/children in physiology, pathology and drug metabolism) and comorbidities in the patient population. Potential future focus areas for disease-modifying treatments in asthma include early assessments (e.g. to detect patterns of remodelling) and interventions for patients genetically susceptible to asthma, interventions to prevent virally induced asthma and therapies to promote a healthy microbiome. This review explores the pathophysiology of asthma, the disease-modifying potential of current asthma therapies and the direction future research may take to achieve full disease remission or prevention. Asthma is a complex, heterogeneous disease, which currently has no cure; this review explores the disease-modifying potential of asthma therapies and the direction future research may take to achieve disease remission or prevention.https://bit.ly/31AxYou
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | | |
Collapse
|
7
|
Ham J, Kim J, Choi S, Park J, Baek MG, Kim YC, Sohn KH, Cho SH, Yang S, Bae YS, Chung DH, Won S, Yi H, Kang HR, Kim HY. Interactions between NCR +ILC3s and the Microbiome in the Airways Shape Asthma Severity. Immune Netw 2021; 21:e25. [PMID: 34522438 PMCID: PMC8410993 DOI: 10.4110/in.2021.21.e25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022] Open
Abstract
Asthma is a heterogeneous disease whose development is shaped by a variety of environmental and genetic factors. While several recent studies suggest that microbial dysbiosis in the gut may promote asthma, little is known about the relationship between the recently discovered lung microbiome and asthma. Innate lymphoid cells (ILCs) have also been shown recently to participate in asthma. To investigate the relationship between the lung microbiome, ILCs, and asthma, we recruited 23 healthy controls (HC), 42 patients with non-severe asthma, and 32 patients with severe asthma. Flow cytometry analysis showed severe asthma associated with fewer natural cytotoxicity receptor (NCR)+ILC3s in the lung. Similar changes in other ILC subsets, macrophages, and monocytes were not observed. The asthma patients did not differ from the HC in terms of the alpha and beta-diversity of the lung and gut microbiomes. However, lung function correlated positively with both NCR+ILC3 frequencies and microbial diversity in the lung. Sputum NCR+ILC3 frequencies correlated positively with lung microbiome diversity in the HC, but this relationship was inversed in severe asthma. Together, these data suggest that airway NCR+ILC3s may contribute to a healthy commensal diversity and normal lung function.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Sungmi Choi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Jaehyun Park
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Min-gyung Baek
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Young-Chan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
- Center for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, Korea
| | - Yong-Soo Bae
- Center for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, Korea
- RexSoft Corps, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Center for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
8
|
Wang Z, Locantore N, Haldar K, Ramsheh MY, Beech AS, Ma W, Brown JR, Tal-Singer R, Barer MR, Bafadhel M, Donaldson GC, Wedzicha JA, Singh D, Wilkinson TMA, Miller BE, Brightling CE. Inflammatory Endotype-associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am J Respir Crit Care Med 2021; 203:1488-1502. [PMID: 33332995 PMCID: PMC8483235 DOI: 10.1164/rccm.202009-3448oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: Understanding the role of the airway microbiome in chronic obstructive pulmonary disease (COPD) inflammatory endotypes may help to develop microbiome-based diagnostic and therapeutic approaches. Objectives: To understand the association of the airway microbiome with neutrophilic and eosinophilic COPD at stability and during exacerbations. Methods: An integrative analysis was performed on 1,706 sputum samples collected longitudinally from 510 patients with COPD recruited at four UK sites of the BEAT-COPD (Biomarkers to Target Antibiotic and Systemic COPD), COPDMAP (Chronic Obstructive Pulmonary Disease Medical Research Council/Association of the British Pharmaceutical Industry), and AERIS (Acute Exacerbation and Respiratory Infections in COPD) cohorts. The microbiome was analyzed using COPDMAP and AERIS as a discovery data set and BEAT-COPD as a validation data set. Measurements and Main Results: The airway microbiome in neutrophilic COPD was heterogeneous, with two primary community types differentiated by the predominance of Haemophilus. The Haemophilus-predominant subgroup had elevated sputum IL-1β and TNFα (tumor necrosis factor α) and was relatively stable over time. The other neutrophilic subgroup with a balanced microbiome profile had elevated sputum and serum IL-17A and was temporally dynamic. Patients in this state at stability were susceptible to the greatest microbiome shifts during exacerbations. This subgroup can temporally switch to both neutrophilic Haemophilus-predominant and eosinophilic states that were otherwise mutually exclusive. Time-series analysis on the microbiome showed that the temporal trajectories of Campylobacter and Granulicatella were indicative of intrapatient switches from neutrophilic to eosinophilic inflammation, in track with patient sputum eosinophilia over time. Network analysis revealed distinct host-microbiome interaction patterns among neutrophilic Haemophilus-predominant, neutrophilic balanced microbiome, and eosinophilic subgroups. Conclusions: The airway microbiome can stratify neutrophilic COPD into subgroups that justify different therapies. Neutrophilic and eosinophilic COPD are interchangeable in some patients. Monitoring temporal variability of the airway microbiome may track patient inflammatory status over time.
Collapse
Affiliation(s)
- Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | - Koirobi Haldar
- Human Genetics, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania
| | | | - Augusta S. Beech
- Department of Respiratory Sciences, Institute for Lung Health, Leicester National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Wei Ma
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - James R. Brown
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Ruth Tal-Singer
- Chronic Obstructive Pulmonary Disease Foundation, Research Department, Washington, District of Columbia
| | - Michael R. Barer
- Human Genetics, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Dave Singh
- Department of Respiratory Sciences, Institute for Lung Health, Leicester National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Tom M. A. Wilkinson
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | | | | |
Collapse
|
9
|
Sohn KH, Baek MG, Choi SM, Bae B, Kim RY, Kim YC, Kim HY, Yi H, Kang HR. Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma. J Microbiol Biotechnol 2020; 30:1819-1826. [PMID: 33046682 PMCID: PMC9728179 DOI: 10.4014/jmb.2009.09019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13- overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.
