1
|
Macris PC, McMillen K. Nutrition issues in adult hematopoietic cell transplantation: A narrative review of latest advances. Nutr Clin Pract 2025; 40:518-533. [PMID: 40200765 DOI: 10.1002/ncp.11288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 04/10/2025] Open
Abstract
Patients undergoing hematopoietic cell transplantation (HCT) are a highly heterogenous population with respect to their unique nutrient requirements and need for nutrition support. Dose-intensive conditioning regimens in addition to the debilitating effects of graft-vs-host disease impact and adversely affect the transplant recipient's nutrition status. Decreased oral intake, increased nutrient requirements, and impaired nutrient absorption and utilization often necessitate specialized nutrition support. The use of parenteral nutrition and enteral nutrition support, as well as dietary intervention strategies for immunocompromised patients, have varied over the past five decades and are highly dependent on the type of transplant used. This review highlights adult nutrition assessment components, nutrition support practices, and management of complex nutrition consequences associated with HCT.
Collapse
Affiliation(s)
- Paula Charuhas Macris
- Medical Nutrition Therapy Services, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kerry McMillen
- Medical Nutrition Therapy Services, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Paviglianiti A, Bianchessi A, Avenoso D, Radici V, Domingo MP, Pozzilli P, Sureda A. Modern views of nutritional support in patients undergoing allogeneic stem cell transplantation. Clin Nutr ESPEN 2024; 63:400-408. [PMID: 38971406 DOI: 10.1016/j.clnesp.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Patients undergoing allogeneic stem cell transplant (HSCT) have a higher risk of developing malnutrition. The aetiology is multifactorial and complex: the conditioning regimen causes damages to the gastrointestinal tract that can contribute to trigger graft-versus-host disease and/or infectious complications that adversely affect food intake and the gut absorption of nutrients in transplant recipients. Consequently, patients might develop weight loss and muscle wasting. There is mounting evidence that insufficient muscle mass increases the risk of toxicity to many chemotherapy drugs. Furthermore, the screening for malnutrition, assessment and intervention can vary among HSCT centers. Hereby, we report the main nutritional clinical issues in the field of HSCT and the main nutritional tools used in this setting. Future clinical trials investigating nutritional tools and dose-escalating studies based on pre-treatment body composition assessment may help having the potential to alter cancer treatment paradigms.
Collapse
Affiliation(s)
- Annalisa Paviglianiti
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy; Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.
| | - Antonio Bianchessi
- Department of Molecular Medicine, University of Pavia and Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Avenoso
- Department of Hematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Vera Radici
- Unit of Blood Diseases and Stem Cell Transplantation, ASST-Spedali Civili di Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marta Peña Domingo
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Paolo Pozzilli
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
3
|
Józefczuk P, Biliński J, Minkowska A, Łaguna P. Gut microbiome in children undergoing hematopoietic stem cell transplantation. Best Pract Res Clin Gastroenterol 2024; 72:101955. [PMID: 39645282 DOI: 10.1016/j.bpg.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in children as a treatment for various cancers, e.g. acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), or other diseases, e.g. severe congenital immunodeficiency, metabolic disorders, hence the patient population is quite diverse. There is an increasing interest on the role of the microbiome in peri-transplant period. In this review, concepts of HSCT with the focus on the importance of microbiome composition, its changes during treatment and possible microbiota oriented interventions will be discussed. This paper analyzes data in pediatric population, but in view of interesting results and absence of analogous data for pediatric patients, it also looks at studies performed on adult population and pre-clinical trials on animals discussing possible translation to children.
Collapse
Affiliation(s)
- Paweł Józefczuk
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland.
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland; Human Biome Institute, Gdansk, Warsaw, Poland
| | - Aleksandra Minkowska
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Poland
| |
Collapse
|
4
|
Wang Q, He M, Liang J, Tan X, Wu Q, Wang J, Li X, Qiao M, Huang Z, Xie Q, Liu Z, Ren H, Wang L, Zhou H, Shao L, Shu R, Wu W, Yang W, Wang H, Sun Z, Xu X, Zhang X, Li Z, Zhang Y, Meng J, Zhu Y, Chen F, Qu R, Chen P, Li S, Shi Y, Mao X, Hu B, Zhang Y, Cao YJ, Guo Z. Chinese guidelines for integrated diagnosis and treatment of intestinal microecology technologies in tumor application (2024 Edition). J Cancer Res Ther 2024; 20:1130-1140. [PMID: 39206974 DOI: 10.4103/jcrt.jcrt_32_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT Intestinal microecology (IM) is the largest and most important microecological system of the human body. Furthermore, it is the key factor for activating and maintaining the physiological functions of the intestine. Numerous studies have investigated the effects of the gut microbiota on the different tissues and organs of the human body as well as their association with various diseases, and the findings are gradually being translated into clinical practice. The gut microbiota affects the occurrence, progression, treatment response, and toxic side effects of tumors. The deepening of research related to IM and tumors has opened a new chapter in IM research driven by methods and technologies such as second-generation sequencing and bioinformatics. The IM maintains the function of the host immune system and plays a pivotal role in tumor-control drug therapy. Increasing evidence has proven that the efficacy of tumor-control drugs largely depends on the IM balance, and strategies based on the IM technology show promising application prospects in the diagnosis and treatment of tumor. The Tumor and Microecology Professional Committee of the Chinese Anti-cancer Association gathered relevant experts to discuss and propose the "Chinese guidelines for integrated diagnosis and treatment of IM technologies in tumor application (2024 Edition)," which was established based on the research progress of the application of the IM technology in tumor to provide a basis for the standardization of the diagnosis and treatment of the IM technology in the tumor.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaohua Tan
- Department of Oncology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziming Huang
- Hubei Maternal and Child Health Care Hospital, Wuhan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Zhe Liu
- Medical College, Tianjin University, Tianjin, China
| | - Hua Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rong Shu
- The Third People's Hospital of Hubei Province, Wuhan, China
| | - Wei Wu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wenyan Yang
