1
|
Bedwell GJ, Mqadi L, Kamerman P, Hutchinson MR, Parker R, Madden VJ. Inflammatory reactivity is unrelated to childhood adversity or provoked modulation of nociception. Pain 2025:00006396-990000000-00909. [PMID: 40372281 DOI: 10.1097/j.pain.0000000000003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
ABSTRACT Adversity in childhood elevates the risk of persistent pain in adulthood. Neuroimmune interactions are a candidate mechanistic link between childhood adversity and persistent pain. We aimed to clarify whether immune reactivity is associated with provoked differences in nociceptive processing in adults with a range of childhood adversity. Pain-free adults (n = 96; 61 female; median [range] age: 23 [18-65] years old) with a history of mild to severe childhood adversity underwent psychophysical assessments before and after in vivo neural provocation (high-frequency electrical stimulation) and, separately, before and after in vivo immune provocation (influenza vaccine administration). Psychophysical assessments included the surface area of secondary hyperalgesia after neural provocation and change in conditioned pain modulation (test stimulus: pressure pain threshold; conditioning stimulus: cold water immersion) after immune provocation. Immune reactivity was operationalised as interleukin-6 and tumour necrosis factor-α expression after in vitro lipopolysaccharide provocation of whole blood. We hypothesised associations between immune reactivity and (1) childhood adversity, (2) induced secondary hyperalgesia, and (3) vaccine-associated change in conditioned pain modulation. We found that provoked expression of proinflammatory cytokines was not statistically associated with childhood adversity, induced secondary hyperalgesia, or vaccine-associated change in conditioned pain modulation. The current findings from a heterogenous sample cast doubt on 2 prominent ideas: that childhood adversity primes the inflammatory system for hyper-responsiveness in adulthood and that nociceptive reactivity is linked to inflammatory reactivity. This calls for the broader inclusion of heterogeneous samples in fundamental research to investigate the psychoneuroimmunological mechanisms underlying vulnerability to persistent pain.
Collapse
Affiliation(s)
- Gillian J Bedwell
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Luyanduthando Mqadi
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Peter Kamerman
- Brain Function Research Group, Department of Physiology, School of Biomedical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark R Hutchinson
- School of Biomedicine, University of Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, South Australia, Australia
- Australian Research Council Centra of Excellence for Nanoscale BioPhotonics, Australia
| | - Romy Parker
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Victoria J Madden
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Raju V, Reddy R, Javan AC, Hajihossainlou B, Weissleder R, Guiseppi-Elie A, Kurabayashi K, Jones SA, Faghih RT. Tracking inflammation status for improving patient prognosis: A review of current methods, unmet clinical needs and opportunities. Biotechnol Adv 2025; 82:108592. [PMID: 40324661 DOI: 10.1016/j.biotechadv.2025.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Inflammation is the body's response to infection, trauma or injury and is activated in a coordinated fashion to ensure the restoration of tissue homeostasis and healthy physiology. This process requires communication between stromal cells resident to the tissue compartment and infiltrating immune cells which is dysregulated in disease. Clinical innovations in patient diagnosis and stratification include measures of inflammatory activation that support the assessment of patient prognosis and response to therapy. We propose that (i) the recent advances in fast, dynamic monitoring of inflammatory markers (e.g., cytokines) and (ii) data-dependent theoretical and computational modeling of inflammatory marker dynamics will enable the quantification of the inflammatory response, identification of optimal, disease-specific biomarkers and the design of personalized interventions to improve patient outcomes - multidisciplinary efforts in which biomedical engineers may potentially contribute. To illustrate these ideas, we describe the actions of cytokines, acute phase proteins and hormones in the inflammatory response and discuss their role in local wounds, COVID-19, cancer, autoimmune diseases, neurodegenerative diseases and aging, with a central focus on cardiac surgery. We also discuss the challenges and opportunities involved in tracking and modulating inflammation in clinical settings.
Collapse
Affiliation(s)
- Vidya Raju
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, 11201, NY, USA
| | - Revanth Reddy
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, 11201, NY, USA
| | | | - Behnam Hajihossainlou
- Department of Infectious Diseases, Harlem Medical Center, and Columbia University, New York, 10032, NY, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Department of Systems Biology, Harvard Medical School, and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02115, Massachusetts, USA
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B), and Department of Electrical and Computer Engineering, Texas A & M University, College Station, 77843, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, Houston, 77030, TX, USA; ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, 23219, Virginia, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University, New York 11201, NY, USA
| | - Simon A Jones
- Division of Infection and Immunity, and School of Medicine, Cardiff University, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Rose T Faghih
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, 11201, NY, USA.
| |
Collapse
|
3
|
Nagao Y, Taguchi A, Ohta Y. Circadian Rhythm Dysregulation in Inflammatory Bowel Disease: Mechanisms and Chronotherapeutic Approaches. Int J Mol Sci 2025; 26:3724. [PMID: 40332348 PMCID: PMC12028002 DOI: 10.3390/ijms26083724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Inflammatory bowel disease (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), is characterized by chronic intestinal inflammation. Recent research has highlighted the significant interplay between IBD pathogenesis and circadian rhythms. This review synthesizes current evidence regarding circadian regulation in IBD, covering three main areas: (1) circadian rhythms in intestinal physiology, (2) circadian disruption patterns in IBD patients, and (3) the role of clock genes in IBD pathogenesis. We discuss how these findings may inform novel chronotherapeutic approaches for IBD treatment. Future research directions that could facilitate translation of chronobiological insights into clinical applications are also explored.
Collapse
Affiliation(s)
- Yuko Nagao
- Health Science Center, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami Kogushi, Ube 755-8505, Japan;
| | - Yasuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami Kogushi, Ube 755-8505, Japan;
| |
Collapse
|
4
|
Zhang Z, Luo Y, Zhang H, Zeng Z, Zheng W, Zhao Y, Huang Y, Shen L. Exploring the mechanisms of cow placental peptides in delaying liver aging based on mitochondrial energy metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119593. [PMID: 40064320 DOI: 10.1016/j.jep.2025.119593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Placenta is a kind of traditional Chinese medicine, known as "Ziheche". The role of cow placental peptides (CPP) in delaying liver aging has been reported, and in-depth exploration of the specific regulatory mechanisms is of great significance for the recycling and utilization of CPP and the development of natural anti-aging drugs. AIM OF THE STUDY To investigate the protective effects and mechanisms of CPP on liver aging induced by D-galactose (D-gal) in mice from the perspective of mitochondrial energy metabolism. METHODS An aging model was induced in mice using D-gal. The body weight and liver index of mice were measured, followed by staining and electron microscopy to observe liver morphology and aging markers. Reactive oxygen species (ROS) levels and antioxidant-related indicators were assessed, and mitochondrial function was evaluated. Finally, changes and mechanisms in liver transcriptomics and targeted mitochondrial energy metabolomics were analyzed and integrated to elucidate the regulatory pathways through which CPP delays liver aging. RESULTS CPP improved liver structural damage, oxidative stress, and mitochondrial dysfunction induced by D-galactose in aging mice. It increased the final body weight and liver index, alleviated hepatocyte swelling and degeneration, enhanced liver antioxidant capacity, and restored normal mitochondrial morphology and function. The combined analysis of targeted mitochondrial energy metabolomics and liver transcriptomics revealed that CPP directly or indirectly regulated mitochondrial energy metabolism and delayed aging by influencing the cAMP signaling pathway, PI3K-Akt signaling pathway, oxidative phosphorylation, and other pathways, thereby modulating related genes and metabolites.