Collapse
Affiliation(s)
- Kyoung-Hee Sohn
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea,Division of Pulmonology, Allergy and Critical Care, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul 0447, Republic of Korea
| | - Min-gyung Baek
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Mi Choi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Ruth Yuldam Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Young-Chan Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Hye-Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea,Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 08826, Republic of Korea
| | - Hana Yi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea,School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea,Corresponding authors H.Yi Phone: +82-2-3290-5644 Fax: +82-2-940-2849 E-mail:
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 08826, Republic of Korea,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 0882, Republic of Korea,H-R.Kang Phone: 82-2-2072-0820 Fax: 82-2-742-3291 E-mail:
| |
Collapse
|
10
|
Paudel KR, Dharwal V, Patel VK, Galvao I, Wadhwa R, Malyla V, Shen SS, Budden KF, Hansbro NG, Vaughan A, Yang IA, Kohonen-Corish MRJ, Bebawy M, Dua K, Hansbro PM. Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Front Med (Lausanne) 2020; 7:554. [PMID: 33043031 PMCID: PMC7530186 DOI: 10.3389/fmed.2020.00554] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung fibrosis, and lung cancer, pose a huge socio-economic burden on society and are one of the leading causes of death worldwide. In the past, culture-dependent techniques could not detect bacteria in the lungs, therefore the lungs were considered a sterile environment. However, the development of culture-independent techniques, particularly 16S rRNA sequencing, allowed for the detection of commensal microbes in the lung and with further investigation, their roles in disease have since emerged. In healthy individuals, the predominant commensal microbes are of phylum Firmicutes and Bacteroidetes, including those of the genera Veillonella and Prevotella. In contrast, pathogenic microbes (Haemophilus, Streptococcus, Klebsiella, Pseudomonas) are often associated with lung diseases. There is growing evidence that microbial metabolites, structural components, and toxins from pathogenic and opportunistic bacteria have the capacity to stimulate both innate and adaptive immune responses, and therefore can contribute to the pathogenesis of lung diseases. Here we review the multiple mechanisms that are altered by pathogenic microbiomes in asthma, COPD, lung cancer, and lung fibrosis. Furthermore, we focus on the recent exciting advancements in therapies that can be used to restore altered microbiomes in the lungs.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vyoma K Patel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Sj Sijie Shen
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Annalicia Vaughan
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Ian A Yang
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Maija R J Kohonen-Corish
- Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
11
|
The Genomics and Metagenomics of Asthma Severity (GEMAS) Study: Rationale and Design. J Pers Med 2020; 10:jpm10030123. [PMID: 32933076 PMCID: PMC7563269 DOI: 10.3390/jpm10030123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Asthma exacerbations are a major contributor to the global disease burden, but no significant predictive biomarkers are known. The Genomics and Metagenomics of Asthma Severity (GEMAS) study aims to assess the role of genomics and the microbiome in severe asthma exacerbations. Here, we present the design of GEMAS and the characteristics of patients recruited from March 2018 to March 2020. Different biological samples and demographic and clinical variables were collected from asthma patients recruited by allergy and pulmonary medicine units in several hospitals from Spain. Cases and controls were defined by the presence/absence of severe asthma exacerbations in the past year (oral corticosteroid use, emergency room visits, and/or asthma-related hospitalizations). A total of 137 cases and 120 controls were recruited. After stratifying by recruitment location (i.e., Canary Islands and Basque Country), cases and controls did not differ for most demographic and clinical variables (p > 0.05). However, cases showed a higher proportion of characteristics inherent to asthma exacerbations (impaired lung function, severe disease, uncontrolled asthma, gastroesophageal reflux, and use of asthma medications) compared to controls (p < 0.05). Similar results were found after stratification by recruitment unit. Thereby, asthma patients enrolled in GEMAS are balanced for potential confounders and have clinical characteristics that support the phenotype definition. GEMAS will improve the knowledge of potential biomarkers of asthma exacerbations.
Collapse
|
12
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
13
|
Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310:108732. [DOI: 10.1016/j.cbi.2019.108732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
14
|
Li H, Wang Y, Jiang J, Zhao H, Feng X, Zhao B, Wang L. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Front Microbiol 2019; 10:676. [PMID: 31024478 PMCID: PMC6465552 DOI: 10.3389/fmicb.2019.00676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
The survival of human beings is inseparable from microbes. More and more studies have proved that microbes can affect human physiological processes in various aspects and are closely related to some human diseases. In this paper, based on known microbe-disease associations, a bidirectional weighted network was constructed by integrating the schemes of normalized Gaussian interactions and bidirectional recommendations firstly. And then, based on the newly constructed bidirectional network, a computational model called BWNMHMDA was developed to predict potential relationships between microbes and diseases. Finally, in order to evaluate the superiority of the new prediction model BWNMHMDA, the framework of LOOCV and 5-fold cross validation were implemented, and simulation results indicated that BWNMHMDA could achieve reliable AUCs of 0.9127 and 0.8967 ± 0.0027 in these two different frameworks respectively, which is outperformed some state-of-the-art methods. Moreover, case studies of asthma, colorectal carcinoma, and chronic obstructive pulmonary disease were implemented to further estimate the performance of BWNMHMDA. Experimental results showed that there are 10, 9, and 8 out of the top 10 predicted microbes having been confirmed by related literature in these three kinds of case studies separately, which also demonstrated that our new model BWNMHMDA could achieve satisfying prediction performance.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Yuqi Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Jingwu Jiang
- Clinical Lab, Yongcheng People's Hospital, Shangqiu, China
| | - Haochen Zhao
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Xiang Feng
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| | - Bihai Zhao
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| | - Lei Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| |
Collapse
|
15
|
Katsoulis K, Ismailos G, Kipourou M, Kostikas K. Microbiota and asthma: Clinical implications. Respir Med 2018; 146:28-35. [PMID: 30665515 DOI: 10.1016/j.rmed.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Konstantinos Katsoulis
- Pulmonary Department, 424 Army General Hospital, Periferiaki Odos, 56429, Efkarpia, Thessaloniki, Greece
| | - Georgios Ismailos
- Experimental-Research Center ELPEN, ELPEN Pharmaceuticals, Leoforos Marathonos 95, 19009, Pikermi, Attika, Greece
| | - Maria Kipourou
- Pulmonary Department, 424 Army General Hospital, Periferiaki Odos, 56429, Efkarpia, Thessaloniki, Greece.
| | - Konstantinos Kostikas
- 2nd Respiratory Medicine Department, University of Athens Medical School, Attikon Hospital, Athens, Greece
| |
Collapse
|
16
|
Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J Nutr Biochem 2018; 61:111-128. [PMID: 30196243 PMCID: PMC7126101 DOI: 10.1016/j.jnutbio.2018.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Subhasree Sengupta
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
17
|
Di Cicco M, Pistello M, Jacinto T, Ragazzo V, Piras M, Freer G, Pifferi M, Peroni D. Does lung microbiome play a causal or casual role in asthma? Pediatr Pulmonol 2018; 53:1340-1345. [PMID: 29943915 DOI: 10.1002/ppul.24086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022]
Abstract
Asthma is the most common chronic disease in childhood. The pathogenesis of asthma is multifactorial and is thought to include environmental factors interacting with genetics during pregnancy and in the first years of life. In the last decades, a possible role of gut microbiota in allergic disease pathogenesis has been demonstrated. Next generation sequencing techniques have allowed the identification of a distinct microbiome in the healthy lungs. The lung microbiome is characterized by the prevalence of bacteria belonging to the phylum Bacteroidetes (mostly Prevotella and Veilonella spp) in healthy subjects and to the phylum Proteobacteria in asthmatics (mostly Haemophilus, Moraxella, and Neisseria spp). In asthma, as well as in other diseases, the lung microbiome composition changes due to a disruption of the delicate balance between immigration and elimination of bacteria. The lung microbiome can interact with the immune system, thus influencing inflammation. Early infections with viruses, such as respiratory syncytial virus, may alter lung microbiome composition favoring the emergence of Proteobacteria, a phylum which is also linked to severity of asthma and bronchial hyperreactivity. Lastly, antibiotics may alter the gut and lung microbiota and potentially disturb the relationship between microbiota and host. Therefore, antibiotics should be prescribed with increasing awareness of their potential harmful effect on the microbiota in young children with and without asthma. The potential effects of probiotics and prebiotics on lung microbiome are unknown.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| | - Tiago Jacinto
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Cardiovascular and Respiratory Sciences, Porto Health School, Porto, Portugal
| | - Vincenzo Ragazzo
- Pediatrics and Neonatology Division, Women's and Children's Health Department, Versilia Hospital, Lido di Camaiore, Italy
| | - Martina Piras
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Pifferi
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| | - Diego Peroni
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
18
|
Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms 2018; 6:microorganisms6020035. [PMID: 29693607 PMCID: PMC6027349 DOI: 10.3390/microorganisms6020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
An extensive body of evidence documents the importance of the gut microbiome both in health and in a variety of human diseases. Cell and animal studies describing this relationship abound, whilst clinical studies exploring the associations between changes in gut microbiota and the corresponding metabolites with neurodegeneration in the human brain have only begun to emerge more recently. Further, the findings of such studies are often difficult to translate into simple clinical applications that result in measurable health outcomes. The purpose of this paper is to appraise the literature on a select set of faecal biomarkers from a clinician’s perspective. This practical review aims to examine key physiological processes that influence both gastrointestinal, as well as brain health, and to discuss how tools such as the characterisation of commensal bacteria, the identification of potential opportunistic, pathogenic and parasitic organisms and the quantification of gut microbiome biomarkers and metabolites can help inform clinical decisions of nutrition and lifestyle medicine practitioners.