- Shangdong First Medical University and Shangdong Academy of Medical Sciences, Jinan, China
| | - Hua Wang
- Department of Hematology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xingding Zhang
- The School of Medicine of Sun Yat-Sen University, Shenzhen, China
| | - Zhiming Li
- Medical Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Shenzhen, China
| | - Jingye Meng
- Department of Hematology and Oncology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanli Zhu
- The First Affliated Hosptial of Xinxiang Medical University, Xinxiang, China
| | - Feng Chen
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Qu
- Department of Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Peng Chen
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuluan Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuanyuan Shi
- Shenzhen Cell Valley Biomedicine Co. LTD, Shenzhen, China
| | - Xin Mao
- Primary Health Care Foundation of China, Xiangyang, China
| | - Bichuan Hu
- Xiangyang Hospital of Integrated Traditional Chinese and Western Medicine, Xiangyang, China
| | - Yukui Zhang
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhi Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
5
|
Gandossi C, Jessop H, Hahn A, Heininger L, Henes J, Radaelli AM, Carmagnola A, Morello E, Renica C, Bertulli A, Lazzari L, Kenyon M, Alexander T, Domenech A, Greco R. Nutritional aspects in autoimmune diseases undergoing hematopoietic stem cell transplantation: overview and recommendations on behalf of the EBMT ADWP and Nurses Group. Front Nutr 2024; 11:1394518. [PMID: 38784130 PMCID: PMC11111942 DOI: 10.3389/fnut.2024.1394518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Autoimmune diseases (ADs) represent a heterogeneous group of conditions affecting 5-10% of the global population. In recent decades, hematopoietic stem cell transplant (HSCT), mainly autologous, has been successfully adopted to treat patients affected by severe/refractory ADs. In this context malnutrition has a detrimental impact on relapse, mortality, infection rate, engraftment, long-term survival, and prolongation of hospitalization. However, in this population, the management of nutrition should be improved since nutritional assessment is partially performed in routine clinical practice. A panel of nurses and physicians from the European Society for Blood and Marrow Transplantation (EBMT) reviewed all available evidence based on current literature and expert practices from centers with extensive experience in HSCT for ADs, on the nutritional management of ADs patients during HSCT procedure. In this context, adequate nutritional status predicts a better response to treatment and improves quality of life. Herein, a systematic and comprehensive monitoring of nutritional status before, during and after HSCT, with adequate nutritional support in the case of ADs patients, in addition to assessing the dietary requirements associated with HSCT has been covered. Moreover, given the singularity of each AD, the underlying disease should be considered for an appropriate approach. The management and evaluation of nutritional status must be carried out by a multidisciplinary team to assess the needs, monitor the effectiveness of each intervention, and prevent complications, especially in complex situations as patients affected by ADs.
Collapse
Affiliation(s)
- Chiara Gandossi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Helen Jessop
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Anne Hahn
- Department of Internal Medicine II (Hematology, Oncology, Clinical Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | - Lisa Heininger
- Department of Internal Medicine II (Hematology, Oncology, Clinical Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | - Jörg Henes
- Department of Internal Medicine II (Hematology, Oncology, Clinical Immunology and Rheumatology), University Hospital Tuebingen, Tuebingen, Germany
| | - Alexia Marina Radaelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Carmagnola
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Enrico Morello
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit" ASST-Spedali Civili" Hospital of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Chiara Renica
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit" ASST-Spedali Civili" Hospital of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alice Bertulli
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit" ASST-Spedali Civili" Hospital of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorenzo Lazzari
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Michelle Kenyon
- Department of Haematology, King's College Hospital, London, United Kingdom
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ariadna Domenech
- Bone Marrow Transplant Unit, Department of Hematology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Fernandez Sanchez J, Maknojia AA, King KY. Blood and guts: how the intestinal microbiome shapes hematopoiesis and treatment of hematologic disease. Blood 2024; 143:1689-1701. [PMID: 38364184 PMCID: PMC11103099 DOI: 10.1182/blood.2023021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.
Collapse
Affiliation(s)
- Josaura Fernandez Sanchez
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Arushana A. Maknojia
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
| | - Katherine Y. King
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
- Division of Infectious Diseases, Department of Pediatrics, and Center for Cell and Gene Therapy, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| |
Collapse
|
7
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
8
|
Riwes MM, Golob JL, Magenau J, Shan M, Dick G, Braun T, Schmidt TM, Pawarode A, Anand S, Ghosh M, Maciejewski J, King D, Choi S, Yanik G, Geer M, Hillman E, Lyssiotis CA, Tewari M, Reddy P. Feasibility of a dietary intervention to modify gut microbial metabolism in patients with hematopoietic stem cell transplantation. Nat Med 2023; 29:2805-2813. [PMID: 37857710 PMCID: PMC10667101 DOI: 10.1038/s41591-023-02587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Evaluation of the impact of dietary intervention on gastrointestinal microbiota and metabolites after allogeneic hematopoietic stem cell transplantation (HCT) is lacking. We conducted a feasibility study as the first of a two-phase trial. Ten adults received resistant potato starch (RPS) daily from day -7 to day 100. The primary objective was to test the feasibility of RPS and its effect on intestinal microbiome and metabolites, including the short-chain fatty acid butyrate. Feasibility met the preset goal of 60% or more, adhering to 70% or more doses; fecal butyrate levels were significantly higher when participants were on RPS than when they were not (P < 0.0001). An exploratory objective was to evaluate plasma metabolites. We observed longitudinal changes in plasma metabolites compared to baseline, which were independent of RPS (P < 0.0001). However, in recipients of RPS, the dominant plasma metabolites were more stable compared to historical controls with significant difference at engraftment (P < 0.05). These results indicate that RPS in recipients of allogeneic HCT is feasible; in this study, it was associated with significant alterations in intestinal and plasma metabolites. A phase 2 trial examining the effect of RPS on graft-versus-host disease in recipients of allogeneic HCT is underway. ClinicalTrials.gov registration: NCT02763033 .
