1
|
Malvandi AM, Gerosa L, Banfi G, Lombardi G. The bone-muscle unit: from mechanical coupling to soluble factors-mediated signaling. Mol Aspects Med 2025; 103:101367. [PMID: 40339487 DOI: 10.1016/j.mam.2025.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Skeletal muscles (SKM) and bones form a morpho-functional unit, interconnected throughout life primarily through biomechanical coupling. This relationship serves as a key reciprocal stimulus, but they also interact via various hormones, such as sex steroids, growth hormone-insulin-like growth factor 1 (GH-IGF1) axis hormones, and adipokines like leptin and adiponectin. Additionally, myokines (released by muscles) and osteokines (released by bones) facilitate dense crosstalk, influencing each other's activity. Key myokines include interleukin (IL)-6, IL-7, IL-15, and myostatin, while osteocalcin (OC) and sclerostin are crucial bone-derived mediators affecting SKM cells. Moreover, miRNAs act as endocrine-like regulators, contributing to a complex network. This review covers the current understanding of bone-muscle crosstalk, which is essential for grasping the musculoskeletal apparatus's role in disease pathogenesis and may inform therapeutic development.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Laura Gerosa
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy; Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland.
| |
Collapse
|
2
|
Tian T, Kim D, Yu K, Hartzell HC, Ward PJ. Regenerative failure of sympathetic axons contributes to deficits in functional recovery after nerve injury. Neurobiol Dis 2025; 209:106893. [PMID: 40164438 DOI: 10.1016/j.nbd.2025.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025] Open
Abstract
Renewed scientific interest in sympathetic modulation of muscle and neuromuscular junctions has spurred a flurry of new discoveries with major implications for motor diseases. However, the role sympathetic axons play in the persistent dysfunction that occurs after nerve injuries remains to be explored. Peripheral nerve injuries are common and lead to motor, sensory, and autonomic deficits that result in lifelong disabilities. Given the importance of sympathetic signaling in muscle metabolic health and maintaining bodily homeostasis, it is imperative to understand the regenerative capacity of sympathetic axons after injury. Therefore, we tested sympathetic axon regeneration and functional reinnervation of skin and muscle, both acute and long-term, using a battery of anatomical, pharmacological, chemogenetic, cell culture, analytical chemistry, and electrophysiological techniques. We employed several established growth-enhancing interventions, including electrical stimulation and conditioning lesion, as well as an innovative tool called bioluminescent optogenetics. Our results indicate that sympathetic regeneration is not enhanced by any of these treatments and may even be detrimental to sympathetic regeneration. Despite the complete return of motor reinnervation after sciatic nerve injury, gastrocnemius muscle atrophy and deficits in muscle cellular energy charge, as measured by relative ATP, ADP, and AMP concentrations, persisted long after injury, even with electrical stimulation. We suggest that these long-term deficits in muscle energy charge and atrophy are related to the deficiency in sympathetic axon regeneration. New studies are needed to better understand the mechanisms underlying sympathetic regeneration to develop therapeutics that can enhance the regeneration of all axon types.
Collapse
Affiliation(s)
- Tina Tian
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30307, USA; Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30307, USA.
| | - David Kim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30307, USA.
| | - Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30307, USA.
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30307, USA.
| | - Patricia J Ward
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30307, USA.
| |
Collapse
|
3
|
Tian T, Patel K, Kim D, SiMa H, Harris AR, Owyoung JN, Ward PJ. Conditioning Electrical Stimulation Fails to Enhance Sympathetic Axon Regeneration. Neurorehabil Neural Repair 2025:15459683251335321. [PMID: 40317121 DOI: 10.1177/15459683251335321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BACKGROUND Peripheral nerve injuries are common, and there is a critical need for the development of novel treatments to complement surgical repair. Conditioning electrical stimulation (ES; CES) is a novel variation of the well-studied perioperative ES treatment paradigm. CES is a clinically attractive alternative because of its ability to be performed at the bedside prior to a scheduled nerve repair surgery. OBJECTIVES Although 60 minutes of CES has been shown to enhance motor and sensory axon regeneration, the effects of CES on sympathetic regeneration are unknown. We investigated how 2 clinically relevant CES paradigms (10 and 60 minutes) impact sympathetic axon regeneration and distal target reinnervation. RESULTS Our results indicate that the growth of sympathetic axons is inhibited by CES at acute time points, and at a longer survival time point post-injury, there is no difference between sham CES and the CES groups. Furthermore, 10-minute CES did not enhance motor and sensory regeneration with a direct repair, and neither 60-minute nor 10-minute CES enhanced motor and sensory regeneration through a graft. CONCLUSION We conclude sympathetic axons may retain some regenerative ability, but no enhancement is exhibited after CES, which may be accounted for by the inability of the ES paradigm to recruit the small-caliber sympathetic axons into activity. Further studies will be needed to optimize ES parameters to enhance the regeneration of all neuron types.
Collapse
Affiliation(s)
- Tina Tian
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Patel
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - David Kim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - HaoMin SiMa
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alandrea R Harris
- Summer Opportunity for Academic Research, Emory University, Atlanta, GA, USA
| | - Jordan N Owyoung
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Patricia J Ward
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
5
|
Hirose T, Takagi H, Kuno M, Sasaki T, Taki K, Ito Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Hagiwara D, Iwama S, Suga H, Banno R, Arima H. Dapagliflozin increased pancreatic beta cell proliferation and insulinogenic index in mice fed a high-fat and high-sodium chloride diet. Biochem Biophys Res Commun 2025; 749:151364. [PMID: 39855047 DOI: 10.1016/j.bbrc.2025.151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
People in Eastern Asia, including Japan, traditionally consume higher amounts of sodium chloride than in the United States and Western Europe, and it is common knowledge that impaired insulin secretion-rather than insulin resistance-is highly prevalent in Asian people who have diabetes mellitus. We previously reported that mice fed a high-fat and high-sodium chloride (HFHS) diet had a relatively lower degree of obesity than mice fed a high-fat diet, but had a comparatively impaired insulin secretion. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been shown to dampen down the sympathetic nervous system, which reportedly is activated by a high-sodium chloride diet. In this study, we examined the effects of dapagliflozin, a SGLT2 inhibitor, on glucose metabolism and insulin secretion in mice fed a HFHS diet. C57BL6/J mice were fed a HFHS diet for 6 weeks and subsequently divided into two treatment groups fed: (1) a HFHS diet mixed with dapagliflozin for up to 3 weeks (HFHS + Da) and (2) a HFHS diet without dapagliflozin (HFHS). Dapagliflozin improved glucose tolerance and the insulinogenic index accompanied by increased pancreatic beta cell proliferation. Furthermore, dapagliflozin decreased both the tyrosine hydroxylase-positive area in pancreatic islets and catecholamine excretion in urine. Our results suggest that dapagliflozin improved insulin secretion by suppressing sympathetic nerve activation in mice fed a HFHS diet.