Collapse
|
19
|
Abstract
The microbiome is defined as the total of cellular microorganisms of baczerial, viral or e. g., parasite origin living on the surface of a body. Within the anatomical areas of otorhinolaryngology, a significant divergence and variance can be demonstrated. For ear, nose, throat, larynx and cutis different interactions of microbiome and common factors like age, diet and live style factors (e. g., smoking) have been detected in recent years. Besides, new insights hint at a passible pathognomic role of the microbiome towards diseases in the ENT area. This review article resumes the present findings of this rapidly devloping scientific area.
Collapse
Affiliation(s)
- Achim G Beule
- HNO-Uniklinik Münster.,Klinik und Poliklinik für Hals-Nasen-Ohrenkrankheiten der Universitätsmedizin Greifswald
| |
Collapse
|
20
|
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, González E, Hernández E, Finlay BB, Ximenez C. Human Intestinal Microbiota: Interaction Between Parasites and the Host Immune Response. Arch Med Res 2017; 48:690-700. [PMID: 29290328 DOI: 10.1016/j.arcmed.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
The human gut is a highly complex ecosystem with an extensive microbial community, and the influence of the intestinal microbiota reaches the entire host organism. For example, the microbiome regulates fat storage, stimulates or renews epithelial cells, and influences the development and maturation of the brain and the immune system. Intestinal microbes can protect against infection by pathogenic bacteria, viruses, fungi and parasites. Hence, the maintenance of homeostasis between the gut microbiota and the rest of the body is crucial for health, with dysbiosis affecting disease. This review focuses on intestinal protozoa, especially those still representing a public health problem in Mexico, and their interactions with the microbiome and the host. The decrease in prevalence of intestinal helminthes in humans left a vacant ecological niche that was quickly occupied by protozoa. Although the mechanisms governing the interaction between intestinal microbiota and protozoa are poorly understood, it is known that the composition of the intestinal bacterial populations modulates the progression of protozoan infection and the outcome of parasitic disease. Most reports on the complex interactions between intestinal bacteria, protozoa and the immune system emphasize the protective role of the microbiota against protozoan infection. Insights into such protection may facilitate the manipulation of microbiota components to prevent and treat intestinal protozoan infections. Here we discuss recent findings about the immunoregulatory effect of intestinal microbiota with regards to intestinal colonization by protozoa, focusing on infections by Entamoeba histolytica, Blastocystis spp, Giardia duodenalis, Toxoplasma gondii and Cryptosporidium parvum. The possible consequences of the microbiota on parasitic, allergic and autoimmune disorders are also considered.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Angélica Serrano-Vázquez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miriam E Nieves-Ramírez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Moran
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Liliana Rojas
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Tobias Portillo
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación Científica, Universidad Nacional Autónoma de México, Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Enrique González
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eric Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - B Brett Finlay
- Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Cecilia Ximenez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
21
|
Fijten RRR, Smolinska A, Drent M, Dallinga JW, Mostard R, Pachen DM, van Schooten FJ, Boots AW. The necessity of external validation in exhaled breath research: a case study of sarcoidosis. J Breath Res 2017; 12:016004. [DOI: 10.1088/1752-7163/aa8409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Abstract
The use of culture-independent techniques has allowed us to appreciate that the upper and lower respiratory tract contain a diverse community of microbes in health and disease. Research has only recently explored the effects of the microbiome on the host immune response. The exposure of the human body to the bacterial environment is an important factor for immunological development; thus, the interaction between the microbiome and its host is critical to understanding the pathogenesis of disease. In this article, we discuss the mechanisms that determine the composition of the airway microbiome and its effects on the host immune response. With the use of ecological principles, we have learned how the lower airways constitute a unique niche subjected to frequent microbial migration (e.g., through aspiration) and constant immunological pressure. The discussion will focus on the possible inflammatory pathways that are up- and downregulated when the immune system is challenged by dysbiosis. Identification of potential markers and microbial targets to address the modulation of inflammation in early disease, when changes may have the most effect, will be critical for future therapies.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW In terms of immune regulating functions, analysis of the microbiome has led the development of therapeutic strategies that may be applicable to asthma management. This review summarizes the current literature on the gut and lung microbiota in asthma pathogenesis with a focus on the roles of innate molecules and new microbiome-mediated therapeutics. RECENT FINDINGS Recent clinical and basic studies to date have identified several possible therapeutics that can target innate immunity and the microbiota in asthma. Some of these drugs have shown beneficial effects in the treatment of certain asthma phenotypes and for protection against asthma during early life. Current clinical evidence does not support the use of these therapies for effective treatment of asthma. The integration of the data regarding microbiota with technologic advances, such as next generation sequencing and omics offers promise. Combining comprehensive bioinformatics, new molecules and approaches may shape future asthma treatment.
Collapse
|
24
|
Dai D, Prussin AJ, Marr LC, Vikesland PJ, Edwards MA, Pruden A. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7759-7774. [PMID: 28677960 DOI: 10.1021/acs.est.7b01097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.
Collapse
Affiliation(s)
- Dongjuan Dai
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Aaron J Prussin
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Linsey C Marr
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Peter J Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg Virginia 24061, United States
| |
Collapse
|
25
|
Vientós-Plotts AI, Ericsson AC, Rindt H, Reinero CR. Oral Probiotics Alter Healthy Feline Respiratory Microbiota. Front Microbiol 2017; 8:1287. [PMID: 28744273 PMCID: PMC5504723 DOI: 10.3389/fmicb.2017.01287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding bacterial species present in the oral probiotics in the upper and lower airways provides pilot data suggesting that oral probiotics could serve as a tool to target dysbiosis occurring in inflammatory airway diseases such as feline asthma, a disease in which cats serve as an important comparative and translational model for humans.