Collapse
Affiliation(s)
- Mary M Riwes
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA.
| | - Jonathan L Golob
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI, USA
| | - John Magenau
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory Dick
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Braun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Thomas M Schmidt
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI, USA
| | - Attaphol Pawarode
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sarah Anand
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Monalisa Ghosh
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - John Maciejewski
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Darren King
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sung Choi
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Gregory Yanik
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Marcus Geer
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ethan Hillman
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
10
|
Casirati A, Salcedo I, Cereda E, Chabannon C, Ruggeri A, Kuball J, Clout R, Mooyaart JE, Kenyon M, Caccialanza R, Pedrazzoli P, Kisch AM. The European Society for Blood and Marrow Transplantation (EBMT) roadmap and perspectives to improve nutritional care in patients undergoing hematopoietic stem cell transplantation on behalf of the Cellular Therapy and Immunobiology Working Party (CTIWP) and the Nurses Group (NG) of the EBMT. Bone Marrow Transplant 2023; 58:965-972. [PMID: 37407728 DOI: 10.1038/s41409-023-02018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Malnutrition is the most common comorbidity during the continuum of hematopoietic stem cell transplant (HSCT) and negatively impacts clinical outcomes, response to therapy, quality of life, and costs. The intensive conditioning regimen administered before transplant causes inflammatory damages to the gastrointestinal system, which themselves contribute to trigger graft versus host disease (GvHD) in the allogeneic setting. GvHD and other post-transplant complications such as infections adversely affect food intake and gut absorption of nutrients. Consequently, patients exhibit signs of malnutrition such as weight loss and muscle wasting, thus triggering a "vicious circle" that favours additional complications. Among HSCT centres, there is marked variability in nutritional care, from screening for malnutrition to nutritional intervention. The present paper, elaborated by the Cellular Therapy and Immunobiology Working Party and the Nurses Group of the European Society for Blood and Marrow Transplantation, aims at defining a roadmap that identifies the main nutritional critical issues in the field of HSCT. This document will be propaedeutic to the development of clinical algorithms to counteract risk factors of malnutrition, based on scientific evidence and shared among HSCT centres, and thus maximize transplant outcomes.
Collapse
Affiliation(s)
- Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Isabel Salcedo
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Madrid, Spain
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Christian Chabannon
- Centre de Thérapie Cellulaire & Centre d'Investigations Cliniques en Biothérapies Inserm CBT-1409, Institut Paoli-Calmettes, Marseille, France
| | - Annalisa Ruggeri
- Hematology and BMT Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Jurgen Kuball
- Department of Hematology and Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Ruth Clout
- Department of Haematology and Transplant Unit, The Christie Hospital, Manchester, United Kingdom
| | | | - Michelle Kenyon
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy.
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Annika M Kisch
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden and Institute of Health Sciences, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Metafuni E, Di Marino L, Giammarco S, Bellesi S, Limongiello MA, Sorà F, Frioni F, Maggi R, Chiusolo P, Sica S. The Role of Fecal Microbiota Transplantation in the Allogeneic Stem Cell Transplant Setting. Microorganisms 2023; 11:2182. [PMID: 37764025 PMCID: PMC10536954 DOI: 10.3390/microorganisms11092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Microbiota changes during allogeneic hematopoietic stem cell transplantation has several known causes: conditioning chemotherapy and radiation, broad-spectrum antibiotic administration, modification in nutrition status and diet, and graft-versus-host disease. This article aims to review the current knowledge about the close link between microbiota and allogeneic stem cell transplantation setting. The PubMed search engine was used to perform this review. We analyzed data on microbiota dysbiosis related to the above-mentioned affecting factors. We also looked at treatments aimed at modifying gut dysbiosis and applications of fecal microbiota transplantation in the allogeneic stem cell transplant field, with particular interest in fecal microbiota transplantation for graft-versus-host disease (GvHD), multidrug-resistant and clostridium difficile infections, and microbiota restoration after chemotherapy and antibiotic therapy.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Luca Di Marino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Roberto Maggi
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| |
Collapse
|
12
|
Dickter J, Logan C, Taplitz R. Neutropenia and antibiotics: when, what, how and why? Curr Opin Infect Dis 2023; 36:218-227. [PMID: 37431552 DOI: 10.1097/qco.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
PURPOSE OF REVIEW Our aim is to review recent literature on antibiotic use in patients with neutropenia. RECENT FINDINGS Prophylactic antibiotics are associated with risks and have limited mortality benefit. While early antibiotic use in febrile neutropenia (FN) is critical, early de-escalation or discontinuation may be safe in many patients. SUMMARY With an increasing understanding of potential risks and benefits of use and improved risk assessment, paradigms of antibiotic use in neutropenic patients are changing.
Collapse
Affiliation(s)
- Jana Dickter
- Division of Infectious Diseases, Department of Medicine, City of Hope National Medical Center, Duarte
| | - Cathy Logan
- Division of Infectious Diseases and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Randy Taplitz
- Division of Infectious Diseases, Department of Medicine, City of Hope National Medical Center, Duarte
| |
Collapse
|
13
|
Limpert R, Pan P, Wang LS, Chen X. From support to therapy: rethinking the role of nutrition in acute graft-versus-host disease. Front Immunol 2023; 14:1192084. [PMID: 37359550 PMCID: PMC10285162 DOI: 10.3389/fimmu.2023.1192084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (HSCT) offers a potential cure for patients with hematologic malignancies. Unfortunately, graft-versus-host disease (GVHD) remains a major obstacle to the greater success of this treatment. Despite intensive research efforts over the past several decades, GVHD is still a major cause of morbidity and mortality in patients receiving allogeneic HSCT. The genetic disparity between donor and recipient is the primary factor that dictates the extent of alloimmune response and the severity of acute GVHD (aGVHD). However, some nongenetic factors are also actively involved in GVHD pathogenesis. Thus, identifying host factors that can be readily modified to reduce GVHD risk is of important clinical significance. We are particularly interested in the potential role of nutrition, as a nongenetic factor, in the etiology and management of aGVHD. In this article, we summarize recent findings regarding how different routes of nutritional support and various dietary factors affect aGVHD. Since diet is one of the most important factors that shape gut microbiota, we also provide evidence for a potential link between certain nutrients and gut microbiota in recipients of allogeneic HSCT. We propose a shifting role of nutrition from support to therapy in GVHD by targeting gut microbiota.