Collapse
Affiliation(s)
- Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8602, Japan.
| | - Mitsuhiro Kuno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Tomoyuki Sasaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| |
Collapse
|
6
|
Silva D, Mendes FC, Stanzani V, Moreira R, Pinto M, Beltrão M, Sokhatska O, Severo M, Padrão P, Garcia-Larsen V, Delgado L, Moreira A, Moreira P. The Acute Effects of a Fast-Food Meal Versus a Mediterranean Food Meal on the Autonomic Nervous System, Lung Function, and Airway Inflammation: A Randomized Crossover Trial. Nutrients 2025; 17:614. [PMID: 40004945 PMCID: PMC11858349 DOI: 10.3390/nu17040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the acute effects of two isoenergetic but micronutrient-diverse meals-a Mediterranean-like meal (MdM) and a fast food-like meal (FFM)-on the autonomic nervous system (ANS), lung function, and airway inflammation response. METHODS Forty-six participants were enrolled in a randomized crossover clinical trial, consuming two isoenergetic meals: FFM (burger, fries, and sugar-sweetened drink) and MdM (vegetable soup, whole-wheat pasta, salad, olive oil, sardines, fruit, and water). Pupillometry assessed parasympathetic (MaxD, MinD, Con, ACV, MCV) and sympathetic (ADV, T75) nervous system outcomes. Lung function and airway inflammation were measured before and after each meal through spirometry and fractional exhaled nitric oxide (FeNO), respectively. RESULTS Mixed-effects model analysis showed that the MdM was associated with a hegemony of parasympathetic responses, with a significant increase of MaxD associated with a faster constriction velocity (ACV and MCV); on the other side, the FFM was associated with changes in the sympathetic response, showing a quicker redilation velocity (a decrease in T75). After adjusting for confounders, the mixed-effects models revealed that the FFM significantly decreased T75. Regarding lung function, a meal negatively impacted FVC (ae = -0.079, p < 0.001) and FEV1 (ae = -0.04, p = 0.017); however, FeNO increased, although after adjusting, no difference between meals was seen. CONCLUSIONS Our study showed that the FFM counteracted the parasympathetic activity of a meal, while a meal, irrespective of the type, decreased lung function and increased airway inflammation.
Collapse
Affiliation(s)
- Diana Silva
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- Serviço de Imunoalergologia, Unidade Local de Saúde de São João, 4202-451 Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
| | - Francisca Castro Mendes
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Vânia Stanzani
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Rita Moreira
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Mariana Pinto
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Marília Beltrão
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Oksana Sokhatska
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Milton Severo
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto, 4050-321 Porto, Portugal
| | - Patrícia Padrão
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Luís Delgado
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- Serviço de Imunoalergologia, Unidade Local de Saúde de São João, 4202-451 Porto, Portugal
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - André Moreira
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- Serviço de Imunoalergologia, Unidade Local de Saúde de São João, 4202-451 Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Pedro Moreira
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| |
Collapse
|
7
|
Desmoulins LD, Molinas AJR, Dugas CM, Williams GL, Kamenetsky S, Davis RK, Derbenev AV, Zsombok A. A subset of neurons in the paraventricular nucleus of the hypothalamus directly project to liver-related premotor neurons in the ventrolateral medulla. Auton Neurosci 2025; 257:103222. [PMID: 39647176 DOI: 10.1016/j.autneu.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Sympathetic circuits including pre-sympathetic neurons in the ventrolateral medulla (VLM) and in the paraventricular nucleus (PVN) of the hypothalamus play an important role in the regulation of hepatic glucose metabolism. Despite the importance of central regulatory pathways, specific information regarding the circuits of liver-related neurons is limited. Here, we tested the hypothesis that PVN neurons are directly connected to spinally-projecting liver-related neurons in the VLM of mice. Pseudorabies virus (PRV) was used to identify liver-related neurons and time-dependent analyses revealed the location and distribution of neurons in the PVN and ventral brainstem. Four days following PRV injection, most liver-related neurons were found in the VLM and consist of both catecholaminergic (CA) and non-CA neurons. Furthermore, in addition to PRV inoculation, a monosynaptic viral tracer was used to identify VLM-projecting PVN neurons to specifically dissect PVN-VLM connections within the liver pathway. Five days following PRV inoculation, our anatomical findings revealed that a small population of liver-related PVN neurons projected to the VLM. In addition, photo-stimulation of axonal projections from SIM1-expressing PVN neurons resulted in evoked excitatory postsynaptic currents in a subset of spinally projecting liver-related neurons in the VLM. In summary, our data demonstrate the existence of monosynaptic, glutamatergic connections between PVN neurons and pre-sympathetic liver-related neurons in the VLM. These new findings regarding the central circuits involved in the sympathetic regulation of the liver provide further information necessary for developing new strategies to improve glucose homeostasis via modulation of the autonomic nerves.
Collapse
Affiliation(s)
- Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Gabrielle L Williams
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Sophie Kamenetsky
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Roslyn K Davis
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
8
|
Chen Cardenas SM, Baker TA, Shimoda LA, Bernal-Mizrachi E, Punjabi NM. L-type calcium channel blockade worsens glucose tolerance and β-cell function in C57BL6/J mice exposed to intermittent hypoxia. Am J Physiol Endocrinol Metab 2025; 328:E161-E172. [PMID: 39763275 DOI: 10.1152/ajpendo.00423.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for the treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated. Adult male C57BL6/J mice were exposed to either nifedipine or vehicle concurrently with IH or intermittent air (IA) over 5 days. IH exposure entailed cycling fractional-inspired oxygen levels between 0.21 and 0.055 at a rate of 60 events/h. Nifedipine (20 mg/kg/day) or vehicle was administered via subcutaneous osmotic pumps resulting in four groups of mice: IA-vehicle (control), IA-nifedipine, IH-vehicle, and IH-nifedipine. Compared with IA (control), IH increased fasting glucose (mean Δ: 33.0 mg/dL; P < 0.001) and insulin (mean Δ: 0.53 ng/mL; P < 0.001) with nifedipine having no independent effect. Furthermore, glucose tolerance was worse with nifedipine alone, and IH further exacerbated the impairment in glucose disposal (P = 0.013 for interaction). Nifedipine also decreased glucose-stimulated insulin secretion and the insulinogenic index, with addition of IH attenuating those measures further. There were no discernible alterations in insulin biosynthesis/processing, insulin content, or islet morphology. These findings underscore the detrimental impact of IH on insulin sensitivity and glucose tolerance while highlighting that nifedipine exacerbates these disturbances through impaired β-cell function. Consequently, cautious use of L-type calcium channel blockers is warranted in patients with OSA, particularly in those at risk for type 2 diabetes.NEW & NOTEWORTHY The results of this study demonstrate the interaction between intermittent hypoxemia (IH) and nifedipine in a murine model. IH raises fasting glucose and insulin levels, with nifedipine exacerbating these disturbances. Glucose tolerance worsens when nifedipine is administered alone, and IH magnifies the impairment in glucose disposal. These findings raise the possibility of potential deleterious effects of L-type calcium channel blockers in patients with obstructive sleep apnea (OSA).