Collapse
Affiliation(s)
- Aida I Vientós-Plotts
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| | - Aaron C Ericsson
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,University of Missouri Metagenomics Center, University of MissouriColumbia, MO, United States.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of MissouriColumbia, MO, United States
| | - Hansjorg Rindt
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| | - Carol R Reinero
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| |
Collapse
|
26
|
Checkley W, Deza MP, Klawitter J, Romero KM, Klawitter J, Pollard SL, Wise RA, Christians U, Hansel NN. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir Med 2016; 121:59-66. [PMID: 27888993 DOI: 10.1016/j.rmed.2016.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. METHODS We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. RESULTS A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p < 0.001 after Bonferroni correction). Moreover, a combination of 2-isopropylmalic acid and betaine strongly discriminated between children with asthma (2-isopropylmalic acid ≤ 13 077 normalized counts/second) and controls (2-isopropylmalic acid > 13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). CONCLUSIONS By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that serum metabolomics may represent a diagnostic tool for asthma and may be helpful for distinguishing asthma phenotypes.
Collapse
Affiliation(s)
- William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA.
| | - Maria P Deza
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jost Klawitter
- iC42 Clinical Research and Development, University of Colorado, Aurora, CO, USA
| | - Karina M Romero
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA; Biomedical Research Unit, A.B. PRISMA, Lima, Peru
| | - Jelena Klawitter
- iC42 Clinical Research and Development, University of Colorado, Aurora, CO, USA
| | - Suzanne L Pollard
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Robert A Wise
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, University of Colorado, Aurora, CO, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
27
|
Abstract
Chronic bacterial infection is implicated in both the development and severity of asthma. The atypical bacteria Mycoplasma pneumoniae and Chlamydophila pneumoniae have been identified in the airways of asthmatics and correlated with clinical features such as adult onset, exacerbation risks, steroid sensitivity, and symptom control. Asthmatic patients with evidence of bacterial infection may benefit from antibiotic treatment directed towards these atypical organisms. Examination of the airway microbiome may identify microbial communities that confer risk for or protection from severe asthma.
Collapse
|
28
|
The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol 2016; 274:617-626. [DOI: 10.1007/s00405-016-4058-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
|
29
|
Beck JM, Schloss PD, Venkataraman A, Twigg H, Jablonski KA, Bushman FD, Campbell TB, Charlson ES, Collman RG, Crothers K, Curtis JL, Drews KL, Flores SC, Fontenot AP, Foulkes MA, Frank I, Ghedin E, Huang L, Lynch SV, Morris A, Palmer BE, Schmidt TM, Sodergren E, Weinstock GM, Young VB. Multicenter Comparison of Lung and Oral Microbiomes of HIV-infected and HIV-uninfected Individuals. Am J Respir Crit Care Med 2016; 192:1335-44. [PMID: 26247840 DOI: 10.1164/rccm.201501-0128oc] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Improved understanding of the lung microbiome in HIV-infected individuals could lead to better strategies for diagnosis, therapy, and prophylaxis of HIV-associated pneumonias. Differences in the oral and lung microbiomes in HIV-infected and HIV-uninfected individuals are not well defined. Whether highly active antiretroviral therapy influences these microbiomes is unclear. OBJECTIVES We determined whether oral and lung microbiomes differed in clinically healthy groups of HIV-infected and HIV-uninfected subjects. METHODS Participating sites in the Lung HIV Microbiome Project contributed bacterial 16S rRNA sequencing data from oral washes and bronchoalveolar lavages (BALs) obtained from HIV-uninfected individuals (n = 86), HIV-infected individuals who were treatment naive (n = 18), and HIV-infected individuals receiving antiretroviral therapy (n = 38). MEASUREMENTS AND MAIN RESULTS Microbial populations differed in the oral washes among the subject groups (Streptococcus, Actinomyces, Rothia, and Atopobium), but there were no individual taxa that differed among the BALs. Comparison of oral washes and BALs demonstrated similar patterns from HIV-uninfected individuals and HIV-infected individuals receiving antiretroviral therapy, with multiple taxa differing in abundance. The pattern observed from HIV-infected individuals who were treatment naive differed from the other two groups, with differences limited to Veillonella, Rothia, and Granulicatella. CD4 cell counts did not influence the oral or BAL microbiome in these relatively healthy, HIV-infected subjects. CONCLUSIONS The overall similarity of the microbiomes in participants with and without HIV infection was unexpected, because HIV-infected individuals with relatively preserved CD4 cell counts are at higher risk for lower respiratory tract infections, indicating impaired local immune function.
Collapse
Affiliation(s)
- James M Beck
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado.,2 Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado
| | - Patrick D Schloss
- 3 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Arvind Venkataraman
- 3 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Homer Twigg
- 4 Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Kathleen A Jablonski
- 5 Department of Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia
| | | | - Thomas B Campbell
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Emily S Charlson
- 7 Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G Collman
- 7 Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristina Crothers
- 8 Department of Medicine, University of Washington, Seattle, Washington
| | - Jeffrey L Curtis
- 3 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,9 Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Kimberly L Drews
- 5 Department of Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia
| | - Sonia C Flores
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Andrew P Fontenot
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Mary A Foulkes
- 5 Department of Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia
| | - Ian Frank
- 7 Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elodie Ghedin
- 10 Department of Computational and Systems Biology and
| | - Laurence Huang
- 11 Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Susan V Lynch
- 11 Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Alison Morris
- 12 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brent E Palmer
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Thomas M Schmidt
- 3 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Erica Sodergren
- 13 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Vincent B Young
- 3 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
30
|
Wu P, Feldman AS, Rosas-Salazar C, James K, Escobar G, Gebretsadik T, Li SX, Carroll KN, Walsh E, Mitchel E, Das S, Kumar R, Yu C, Dupont WD, Hartert TV. Relative Importance and Additive Effects of Maternal and Infant Risk Factors on Childhood Asthma. PLoS One 2016; 11:e0151705. [PMID: 27002979 PMCID: PMC4803347 DOI: 10.1371/journal.pone.0151705] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/02/2016] [Indexed: 12/26/2022] Open
Abstract