Collapse
|
14
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Prete A, Masetti R. Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front Nutr 2022; 9:993668. [PMID: 36337625 PMCID: PMC9632163 DOI: 10.3389/fnut.2022.993668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Francesco Baccelli,
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2124627. [PMID: 35571252 PMCID: PMC9098338 DOI: 10.1155/2022/2124627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HSCT) is a reconstruction process of hematopoietic and immune functions that can be curative in patients with hematologic malignancies, but it carries risks of graft-versus-host disease (GVHD), thrombotic microangiopathy (TMA), Epstein–Barr virus (EBV) infection, cytomegalovirus infection, secondary hemophagocytic lymphohistiocytosis (sHLH), macrophage activation syndrome (MAS), bronchiolitis obliterans, and posterior reversible encephalopathy syndrome (PRES). Gastrointestinal graft-versus-host disease (GI GVHD), a common complication of allo-HSCT, is one of the leading causes of transplant-related death because of its high treatment difficulty, which is affected by preimplantation, antibiotic use, dietary changes, and intestinal inflammation. At present, human trials and animal studies have proven that a decrease in intestinal bacterial diversity is associated with the occurrence of GI GVHD. Metabolites produced by intestinal bacteria, such as lipopolysaccharides, short-chain fatty acids, and secondary bile acids, can affect the development of GVHD through direct or indirect interactions with immune cells. The targeted damage of GVHD on intestinal stem cells (ISCs) and Paneth cells results in intestinal dysbiosis or dysbacteriosis. Based on the effect of microbiota metabolites on the gastrointestinal tract, the clinical treatment of GI GVHD can be further optimized. In this review, we describe the mechanisms of GI GVHD and the damage it causes to intestinal cells and we summarize recent studies on the relationship between intestinal microbiota and GVHD in the gastrointestinal tract, highlighting the role of intestinal microbiota metabolites in GI GVHD. We hope to elucidate strategies for immunomodulatory combined microbiota targeting in the clinical treatment of GI GVHD.
Collapse
|
16
|
Preethy S, Ranganathan N, Raghavan K, Dedeepiya VD, Ikewaki N, Abraham SJ. Integrating the Synergy of the Gut Microbiome into Regenerative Medicine: Relevance to Neurological Disorders. J Alzheimers Dis 2022; 87:1451-1460. [PMID: 35466942 PMCID: PMC9277691 DOI: 10.3233/jad-220313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Abstract
A new paradigm of cell therapy-based approaches as a solution to several diseases caused by damage or loss of cells/tissues leading to organ failure heralded the birth of a new branch in medicine called regenerative medicine (RM), which was further fueled by in vitro cell expansion and tissue engineering (TE) technologies, including the ability to grow embryonic stem cells, induce pluripotent stem cells, and so on. RM addresses organ failure by repair, regeneration, or restoration, rejuvenation using cells, stem cells, or progenitor cells as tools having added cell-derived products also as a tool, and extracellular matrix component-based support, either direct or indirect (e.g., matrix induced autologous chondrocyte implantation) using scaffolds. Now, the main objective of RM is to solve the functional loss of cells that have evolved from cells as tools to cell-derived factors and scaffolds per se as tools. In this context, an important yet indispensable group of cells that constitute the major portion of the human body in terms of the number of cells having several essential roles to play, both directly and indirectly, starting from digestion and the immune system to the growing evidence of influencing neuronal function, aging, and carcinogenesis has been ignored. We would like to focus on these in this review as they should essentially be considered as a tool of RM, especially for neurological disorders for their vital role. What we are indicating is the second genome or the gut microbiome.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | | | - Kadalraja Raghavan
- Department of Paediatric Neurology, Jesuit Antonyraj memorial Inter-disciplinary Centre for Advanced Recovery and Education (JAICARE), Madurai, India
- Department of Paediatric Neurology, Sarvee Integra Private Limited, Chennai, India
| | | | - Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Japan
| | - Samuel J.K. Abraham
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
- Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
| |
Collapse
|
17
|
Masetti R, Muratore E, Leardini D, Zama D, Turroni S, Brigidi P, Esposito S, Pession A. Gut microbiome in pediatric acute leukemia: from predisposition to cure. Blood Adv 2021; 5:4619-4629. [PMID: 34610115 PMCID: PMC8759140 DOI: 10.1182/bloodadvances.2021005129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
The gut microbiome (GM) has emerged as a key factor in the genesis and progression of many diseases. The intestinal bacterial composition also influences treatment-related side effects and even the efficacy of oncological therapies. Acute leukemia (AL) is the most common cancer among children and the most frequent cause of cancer-related death during childhood. Outcomes have improved considerably over the past 4 decades, with the current long-term survival for acute lymphoblastic leukemia being ∼90%. However, several acute toxicities and long-term sequelae are associated with the multimodal therapy protocols applied in these patients. Specific GM configurations could contribute to the multistep developmental hypothesis for leukemogenesis. Moreover, GM alterations occur during the AL therapeutic course and are associated with treatment-related complications, especially during hematopoietic stem cell transplantation. The GM perturbation could last even after the removal of microbiome-modifying factors, like antibiotics, chemotherapeutic drugs, or alloimmune reactions, contributing to several health-related issues in AL survivors. The purpose of this article is to provide a comprehensive review of the chronological changes of GM in children with AL, from predisposition to cure. The underpinning biological processes and the potential interventions to modulate the GM toward a potentially health-promoting configuration are also highlighted.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, and
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; and
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
18
|
The Impact of NLRP3 Activation on Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021; 22:ijms222111845. [PMID: 34769275 PMCID: PMC8584591 DOI: 10.3390/ijms222111845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
NLR family pyrin domain-containing 3 (NLRP3) is an intracellular protein that after recognizing a broad spectrum of stressors, such as microbial motifs and endogenous danger signals, promotes the activation and release of the pro-inflammatory cytokines IL-1β and IL-18, thus playing an essential role in the innate immune response. Several blood cell types, including macrophages, dendritic cells, and hematopoietic stem and progenitor cells (HSPCs), express NLRP3, where it has been implicated in various physiological and pathological processes. For example, NLRP3 participates in the development and expansion of HSPCs, and their release from bone marrow into the peripheral blood has been implicated in certain hematological disorders including various types of leukemia. In addition, accumulating evidence indicates that activation of NLRP3 plays a pivotal role in the development of transplant complications in patients receiving hematopoietic stem cell transplantation (HSCT) including graft versus host disease, severe infections, and transplant-related mortality. The majority of these complications are triggered by the severe tissue damage derived from the conditioning regimens utilized in HSCT which, in turn, activates NLRP3 and, ultimately, promotes the release of proinflammatory cytokines such as IL-1β and IL-18. Here, we summarize the implications of NLRP3 in HSCT with an emphasis on the involvement of this inflammasome component in transplant complications.