Collapse
Affiliation(s)
- Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanwen Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Bedwell GJ, Mqadi L, Kamerman P, Hutchinson MR, Parker R, Madden VJ. Inflammatory reactivity is unrelated to childhood adversity or provoked modulation of nociception. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.16.24319079. [PMID: 39763518 PMCID: PMC11702747 DOI: 10.1101/2024.12.16.24319079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Adversity in childhood elevates the risk of persistent pain in adulthood. Neuroimmune interactions are a candidate mechanistic link between childhood adversity and persistent pain. We aimed to clarify whether immune reactivity is associated with provoked differences in nociceptive processing in adults with a range of childhood adversity. Pain-free adults (n=96; 61 female; median (range) age: 23 (18-65) years old) with a history of mild to severe childhood adversity underwent psychophysical assessments before and after in vivo neural provocation (high-frequency electrical stimulation) and, separately, before and after in vivo immune provocation (influenza vaccine administration). Psychophysical assessments included the surface area of secondary hyperalgesia after neural provocation and change in conditioned pain modulation (test stimulus: pressure pain threshold; conditioning stimulus: cold water immersion) after immune provocation. Immune reactivity was operationalised as IL-6 and TNF-α expression after in vitro lipopolysaccharide provocation of whole blood. We hypothesised associations between immune reactivity and (1) childhood adversity, (2) induced secondary hyperalgesia, and (3) vaccine-associated change in conditioned pain modulation. We found that provoked expression of pro-inflammatory cytokines was not statistically associated with childhood adversity, induced secondary hyperalgesia, or vaccine-associated change in conditioned pain modulation. The current findings from a heterogenous sample cast doubt on two prominent ideas: that childhood adversity primes the inflammatory system for hyper-responsiveness in adulthood and that nociceptive reactivity is linked to inflammatory reactivity. This calls for the broader inclusion of heterogeneous samples in fundamental research to investigate the psychoneuroimmunological mechanisms underlying vulnerability to persistent pain.
Collapse
Affiliation(s)
- Gillian J Bedwell
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
| | - Luyanduthando Mqadi
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
| | - Peter Kamerman
- Brain Function Research group, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark R Hutchinson
- School of Biomedicine, University of Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, South Australia, Australia
| | - Romy Parker
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
| | - Victoria J Madden
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Madden VJ, Mqadi L, Arendse G, Bedwell GJ, Msolo N, Lesosky M, Hutchinson MR, Peter JG, Schrepf A, Parker R, Edwards RR, Joska JA. Provoked cytokine response is not associated with distress or induced secondary hyperalgesia in people with suppressed HIV. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25320673. [PMID: 39973982 PMCID: PMC11838944 DOI: 10.1101/2025.01.21.25320673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Psychological distress predicts the onset and worsening of persistent pain, but the mechanisms that underpin this influence are poorly understood. Pro-inflammatory signalling is a plausible mechanistic link, given its known connections to distress, pain, and neural upregulation. Sustained distress may prime the inflammatory system to respond more strongly to a phasic noxious challenge, supporting neuroimmune upregulation of central nociceptive signalling and persistent pain. This cross-sectional study tested the hypotheses that in vitro endotoxin-provoked expression of typically pro-inflammatory cytokines (IL1β, IL6) is a partial mediator between distress and persistent pain, and that it is associated with the secondary hyperalgesia response to an experimental noxious challenge, in people with suppressed HIV. Study participants were 99 adults (mean (range) age: 43(28-64y/o; 72 females) with either no pain (n=54) or persistent pain (n=45), mostly of black South African ethnicity, low socio-economic status, and with high social support. The results replicated previous reports that distress is associated with persistent pain status and pain severity, and also showed an association between distress and the anatomical extent of pain. However, distress was not associated with provoked cytokine expression, nor was provoked cytokine expression associated with secondary hyperalgesia. The conflict between our findings and the evidence on which our hypotheses were based could reflect masking of an effect by differentially trained immune systems or a more complex relationship arising from diverse psychoneuroimmunological interactions in this sample. Our sample's combination of HIV status, African genetic ancestry, financial impoverishment, and rich social interconnectedness is poorly represented in current research and represents an opportunity to deepen insight into psychoneuroimmunological interactions related to distress and persistent pain.
Collapse
Affiliation(s)
- Victoria J Madden
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Luyanduthando Mqadi
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Gwen Arendse
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Gillian J Bedwell
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ncumisa Msolo
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Maia Lesosky
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark R Hutchinson
- School of Biomedicine, University of Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, South Australia, Australia
| | - Jonathan G Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Romy Parker
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - John A Joska
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Liao J, Duan Y, Xu X, Liu Y, Zhan C, Xiao G. Circadian rhythm related genes signature in glioma for drug resistance prediction: a comprehensive analysis integrating transcriptomics and machine learning. Discov Oncol 2025; 16:119. [PMID: 39909964 PMCID: PMC11799505 DOI: 10.1007/s12672-025-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Gliomas, 24% of all primary brain tumors, have diverse histology and poor survival rates, with about 70% recurring due to acquired or de novo resistance. Insomnia in patients is correlated strongly with circadian rhythm disruptions. The correlation between circadian rhythm disorders and drug resistance of some tumors has been proved. However, the precise mechanism underlying the relationship between glioma and circadian rhythm disorders has not been elucidated. METHODS Circadian rhythm-related genes (CRRGs) were identified using the least absolute shrinkage and selection operator (LASSO) regression, and stochastic gradient descent (SGD) was performed to form a circadian rhythm-related score (CRRS) model. The studies of immune cell infiltration, genetic variations, differential gene expression pattern, and single cell analysis were performed for exploring the mechanisms of chemotherapy resistance in glioma. The relationship between CRRGs and chemosensitivity was also confirmed by IC 50 (half maximal inhibitory concentration) analysis. RESULT Signatures of 16 CRRGs were screened out and identified. Based on the CRRS model, an optimal comprehensive nomogram was created, exhibiting a favorable potential for predicting drug resistance in samples. Immune infiltration, cell-cell communication, and single cell analysis all indicated that high CRRS group was closely related to innate immune cells. IC50 analysis showed that CRRG knockdown enhanced the chemosensitivity of glioma. CONCLUSION A significant correlation between CRRGs, drug resistance of glioma, and innate immune cells was found, which might hold a significant role in the drug resistance of glioma.