Background Environmental exposures that occur in utero and during early life may contribute to the development of childhood asthma through alteration of the human microbiome. The objectives of this study were to estimate the cumulative effect and relative importance of environmental exposures on the risk of childhood asthma. Methods We conducted a population-based birth cohort study of mother-child dyads who were born between 1995 and 2003 and were continuously enrolled in the PRIMA (Prevention ofRSV: Impact onMorbidity andAsthma) cohort. The individual and cumulative impact of maternal urinary tract infections (UTI) during pregnancy, maternal colonization with group B streptococcus (GBS), mode of delivery, infant antibiotic use, and older siblings at home, on the risk of childhood asthma were estimated using logistic regression. Dose-response effect on childhood asthma risk was assessed for continuous risk factors: number of maternal UTIs during pregnancy, courses of infant antibiotics, and number of older siblings at home. We further assessed and compared the relative importance of these exposures on the asthma risk. In a subgroup of children for whom maternal antibiotic use during pregnancy information was available, the effect of maternal antibiotic use on the risk of childhood asthma was estimated. Results Among 136,098 singleton birth infants, 13.29% developed asthma. In both univariate and adjusted analyses, maternal UTI during pregnancy (odds ratio [OR] 1.2, 95% confidence interval [CI] 1.18, 1.25; adjusted OR [AOR] 1.04, 95%CI 1.02, 1.07 for every additional UTI) and infant antibiotic use (OR 1.21, 95%CI 1.20, 1.22; AOR 1.16, 95%CI 1.15, 1.17 for every additional course) were associated with an increased risk of childhood asthma, while having older siblings at home (OR 0.92, 95%CI 0.91, 0.93; AOR 0.85, 95%CI 0.84, 0.87 for each additional sibling) was associated with a decreased risk of childhood asthma, in a dose-dependent manner. Compared with vaginal delivery, C-section delivery increased odds of childhood asthma by 34% (OR 1.34, 95%CI 1.29, 1.39) in the univariate analysis and 11% after adjusting for other environmental exposures and covariates (AOR 1.11, 95%CI 1.06, 1.15). Maternal GBS was associated with a significant increased risk of childhood asthma in the univariate analysis (OR 1.27, 95%CI 1.19, 1.35), but not in the adjusted analysis (AOR 1.03, 95%CI 0.96, 1.10). In the subgroup analysis of children whose maternal antibiotic use information was available, maternal antibiotic use was associated with an increased risk of childhood asthma in a similar dose-dependent manner in the univariate and adjusted analyses (OR 1.13, 95%CI 1.12, 1.15; AOR 1.06, 95%CI 1.05, 1.08 for every additional course). Compared with infants with the lowest number of exposures (no UTI during pregnancy, vaginal delivery, at least five older siblings at home, no antibiotics during infancy), infants with the highest number of exposures (at least three UTIs during pregnancy, C-section delivery, no older siblings, eight or more courses of antibiotics during infancy) had a 7.77 fold increased odds of developing asthma (AOR: 7.77, 95%CI: 6.25, 9.65). Lastly, infant antibiotic use had the greatest impact on asthma risk compared with maternal UTI during pregnancy, mode of delivery and having older siblings at home. Conclusion Early-life exposures, maternal UTI during pregnancy (maternal antibiotic use), mode of delivery, infant antibiotic use, and having older siblings at home, are associated with an increased risk of childhood asthma in a cumulative manner, and for those continuous variables, a dose-dependent relationship. Compared with in utero exposures, exposures occurring during infancy have a greater impact on the risk of developing childhood asthma.
Collapse
Affiliation(s)
- Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and Center for Asthma and Environmental Sciences Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| | - Amy S. Feldman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and Center for Asthma and Environmental Sciences Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christian Rosas-Salazar
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kristina James
- Peninsula Allergy & Asthma Center, Soldotna, Alaska, United States of America
| | - Gabriel Escobar
- Kaiser Permanente Medical Care Program, Oakland, California, United States of America
- Kaiser Permanente Northern California, Perinatal Research Unit, Division of Research, Oakland, California, United States of America
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sherian Xu Li
- Kaiser Permanente Northern California, Perinatal Research Unit, Division of Research, Oakland, California, United States of America
| | - Kecia N. Carroll
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Eileen Walsh
- Kaiser Permanente Northern California, Perinatal Research Unit, Division of Research, Oakland, California, United States of America
| | - Edward Mitchel
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Suman Das
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rajesh Kumar
- The Ann and Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, Illinois, United States of America
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - William D. Dupont
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Tina V. Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and Center for Asthma and Environmental Sciences Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
31
|
Barfod KK, Vrankx K, Mirsepasi-Lauridsen HC, Hansen JS, Hougaard KS, Larsen ST, Ouwenhand AC, Krogfelt KA. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment. Open Microbiol J 2015; 9:167-79. [PMID: 26668669 PMCID: PMC4676059 DOI: 10.2174/1874285801509010167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances
in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic
microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis
of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota
can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon
nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was
extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that:
the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can
change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome
detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure
does not. These observations should be considered in future studies of the causal relationship between lung microbiota
and lung diseases.
Collapse
Affiliation(s)
| | - Katleen Vrankx
- Applied Maths, Keistraat 120, 9830 Sint-Martens-Latem, Belgium
| | | | - Jitka Stilund Hansen
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Søren Thor Larsen
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Arthur C Ouwenhand
- Active Nutrition, Dupont Nutrition & Health, Sokeritehtaantie 20, 02460 Kantvik Finland
| | | |
Collapse
|
32
|
West CE, Jenmalm MC, Prescott SL. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy 2015; 45:43-53. [PMID: 24773202 DOI: 10.1111/cea.12332] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiota are critical in the homoeostasis of multiple interconnected host metabolic and immune networks. If early microbial colonization is delayed, the gut-associated lymphoid tissues (GALT) fail to develop, leading to persistent immune dysregulation in mice. Microbial colonization has also been proposed as a major driver for the normal age-related maturation of both Th1 and T regulatory (Treg) pathways that appear important in suppressing early propensity for Th2 allergic responses. There is emerging evidence that resident symbionts induce tolerogenic gut-associated Treg cells and dendritic cells that ensure the preferential growth of symbionts; keeping pathogenic strains in check and constraining proinflammatory Th1, Th2, and Th17 clones. Some effects of symbionts are mediated by short-chain fatty acids, which play a critical role in mucosal integrity and local and systemic metabolic function and stimulate the regulatory immune responses. The homoeostatic IL-10/TGF-β dominated tolerogenic response within the GALT also signals the production of secretory IgA, which have a regulating role in mucosal integrity. Contrary to the 'sterile womb' paradigm, recent studies suggest that maternal microbial transfer to the offspring begins during pregnancy, providing a pioneer microbiome. It is likely that appropriate microbial stimulation both pre- and postnatally is required for optimal Th1 and Treg development to avoid the pathophysiological processes leading to allergy. Disturbed gut colonization patterns have been associated with allergic disease, but whether microbial variation is the cause or effect of these diseases is still under investigation. We are far from understanding what constitutes a 'healthy gut microbiome' that promotes tolerance. This remains a major limitation and might explain some of the inconsistency in human intervention studies with prebiotics and probiotics. Multidisciplinary integrative approaches with researchers working in networks, using harmonized outcomes and methodologies, are needed to advance our understanding in this field.