Collapse
|
19
|
Pan P, Atkinson SN, Taylor B, Zhu H, Zhou D, Flejsierowicz P, Wang LS, Morse M, Liu C, Gunsolus IL, Chen X. Retinoic Acid Signaling Modulates Recipient Gut Barrier Integrity and Microbiota After Allogeneic Hematopoietic Stem Cell Transplantation in Mice. Front Immunol 2021; 12:749002. [PMID: 34759928 PMCID: PMC8573259 DOI: 10.3389/fimmu.2021.749002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation (HSCT). An impaired intestinal epithelial barrier is an important component of GVHD pathogenesis. However, contributing host factors that modulate mucosal barrier integrity during GVHD are poorly defined. We hypothesized that vitamin A and retinoic acid (RA) exert positive impacts on maintaining intestinal barrier function after HSCT, thus preventing or dampening GVHD severity. Unexpectedly, we found that exogenous RA increased intestinal permeability of recipient mice after allogeneic HSCT. Serum bacterial endotoxin levels were significantly higher in GVHD mice fed a vitamin A-high (VAH) diet compared to those fed a vitamin A-normal (VAN) diet, indicating a more compromised intestinal barrier function. Furthermore, VAH mice showed more severe lung GVHD with increased donor T cell infiltration in this tissue and died significantly faster than VAN recipients. 16S rRNA sequencing of fecal samples revealed significant differences in the diversity and composition of gut microbiota between VAN and VAH transplant recipients. Collectively, we show that retinoic acid signaling may negatively impact intestinal barrier function during GVHD. Mild vitamin A supplementation is associated with increased lung GVHD and more profound gut dysbiosis. Micronutrients such as vitamin A could modulate complications of allogeneic HSCT, which may be mediated by shaping gut microbiota.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Taylor
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Haojie Zhu
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dian Zhou
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Philip Flejsierowicz
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Li-Shu Wang
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew Morse
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Ian L. Gunsolus
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiao Chen
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
20
|
Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Biliński J, Roviello G, Iannone LF, Atzeni A, Sobocki BK, Połom K. Gut Microbiome Modulation and Faecal Microbiota Transplantation Following Allogenic Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2021; 13:4665. [PMID: 34572894 PMCID: PMC8464896 DOI: 10.3390/cancers13184665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, allogenic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy that is mainly recommended for hematologic malignancies. However, complications (such as graft-versus-host disease, mucositis, disease relapse, and infections) associated with the HSCT procedure contribute to the development of gut microbiota imbalance, gut-barrier disruption, and increased intestinal permeability. In the present narrative review, the crosstalk between gut microbiota products and intestinal homeostasis is discussed. Notably, gut-microbiota-related aspects have an impact on patients' clinical outcomes and overall survival. In accordance with the most recent published data, gut microbiota is crucial for the treatment effectiveness of many diseases, not only gastrointestinal cancers but also hematologic malignancies. Therefore, it is necessary to indicate a therapeutic method allowing to modulate gut microbiota in HSCT recipients. Currently, fecal microbiota transplantation (FMT) is the most innovative method used to alter/restore gut microbiota composition, as well as modulate its activity. Despite the fact that some previous data have shown promising results, the knowledge regarding FMT in HSCT is still strongly limited, except for the treatment of Clostridium difficile infection. Additionally, administration of prebiotics, probiotics, synbiotics, and postbiotics can also modify gut microbiota; however, this strategy should be considered carefully due to the high risk of fungemia/septicemia (especially in case of fungal probiotics).
Collapse
Affiliation(s)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Jarosław Biliński
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warszawa, Poland;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Luigi Francesco Iannone
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessandro Atzeni
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Faculty of Medicine and Health Sciences, Campus Vapor Vell, 43210 Reus, Spain;
| | - Bartosz Kamil Sobocki
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| |
Collapse
|
21
|
Jahan D, Peile E, Sheikh MA, Islam S, Parasnath S, Sharma P, Iskandar K, Dhingra S, Charan J, Hardcastle TC, Samad N, Chowdhury TS, Dutta S, Haque M. Is it time to reconsider prophylactic antimicrobial use for hematopoietic stem cell transplantation? a narrative review of antimicrobials in stem cell transplantation. Expert Rev Anti Infect Ther 2021; 19:1259-1280. [PMID: 33711240 DOI: 10.1080/14787210.2021.1902304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hematopoietic Stem Cell Transplantation (HSCT) is a life-saving procedure for multiple types of hematological cancer, autoimmune diseases, and genetic-linked metabolic diseases in humans. Recipients of HSCT transplant are at high risk of microbial infections that significantly correlate with the presence of graft-versus-host disease (GVHD) and the degree of immunosuppression. Infection in HSCT patients is a leading cause of life-threatening complications and mortality. AREAS COVERED This review covers issues pertinent to infection in the HSCT patient, including bacterial and viral infection; strategies to reduce GVHD; infection patterns; resistance and treatment options; adverse drug reactions to antimicrobials, problems of antimicrobial resistance; perturbation of the microbiome; the role of prebiotics, probiotics, and antimicrobial peptides. We highlight potential strategies to minimize the use of antimicrobials. EXPERT OPINION Measures to control infection and its transmission remain significant HSCT management policy and planning issues. Transplant centers need to consider carefully prophylactic use of antimicrobials for neutropenic patients. The judicious use of appropriate antimicrobials remains a crucial part of the treatment protocol. However, antimicrobials' adverse effects cause microbiome diversity and dysbiosis and have been shown to increase morbidity and mortality.