Collapse
Affiliation(s)
- Stanley M Chen Cardenas
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tess A Baker
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Larissa A Shimoda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Naresh M Punjabi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States
| |
Collapse
|
9
|
Schlaich MP, Tsioufis K, Taddei S, Ferri C, Cooper M, Sindone A, Borghi C, Parissis J, Marketou M, Vintila AM, Farcas A, Kiuchi MG, Chandrappa S. Targeting the sympathetic nervous system with the selective imidazoline receptor agonist moxonidine for the management of hypertension: an international position statement. J Hypertens 2024; 42:2025-2040. [PMID: 38747424 PMCID: PMC11556879 DOI: 10.1097/hjh.0000000000003769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 10/30/2024]
Abstract
Hypertension is often linked with metabolic risk factors that share common pathophysiological pathways. Despite wide-spread availability of multiple drug classes, optimal blood pressure (BP) control remains challenging. Increased central sympathetic outflow is frequently neglected as a critical regulator of both circulatory and metabolic pathways and often remains unopposed therapeutically. Selective imidazoline receptor agonists (SIRAs) effectively reduce BP with a favorable side effect profile compared with older centrally acting antihypertensive drugs. Hard outcome data in hypertension, such as prevention of stroke, heart and kidney diseases, are not available with SIRAs. However, in direct comparisons, SIRAs were as effective as angiotensin-converting enzyme inhibitors, β-blockers, calcium channel blockers, and diuretics in lowering BP. Other beneficial effects on metabolic parameters in hypertensive patients with concomitant overweight and obesity have been documented with SIRAs. Here we review the existing evidence on the safety and efficacy of moxonidine, a widely available SIRA, compared with common antihypertensive agents and provide a consensus position statement based on inputs from 12 experts from Europe and Australia on SIRAs in hypertension management.
Collapse
Affiliation(s)
- Markus P. Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | - Claudio Ferri
- University of L’Aquila, MeSVA Department, UOC Internal Medicine & Nephrology, Hypertension and Cardiovascular Prevention Unit - San Salvatore Hospital, L’Aquila, Italy
| | | | - Andrew Sindone
- Heart Failure Unit, Concord Hospital and University of Sydney, Sydney, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - John Parissis
- University Clinic of Emergency Medicine, Attikon University Hospital, Athens
| | - Maria Marketou
- University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Ana Maria Vintila
- Internal Medicine and Cardiology Department, Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Coltea Clinical Hospital, Bucharest
| | - Anca Farcas
- Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, Romania
| | - Marcio G. Kiuchi
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
10
|
Li J, Ma J, Omisore OM, Liu Y, Tang H, Ao P, Yan Y, Wang L, Nie Z. Noninvasive Blood Glucose Monitoring Using Spatiotemporal ECG and PPG Feature Fusion and Weight-Based Choquet Integral Multimodel Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14491-14505. [PMID: 37289613 DOI: 10.1109/tnnls.2023.3279383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
change of blood glucose (BG) level stimulates the autonomic nervous system leading to variation in both human's electrocardiogram (ECG) and photoplethysmogram (PPG). In this article, we aimed to construct a novel multimodal framework based on ECG and PPG signal fusion to establish a universal BG monitoring model. This is proposed as a spatiotemporal decision fusion strategy that uses weight-based Choquet integral for BG monitoring. Specifically, the multimodal framework performs three-level fusion. First, ECG and PPG signals are collected and coupled into different pools. Second, the temporal statistical features and spatial morphological features in the ECG and PPG signals are extracted through numerical analysis and residual networks, respectively. Furthermore, the suitable temporal statistical features are determined with three feature selection techniques, and the spatial morphological features are compressed by deep neural networks (DNNs). Lastly, weight-based Choquet integral multimodel fusion is integrated for coupling different BG monitoring algorithms based on the temporal statistical features and spatial morphological features. To verify the feasibility of the model, a total of 103 days of ECG and PPG signals encompassing 21 participants were collected in this article. The BG levels of participants ranged between 2.2 and 21.8 mmol/L. The results obtained show that the proposed model has excellent BG monitoring performance with a root-mean-square error (RMSE) of 1.49 mmol/L, mean absolute relative difference (MARD) of 13.42%, and Zone A + B of 99.49% in tenfold cross-validation. Therefore, we conclude that the proposed fusion approach for BG monitoring has potentials in practical applications of diabetes management.
Collapse
|
11
|
Davis TME, Davis W. The relationship between glycated haemoglobin and blood glucose-lowering treatment trajectories in type 2 diabetes: The Fremantle Diabetes Study Phase II. Diabetes Obes Metab 2024; 26:283-292. [PMID: 37795655 DOI: 10.1111/dom.15314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
AIMS To examine the relationships between glycaemia and treatment complexity over 6 years in well-characterized community-based people with type 2 diabetes. MATERIALS AND METHODS Fremantle Diabetes Study Phase II participants who had type 2 diabetes with glycated haemoglobin (HbA1c) and blood glucose-lowering therapy (BGLT) data over 6 years were included. Group-based multi-trajectory modelling identified combined HbA1c/BGLT trajectory subgroups for diabetes durations of ≤1.0 year (Group 1; n = 160), >1.0 to 10.0 years (Group 2; n = 382;) and >10.0 years (Group 3; n = 357). Multinomial regression was used to identify baseline associates of subgroup membership. RESULTS The optimum numbers of trajectory subgroups were three in Group 1 (low, medium, high) and four in Groups 2 and 3 (low, low/high medium, high). Each low trajectory subgroup maintained a mean HbA1c concentration of <53 mmol/mol (<7.0%) on lifestyle measures, or monotherapy (Group 3). All five medium subgroups had stable HbA1c trajectories at <58 mmol/mol (<7.5%) but required increasing oral BGLT, or insulin (Group 3, high medium). The Group 1 high subgroup showed a falling then increasing HbA1c with steady progression to insulin. The high subgroups in Groups 2 and 3 showed stable HbA1c profiles at means of approximately 64 mmol/mol (8.0%) and 86 mmol/L (10.0%), respectively, on insulin. Non-Anglo Celt ethnicity, central obesity and hypertriglyceridaemia were strongly associated with Group 1 high subgroup membership. Younger age at diagnosis and central obesity were independent associates of the most adverse HbA1c trajectories in Groups 2 and 3. CONCLUSIONS These data demonstrate diabetes duration-dependent heterogeneity in glycaemic and treatment profiles and related clinical and laboratory variables, which have implications for management.
Collapse
Affiliation(s)
- Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Wendy Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| |
Collapse
|
12
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
13
|
Herth J, Sievi NA, Schmidt F, Kohler M. Effects of continuous positive airway pressure therapy on glucose metabolism in patients with obstructive sleep apnoea and type 2 diabetes: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:230083. [PMID: 37673425 PMCID: PMC10481331 DOI: 10.1183/16000617.0083-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/27/2023] [Indexed: 09/08/2023] Open
Abstract
Obstructive sleep apnoea is a highly prevalent chronic disorder and has been shown to be associated with disturbed glucose metabolism and type 2 diabetes. However, the evidence from individual clinical trials on the effect of continuous positive airway pressure (CPAP) treatment on glycaemic control in patients with co-existing obstructive sleep apnoea and type 2 diabetes remains controversial. A systematic review of randomised controlled trials assessing the effect of CPAP on glycaemic control in patients with obstructive sleep apnoea and type 2 diabetes was conducted using the databases MEDLINE, Embase, Cochrane and Scopus up to December 2022. Meta-analysis using a random-effect model was performed for outcomes that were reported in at least two randomised controlled trials. From 3031 records screened, 11 RCTs with a total of 964 patients were included for analysis. CPAP treatment led to a significant reduction in haemoglobin A1c (HbA1c) (mean difference -0.24%, 95% CI -0.43- -0.06%, p=0.001) compared to inactive control groups. Meta-regression showed a significant association between reduction in HbA1c and hours of nightly CPAP usage. CPAP therapy seems to significantly improve HbA1c and thus long-term glycaemic control in patients with type 2 diabetes and obstructive sleep apnoea. The amount of improvement is dependent on the hours of usage of CPAP and thus optimal adherence to CPAP should be a primary goal in these patients.