Collapse
Affiliation(s)
- C E West
- International Inflammation (in-FLAME) network of the World Universities Network, Umeå, Sweden; Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
33
|
Yu W, Yuan X, Xu X, Ding R, Pang L, Liu Y, Guo Y, Li H, Li M, Yuan J, Tang L, Wen S. Reduced airway microbiota diversity is associated with elevated allergic respiratory inflammation. Ann Allergy Asthma Immunol 2015; 115:63-8. [PMID: 26123423 DOI: 10.1016/j.anai.2015.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND An increased prevalence of allergic disorders in developed countries has been associated with decreased exposure to environmental micro-organisms and an alteration of microbiota colonization. An appropriate model is needed to investigate the mechanisms by which hygiene environment-driven changes in microbiota could regulate allergic disorders. OBJECTIVE To discover the correlation between the higher incidence and severity of allergies with the relative hygiene environment in a developed country. METHODS Allergic respiratory inflammation was induced in specific pathogen-free and control rats by sensitization and challenge with ovalbumin. The diversity of lower airway bacteria community was analyzed by polymerase chain reaction denaturing gradient gel electrophoresis and sequencing before ovalbumin sensitization. Allergic respiratory inflammation resulting in cellular infiltrate was measured after the last challenge. RESULTS The diversity of microbiota in the airway of specific pathogen-free rats decreased compared with the control rats; the more frequent microbiota in the control rats were Proteobacteria and Bacteroidetes. In addition, increased nasal rubbing and sneezing combined with exaggerated IgE production and leukocyte number was observed in ovalbumin-treated specific pathogen-free rats. CONCLUSION These data indicate that the excessive "hygienic" environment resulted in a decreased bacterial diversity in the airway during infancy, leading to an increased susceptibility to allergic disease.
Collapse
Affiliation(s)
- Wenkai Yu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; Department of Laboratory, Jining No 1 People's Hospital, Jining, Shangdong, China
| | - Xiaopeng Yuan
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xingche Xu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Ding
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Liyuan Pang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yinhui Liu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yanjie Guo
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Shu Wen
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
34
|
Castro-Nallar E, Bendall ML, Pérez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, Schroeder JR, Yolken RH, Crandall KA. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 2015; 3:e1140. [PMID: 26336637 PMCID: PMC4556144 DOI: 10.7717/peerj.1140] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
The role of the human microbiome in schizophrenia remains largely unexplored. The microbiome has been shown to alter brain development and modulate behavior and cognition in animals through gut-brain connections, and research in humans suggests that it may be a modulating factor in many disorders. This study reports findings from a shotgun metagenomic analysis of the oropharyngeal microbiome in 16 individuals with schizophrenia and 16 controls. High-level differences were evident at both the phylum and genus levels, with Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria dominating both schizophrenia patients and controls, and Ascomycota being more abundant in schizophrenia patients than controls. Controls were richer in species but less even in their distributions, i.e., dominated by fewer species, as opposed to schizophrenia patients. Lactic acid bacteria were relatively more abundant in schizophrenia, including species of Lactobacilli and Bifidobacterium, which have been shown to modulate chronic inflammation. We also found Eubacterium halii, a lactate-utilizing species. Functionally, the microbiome of schizophrenia patients was characterized by an increased number of metabolic pathways related to metabolite transport systems including siderophores, glutamate, and vitamin B12. In contrast, carbohydrate and lipid pathways and energy metabolism were abundant in controls. These findings suggest that the oropharyngeal microbiome in individuals with schizophrenia is significantly different compared to controls, and that particular microbial species and metabolic pathways differentiate both groups. Confirmation of these findings in larger and more diverse samples, e.g., gut microbiome, will contribute to elucidating potential links between schizophrenia and the human microbiota.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Computational Biology Institute, George Washington University , Ashburn, VA , USA ; Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Facultad de Ciencias Biológicas , Santiago , Chile
| | - Matthew L Bendall
- Computational Biology Institute, George Washington University , Ashburn, VA , USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, George Washington University , Ashburn, VA , USA ; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto , Vairão , USA ; Division of Emergency Medicine, Children's National Medical Center , Washington, D.C. , USA
| | - Sarven Sabuncyan
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine , Baltimore, MD , USA
| | - Emily G Severance
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine , Baltimore, MD , USA
| | | | | | - Robert H Yolken
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine , Baltimore, MD , USA
| | - Keith A Crandall
- Computational Biology Institute, George Washington University , Ashburn, VA , USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize recent studies of the lower respiratory microbiome in asthma, the role of innate immunity in asthma and strategies to understand complex microbiome-immune interactions in asthma. RECENT FINDINGS Recent evidence indicates that the composition of lower respiratory microbiota in asthmatic individuals, across a spectrum of disease severity, is altered compared with healthy individuals. Attributes of this altered airway microbiome have been linked to clinical and inflammatory features of asthma. The importance of innate immune cells and mucosal defense systems in asthma is increasingly appreciated and may be dysregulated in the disease. SUMMARY Interactions between the respiratory microbiome and innate mucosal immunity in asthma are complex and a challenge to dissect. Multiple avenues of investigation, leveraging a variety of methodologies, will need to be pursued to understand functional relationships to clinical and inflammatory phenotypes seen in asthma.
Collapse
|
36
|
Microbiome and Asthma: What Have Experimental Models Already Taught Us? J Immunol Res 2015; 2015:614758. [PMID: 26266269 PMCID: PMC4525458 DOI: 10.1155/2015/614758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease that imposes a substantial burden on patients, their families, and the community. Although many aspects of the pathogenesis of classical allergic asthma are well known by the scientific community, other points are not yet understood. Experimental asthma models, particularly murine models, have been used for over 100 years in order to better understand the immunopathology of asthma. It has been shown that human microbiome is an important component in the development of the immune system. Furthermore, the occurrence of many inflammatory diseases is influenced by the presence of microbes. Again, experimental models of asthma have helped researchers to understand the relationship between the microbiome and respiratory inflammation. In this review, we discuss the evolution of murine models of asthma and approach the major studies involving the microbiome and asthma.
Collapse
|
37
|
Smith VH, Rubinstein RJ, Park S, Kelly L, Klepac-Ceraj V. Microbiology and ecology are vitally important to premedical curricula. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015. [PMID: 26198190 PMCID: PMC4536855 DOI: 10.1093/emph/eov014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the impact of the human microbiome on health, an appreciation of microbial ecology is yet to be translated into mainstream medical training and practice. The human microbiota plays a role in the development of the immune system, in the development and function of the brain, in digestion, and in host defense, and we anticipate that many more functions are yet to be discovered. We argue here that without formal exposure to microbiology and ecology—fields that explore the networks, interactions and dynamics between members of populations of microbes—vitally important links between the human microbiome and health will be overlooked. This educational shortfall has significant downstream effects on patient care and biomedical research, and we provide examples from current research highlighting the influence of the microbiome on human health. We conclude that formally incorporating microbiology and ecology into the premedical curricula is invaluable to the training of future health professionals and critical to the development of novel therapeutics and treatment practices.
Collapse
Affiliation(s)
- Val H Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Serry Park
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA,
| |
Collapse
|
38
|
Aho VTE, Pereira PAB, Haahtela T, Pawankar R, Auvinen P, Koskinen K. The microbiome of the human lower airways: a next generation sequencing perspective. World Allergy Organ J 2015; 8:23. [PMID: 26140078 PMCID: PMC4468963 DOI: 10.1186/s40413-015-0074-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
For a long time, the human lower airways were considered a sterile environment where the presence of microorganisms, typically revealed by culturing, was interpreted as an abnormal health state. More recently, high-throughput sequencing-based studies have led to a shift in this perception towards the notion that even in healthy conditions the lower airways show either transient presence or even permanent colonization by microorganisms. However, challenges related to low biomass and contamination in samples still remain, and the composition, structure and dynamics of such putative microbial communities are unclear. Here, we review the evidence for the presence of microbial communities in the human lower airways, in healthy subjects and within the context of medical conditions of interest. We also provide an overview of the methodology pertinent to high-throughput sequencing studies, specifically those based on amplicon sequencing, including a discussion of good practices and common pitfalls.