Collapse
Affiliation(s)
- Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh
| | - Ed Peile
- Department of Medical Education, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sharlene Parasnath
- Department of Clinical Hematology, Inkosi Albert Luthuli Central Hospital, 800 Vusi Mzimela Road, Cato Manor, Durban, South Africa
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Katia Iskandar
- Lebanese University, School of Pharmacy, Beirut, Lebanon.,INSPECT-LB: Institute National de Sante Publique, Epidemiologie Clinique et Toxicologie, Beirut, Lebanon.,Universite Paul Sabatier UT3, INSERM, UMR1027, Toulouse, France
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Timothy Craig Hardcastle
- Trauma Service, Inkosi Albert Luthuli Central Hospital, Mayville, South Africa.,Department of Surgery, Nelson R Mandela School of Clinical Medicine, UKZN, South Africa
| | - Nandeeta Samad
- Department of Public Health, North South University, Bangladesh
| | | | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Biernat MM, Urbaniak-Kujda D, Dybko J, Kapelko-Słowik K, Prajs I, Wróbel T. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res 2021; 48:300060520925693. [PMID: 32527171 PMCID: PMC7294377 DOI: 10.1177/0300060520925693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) reduces the efficiency and safety of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In recent years, attempts have been made to transplant fecal microbiota from healthy donors to treat intestinal GvHD. This study presented two cases of patients undergoing allo-HSCT who were later selected for fecal microbiota transplantation (FMT). In the first patient, FMT resulted in the complete resolution of symptoms, whereas therapeutic efficacy was not achieved in the second patient. FMT eliminated drug-resistant pathogens, namely very drug-resistant Enterococcus spp., but not multidrug-resistant Acinetobacter baumannii or Candida spp. Further research is needed, particularly on the safety of FMT in patients with intestinal steroid-resistant GvHD and on the distant impact of transplanted microflora on the outcomes of allo-HSCT. FMT appears promising for the treatment of patients with steroid-resistant GvHD.
Collapse
Affiliation(s)
- Monika Maria Biernat
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Urbaniak-Kujda
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Dybko
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kapelko-Słowik
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Prajs
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
23
|
Mohty R, Savani M, Brissot E, Mohty M. Nutritional Supplements and Complementary/Alternative Medications in Patients With Hematologic Diseases and Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2021; 27:467-473. [PMID: 33839088 DOI: 10.1016/j.jtct.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 11/25/2022]
Abstract
This perspective article discusses the various practices classified as complementary and alternative medicine (CAM) and reviews the benefits and uncertainties with respect to nutritional supplements in patients with hematological disease. It considers the high prevalence of CAM use especially among cancer survivors, particularly patients with hematologic malignancies and allogeneic stem cell transplant survivors, many of whom believe (because of extensive advertising) that supplements are anticancer/antitoxic agents, despite the paucity of evidence to support any benefit and the enormous cost to the individual. CAM constitutes various practices and nutritional behaviors including prayers, relaxation, spiritual healing, nutritional supplements, meditation, religious counseling, massage, and support groups. We highlighted the current literature regarding CAM practices and focused our discussion on the omnipresent nutritional supplements in particular to further expound on their benefits and adverse effects. As the number of survivors after HSCT increases over the next several years along with prevalence of CAM use, it becomes imperative to ascertain any beneficial potential, as well as toxicities associated with CAM use in this population.
Collapse
Affiliation(s)
- Razan Mohty
- American University of Beirut Medical Center, Hematology and Oncology division, Internal Medicine Department, Beirut Lebanon
| | - Malvi Savani
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Eolia Brissot
- APHP, Hôpital Saint Antoine, Service d'Hématologie Clinique et de Thérapie cellulaire, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Mohamad Mohty
- APHP, Hôpital Saint Antoine, Service d'Hématologie Clinique et de Thérapie cellulaire, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
24
|
Low diversity of gut microbiota in the early phase of post-bone marrow transplantation increases the risk of chronic graft-versus-host disease. Bone Marrow Transplant 2021; 56:1728-1731. [PMID: 33686248 DOI: 10.1038/s41409-021-01249-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
|
25
|
Sofi MH, Wu Y, Ticer T, Schutt S, Bastian D, Choi HJ, Tian L, Mealer C, Liu C, Westwater C, Armeson KE, Alekseyenko AV, Yu XZ. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight 2021; 6:136841. [PMID: 33554953 PMCID: PMC7934839 DOI: 10.1172/jci.insight.136841] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.
Collapse
Affiliation(s)
- M Hanief Sofi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Taylor Ticer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Bastian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hee-Jin Choi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Linlu Tian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Corey Mealer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Caroline Westwater
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kent E Armeson
- Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
26
|
Effect of Preconditioned Mesenchymal Stem Cells with Nisin Prebiotic on the Expression of Wound Healing Factors Such as TGF-β1, FGF-2, IL-1, IL-6, and IL-10. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00194-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Pession A, Zama D, Muratore E, Leardini D, Gori D, Guaraldi F, Prete A, Turroni S, Brigidi P, Masetti R. Fecal Microbiota Transplantation in Allogeneic Hematopoietic Stem Cell Transplantation Recipients: A Systematic Review. J Pers Med 2021; 11:100. [PMID: 33557125 PMCID: PMC7913807 DOI: 10.3390/jpm11020100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
The disruption of gut microbiota eubiosis has been linked to major complications in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Various strategies have been developed to reduce dysbiosis and related complications. Fecal microbiota transplantation (FMT) consists of the infusion of fecal matter from a healthy donor to restore impaired intestinal homeostasis, and could be applied in the allo-HSCT setting. We conducted a systematic review of studies addressing the use of FMT in allo-HSCT patients. In the 23 papers included in the qualitative synthesis, FMT was used for the treatment of recurrent Clostridioides difficile infections or as a therapeutic strategy for steroid-resistant gut aGvHD. FMT was also performed with a preventive aim (e.g., to decolonize from antibiotic-resistant bacteria). Additional knowledge on the biological mechanisms underlying clinical findings is needed in order to employ FMT in clinical practice. There is also concern regarding the administration of microbial consortia in immune-compromised patients with altered gut permeability. Therefore, the safety profile and efficacy of the procedure must be determined to better assess the role of FMT in allo-HSCT recipients.