Collapse
Affiliation(s)
- Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangwang Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaxue Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Han G, Li D, Zhang H, Li C, Yang L, Ma T, Wang X, Ma B, Wu X, Tao Y, Wang Z, Wang A, Chao HW, Jin Y, Chen H. A Transcriptomic Dataset of Liver Tissues from Global and Liver-Specific Bmal1 Knockout Mice. Sci Data 2025; 12:199. [PMID: 39900971 PMCID: PMC11790919 DOI: 10.1038/s41597-025-04545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
The circadian clock regulates various physiological processes in mammals. The core circadian clock gene Bmal1 is crucial for maintaining the oscillations of the circadian clock system by controlling the rhythmic expression of numerous circadian clock-controlled genes. To explore the transcriptional changes associated with Bmal1 deletion in liver tissues, we collected liver tissues from global and liver-specific Bmal1 knockout mice, along with their respective control groups, at two circadian time points (CT2 and CT14) and used them for transcriptome sequencing analysis. Genotyping, locomotor activity analysis, and comprehensive quality control analyses, including base quality scores, GC content, and mapping rates, confirmed the high quality of sequencing data. Differential expression analysis and RT-qPCR validation confirmed the reliability and validity of the dataset. These data offer a valuable resource for researchers investigating the role of BMAL1 in liver physiology, pathology, and the broader field of circadian biology.
Collapse
Affiliation(s)
- Guohao Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuerong Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bairong Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodie Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Tao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziang Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Godos J, Currenti W, Ferri R, Lanza G, Caraci F, Frias-Toral E, Guglielmetti M, Ferraris C, Lipari V, Carvajal Altamiranda S, Galvano F, Castellano S, Grosso G. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients 2025; 17:529. [PMID: 39940387 PMCID: PMC11819666 DOI: 10.3390/nu17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting-feeding timing is a crucial pattern implicated in the regulation of daily circadian rhythms. The interplay between sleep and meal timing underscores the importance of maintaining circadian alignment in order to avoid creating a metabolic environment conducive to carcinogenesis following the molecular and systemic disruption of metabolic performance and immune function. The chronicity of such a condition may support the initiation and progression of cancer through a variety of mechanisms, including increased oxidative stress, immune suppression, and the activation of proliferative signaling pathways. This review aims to summarize current evidence from human studies and provide an overview of the potential mechanisms underscoring the role of chrononutrition (including time-restricted eating) on cancer risk. Current evidence shows that the morning chronotype, suggesting an alignment between physiological circadian rhythms and eating timing, is associated with a lower risk of cancer. Also, early time-restricted eating and prolonged nighttime fasting were also associated with a lower risk of cancer. The current evidence suggests that the chronotype influences cancer risk through cell cycle regulation, the modulation of metabolic pathways and inflammation, and gut microbiota fluctuations. In conclusion, although there are no clear guidelines on this matter, emerging evidence supports the hypothesis that the role of time-related eating (i.e., time/calorie-restricted feeding and intermittent/periodic fasting) could potentially lead to a reduced risk of cancer.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vivian Lipari
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad de La Romana, La Romana 22000, Dominican Republic
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Stefanía Carvajal Altamiranda
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Fundación Universitaria Internacional de Colombia, Bogotá 111321, Colombia
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
Jarras H, Blais I, Goyer B, Bazié WW, Rabezanahary H, Thériault M, Santerre K, Langlois MA, Masson JF, Pelletier JN, Brousseau N, Boudreau D, Trottier S, Baz M, Gilbert C. Impact of SARS-CoV-2 vaccination and of seasonal variations on the innate immune inflammatory response. Front Immunol 2025; 15:1513717. [PMID: 39877354 PMCID: PMC11772892 DOI: 10.3389/fimmu.2024.1513717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction The innate immune response is an important first checkpoint in the evolution of an infection. Although adaptive immunity is generally considered the immune component that retains antigenic memory, innate immune responses can also be affected by previous stimulations. This study evaluated the impact of vaccination on innate cell activation by TLR7/8 agonist R848, as well as seasonal variations. Methods To this end, blood samples from a cohort of 304 food and retail workers from the Quebec City region were collected during three visits at 12-week intervals. Peripheral blood mononuclear cells and polymorphonuclear neutrophils were isolated during the first and third visits and were stimulated with R848 to assess the innate immune response. Results Our results show that IL-8 production after stimulation decreased after vaccination. In addition, the IL-8 response was significantly different depending on the season when the visit occurred, for both COVID-19 vaccinated and unvaccinated individuals. Discussion This study highlights that innate immune responses can be affected by SARS-CoV-2 vaccination and fluctuate seasonally.
Collapse
Affiliation(s)
- Hend Jarras
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Isalie Blais
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Benjamin Goyer
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Wilfried W. Bazié
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Houet, Burkina Faso
| | - Henintsoa Rabezanahary
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Mathieu Thériault
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Kim Santerre
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials, Regroupement québécois sur les matériaux de pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage, Université de Montréal, Montreal, QC, Canada
| | - Joelle N. Pelletier
- Department of Chemistry, Department of Biochemistry, Université de Montréal, Montreal, QC, Canada
- PROTEO — The Québec Network for Research on Protein Function, Engineering, and Applications, Quebec City, QC, Canada
| | - Nicholas Brousseau
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Biological Risks Department, Institut national de santé publique du Québec, Quebec City, QC, Canada
| | - Denis Boudreau
- Département de Chimie et Center for Optics, Photonics and Lasers (COPL), Université Laval, Quebec City, QC, Canada
| | - Sylvie Trottier
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Mariana Baz
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Caroline Gilbert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
11
|
Matak AM, Mu Y, Mohati SM, Makdissi S, Di Cara F. Circadian rhythm and immunity: decoding chrono-immunology using the model organism Drosophila melanogaster. Genome 2025; 68:1-18. [PMID: 40168693 DOI: 10.1139/gen-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Circadian rhythms are important cellular pathways first described for their essential role in helping organisms adjust to the 24 h day-night cycle and synchronize physiological and behavioral functions. Most organisms have evolved a circadian central clock to anticipate daily environmental changes in light, temperature, and mate availability. It is now understood that multiple clocks exist in organisms to regulate the functions of specific organs. Epidemiological studies in humans reported that disruption of the circadian rhythms caused by sleep deprivation is linked to the onset of immune-related conditions, suggesting the importance of circadian regulation of immunity. Mechanistic studies to define how circadian clocks and immune responses interact have profound implications for human health. However, elucidating the clocks and their tissue-specific functions has been challenging in mammals. Many studies using simple model organisms such as Drosophila melanogaster have been pioneering in discovering that the clock controls innate immune responses and immune challenges can impact circadian rhythms and/or their outcomes. In this review, we will report genetic studies using the humble fruit fly that identified the existence of reciprocal interactions between the circadian pathway and innate immune signaling, contributing to elucidate mechanisms in the growing field of chrono-immunology.