Collapse
Affiliation(s)
- Jonas Herth
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | | | - Felix Schmidt
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
15
|
Faber J, Milanez MIO, Simões CS, Campos RR. Frequency-coded patterns of sympathetic vasomotor activity are differentially evoked by the paraventricular nucleus of the hypothalamus in the Goldblatt hypertension model. Front Cell Neurosci 2023; 17:1176634. [PMID: 37674868 PMCID: PMC10477436 DOI: 10.3389/fncel.2023.1176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction The paraventricular nucleus of the hypothalamus (PVN) contains premotor neurons involved in the control of sympathetic vasomotor activity. It is known that the stimulation of specific areas of the PVN can lead to distinct response patterns at different target territories. The underlying mechanisms, however, are still unclear. Recent evidence from sympathetic nerve recording suggests that relevant information is coded in the power distribution of the signal along the frequency range. In the present study, we addressed the hypothesis that the PVN is capable of organizing specific spectral patterns of sympathetic vasomotor activation to distinct territories in both normal and hypertensive animals. Methods To test it, we investigated the territorially differential changes in the frequency parameters of the renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), before and after disinhibition of the PVN by bicuculline microinjection. Subjects were control and Goldblatt rats, a sympathetic overactivity-characterized model of neurogenic hypertension (2K1C). Additionally, considering the importance of angiotensin II type 1 receptors (AT1) in the sympathetic responses triggered by bicuculline in the PVN, we also investigated the impact of angiotensin AT1 receptors blockade in the spectral features of the rSNA and sSNA activity. Results The results revealed that each nerve activity (renal and splanchnic) presents its own electrophysiological pattern of frequency-coded rhythm in each group (control, 2K1C, and 2K1C treated with AT1 antagonist losartan) in basal condition and after bicuculline microinjection, but with no significant differences regarding total power comparison among groups. Additionally, the losartan 2K1C treated group showed no decrease in the hypertensive response triggered by bicuculline when compared to the non-treated 2K1C group. However, their spectral patterns of sympathetic nerve activity were different from the other two groups (control and 2K1C), suggesting that the blockade of AT1 receptors does not totally recover the basal levels of neither the autonomic responses nor the electrophysiological patterns in Goldblatt rats, but act on their spectral frequency distribution. Discussion The results suggest that the differential responses evoked by the PVN were preferentially coded in frequency, but not in the global power of the vasomotor sympathetic responses, indicating that the PVN is able to independently control the frequency and the power of sympathetic discharges to different territories.
Collapse
Affiliation(s)
- Jean Faber
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maycon I. O. Milanez
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristiano S. Simões
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ruy R. Campos
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Liao M, Braunstein Z, Rao X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163803. [PMID: 37137360 DOI: 10.1016/j.scitotenv.2023.163803] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.
Collapse
Affiliation(s)
- Minyu Liao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zachary Braunstein
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Endukuru CK, Gaur GS, Yerrabelli D, Sahoo J, Vairappan B, Goud AC. Correlation among Poincare plot and traditional heart rate variability indices in adults with different risk levels of metabolic syndrome: a cross-sectional approach from Southern India. J Basic Clin Physiol Pharmacol 2023; 34:519-530. [PMID: 36626361 DOI: 10.1515/jbcpp-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Heart rate variability (HRV) is an important marker of cardiac autonomic modulation. Metabolic syndrome (MetS) can alter cardiac autonomic modulation, raising the risk of cardiovascular disease (CVD). Poincaré plot analysis (PPA) is a robust scatter plot-based depiction of HRV and carries similar information to the traditional HRV measures. However, no prior studies have examined the relationship between PPA and traditional HRV measures among different risk levels of MetS. We evaluated the association between the Poincare plot and traditional heart rate variability indices among adults with different risk levels of MetS. METHODS We measured anthropometric data and collected fasting blood samples to diagnose MetS. The MetS risk was assessed in 223 participants based on the number of MetS components and was classified as control (n=64), pre-MetS (n=49), MetS (n=56), and severe MetS (n=54). We calculated the Poincaré plot (PP) and traditional HRV measures from a 5 min HRV recording. RESULTS Besides the traditional HRV measures, we found that various HRV indices of PPA showed significant differences among the groups. The severe MetS group had significantly lower S (total HRV), SD1 (short-term HRV), SD2 (long-term HRV), and higher SD2/SD1. The values of S, SD1, SD2, and SD2/SD1 were significantly correlated with most traditional HRV measures. CONCLUSIONS We found gradual changes in HRV patterns as lower parasympathetic and higher sympathetic activity alongside the rising number of MetS components. The HRV indices of PPA integrating the benefits of traditional HRV indices distinguish successfully between different risk levels of MetS and control subjects.
Collapse
Affiliation(s)
- Chiranjeevi Kumar Endukuru
- Department of Physiology, Sri Siddhartha Institute of Medical Sciences & Research Centre, Bengaluru, India
| | - Girwar Singh Gaur
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Dhanalakshmi Yerrabelli
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Alladi Charanraj Goud
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
18
|
Kumar EC, Gaur GS, Yerrabelli D, Sahoo J, Vairappan B, Goud AC. Association between metabolic syndrome components and cardiac autonomic modulation in southern Indian adults with pre-metabolic syndrome: hyperglycemia is the major contributing factor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:49-59. [PMID: 36575933 PMCID: PMC9806641 DOI: 10.4196/kjpp.2023.27.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome (MetS) involves multi-factorial conditions linked to an elevated risk of type 2 diabetes mellitus and cardiovascular disease. Pre-metabolic syndrome (pre-MetS) possesses two MetS components but does not meet the MetS diagnostic criteria. Although cardiac autonomic derangements are evident in MetS, there is little information on their status in pre-MetS subjects. In this study, we sought to examine cardiac autonomic functions in pre-MetS and to determine which MetS component is more responsible for impaired cardiac autonomic functions. A total of 182 subjects were recruited and divided into healthy controls (n=89) and pre-MetS subjects (n=93) based on inclusion and exclusion criteria. We performed biochemical profiles on fasting blood samples to detect pre-MetS. Using standardized protocols, we evaluated anthropometric data, body composition, baroreflex sensitivity (BRS), heart rate variability (HRV), and autonomic function tests (AFTs). We further examined these parameters in pre-MetS subjects for each MetS component. Compared to healthy controls, we observed a significant cardiac autonomic dysfunction (CAD) through reduced BRS, lower overall HRV, and altered AFT parameters in pre-MetS subjects, accompanied by markedly varied anthropometric, clinical and biochemical parameters. Furthermore, all examined BRS, HRV, and AFT parameters exhibited an abnormal trend and significant correlation toward hyperglycemia. This study demonstrates CAD in pre-MetS subjects with reduced BRS, lower overall HRV, and altered AFT parameters. Hyperglycemia was considered an independent determinant of alterations in all the examined BRS, HRV, and AFT parameters. Thus, hyperglycemia may contribute to CAD in pre-MetS subjects before progressing to MetS.