Collapse
Affiliation(s)
- Andrea Pession
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Daniele Zama
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (D.G.); (F.G.)
| | - Federica Guaraldi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (D.G.); (F.G.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40126 Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| |
Collapse
|
28
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
29
|
Mao D, Jiang Q, Sun Y, Mao Y, Guo L, Zhang Y, Man M, Ouyang G, Sheng L. Treatment of intestinal graft-versus-host disease with unrelated donor fecal microbiota transplantation capsules: A case report. Medicine (Baltimore) 2020; 99:e22129. [PMID: 32957333 PMCID: PMC7505392 DOI: 10.1097/md.0000000000022129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Fecal microbiota transplantation (FMT), administering fecal suspensions via a nasoduodenal tube, has achieved a promising effect in the treatment of intestinal graft-versus-host disease (GvHD) in some pilot studies. In this study, oral FMT capsules from unrelated donor were used for the first time in the treatment of intestinal GvHD. Patient concerns: A 31-year-old male who was diagnosed as "myelodysplastic syndromes with excess blasts II" (intermediate risk 2 of international prognostic scoring system) received human leukocyte antigen -matched sibling donor allogeneic hematopoietic stem cell transplantation. The patient developed diarrhea, vomiting, and bloody stool on 28 days after transplantation. DIAGNOSIS Intestinal acute GvHD was diagnosed clinically with histological confirmation by colonoscopy and pathological biopsy. INTERVENTIONS This patient was treated with first cycle of oral FMT capsules after failure to initial treatment of methylprednisolone (2 mg/kg/d) combined with recombinant human tumor necrosis factor-α receptorII: IgG Fc fusion protein (25 mg, biw). The symptoms of intestinal GvHD were relieved but recurred 11 days later. Second cycle of oral FMT capsules was carried out. OUTCOMES After 2 cycles of fecal bacteria transplantation, intestinal GvHD was gradually controlled and did not recur again during the 2-month follow-up. The diversity and structure of the intestinal flora after FMT was closer to that of healthy donors than that before. CONCLUSION Our case showed oral FMT capsules could be used as a treatment option for corticosteroid refractory intestinal GvHD. Further studies are warranted to assess the clinical efficacy and safety of oral FMT capsules in the treatment of intestinal GvHD. RATIONALE Fecal microbiota transplantation (FMT), administering fecal suspensions via a nasoduodenal tube, has achieved a promising effect in the treatment of intestinal graft-versus-host disease (GvHD) in some pilot studies. In this study, oral FMT capsules from unrelated donor were used for the first time in the treatment of intestinal GvHD. PATIENT CONCERNS A 31-year-old male who was diagnosed as "myelodysplastic syndromes with excess blasts II" (intermediate risk 2 of international prognostic scoring system) received human leukocyte antigen -matched sibling donor allogeneic hematopoietic stem cell transplantation. The patient developed diarrhea, vomiting, and bloody stool on 28 days after transplantation. DIAGNOSES Intestinal acute GvHD was diagnosed clinically with histological confirmation by colonoscopy and pathological biopsy. INTERVENTIONS This patient was treated with first cycle of oral FMT capsules after failure to initial treatment of methylprednisolone (2 mg/kg/d) combined with recombinant human tumor necrosis factor-a receptorII: IgG Fc fusion protein (25 mg, biw). The symptoms of intestinal GvHD were relieved but recurred 11 days later. Second cycle of oral FMT capsules was carried out. OUTCOMES After 2 cycles of fecal bacteria transplantation, intestinal GvHD was gradually controlled and did not recur again during the 2-month follow-up. The diversity and structure of the intestinal flora after FMT was closer to that of healthy donors than that before. CONCLUSION Our case showed oral FMT capsules could be used as a treatment option for corticosteroid refractory intestinal GvHD. Further studies are warranted to assess the clinical efficacy and safety of oral FMT capsules in the treatment of intestinal GvHD. LESSONS There is still a possibility of recurrence after the treatment of GvHD with capsule fecal microbiota transplantation. How to optimize the dosage and treatment course of fecal microbiota capsule administration needs further exploration.
Collapse
Affiliation(s)
- Dan Mao
- Department of Hematology, Ningbo First Hospital
| | - Qi Jiang
- Internal Medicine, School of Medicine Ningbo University
| | - Ye Sun
- Department of Hematology, Ningbo First Hospital
| | - Yubo Mao
- Department of Hematology, Ningbo Ninth Hospital, Ningbo, Zhejiang Province, China
| | - Lili Guo
- Department of Hematology, Ningbo Ninth Hospital, Ningbo, Zhejiang Province, China
| | - Yanqing Zhang
- Department of Hematology, Ningbo Ninth Hospital, Ningbo, Zhejiang Province, China
| | - Muran Man
- Department of Hematology, Ningbo Ninth Hospital, Ningbo, Zhejiang Province, China
| | | | - Lixia Sheng
- Internal Medicine, School of Medicine Ningbo University
| |
Collapse
|
30
|
Pereira AZ, Gonçalves SEA, Rodrigues M, Hamerschlak N, Flowers ME. Challenging and Practical Aspects of Nutrition in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2020; 26:e265-e270. [PMID: 32784069 DOI: 10.1016/j.bbmt.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023]
Abstract
There is a paucity of information about nutrition in chronic graft-versus-host disease (GVHD). The role of nutrition is important because malnutrition is strongly associated with severe chronic GVHD manifestations. There is a high prevalence of metabolic syndrome and osteoporosis in this setting. Here we review the literature, describe main aspects of nutrition and discuss macronutrients (ie, vitamins), micronutrients (ie, Mg, Zn, Ca, and K) and supplements (probiotics and omega 3 fatty acids). A search was carried out in March 2020 using PubMed. Databases were screened for searching terms in titles and abstracts referring to chronic GVHD, nutrition intervention, protein, and body composition. Data were extracted for the following outcomes: nutrition, nutrition intervention, chronic GVHD, nutrition deficiencies, diet, vitamin, dry eye, probiotic, protein, and body composition. In this report, we summarize interventional nutrition studies reported in oncology and metabolic syndrome settings and describe our nutritional clinical practice in hematopoietic cell transplantation and chronic GVHD. The impact of nutrition evaluation and intervention on muscle mass loss, dry eye, dysgeusia, metabolic syndrome, osteoporosis, and comorbidities associated with chronic GVHD need to be studied prospectively.