Collapse
Affiliation(s)
- Arash Mohammadi Matak
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Seyedeh Mahdiye Mohati
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| |
Collapse
|
12
|
Dai Y, Tian X, Ye X, Gong Y, Xu L, Jiao L. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:52. [PMID: 39802954 PMCID: PMC11724356 DOI: 10.20517/cdr.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to "cold" or "hot" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yuening Dai
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xueqi Tian
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuanting Ye
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yabin Gong
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ling Xu
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lijing Jiao
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
13
|
Propp MA, Paz D, Makhkamov S, Payton ME, Choudhury Q, Nutter M, Ryznar R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines 2024; 12:2519. [PMID: 39595087 PMCID: PMC11592205 DOI: 10.3390/biomedicines12112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The cortisol awakening response (CAR) is a pivotal component of the body's stress response, yet its dynamics under repeated acute stress and its interplay with immune biomarkers remain inadequately understood. Methods: This study examined 80 second-year military medical students undergoing a 5-day intensive surgical simulation designed to elicit stress responses. Salivary samples were collected daily upon waking and 30 min thereafter to measure cortisol and a panel of cytokines using bead-based multiplex ELISA. Results: Analysis revealed a significant blunting of the CAR on the third day of training (p = 0.00006), followed by a recovery on the fourth day (p = 0.0005). Concurrently, specific cytokines such as CXCL1 (r = 0.2, p = 0.0005), IL-6 (r = 0.13, p = 0.02), IL-10 (r = 0.14, p = 0.02), and VEGF-A (r = 0.17, p = 0.003) displayed patterns correlating with the CAR, with increased strength of associations observed when assessing cytokine levels against the CAR of the preceding day (CXCL1 r = 0.41, p = 0.0002. IL-6 r = 0.38, p = 0.0006. IL-10 r = 0.3, p = 0.008. VEGF-A r = 0.41, p = 0.0002). Conclusions: These results suggest a temporal relationship between stress-induced cortisol dynamics and immune regulation. The CAR pattern demonstrated in this study may represent induction of and recovery from psychological burnout. Moreover, the observed cytokine associations provide insight into the mechanisms by which stress can influence immune function. The results may have broader implications for managing stress in high-performance environments, such as military and medical professions, and for identifying individuals at risk of stress-related immune suppression.
Collapse
Affiliation(s)
- Madison A. Propp
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Dean Paz
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
- Department of Emergency Medicine, University of Texas at Austin Dell, 1500 Red River St, Austin, TX 78701, USA
| | - Sukhrob Makhkamov
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Mark E. Payton
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Qamrul Choudhury
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Melodie Nutter
- Arizona College of Nursing, 8363 West Sunset Road, Las Vegas, NV 89113, USA;
| | - Rebecca Ryznar
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| |
Collapse
|
14
|
Ding J, Chen P, Qi C. Circadian rhythm regulation in the immune system. Immunology 2024; 171:525-533. [PMID: 38158836 DOI: 10.1111/imm.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature in nearly all living organisms, representing oscillatory patterns with a 24-h cycle that are widespread across various physiological processes. Circadian rhythms regulate a multitude of physiological systems, including the immune system. At the molecular level, most immune cells autonomously express clock-regulating genes, which play critical roles in regulating immune cell functions. These functions encompass migration, phagocytic activity, immune cell metabolism (such as mitochondrial structural function and metabolism), signalling pathway activation, inflammatory responses, innate immune recognition, and adaptive immune processes (including vaccine responses and pathogen clearance). The endogenous circadian clock orchestrates multifaceted rhythmicity within the immune system, optimizing immune surveillance and responsiveness; this bears significant implications for maintaining immune homeostasis and resilience against diseases. This work provides an overview of circadian rhythm regulation within the immune system.
Collapse
Affiliation(s)
- Jun Ding
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| | - Pengyu Chen
- Department of Clinical Medicine (5+3 Integrated), The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| |
Collapse
|
15
|
Norouzi Kamareh M, Samadi M, Arabzadeh E, Abdollahi M, Sheidaei S, Riyahi Malayeri S, Schlicht J, Shirvani H, Rostamkhani F. The effect of 24-hour sleep deprivation and anaerobic exercise on the expression of BAX, BCL2, BMAL1 and CCAR2 genes in peripheral blood mononuclear cells after L-arginine supplementation. Gene 2023; 887:147732. [PMID: 37625565 DOI: 10.1016/j.gene.2023.147732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Sleep deprivation disrupt the circadian clock and exercise performance. Defective oxidative stress caused by sleep deprivation may affect the expression of genes involved in cell apoptosis. Since a number of studies have shown the anti-apoptotic effect of L-arginine, so the aim of this study was to evaluate the effect of eight weeks of L-arginine supplementation on the expression of brain and muscle ARNT-like protein 1 (BMAL1), cell cycle and apoptosis regulator 2 (CCAR2), and BAX and BCL2 genes during sleep deprivation and acute anaerobic exercise. Participants included 20 healthy men age 26-35 years, randomized into the L-arginine intervention group (n = 10) and a placebo control (n = 10). The running-based anaerobic sprint test (RAST) was used for anaerobic exercise. Intervention subjects took one 1000 mg L-arginine tablet daily for 8 weeks. The Real-Time PCR method was used to determine apoptosis gene expression in peripheral blood mononuclear cells (PBMCs). Acute anaerobic exercise and sleep deprivation both increased the expression of BAX and CCAR2 genes, and decreased the expression of BCL2 and BMAL1 genes (p < 0.05 for all). L-arginine supplementation increased the expression of BMAL1 and BCL2 genes and decreased the expression of BAX and CCAR2 genes relative to control (p < 0.05). L-Arginine controlled the increase in expression of BAX and CCAR2 genes and the decrease in expression of BCL2 and BMAL1 genes in response to sleep deprivation and acute anaerobic exercise (p < 0.05). Our results showed that 24-hour sleep deprivation and acute anaerobic exercise increased the expression of pro-apoptotic genes (BAX and CCAR2) and decreased the expression of anti-apoptotic genes (BCL2 and BMAL1), although the effect of sleep deprivation is greater. In this situation, L-arginine supplementation may balance the apoptotic state of peripheral blood mononuclear cells. However, any recommendation about this needs further research.