Collapse
Affiliation(s)
- Endukuru Chiranjeevi Kumar
- Department of Physiology, Sri Siddhartha Institute of Medical Sciences & Research Centre, Bangalore 562123, India
| | - Girwar Singh Gaur
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Dhanalakshmi Yerrabelli
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Alladi Charanraj Goud
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| |
Collapse
|
19
|
Chi ZC. Metabolic associated fatty liver disease is a disease related to sympathetic nervous system activation. Shijie Huaren Xiaohua Zazhi 2022; 30:465-476. [DOI: 10.11569/wcjd.v30.i11.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Strong evidence from animal and human studies shows that sympathetic nervous system (SNS) activation is a key factor in the development of metabolic associated fatty liver disease (MAFLD). Activation of the sympathetic nervous system plays an important role in the pathogenesis of obesity, metabolic syndrome, diabetes, hypertension, and MAFLD. When genetically susceptible subjects are exposed to a variety of epigenetic changes, their liver damage may develop into MAFLD. Thus, the pathogenesis of MAFLD is complex, involving the complex interaction of insulin resistance, abnormal hormone secretion, obesity, diet, genetic factors, immune activation, gut microbiota, and other factors. In these processes, the role of sympathetic nerves cannot be underestimated. Notably, SNS has been proposed as a therapeutic target for MAFLD by inhibiting sympathetic nerves. It is worthy of further discussion and research.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
20
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
21
|
Afifah E, Nurdiati DS, Hadi H, Sofro ZM, Sadewa AH. Social Nervous Exercise Intervention and Its Association with Fasting Blood Glucose on Diabetes Mellitus Gestational. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Gestational diabetes mellitus (GDM) has been identified as a major complication of pregnancies and has remained a major cause of perinatal morbidity and mortality, in both mother and child. Exercise can be used as a strategy to reduce hyperglycemia experienced during GDM. Regular exercise is important for a healthy pregnancy and can lower the risk of developing GDM. For women with GDM. Exercise is safe and can affect the pregnancy outcomes beneficially. The role of exercise about increases skeletal muscle glucose uptake and minimizing hyperglycemia. Social nervous (SaSo) exercise is a moderate-intensity exercise intervention that plays a role in controlling blood glucose through autonomic nervous stimulation so that it has an effect on glucose homeostasis. Social nervous exercise can stimulate the parasympathetic or myelinated vagus nerves. The social nerve or the social nervous system is the vagus nerve nc-X which is supported by cranial nerves, namely, nerves V, VII, IX, and XI centered in the nucleus ambiguous.
AIM: The aim of the study is to determine the impact of a social nervous (SaSo) exercise training program consisting of warm-up, core (prayer movements), and cooling exercises on glucose homeostasis parameters in pregnant women diagnosed with GDM.
METHODS: Thirty-seven pregnant women diagnosed with GDM at 24–28 weeks of gestation were allocated into two groups, thats the experimental group (n=19) with the SaSo program being regularly monitored and the control group (n=18) receiving only standard antenatal care for GDM. The Saso program started from the time diabetes was diagnosed until 6 weeks of intervention. Interventions were performed twice per week and sessions lasted 40–45 min.
RESULTS: The baseline results for the experimental and control groups were homogeneous, without differences in the baseline variables (p > 0.05). Social nervous exercise the experimental group significantly reduced fasting blood glucose levels (p < 0.001) compared to the control group.
CONCLUSIONS: A social nervous exercise program has a beneficial effect on fasting blood glucose levels in late pregnancy.
Collapse
|
22
|
Benberin VV, Sibagatova AS, Nagimtayeva AA, Akhmetova KM, Voshchenkova TA. Systematisation of biological protectors for managing the metabolic syndrome development. J Diabetes Metab Disord 2021; 20:1449-1454. [PMID: 34900796 PMCID: PMC8630288 DOI: 10.1007/s40200-021-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Metabolic syndrome (MS) is becoming a major health risk in the world. Disorders of homeostasis are a trigger for MS and subsequent cardiometabolic diseases (CMDs). Its physiological role can be supported by biological protectors (BP). The purpose of this study is to develop a BP system for managing the MS development. METHODS Within the framework of the case-control study, 3000 participants aged 20-60 years formed 2 groups: the main group and the control group. RESULTS The study compared traditional markers of oxidative stress, chronic inflammation, and insulin resistance, which reflect the state of homeostasis. The BP system, proposed based on the concept of maintaining homeostasis, offers the following points for investigating the possibilities of therapeutic intervention: confronting dysregulation of homeostasis, resisting chronic inflammation and oxidative stress, resisting the consequences of disturbed homeostasis. This approach not only contributed to the understanding of general biological processes, but also provided a targeted search and development of BP to maintain the stability of homeostasis with MS. CONCLUSIONS The study results provided insight into new opportunities in the MS management.
Collapse
Affiliation(s)
- Valery V. Benberin
- Administrative Department, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, 010000, 80 Mangilik El Ave., Nur-Sultan, Republic of Kazakhstan
| | - Ainur S. Sibagatova
- Sector оf Clinical Research, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, 010000, 80 Mangilik El Ave., Nur-Sultan, Republic of Kazakhstan
| | - Almagul A. Nagimtayeva
- Gerontology Centre, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, 010000, 80 Mangilik El Ave., Nur-Sultan, Republic of Kazakhstan
| | - Kamshat M. Akhmetova
- Gerontology Centre, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, 010000, 80 Mangilik El Ave., Nur-Sultan, Republic of Kazakhstan
| | - Tamara A. Voshchenkova
- Gerontology Centre, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, 010000, 80 Mangilik El Ave., Nur-Sultan, Republic of Kazakhstan
| |
Collapse
|
23
|
Pan T, Zhang Q, Guo J. Endovascular denervation (EDN): From Hypertension to Non-Hypertension Diseases. J Interv Med 2021; 4:130-135. [PMID: 34805960 PMCID: PMC8562178 DOI: 10.1016/j.jimed.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022] Open
Abstract
Recently, the use of endovascular denervation (EDN) to treat resistant hypertension has gained significant attention. In addition to reducing sympathetic activity, EDN might also have beneficial effects on pulmonary arterial hypertension, insulin resistance, chronic kidney disease, atrial fibrillation, heart failure, obstructive sleep apnea syndrome, loin pain hematuria syndrome, cancer pain and so on. In this article we will summarize the progress of EDN in clinical research.
Collapse
Affiliation(s)
- Tao Pan
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Qi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jinhe Guo
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| |
Collapse
|
24
|
Qiu W, Cai X, Zheng C, Qiu S, Ke H, Huang Y. Update on the Relationship Between Depression and Neuroendocrine Metabolism. Front Neurosci 2021; 15:728810. [PMID: 34531719 PMCID: PMC8438205 DOI: 10.3389/fnins.2021.728810] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Through the past decade of research, the correlation between depression and metabolic diseases has been noticed. More and more studies have confirmed that depression is comorbid with a variety of metabolic diseases, such as obesity, diabetes, metabolic syndrome and so on. Studies showed that the underlying mechanisms of both depression and metabolic diseases include chronic inflammatory state, which is significantly related to the severity. In addition, they also involve endocrine, immune systems. At present, the effects of clinical treatments of depression is limited. Therefore, exploring the co-disease mechanism of depression and metabolic diseases is helpful to find a new clinical therapeutic intervention strategy. Herein, focusing on the relationship between depression and metabolic diseases, this manuscript aims to provide an overview of the comorbidity of depression and metabolic.