Collapse
Affiliation(s)
- Velma T. E. Aho
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 4), 00014 Helsinki, Finland
| | - Pedro A. B. Pereira
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 4), 00014 Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 4), 00014 Helsinki, Finland
| | - Kaisa Koskinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, P.O. Box 56 (Viikinkaari 4), 00014 Helsinki, Finland
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Asthma, type 1 and type 2 diabetes mellitus, and inflammatory bowel disease amongst South Asian immigrants to Canada and their children: a population-based cohort study. PLoS One 2015; 10:e0123599. [PMID: 25849480 PMCID: PMC4388348 DOI: 10.1371/journal.pone.0123599] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is a high and rising rate of immune-mediated diseases in the Western world. Immigrants from South Asia have been reported to be at higher risk upon arrival to the West. We determined the risk of immune-mediated diseases in South Asian and other immigrants to Ontario, Canada, and their Ontario-born children. METHODS Population-based cohorts of patients with asthma, type 1 diabetes (T1DM), type 2 diabetes (T2DM), and inflammatory bowel disease (IBD) were derived from health administrative data. We determined the standardized incidence, and the adjusted risk of these diseases in immigrants from South Asia, immigrants from other regions, compared with non-immigrant residents of Ontario. The risk of these diseases in the Ontario-born children of immigrants were compared to the children of non-immigrants. RESULTS Compared to non-immigrants, adults from South Asia had higher risk of asthma (IRR 1.56, 95%CI 1.51-1.61) and T2DM (IRR 2.59, 95%CI 2.53-2.65). Adults from South Asia had lower incidence of IBD than non-immigrants (IRR 0.32, 95%CI 0.22-0.49), as did immigrants from other regions (IRR 0.29, 95%CI 0.20-0.42). Compared to non-immigrant children, the incidence of asthma (IRR 0.66, 95%CI 0.62-0.71) and IBD (IRR 0.47, 95%CI 0.33-0.67) was low amongst immigrant children from South Asia. However, the risk in Ontario-born children of South Asian immigrants relative to the children of non-immigrants was higher for asthma (IRR 1.75, 95%CI 1.69-1.81) and less attenuated for IBD (IRR 0.90, 95%CI 0.65-1.22). CONCLUSION Early-life environmental exposures may trigger a genetic predisposition to the development of asthma and IBD in South Asian immigrants and their Canada-born children.
Collapse
|
40
|
Eldeirawi KM, Kunzweiler C, Atek A, Persky VW. Antibiotic use in infancy and the risk of asthma in Mexican American children. J Asthma 2015; 52:707-14. [PMID: 25584659 DOI: 10.3109/02770903.2015.1004338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This study examined the associations of antibiotic use in infancy with lifetime doctor-diagnosed asthma and current wheeze among Mexican American children. METHODS In a population-based, cross-sectional investigation, parents of 2023 children 4-18 years of age completed a questionnaire/interview addressing respiratory conditions, antibiotic use, and covariates. RESULTS In adjusted analyses, among children without history of ear infections in infancy, children who used antibiotics ≥3 times and 1-2 times were more likely to report doctor-diagnosed asthma compared with their peers who did not use antibiotics in infancy [adjusted odds ratio (aOR) = 5.14, 95% confidence interval (CI): 2.88-9.17, and aOR = 2.15, 95% CI: 1.26-3.69, respectively, p trend < 0.0001]. The respective aORs for current wheeze were 3.67 (95% CI: 1.95-6.89) and 1.63 (95% CI: 0.91-2.95). Antibiotic use in infancy was not associated with asthma or current wheeze in children who had ear infections in infancy. In additional analyses, antibiotic use in infancy was associated with asthma in children without parental history of asthma or allergies (aOR = 2.73, 95% CI: 1.70-4.39) but not in those with parental history of asthma or allergies. Among Mexico-born participants born in rural areas, antibiotic use in infancy was associated with a seven-fold increase in risk of asthma (aOR = 7.21, 95% CI: 1.46-35.65), while the association was non-significant in Mexico-born children born in urban areas in Mexico. CONCLUSIONS Antibiotic use in infancy may increase the risk of asthma and wheezing, but these associations were limited to subgroups of children.
Collapse
Affiliation(s)
- Kamal M Eldeirawi
- a Department of Health Systems Science , College of Nursing, University of Illinois at Chicago , Chicago , IL , USA
| | | | | | | |
Collapse
|
41
|
Nguyen LDN, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 2015; 6:89. [PMID: 25762987 PMCID: PMC4327734 DOI: 10.3389/fmicb.2015.00089] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/23/2015] [Indexed: 01/29/2023] Open
Abstract
The lung microbiome, which is believed to be stable or at least transient in healthy people, is now considered as a poly-microorganism component contributing to disease pathogenesis. Most research studies on the respiratory microbiome have focused on bacteria and their impact on lung health, but there is evidence that other non-bacterial organisms, comprising the viruses (virome) and fungi (mycobiome), are also likely to play an important role in healthy people as well as in patients. In the last few years, the lung mycobiome (previously named the fungal microbiota or microbiome) has drawn closer attention. There is growing evidence that the lung mycobiome has a significant impact on clinical outcome of chronic respiratory diseases (CRD) such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis. Thanks to advances in culture independent methods, especially next generation sequencing, a number of fungi not detected by culture methods have been molecularly identified in human lungs. It has been shown that the structure and diversity of the lung mycobiome vary in different populations (healthy and different diseased individuals) which could play a role in CRD. Moreover, the link between lung mycobiome and different biomes of other body sites, especially the gut, has also been unraveled. By interacting with the bacteriome and/or virome, the respiratory mycobiome appears to be a cofactor in inflammation and in the host immune response, and therefore may contribute to the decline of the lung function and the disease progression. In this review, we report the recent limited explorations of the human respiratory mycobiome, and discuss the mycobiome’s connections with other local microbial communities, as well as the relationships with the different biomes of other body sites. These studies suggest several outlooks for this understudied emerging field, which will certainly call for a renewal of our understanding of pulmonary diseases.
Collapse
Affiliation(s)
- Linh D N Nguyen
- Biology and Diversity of Emerging Eukaryotic Pathogens, Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille Pasteur Institute, University of Lille Nord de France , Lille, France
| | - Eric Viscogliosi
- Biology and Diversity of Emerging Eukaryotic Pathogens, Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille Pasteur Institute, University of Lille Nord de France , Lille, France
| | - Laurence Delhaes
- Biology and Diversity of Emerging Eukaryotic Pathogens, Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille Pasteur Institute, University of Lille Nord de France , Lille, France ; Parasitology-Mycology Department, Hospital University Center, Faculty of Medicine , Lille, France
| |
Collapse
|
42
|
Chalermwatanachai T, Velásquez LC, Bachert C. The microbiome of the upper airways: focus on chronic rhinosinusitis. World Allergy Organ J 2015; 8:3. [PMID: 25624972 PMCID: PMC4306241 DOI: 10.1186/s40413-014-0048-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/20/2014] [Indexed: 01/27/2023] Open
Abstract
Upper airway diseases including allergic rhinitis, chronic rhinosinusitis with or without polyps, and cystic fibrosis are characterized by substantially different inflammatory profiles. Traditionally, studies on the association of specific bacterial patterns with inflammatory profiles of diseases had been dependent on bacterial culturing. In the past 30 years, molecular biology methods have allowed bacterial culture free studies of microbial communities, revealing microbiota much more diverse than previously recognized including those found in the upper airway. At presence, the study of the pathophysiology of upper airway diseases is necessary to establish the relationship between the microbiome and inflammatory patterns to find their clinical reflections and also their possible causal relationships. Such investigations may elucidate the path to therapeutic approaches in correcting an imbalanced microbiome. In the review we summarized techniques used and the current knowledge on the microbiome of upper airway diseases, the limitations and pitfalls, and identified areas of interest for further research.