Collapse
Affiliation(s)
- Mirzahossein Norouzi Kamareh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahkameh Abdollahi
- Department of Physical Education and Sport Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadra Sheidaei
- Department of Physical Education and Sport Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Riyahi Malayeri
- Department of Physical Education and Sport Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jeffrey Schlicht
- Department of Health Promotion and Exercise Sciences, Western Connecticut State University, Danbury, CT 06810, USA
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Rostamkhani
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Liao X, He J, Wang R, Zhang J, Wei S, Xiao Y, Zhou Q, Zheng X, Zhu Z, Zheng Z, Li J, Zeng Z, Chen D, Chen J. TLR-2 agonist Pam3CSK4 has no therapeutic effect on visceral leishmaniasis in BALB/c mice and may enhance the pathogenesis of the disease. Immunobiology 2023; 228:152725. [PMID: 37562277 DOI: 10.1016/j.imbio.2023.152725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Most of the existing Leishmania-related research about TLR-2 agonists was focusing on their role as adjuvants in the vaccine, few studied its therapeutic effect. This paper aims to explore the therapeutic effect of TLR-2 agonist Pam3CSK4 on Leishmania-infected mice and the underlying immune molecular mechanisms. In L. donovani-infected BALB/c mice, one group was treated with Pam3CSK4 after infection and the other group was not treated. Normal uninfected mice treated with Pam3CSK4 or untreated were used as controls. Parasite load, hepatic pathology and serum antibodies were detected to assess the severity of the infection. The expression of immune-related genes, spleen lymphocyte subsets and liver RNA-seq were employed to reveal possible molecular mechanisms. The results showed that the liver and spleen parasite load of infected mice in Pam3CSK4 treated and untreated groups had no statistical difference, indicating Pam3CSK4 might have no therapeutic effect on visceral leishmaniasis. Infected mice treated with Pam3CSK4 possessed more hepatic inflammation focus, lower IgG and IgG2a antibody titers, and a lower proportion of spleen CD3+CD4+ T cells. Transcriptome analysis revealed that Th1/Th2 differentiation, NK cells, Th17 cell, complement system and calcium signaling pathways were down-regulated post-treatment of Pam3CSK4. In this study, TLR-2 agonist Pam3CSK4 showed no therapeutic effect on visceral leishmaniasis in BALB/c mice and might enhance the pathogenesis of the disease possibly due to the down-regulation of several immune-related pathways, which can improve our understanding of the role of TLR-2 in both treatment and vaccine development.
Collapse
Affiliation(s)
- Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruanyan Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shulan Wei
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
17
|
Mazzotta GM, Ceccato N, Conte C. Synucleinopathies Take Their Toll: Are TLRs a Way to Go? Cells 2023; 12:cells12091231. [PMID: 37174631 PMCID: PMC10177040 DOI: 10.3390/cells12091231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nadia Ceccato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
18
|
Salazar A, von Hagen J. Circadian Oscillations in Skin and Their Interconnection with the Cycle of Life. Int J Mol Sci 2023; 24:ijms24065635. [PMID: 36982706 PMCID: PMC10051430 DOI: 10.3390/ijms24065635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Periodically oscillating biological processes, such as circadian rhythms, are carefully concerted events that are only beginning to be understood in the context of tissue pathology and organismal health, as well as the molecular mechanisms underlying these interactions. Recent reports indicate that light can independently entrain peripheral circadian clocks, challenging the currently prevalent hierarchical model. Despite the recent progress that has been made, a comprehensive overview of these periodic processes in skin is lacking in the literature. In this review, molecular circadian clock machinery and the factors that govern it have been highlighted. Circadian rhythm is closely linked to immunological processes and skin homeostasis, and its desynchrony can be linked to the perturbation of the skin. The interplay between circadian rhythm and annual, seasonal oscillations, as well as the impact of these periodic events on the skin, is described. Finally, the changes that occur in the skin over a lifespan are presented. This work encourages further research into the oscillating biological processes occurring in the skin and lays the foundation for future strategies to combat the adverse effects of desynchrony, which would likely have implications in other tissues influenced by periodic oscillatory processes.
Collapse
Affiliation(s)
- Andrew Salazar
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Correspondence:
| | - Jörg von Hagen
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Department of Life Science Engineering, University Applied Sciences, Wiesenstrasse 14, 35390 Gießen, Germany
- ryon—GreenTech Accelerator Gernsheim GmbH, Mainzer Str. 41, 64579 Gernsheim, Germany
| |
Collapse
|
19
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Yan X, Xu P, Sun X. Circadian rhythm disruptions: A possible link of bipolar disorder and endocrine comorbidities. Front Psychiatry 2023; 13:1065754. [PMID: 36683994 PMCID: PMC9849950 DOI: 10.3389/fpsyt.2022.1065754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Epidemiological studies have demonstrated an association between bipolar disorder (BP) and endocrine diseases. Further, circadian rhythm disruptions may be a potential common pathophysiological mechanism of both disorders. This review provides a brief overview of the molecular mechanisms of circadian rhythms, as well as roles circadian rhythms play in BP and common endocrine comorbidities such as diabetes and thyroid disease. Treatments targeting the circadian system, both pharmacological and non-pharmacological, are also discussed. The hope is to elicit new interest to the importance of circadian system in BP and offer new entry points and impetus to the development of medicine.
Collapse
Affiliation(s)
| | | | - Xueli Sun
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
22
|
Jerigova V, Zeman M, Okuliarova M. Circadian Disruption and Consequences on Innate Immunity and Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213722. [PMID: 36430199 PMCID: PMC9690954 DOI: 10.3390/ijms232213722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal synchrony of these processes between each other, as well as with the external environment. In the immune system, daily rhythms of leukocyte functions can determine the strength of the immune response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian clock, but this role of light is highly compromised by irregular working schedules and unintentional exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control of important physiological processes, underlying potential links to adverse health effects. Here, we first discuss the immune consequences of genetic circadian disruption induced by mutation or deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian disruption influences immune status can be of importance in the search for strategies to minimize the negative consequences of chronodisruption on health.