Collapse
Affiliation(s)
- Wenxin Qiu
- Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Cai
- Fujian Medical University, Fuzhou, Fujian, China
| | | | - Shumin Qiu
- Fujian Medical University, Fuzhou, Fujian, China
| | - Hanyang Ke
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
25
|
Li J, Tobore I, Liu Y, Kandwal A, Wang L, Nie Z. Non-invasive Monitoring of Three Glucose Ranges Based On ECG By Using DBSCAN-CNN. IEEE J Biomed Health Inform 2021; 25:3340-3350. [PMID: 33848252 DOI: 10.1109/jbhi.2021.3072628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomic nervous system (ANS) can maintain homeostasis through the coordination of different organs including heart. The change of blood glucose (BG) level can stimulate the ANS, which will lead to the variation of Electrocardiogram (ECG). Considering that the monitoring of different BG ranges is significant for diabetes care, in this paper, an ECG-based technique was proposed to achieve non-invasive monitoring with three BG ranges: low glucose level, moderate glucose level, and high glucose level. For this purpose, multiple experiments that included fasting tests and oral glucose tolerance tests were conducted, and the ECG signals from 21 adults were recorded continuously. Furthermore, an approach of fusing density-based spatial clustering of applications with noise and convolution neural networks (DBSCAN-CNN) was presented for ECG preprocessing of outliers and classification of BG ranges based ECG. Also, ECG's important information, which was related to different BG ranges, was graphically visualized. The result showed that the percentages of accurate classification were 87.94% in low glucose level, 69.36% in moderate glucose level, and 86.39% in high glucose level. Moreover, the visualization results revealed that the highlights of ECG for the different BG ranges were different. In addition, the sensitivity of prediabetes/diabetes screening based on ECG was up to 98.48%, and the specificity was 76.75%. Therefore, we conclude that the proposed approach for BG range monitoring and prediabetes/diabetes screening has potentials in practical applications.
Collapse
|
26
|
Koekkoek LL, Kool T, Eggels L, van der Gun LL, Lamuadni K, Slomp M, Diepenbroek C, Serlie MJ, Kalsbeek A, la Fleur SE. Activation of nucleus accumbens μ-opioid receptors enhances the response to a glycaemic challenge. J Neuroendocrinol 2021; 33:e13036. [PMID: 34528311 PMCID: PMC9286654 DOI: 10.1111/jne.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Opioids are known to affect blood glucose levels but their exact role in the physiological control of glucose metabolism remains unclear. Although there are numerous studies investigating the peripheral effects of opioid stimulation, little is known about how central opioids control blood glucose and which brain areas are involved. One brain area possibly involved is the nucleus accumbens because, as well as being a key site for opioid effects on food intake, it has also been implicated in the control of blood glucose levels. Within the nucleus accumbens, μ-opioid receptors are most abundantly expressed. Therefore, in the present study, we investigated the role of μ-opioid receptors in the nucleus accumbens in the control of glucose metabolism. We show that infusion of the μ-opioid receptor agonist [d-Ala2 , N-MePhe4 , Gly-ol]-enkephalin (DAMGO) in the nucleus accumbens by itself does not affect blood glucose levels, but it enhances the glycaemic response after both an insulin tolerance test, as well as a glucose tolerance test. These findings indicate that the nucleus accumbens plays a role in the central effects of opioids on glucose metabolism, and highlight the possibility of nucleus accumbens μ-opioid receptors as a therapeutic target for enhancing the counter-regulatory response.
Collapse
Affiliation(s)
- Laura L. Koekkoek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Tess Kool
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Leslie Eggels
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Luna L. van der Gun
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Khalid Lamuadni
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Margo Slomp
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Mireillle J. Serlie
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andries Kalsbeek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Hypothalamic Integration MechanismsAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
27
|
Valensi P. Autonomic nervous system activity changes in patients with hypertension and overweight: role and therapeutic implications. Cardiovasc Diabetol 2021; 20:170. [PMID: 34412646 PMCID: PMC8375121 DOI: 10.1186/s12933-021-01356-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence of hypertension is increasing worldwide, with approximately 1.13 billion of people currently affected by the disease, often in association with other diseases such as diabetes mellitus, chronic kidney disease, dyslipidemia/hypercholesterolemia, and obesity. The autonomic nervous system has been implicated in the pathophysiology of hypertension, and treatments targeting the sympathetic nervous system (SNS), a key component of the autonomic nervous system, have been developed; however, current recommendations provide little guidance on their use. This review discusses the etiology of hypertension, and more specifically the role of the SNS in the pathophysiology of hypertension and its associated disorders. In addition, the effects of current antihypertensive management strategies, including pharmacotherapies, on the SNS are examined, with a focus on imidazoline receptor agonists.
Collapse
Affiliation(s)
- Paul Valensi
- Unit of Endocrinology, Diabetology and Nutrition, Jean Verdier Hospital, CINFO, CRNH-IdF, AP-HP, Paris Nord University, Avenue du 14 Juillet, 93140, Bondy, France.
| |
Collapse
|
28
|
Yuen JWY, Wu C, Wang CK, Kim DD, Procyshyn RM, Panenka WG, Honer WG, Barr AM. A ganglionic blocker and adrenoceptor ligands modify clozapine-induced insulin resistance. Psychoneuroendocrinology 2021; 129:105257. [PMID: 34023734 DOI: 10.1016/j.psyneuen.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Clozapine is a second generation antipsychotic drug that has proven to be helpful in the management of patients with psychotic disorders that are resistant to other medications. Unfortunately, the majority of patients treated with clozapine develop metabolic dysregulation, including weight gain and insulin resistance. There are few treatments available to effectively counter these side-effects. The goal of the present study was to use an established animal model to better understand the nature of these metabolic side-effects and determine whether existing drugs could be used to alleviate metabolic changes. Adult female rats were treated with a range of doses of clozapine (2, 10 and 20 mg/kg) and subjected to the hyperinsulinemic-euglycemic clamp, to measure whole-body insulin resistance. Clozapine dose-dependently decreased the glucose infusion rate, reflecting pronounced insulin resistance. To reverse the insulin resistance, rats were co-treated with the ganglionic blocker mecamylamine (0.1, 1.0 and 5.0 mg/kg) which dose-dependently reversed the effects of 10 mg/kg clozapine. A 1.0 mg/kg dose of mecamylamine independently reversed the large increase in peripheral epinephrine caused by treatment with clozapine. To study the influence of specific adrenoceptors, rats were treated with multiple doses of α1 (prazosin), α2 (idazoxan), β1 (atenolol) and β2 (butoxamine) adrenoceptor antagonists after the onset of clozapine-induced insulin resistance. Both beta blockers were effective in attenuating the effects of clozapine, while idazoxan had a smaller effect; no change was seen with prazosin. The current results indicate that peripheral catecholamines may play a role in clozapine's metabolic effects and be a target for future treatments.