Collapse
Affiliation(s)
- Thanit Chalermwatanachai
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Department of Otolaryngology, Phramongkutklao Hospital and College of Medicine, Royal Thai Army, Bangkok, 10400 Thailand
| | - Leydi Carolina Velásquez
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Basic Biomedical Sciences Department, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claus Bachert
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Division of ENT Diseases, Clintec, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
The relationships between environmental bacterial exposure, airway bacterial colonization, and asthma. Curr Opin Allergy Clin Immunol 2014; 14:137-42. [PMID: 24451910 DOI: 10.1097/aci.0000000000000036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Recent application of advanced culture-independent molecular techniques for the identification of microorganisms has contributed to our knowledge on the role of early-life microbial exposure and colonization in health and disease. The purpose of this review is to present the current perspectives regarding the role of microbial exposure and airway bacterial colonization on the development and the activity of asthma. RECENT FINDINGS Recent findings continue to support the protective role of early-life diverse microbial exposure against the development of atopic diseases. However, airway bacterial colonization early in life serves as a risk factor for the development of asthma. Culture-independent molecular techniques for the identification of microorganisms have challenged the traditional paradigm that the lower airway is a sterile compartment. Asthmatics, compared with nonasthmatics, appear to have a different lung microbiome composition and some of these differences might contribute to asthma activity, severity, and corticosteroid response. SUMMARY Bacterial presence in the airway appears to influence the inception and may affect the activity of asthma. Complex interactions between different types and routes of bacterial exposures, the airway, and the immune system early in life may determine whether these exposures augment or reduce the risk of asthma development.
Collapse
|
44
|
Schwerk N, Hansen G. Allergieprävention. Monatsschr Kinderheilkd 2014. [DOI: 10.1007/s00112-013-3067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Aspirated bile: a major host trigger modulating respiratory pathogen colonisation in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2014; 33:1763-71. [PMID: 24816901 PMCID: PMC4182646 DOI: 10.1007/s10096-014-2133-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/21/2014] [Indexed: 10/30/2022]
Abstract
Chronic respiratory infections are a leading global cause of morbidity and mortality. However, the molecular triggers that cause respiratory pathogens to adopt persistent and often untreatable lifestyles during infection remain largely uncharacterised. Recently, bile aspiration caused by gastro-oesophageal reflux (GOR) has emerged as a significant complication associated with respiratory disease, and cystic fibrosis (CF) in particular. Based on our previous finding that the physiological concentrations of bile influence respiratory pathogens towards a chronic lifestyle in vitro, we investigated the impact of bile aspiration on the lung microbiome of respiratory patients. Sputum samples (n = 25) obtained from a cohort of paediatric CF patients were profiled for the presence of bile acids using high-resolution liquid chromatography-mass spectrometry (LC-MS). Pyrosequencing was performed on a set of ten DNA samples that were isolated from bile aspirating (n = 5) and non-bile aspirating (n = 5) patients. Both denaturing gradient gel electrophoresis (DGGE) and pyrosequencing revealed significantly reduced biodiversity and richness in the sputum samples from bile aspirating patients when compared with non-aspirating patients. Families and genera associated with the pervasive CF microbiome dominated aspirating patients, while bacteria associated with the healthy lung were most abundant in non-aspirating patients. Bile aspiration linked to GOR is emerging as a major host trigger of chronic bacterial infections. The markedly reduced biodiversity and increased colonisation by dominant proteobacterial CF-associated pathogens observed in the sputum of bile aspirating patients suggest that bile may play a major role in disease progression in CF and other respiratory diseases.
Collapse
|
46
|
Robitaille C, Boulet LP. [Asthma in the elderly]. Rev Mal Respir 2014; 31:478-87. [PMID: 25012034 DOI: 10.1016/j.rmr.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/16/2014] [Indexed: 01/09/2023]
Abstract
Asthma is a common condition in the elderly although often confounded with chronic obstructive pulmonary disease (COPD) in this population. Asthma in the elderly seems to represent a specific phenotype characterized by more severe, but often less perceived, airway obstruction, a neutrophilic or mixed-type of airway inflammation and frequent comorbidities. Patients aged 65 years and over have an increased asthma-related morbidity and mortality compared to younger patients, probably due to difficulties in regard to diagnosis, assessment of the disease severity and treatment. Research is urgently needed to determine the optimal treatment of the aged patient. In this document we will review the state of knowledge on this topic and discuss the challenges of multidisciplinary asthma management in the elderly.
Collapse
Affiliation(s)
- C Robitaille
- Institut universitaire de cardiologie et de pneumologie de Québec, université Laval, 2725, chemin Sainte-Foy, G1V 4G5 Québec, QC, Canada
| | - L-P Boulet
- Institut universitaire de cardiologie et de pneumologie de Québec, université Laval, 2725, chemin Sainte-Foy, G1V 4G5 Québec, QC, Canada.
| |
Collapse
|
47
|
Abstract
The pathogenetic mechanisms leading to asthma are likely to be diverse, influenced by multiple genetic polymorphisms as well as elements of the environment. Recent data on the microbiome of the airway have revealed intriguing differences between the number and diversity of microbial populations in healthy persons and asthmatics. There is convincing evidence that early viral infections, particularly with human rhinovirus and respiratory syncytial virus, are often associated with the development of chronic asthma and with exacerbations. Recent studies suggest that two unrelated types of atypical bacteria, Mycoplasma pneumoniae (Mpn) and Chlamydia pneumoniae, are present in the airways of a substantial proportion of the population, bringing up the possibility that the persistent presence of the organism may contribute to the asthmatic phenotype in a subset of patients. This review will examine the current data regarding a possible role for infection in chronic asthma with a particular focus on atypical bacterial infections.
Collapse
Affiliation(s)
- T Prescott Atkinson
- Children's of Alabama CPP M220, 1601 4th Ave South, Birmingham, AL, 35233, USA,
| |
Collapse
|
48
|
Ryu E, Hasegawa A, Saegusa S, Ichiki H. An investigation of canine leptospiral antibodies in Tokyo and Yokohama. Comparison of Canine Positive rates between rapid microscopic agglutination test and Schüffner-Mochtar test. INTERNATIONAL JOURNAL OF ZOONOSES 1974; 1:82-90. [PMID: 4468963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|