Collapse
|
23
|
Liu Y, Zhang H, Yuan G, Yao M, Li B, Chen J, Fan Y, Mo R, Lai F, Chen X, Li M, Chen B, Lord JM, Peng S, Cheng K, Xiao H. The impact of circadian rhythms on the immune response to influenza vaccination in middle-aged and older adults (IMPROVE): a randomised controlled trial. Immun Ageing 2022; 19:46. [PMID: 36253778 PMCID: PMC9574181 DOI: 10.1186/s12979-022-00304-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vaccination is important in influenza prevention but the immune response wanes with age. The circadian nature of the immune system suggests that adjusting the time of vaccination may provide an opportunity to improve immunogenicity. Our previous cluster trial in Birmingham suggested differences between morning and afternoon vaccination for some strains in the influenza vaccine in older adults. Whether this effect is also seen in a younger age group with less likelihood of compromised immunity is unknown. We therefore conducted an individual-based randomized controlled trial in Guangzhou to test the hypothesis that influenza vaccination in the morning induces a stronger immune response in older adults than afternoon vaccination. We included adults in middle age to determine if the effect was also seen in younger age groups. RESULTS Of the 418 participants randomised, 389 (93.1%, 191 middle-aged adults aged 50-60 years and 198 older adults aged 65-75 years) were followed up. Overall, there was no significant difference between the antibody titers (geometric mean /95% CI) after morning vs afternoon vaccination (A/H1N1: 39.9 (32.4, 49.1) vs. 33.0 (26.7, 40.7), p = 0.178; A/H3N2: 92.2 (82.8, 102.7) vs. 82.0 (73.8, 91.2), p = 0.091; B: 15.8 (13.9, 17.9) vs. 14.4 (12.8, 16.3), p = 0.092), respectively. However, in pre-specified subgroup analyses, post-vaccination titers for morning versus afternoon vaccination in the 65-75 years subgroup were (A/H1N1): 49.5 (36.7, 66.6) vs. 32.9 (24.7, 43.9), p = 0.050; (A/H3N2): 93.5 (80.6, 108.5) vs. 73.1 (62.9, 84.9), p = 0.021; (B): 16.6 (13.8, 20.1) vs. 14.4 (12.3, 17.0), p = 0.095, respectively. Among females, antibody titers for morning versus afternoon vaccination were (A/H1N1): 46.9 (35.6, 61.8) vs. 31.1 (23.8, 40.7), p = 0.030; (A/H3N2): 96.0 (83.5, 110.3) vs. 84.7 (74.4, 96.5), p = 0.176; (B): 14.8 (12.7, 17.3) vs. 13.0 (11.3, 14.9), p = 0.061, respectively. In the 50-60 years old subgroup and males, there were no significant differences between morning and afternoon vaccination. CONCLUSIONS Morning vaccination may enhance the immunogenicity to influenza vaccine in adults aged over 65 and women. An intervention to modify vaccination programs to vaccinate older individuals in the morning is simple, cost free and feasible in most health systems.
Collapse
Affiliation(s)
- Yihao Liu
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gang Yuan
- Phase I Clinical Trial Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mi Yao
- Institute of Applied Health Research, University of Birmingham, Public Health Building, Edgbaston, Birmingham, B15 2TT, UK
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jianying Chen
- Baiyun Street Community Health Service Center, Guangzhou, 510080, People's Republic of China
| | - Yuling Fan
- Shipai Street Community Health Service Center, Guangzhou, 510080, People's Republic of China
| | - Ruohui Mo
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fenghua Lai
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xinwen Chen
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mengyuan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Binfeng Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Sui Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - KarKeung Cheng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China. .,Institute of Applied Health Research, University of Birmingham, Public Health Building, Edgbaston, Birmingham, B15 2TT, UK.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
24
|
Liu X, Yu H, Wang Y, Li S, Cheng C, Al-Nusaif M, Le W. Altered Motor Performance, Sleep EEG, and Parkinson's Disease Pathology Induced by Chronic Sleep Deprivation in Lrrk2 G2019S Mice. Neurosci Bull 2022; 38:1170-1182. [PMID: 35612787 PMCID: PMC9554065 DOI: 10.1007/s12264-022-00881-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is a multifaceted disease in which environmental variables combined with genetic predisposition cause dopaminergic (DAergic) neuron loss in the substantia nigra pars compacta. The mutation of leucine-rich repeat kinase 2 (Lrrk2) is the most common autosomal dominant mutation in PD, and it has also been reported in sporadic cases. A growing body of research suggests that circadian rhythm disruption, particularly sleep-wake abnormality, is common during the early phase of PD. Our present study aimed to evaluate the impact of sleep deprivation (SD) on motor ability, sleep performance, and PD pathologies in Lrrk2G2019S transgenic mice. After two months of SD, Lrrk2G2019S mice at 12 months of age showed an exacerbated PD-like phenotype with motor deficits, a reduced striatal DA level, degenerated DAergic neurons, and altered sleep structure and biological rhythm accompanied by the decreased protein expression level of circadian locomotor output cycles kaput Lrrk2 gene in the brain. All these changes persisted and were even more evident in 18-month-old mice after 6 months of follow-up. Moreover, a significant increase in α-synuclein aggregation was found in SD-treated transgenic mice at 18 months of age. Taken together, our findings indicate that sleep abnormalities, as a risk factor, may contribute to the pathogenesis and progression of PD. Early detection of sleep disorders and improvement of sleep quality may help to delay disease progression and provide long-term clinical benefits.
Collapse
Affiliation(s)
- Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Hang Yu
- Institute of Neurology, Sichuan Academy of Sciences-Sichuan Provincial Hospital of UESTC Medical School, Chengdu, 610031, China
| | - Yuanyuan Wang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Sciences-Sichuan Provincial Hospital of UESTC Medical School, Chengdu, 610031, China.
| |
Collapse
|
25
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
26
|
Utility of urinary cytokine levels as predictors of the immunogenicity and reactogenicity of AS01-adjuvanted hepatitis B vaccine in healthy adults. Vaccine 2022; 40:2714-2722. [PMID: 35367070 DOI: 10.1016/j.vaccine.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Plasma cytokines are useful indicators of the inflammatory response to vaccination, and can serve as potential biomarkers of the systemic reactogenicity and immunogenicity of vaccines. Measurement of cytokines in urine may represent a non-invasive alternative to the blood-based markers. To evaluate whether urinary cytokine levels can help predict vaccine responses to an AS01B-adjuvanted vaccine, we measured concentrations of 24 cytokines in the urine from 30 hepatitis B virus (HBV)-naïve adults following administration of AS01B-adjuvanted HBV surface antigen vaccine (NCT01777295). Levels post-dose 2 were compared with the levels measured following a single placebo (saline) injection, which was administered 1 month before the first vaccination in the same participants. Urine was collected at eight timepoints before or up to 1 week following each treatment. Urinary concentrations were normalized to creatinine levels, and paired with previously reported, participant-matched plasma levels, local and systemic reactogenicity scores, and antibody response magnitudes. Of the urine cytokine panel, only few analytes were detectable: IL-8, IL-18 and IL-6 receptor, each showing no clear changes after vaccination as compared to placebo administration, and MCP-1 (CCL2) and IP-10 (CXCL10), which displayed in most participants transient surges post-vaccination. Urine levels did not correlate with the matched plasma levels. Interestingly, urinary IP-10 levels at 1 day post-second vaccination were significantly correlated (P = 0.023) with the concurrent intensity scores of systemic reactogenicity, though not with the local reactogenicity scores or peak antibody responses. No significant correlations were detected for MCP-1. Altogether, most urinary cytokines have limited utility as a proxy for plasma cytokines to help predict the inflammatory response, the immunogenicity or the reactogenicity of AS01B-adjuvanted vaccine, with the possible exception of IP-10. The utility of urinary IP-10 as a potential complementary biomarker of systemic vaccine reactogenicity needs substantiation in larger studies.