Collapse
Affiliation(s)
- Jessica W Y Yuen
- Faculty of Medicine, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Claire Wu
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Cathy K Wang
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - David D Kim
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Ric M Procyshyn
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada.
| |
Collapse
|
29
|
Schlaich MP, Almahmeed W, Arnaout S, Prabhakaran D, Zhernakova J, Zvartau N, Schutte AE. The role of selective imidazoline receptor agonists in modern hypertension management: an international real-world survey (STRAIGHT). Curr Med Res Opin 2020; 36:1939-1945. [PMID: 33047993 DOI: 10.1080/03007995.2020.1835852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Multiple pharmacologic strategies are currently available to lower blood pressure (BP). Renin-angiotensin system (RAS)-inhibitors, calcium channel blockers and diuretics are widely recommended as first line therapies. Sympathetic activation is an important contributor to BP elevation but remains unopposed or is even increased by some of these drug classes. Selective imidazoline receptor agonists (SIRAs) reduce increased central sympathetic outflow and are considered as add-on therapy in most guidelines. We conducted an international survey to evaluate contemporary hypertension management strategies in countries with high prescription rates of SIRAs to better understand the rationale and practical indications for their use in a real-world setting. METHODS Physicians from seven countries (India, Jordan, Lebanon, Russia, Saudi Arabia, South Africa, United Arab Emirates) were asked to complete a web-based questionnaire and comment on clinical case scenarios to provide information on their current practice regarding antihypertension strategies, underlying rationale for their choices, and adherence to relevant guidelines. RESULTS 281 physicians completed the questionnaire including mainly cardiologists (35%) and general practitioners (32%). 96% reported using European (60%) or local (56%) guidelines in their daily practices. The majority of responding physicians (83%) had knowledge of SIRAs and 70% prescribed SIRAs regularly typically as a third line antihypertensive strategy (63%). The preferred combination partners for SIRAs were RAS-inhibitors (72%). CONCLUSIONS Contemporary hypertension management varies between countries and therapeutic approaches in a real-world setting are not always in line with recommendations from available guidelines. In the countries selected for this survey prescription of SIRAs was common and appeared to be guided predominantly by considerations relating to the underlying pathophysiologic mechanism of sympathetic inhibition.
Collapse
Affiliation(s)
- Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, University of Western Australia, Perth, Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samir Arnaout
- Division of Cardiology, Department of Internal Medicine, American University of Beirut-Medical Center, Lebanon
| | - Dorairaj Prabhakaran
- Chronic Disease, Centre for Control of Chronic Conditions (CCCC), New Delhi, India
- Epidemiology, Public Health Foundation of India (PHFI), New Delhi, India
| | | | - Nadezhda Zvartau
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Aletta E Schutte
- Hypertension in Africa Research Team, MRC Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Wang Y, Rijal B, Xu M, Li Z, An Y, Zhang F, Lu C. Renal denervation improves vascular endothelial dysfunction by inducing autophagy via AMPK/mTOR signaling activation in a rat model of type 2 diabetes mellitus with insulin resistance. Acta Diabetol 2020; 57:1227-1243. [PMID: 32488498 DOI: 10.1007/s00592-020-01532-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/31/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent clinical and animal studies have shown that renal denervation (RDN) improves insulin sensitivity and endothelial dysfunction. However, the specific mechanism remains incompletely understood. The purpose of this study is to investigate the effects of RDN on endothelial dysfunction of type 2 diabetes mellitus (T2DM) rat models with insulin resistance and to explore the underlying molecular mechanisms. METHODS Male Sprague-Dawley rats were fed with or without high-fat diet allocated in different groups, combined with low-dose streptozotocin which induces a rat model to develop T2DM with insulin resistance. RDN was conducted 1 week after the rat models fully developed T2DM. The animals were sub-divided into four groups randomly: control group (CON, n = 6), diabetic group (T2DM, n = 6), diabetic with sham surgery group (Sham, n = 6) and diabetic with RDN group (RDN, n = 6). Rats in all groups were studied at baseline, both preoperatively and 4 weeks after RDN, respectively. Western blot was used to detect the expression of angiotensin-converting enzyme 2 (ACE2) protein and the expression of autophagy-related proteins Beclin1, LC3 and p62 and autophagy signaling pathway AMPK/mTOR proteins and apoptosis-related protein caspase-3 in the aorta endothelial cells. In addition, the effects of ACE2 on autophagy of human umbilical vein insulin resistance endothelial cell culture in vitro were also studied. RESULTS RDN decreased plasma and renal tissue norepinephrine levels. The Von Willebrand factor level was also decreased, while the plasma level of nitric oxide (NO) was significantly increased after RDN. Compared with the T2DM group and the Sham group, the endothelium-dependent and endothelium-independent diastolic function of the RDN group was improved significantly, the expression of Beclin1, LC3, ACE2 and eNOS proteins was higher, and the level of p62 protein was decreased. Furthermore, we found that RDN can activate the expression of p-AMPK and inhibit the expression of p-mTOR. In cell culture experiment, ACE2 activated p-AMPK and inhibited p-mTOR, thus promoting autophagy. CONCLUSIONS RDN may not only increase the expression of ACE2 in the vascular endothelium, but also can via ACE2 activate p-AMPK and inhibit p-mTOR, thus promoting autophagy and improving endothelial dysfunction.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Autophagy/physiology
- Denervation/methods
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/surgery
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/surgery
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Insulin Resistance
- Kidney/innervation
- Kidney/metabolism
- Kidney/surgery
- Male
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/physiology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Yong Wang
- First Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Cardiology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Bikash Rijal
- First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Mengping Xu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhuqing Li
- School of Medicine, Nankai University, Tianjin, China
| | - Yunan An
- First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Feng Zhang
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
31
|
Liu H, Zhan P, Meng F, Wang W. Chronic vagus nerve stimulation for drug-resistant epilepsy may influence fasting blood glucose concentration. Biomed Eng Online 2020; 19:40. [PMID: 32471438 PMCID: PMC7257242 DOI: 10.1186/s12938-020-00784-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cervical vagus nerve stimulation (VNS) has been widely accepted as adjunctive therapy for drug-resistant epilepsy and major depression. Its effects on glycemic control in humans were however poorly understood. The aim of our study was to investigate the potential effects of VNS on fasting blood glucose (FBG) in patients with drug-resistant epilepsy. Methods Patients with drug-resistant epilepsy who had received VNS implants at the same hospital were retrospectively studied. Effects on FBG, weight, body mass index and blood pressure were evaluated at 4, 8 and 12 months of follow-up. Results 32 subjects (11 females/21 males, 19 ± 9 years, body mass index 22.2 ± 4.0 kg/m2) completed 12-month follow-up. At the 4 months, there were no significant changes in FBG concentrations from baseline to follow-up in both Sham-VNS (4.89 ± 0.54 vs. 4.56 ± 0.54 mmol/L, N = 13, p = 0.101) and VNS (4.80 ± 0.54 vs. 4.50 ± 0.56 mmol/L, N = 19, p = 0.117) groups. However, after 8 (4.90 ± 0.42 mmol/L, N = 32, p = 0.001) and 12 (4.86 ± 0.40 mmol/L, N = 32, p = 0.002) months of VNS, FBG levels significantly increased compared to baseline values (4.52 ± 0.54 mmol/L, N = 32). Changes in FBG concentrations at both 8 (R2 = 0.502, N = 32, p < 0.001) and 12 (R2 = 0.572, N = 32, p < 0.001) months were negatively correlated with baseline FBG levels. Conclusions Our study suggests that chronic cervical VNS elevates FBG levels with commonly used stimulation parameters in patients with epilepsy. Trial registration VNSRE, NCT02378792. Registered 4 March 2015—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02378792
Collapse
Affiliation(s)
- Hongyun Liu
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, 100853, China.,Center of Medical Device R & D and Clinical Evaluation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhan
- Center of Medical Device R & D and Clinical Evaluation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing, 100050, China. .,Neurosurgery, Beijing Tian Tan Hospital Capital Medical University, Beijing, 100050, China.