Collapse
|
27
|
Chen Y, Zhao A, Lyu J, Hu Y, Yin Y, Qu J, Tong S, Li S. Association of delayed chronotype with allergic diseases in primary school children. Chronobiol Int 2022; 39:836-847. [PMID: 35282724 DOI: 10.1080/07420528.2022.2040527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To investigate the associations of sleep midpoint for both weekdays and weekends, and chronotype, with allergic diseases, specifically asthma, allergic rhinitis, and eczema in primary school children. In this cross-sectional study, we evaluated 10409 children between 7 and 12 years of age (mean 9.21 ± 1.51 years; male 52.2%). Each allergic disease was defined as children with both diagnosed disease and current symptoms, and the reference group was described as children without any allergic symptoms. Sleep durations and mid-sleep times were calculated by reported sleep timing. Chronotype was determined by mid-sleep time on free days corrected for oversleeping. Children with allergies have shorter sleep duration and later sleep preferences. Late weekly sleep midpoints were associated with higher odds of allergies, and the odds were even higher for later weekday midpoints than their weekend counterparts. Regarding chronotype, the more evening chronotype, the higher the odds of allergic rhinitis and eczema. Additionally, effect of weekday late sleep midpoint on allergies was stronger as the participants who slept less (asthma: aOR,1.62, 95 CI%,1.25-2.10, p < .001; allergic rhinitis: aOR,2.12, 95 CI%,1.68-2.67, p < .001; eczema: aOR, 1.94, 95 CI%,1.52-2.48, p < .001). Further, the associations of chronotype with allergic rhinitis were confounded by second-hand smoking exposure. Our study, which finds an association between chronotype and the odds of three allergic diseases, hopes to improve sleep health awareness, especially in the particular population with allergic diseases, and describes the importance of evaluating modifiable behavioral factors, such as sleep habits, as a plausible factor for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Lyu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yabin Hu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajie Qu
- Childcare Department, Shanghai Municipal Education Commission, Shanghai, China
| | - Shilu Tong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China.,School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Zhuang X, Edgar RS, McKeating JA. The role of circadian clock pathways in viral replication. Semin Immunopathol 2022; 44:175-182. [PMID: 35192001 PMCID: PMC8861990 DOI: 10.1007/s00281-021-00908-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
The daily oscillations of bi ological and behavioural processes are controlled by the circadian clock circuitry that drives the physiology of the organism and, in particular, the functioning of the immune system in response to infectious agents. Circadian rhythmicity is known to affect both the pharmacokinetics and pharmacodynamics of pharmacological agents and vaccine-elicited immune responses. A better understanding of the role circadian pathways play in the regulation of virus replication will impact our clinical management of these diseases. This review summarises the experimental and clinical evidence on the interplay between different viral pathogens and our biological clocks, emphasising the importance of continuing research on the role played by the biological clock in virus-host organism interaction.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Rachel S Edgar
- Faculty of Medicine, Imperial College London, London, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Chinese Academy of Medical Sciences (CAMS), Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Shirato K, Sato S. Macrophage Meets the Circadian Clock: Implication of the Circadian Clock in the Role of Macrophages in Acute Lower Respiratory Tract Infection. Front Cell Infect Microbiol 2022; 12:826738. [PMID: 35281442 PMCID: PMC8904936 DOI: 10.3389/fcimb.2022.826738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian rhythm is a biological system that creates daily variations of physiology and behavior with a 24-h cycle, which is precisely controlled by the molecular circadian clock. The circadian clock dominates temporal activity of physiological homeostasis at the molecular level, including endocrine secretion, metabolic, immune response, coupled with extrinsic environmental cues (e.g., light/dark cycles) and behavioral cues (e.g., sleep/wake cycles and feeding/fasting cycles). The other side of the clock is that the misaligned circadian rhythm contributes to the onset of a variety of diseases, such as cancer, metabolic diseases, and cardiovascular diseases, the acceleration of aging, and the development of systemic inflammation. The role played by macrophages is a key mediator between circadian disruption and systemic inflammation. At the molecular level, macrophage functions are under the direct control of the circadian clock, and thus the circadian misalignment remodels the phenotype of macrophages toward a ‘killer’ mode. Remarkably, the inflammatory macrophages induce systemic and chronic inflammation, leading to the development of inflammatory diseases and the dampened immune defensive machinery against infectious diseases such as COVID-19. Here, we discuss how the circadian clock regulates macrophage immune functions and provide the potential risk of misaligned circadian rhythms against inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, Mitaka, Japan
| | - Shogo Sato
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, United States
- *Correspondence: Shogo Sato,
| |
Collapse
|
30
|
Ebersole JL, Gonzalez OA. Mucosal circadian rhythm pathway genes altered by aging and periodontitis. PLoS One 2022; 17:e0275199. [PMID: 36472983 PMCID: PMC9725147 DOI: 10.1371/journal.pone.0275199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
As circadian processes can impact the immune system and are affected by infections and inflammation, this study examined the expression of circadian rhythm genes in periodontitis. METHODS Macaca mulatta were used with naturally-occurring and ligature-induced periodontitis. Gingival tissue samples were obtained from healthy, diseased, and resolved sites in four groups: young (≤3 years), adolescent (3-7 years), adult (12-26) and aged (18-23 years). Microarrays targeted circadian rhythm (n = 42), inflammation/tissue destruction (n = 11), bone biology (n = 8) and hypoxia pathway (n = 7) genes. RESULTS The expression of many circadian rhythm genes, across functional components of the pathway, was decreased in healthy tissues from younger and aged animals, as well as showing significant decreases with periodontitis. Negative correlations of the circadian rhythm gene levels with inflammatory mediators and tissue destructive/remodeling genes were particularly accentuated in disease. A dominance of positive correlations with hypoxia genes was observed, except HIF1A, that was uniformly negatively correlated in health, disease and resolution. CONCLUSIONS The chronic inflammation of periodontitis exhibits an alteration of the circadian rhythm pathway, predominantly via decreased gene expression. Thus, variation in disease expression and the underlying molecular mechanisms of disease may be altered due to changes in regulation of the circadian rhythm pathway functions.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Nevada, Nevada Las Vegas
- * E-mail:
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
31
|
Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics 2021; 13:pharmaceutics13122008. [PMID: 34959290 PMCID: PMC8704788 DOI: 10.3390/pharmaceutics13122008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases contribute to a significant percentage of mortality and morbidity worldwide. The circadian rhythm is a natural biological process where our bodily functions align with the 24 h oscillation (sleep-wake cycle) process and are controlled by the circadian clock protein/gene. Disruption of the circadian rhythm could alter normal lung function. Chronotherapy is a type of therapy provided at specific time intervals based on an individual's circadian rhythm. This would allow the drug to show optimum action, and thereby modulate its pharmacokinetics to lessen unwanted or unintended effects. In this review, we deliberated on the recent advances employed in chrono-targeted therapeutics for chronic respiratory diseases.