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, 100853, China. .,Center of Medical Device R & D and Clinical Evaluation, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
32
|
Coopmans C, Zhou TL, Henry RMA, Heijman J, Schaper NC, Koster A, Schram MT, van der Kallen CJH, Wesselius A, den Engelsman RJA, Crijns HJGM, Stehouwer CDA. Both Prediabetes and Type 2 Diabetes Are Associated With Lower Heart Rate Variability: The Maastricht Study. Diabetes Care 2020; 43:1126-1133. [PMID: 32161051 DOI: 10.2337/dc19-2367] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/22/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Low heart rate variability (HRV), a marker for cardiac autonomic dysfunction, is a known feature of type 2 diabetes, but it remains incompletely understood whether this also applies to prediabetes or across the whole glycemic spectrum. Therefore, we investigated the association among prediabetes, type 2 diabetes, and measures of glycemia and HRV. RESEARCH DESIGN AND METHODS In the population-based Maastricht Study (n = 2,107; mean ± SD age 59 ± 8 years; 52% men; normal glucose metabolism [n = 1,226], prediabetes [n = 331], and type 2 diabetes [n = 550, oversampled]), we determined 24-h electrocardiogram-derived HRV in time and frequency domains (individual z-scores, based upon seven and six variables, respectively). We used linear regression with adjustments for age, sex, and major cardiovascular risk factors. RESULTS After adjustments, both time and frequency domain HRV were lower in prediabetes and type 2 diabetes as compared with normal glucose metabolism (standardized β [95% CI] for time domain: -0.15 [-0.27; -0.03] and -0.34 [-0.46; -0.22], respectively, P for trend <0.001; for frequency domain: -0.14 [-0.26; -0.02] and -0.31 [-0.43; -0.19], respectively, P for trend <0.001). In addition, 1-SD higher glycated hemoglobin, fasting plasma glucose, and 2-h postload glucose were associated with lower HRV in both domains (time domain: -0.16 [-0.21; -0.12], -0.16 [-0.21; -0.12], and -0.15 [-0.20; -0.10], respectively; frequency domain: -0.14 [-0.19; -0.10], -0.14 [-0.18; -0.09], and -0.13 [-0.18; -0.08], respectively). CONCLUSIONS Both prediabetes and type 2 diabetes were independently associated with lower HRV. This is further substantiated by independent continuous associations between measures of hyperglycemia and lower HRV. These data strongly suggest that cardiac autonomic dysfunction is already present in prediabetes.
Collapse
Affiliation(s)
- Charlotte Coopmans
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tan Lai Zhou
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ronald M A Henry
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,Heart+Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jordi Heijman
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Cardiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,Care and Public Health Research Institute School for Public Health and Primary Care, Maastricht University, Maastricht, the Netherlands
| | - Annemarie Koster
- Care and Public Health Research Institute School for Public Health and Primary Care, Maastricht University, Maastricht, the Netherlands.,Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
| | - Miranda T Schram
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,Heart+Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Anke Wesselius
- Department of Complex Genetics, Maastricht University, Maastricht, the Netherlands
| | | | - Harry J G M Crijns
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.,Department of Cardiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands .,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
33
|
Worker CJ, Li W, Feng CY, Souza LAC, Gayban AJB, Cooper SG, Afrin S, Romanick S, Ferguson BS, Feng Earley Y. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2020; 318:E765-E778. [PMID: 32228320 PMCID: PMC7272727 DOI: 10.1152/ajpendo.00406.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.
Collapse
Affiliation(s)
- Caleb J Worker
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina
| | - Cheng-Yuan Feng
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Lucas A C Souza
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Sanzida Afrin
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Samantha Romanick
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Bradley S Ferguson
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Yumei Feng Earley
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| |
Collapse
|
34
|
Seicol BJ, Bejarano S, Behnke N, Guo L. Neuromodulation of metabolic functions: from pharmaceuticals to bioelectronics to biocircuits. J Biol Eng 2019; 13:67. [PMID: 31388355 PMCID: PMC6676523 DOI: 10.1186/s13036-019-0194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Neuromodulation of central and peripheral neural circuitry brings together neurobiologists and neural engineers to develop advanced neural interfaces to decode and recapitulate the information encoded in the nervous system. Dysfunctional neuronal networks contribute not only to the pathophysiology of neurological diseases, but also to numerous metabolic disorders. Many regions of the central nervous system (CNS), especially within the hypothalamus, regulate metabolism. Recent evidence has linked obesity and diabetes to hyperactive or dysregulated autonomic nervous system (ANS) activity. Neural regulation of metabolic functions provides access to control pathology through neuromodulation. Metabolism is defined as cellular events that involve catabolic and/or anabolic processes, including control of systemic metabolic functions, as well as cellular signaling pathways, such as cytokine release by immune cells. Therefore, neuromodulation to control metabolic functions can be used to target metabolic diseases, such as diabetes and chronic inflammatory diseases. Better understanding of neurometabolic circuitry will allow for targeted stimulation to modulate metabolic functions. Within the broad category of metabolic functions, cellular signaling, including the production and release of cytokines and other immunological processes, is regulated by both the CNS and ANS. Neural innervations of metabolic (e.g. pancreas) and immunologic (e.g. spleen) organs have been understood for over a century, however, it is only now becoming possible to decode the neuronal information to enable exogenous controls of these systems. Future interventions taking advantage of this progress will enable scientists, engineering and medical doctors to more effectively treat metabolic diseases.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH USA
- Department of Neuroscience, The Ohio State University, Columbus, OH USA
| | | | - Nicholas Behnke
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH USA
| | - Liang Guo
- Department of Neuroscience, The Ohio State University, Columbus, OH USA
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
35
|
Abizaid A. Stress and obesity: The ghrelin connection. J Neuroendocrinol 2019; 31:e12693. [PMID: 30714236 DOI: 10.1111/jne.12693] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/01/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Ghrelin is a hormone associated with feeding and energy balance. Not surprisingly, this hormone is secreted in response to acute stressors and it is chronically elevated after exposure to chronic stress in tandem with a number of metabolic changes aimed at attaining homeostatic balance. In the present review, we propose that ghrelin plays a key role in these stress-induced homeostatic processes. Ghrelin targets the hypothalamus and brain stem nuclei that are part of the sympathetic nervous system to increase appetite and energy expenditure and promote the use of carbohydrates as a source of fuel at the same time as sparing fat. Ghrelin also targets mesolimbic brain regions such as the ventral segmental area and the hippocampus to modulate reward processes, to protect against damage associated with chronic stress, as well as to potentially increase resilience to stress. In all, these data support the notion that ghrelin, similar to corticosterone, is a critical metabolic hormone that is essential for the stress response.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|