Collapse
|
32
|
Abstract
The objective of chronotherapy is to optimize medical treatments taking into account the body's circadian rhythms. Chronotherapy is referred to and practiced in two different ways: (1) to alter the sleep-wake rhythms of patients to improve the sequels of several pathologies; (2) to take into account the circadian rhythms of patients to improve therapeutics. Even minor dysfunction of the biological clock can greatly affect sleep/wake physiology causing excessive diurnal somnolence, increase in sleep onset latency, phase delays or advances in sleep onset, frequent night awakenings, reduced sleep efficiency, delayed and shortened rapid eye movement sleep, or increased periodic leg movements. Chronotherapy aims to restore the proper circadian pattern of the sleep-wake cycle, through adequate sleep hygiene, timed light exposure, and the use of chronobiotic medications, such as melatonin, that affect the output phase of circadian rhythms, thus controlling the clock. Concerning the second use of chronotherapy, therapeutic outcomes as diverse as the survival after open-heart surgery or the efficacy and tolerance to chemotherapy vary according to the time of day. However, humans are heterogeneous concerning the timing of their internal clocks. Not only different chronotypes exist but also the endogenous human circadian period (τ) is not a stable trait as it depends on many internal and external factors. If any scheduled therapeutic intervention is going to be optimized, a tool is needed for simple diagnostic and objectively measurement of an individual's internal time at any given time. Methodologic advances like the use of single-sample gene expression and metabolomics are discussed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
33
|
Cutolo M, Soldano S, Sulli A, Smith V, Gotelli E. Influence of Seasonal Vitamin D Changes on Clinical Manifestations of Rheumatoid Arthritis and Systemic Sclerosis. Front Immunol 2021; 12:683665. [PMID: 34267753 PMCID: PMC8276051 DOI: 10.3389/fimmu.2021.683665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Vitamin D [1,25(OH)2D-calcitriol] is basically a steroid hormone with pleiotropic biologic effects, and its impact on the regulation of immune system may influence several clinical conditions. Calcidiol (25OHD), as precursor of calcitriol, derives, for the most part (80%), from cutaneous cholesterol (7-dehydrocholesterol) under the action of UV-B (sunlight). Consequently, serum concentrations fluctuate during the year following the circannual rhythm of sun exposition. We will update about the available evidence regarding the complex influence of seasonal vitamin D changes on two different chronic connective tissue diseases, namely rheumatoid arthritis (RA) and systemic sclerosis (SSc). Notably, RA is an emblematic model of autoimmune disease with prevalent joint inflammatory features, while SSc is mainly an autoimmune progressive pro-fibrotic disease. However, in both conditions, low serum concentrations of 25OHD are involved in the pathogenesis of the diseases, and emerging data report their impact on clinical manifestations.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
- Unit for Molecular Immunology and Inflammation, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center (IRC), Ghent, Belgium
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| |
Collapse
|
34
|
Sawada Y, Saito-Sasaki N, Mashima E, Nakamura M. Daily Lifestyle and Inflammatory Skin Diseases. Int J Mol Sci 2021; 22:ijms22105204. [PMID: 34069063 PMCID: PMC8156947 DOI: 10.3390/ijms22105204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, it is necessary to adapt to the Earth’s environment in order to survive. A typical example of this is that the daily Earth cycle is different from the circadian rhythm in human beings; however, the ability to adapt to the Earth cycle has contributed to the development of human evolution. In addition, humans can consume and digest Earth-derived foods and use luxury materials for nutrition and enrichment of their lives, as an adaptation to the Earth’s environment. Recent studies have shown that daily lifestyles are closely related to human health; however, less attention has been paid to the fact that obesity due to excessive energy intake, smoking, and alcohol consumption contributes to the development of inflammatory skin diseases. Gluten or wheat protein, smoking and alcohol, sleep disturbance, and obesity drive the helper T (Th)1/Th2/Th17 immune response, whereas dietary fiber and omega-3 fatty acids negatively regulate inflammatory cytokine production. In this review, we have focused on daily lifestyles and the mechanisms involved in the pathogenesis of inflammatory skin diseases.
Collapse
|
35
|
Diurnal Variation of Plasma Extracellular Vesicle Is Disrupted in People Living with HIV. Pathogens 2021; 10:pathogens10050518. [PMID: 33923310 PMCID: PMC8145918 DOI: 10.3390/pathogens10050518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several types of extracellular vesicles (EVs) secreted by various immune and non-immune cells are present in the human plasma. We previously demonstrated that EV abundance and microRNA content change in pathological conditions, such as HIV infection. Here, we investigated daily variations of large and small EVs, in terms of abundance and microRNA contents in people living with HIV (PLWH) receiving antiretroviral therapy (HIV+ART) and uninfected controls (HIV-). METHODS Venous blood samples from n = 10 HIV+ART and n = 10 HIV- participants were collected at 10:00 and 22:00 the same day. Large and small plasma EVs were purified, counted, and the mature miRNAs miR-29a, miR-29b, miR-92, miR-155, and miR-223 copies were measured by RT-PCR. RESULTS Large EVs were significantly bigger in the plasma collected at 10:00 versus 22:00 in both groups. There was a significant day-night increase in the quantity of 5 miRNAs in HIV- large EVs. In HIV+ART, only miR-155 daily variation has been observed in large EVs. Finally, EV-miRNA content permits to distinguish HIV- to HIV+ART in multivariate analysis. CONCLUSION These results point that plasma EV amount and microRNA contents are under daily variation in HIV- people. This new dynamic measure is disrupted in PLWH despite viral-suppressive ART. This study highlights a significant difference concerning EV abundance and their content measured at 22:00 between both groups. Therefore, the time of blood collection must be considered in the future for the EV as biomarkers.
Collapse
|
36
|
Moriguchi K, Miyamoto K, Fukumoto Y, Kusunoki S. Change in light-dark cycle affects experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 353:577495. [PMID: 33549942 DOI: 10.1016/j.jneuroim.2021.577495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
The prevalence of multiple sclerosis is associated with geographic latitude. Low sun exposure or reduced daylight hours are considered possible causes. We examined whether a change in the number of daylight hours affects the course of experimental autoimmune encephalomyelitis (EAE) disease. Housing mice in a 24-h dark or light cycle upregulated internal corticosterone secretion and ameliorated the EAE disease course relative to that in mice housed in a conventional 12/12-h cycle environment. After EAE induction, the rhythmic pattern of corticosterone secretion was disrupted. Upregulation of internal steroid secretion might act as an immunosuppressive and ameliorate EAE.
Collapse
Affiliation(s)
- Kota Moriguchi
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama, Japan; Department of Internal Medicine, Japan Self Defense Forces Hanshin Hospital, Kawanishi, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama, Japan.
| | - Yuta Fukumoto
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University School of Medicine, Osaka-Sayama, Japan
| |
Collapse
|