Collapse
Affiliation(s)
- Andrea Z Pereira
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Sandra Elisa Adami Gonçalves
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil; Clinical Nutrition Department, Prevent Senior Center, São Paulo, Brazil
| | - Morgani Rodrigues
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nelson Hamerschlak
- Oncology and Hematology Department, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Mary E Flowers
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
31
|
Revolinski SL, Munoz-Price LS. Clostridium difficile in Immunocompromised Hosts: A Review of Epidemiology, Risk Factors, Treatment, and Prevention. Clin Infect Dis 2020; 68:2144-2153. [PMID: 30281082 DOI: 10.1093/cid/ciy845] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is a significant pathogen in healthcare today, impacting both hospitalized and community-based patients. Immunocompromised patients experience a high incidence of C. difficile infection, ranging from 6% to 33% in the hematology-oncology population and up to 23% among lung transplant recipients, and have a rate of 7.1-8.3 cases per 1000 patient-years in patients with human immunodeficiency virus (HIV). Recurrence of C. difficile infections among immunocompromised patients is also high, with rates up to 40% in both the hematology-oncology population and solid organ transplant recipients. This higher incidence of C. difficile infection and recurrence is believed to be secondary to frequent antimicrobial use, suppressed immune function, increased exposure to healthcare settings, and higher prevalence of C. difficile colonization. This review summarizes published data describing the epidemiology, risk factors for acquisition and infection, treatment, and prevention of C. difficile in hematology-oncology, solid organ transplant, and HIV-infected patients.
Collapse
Affiliation(s)
- Sara Lynn Revolinski
- Department of Pharmacy, Froedtert and the Medical College of Wisconsin, Froedtert Hospital, Milwaukee.,School of Pharmacy, Department of Medicine, Medical College of Wisconsin, Milwaukee
| | - L Silvia Munoz-Price
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
32
|
Rafei H, Jenq RR. Microbiome-intestine cross talk during acute graft-versus-host disease. Blood 2020; 136:401-409. [PMID: 32526029 PMCID: PMC7378453 DOI: 10.1182/blood.2019000950] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.
Collapse
Affiliation(s)
| | - Robert R Jenq
- Department of Genomic Medicine, and
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; and
- Cancer Prevention and Research Institute of Texas, Houston, TX
| |
Collapse
|
33
|
Parco S, Benericetti G, Vascotto F, Palmisciano G. Microbiome and diversity indices during blood stem cells transplantation - new perspectives? Cent Eur J Public Health 2020; 27:335-339. [PMID: 31951695 DOI: 10.21101/cejph.a5393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The human body is colonized by bacteria, fungi and viruses. Resident commensal bacteria are a fundamental line of resistance to colonization by exogenous microbes. They actively regulate the production of nutrients by the host through a negative feedback mechanism, in order to prevent the availability of nutrients for potential pathogens. While only a small fraction of these microorganism may be pathogenic, the relationship between host and commensal microbiome is now studied as a whole, impacting several aspects of the host biology. Some studies have made clear the progresses in examining the role of microbiome on transplants and graft versus host disease (GVHD) severity and its pathogenesis: the risk of complications from allogenic hematopoietic stem cells transplantation (HSCT) is greater with the highest mortality if a patient has a lower bacterial diversity in the gut prior to the transplantation process beginning. Microbiota-associated molecular patterns are directly recognized by pathogen recognition receptors. The development of molecular methods has greatly expanded our knowledge of the composition and function of the microbiome in health and disease, shortening the response times vs. microbiological culture tests. The gut flora can make the difference when it comes to allo-HSCT. The aim of the study was to monitor microbiome of 10 children during allo-HSCT. METHODS Oral specimens and gut faecal microbiome (100 grams) samples were collected at 2, 16, 24 days. The samples were analysed by polymerase chain reaction and primary sequencing was done. To calculate the biodiversity of microbiome the Shannon index and the Observed species index were chosen. RESULTS Our study suggests some differences in the diversity indices (DIs) in 5 children affected by GVHD vs. not affected. The DIs in oral and faecal specimens show in all patients a diminution in the post-transplant phase with an improvement in species diversity after 16 days from the transplant. The Observed species index in faeces specimens after 16 days was higher in patients which had not GVHD; moreover, patients with GVHD showed a deterioration at 24 days. Oral specimens after 24 days showed a parallel trend in the two groups. The Shannon index shows a downward trend in faeces specimens of the children with GVHD at 24 days; the children without GVHD recover a good trend of entropy. Oral specimens at 24 days show low entropy in the two groups. Very aggressive bacterial species as Cronobacter and Routella in the faeces specimens of a child had not serious consequences for disease status: Cronobacter were not present 24 days after transplantation. CONCLUSIONS The data show the microbial metabolome could have an impact on patients with GVHD vs. no GVHD. A better understanding of the role of the oral and gut microbiome in GVHD can give directions to move towards the development of innovative approaches for preventing GVHD following allo-HCT, reducing also antibiotic therapy.
Collapse
Affiliation(s)
- Sergio Parco
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| | - Giulia Benericetti
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| | - Fulvia Vascotto
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| | - Giuseppina Palmisciano
- Department of Advanced Technology, Institute for Maternal and Child Health, Trieste, Italy
| |
Collapse
|
34
|
Sadanand A, Newland JG, Bednarski JJ. Safety of Probiotics Among High-Risk Pediatric Hematopoietic Stem Cell Transplant Recipients. Infect Dis Ther 2019; 8:301-306. [PMID: 30989592 PMCID: PMC6522555 DOI: 10.1007/s40121-019-0244-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Increased diversity of the intestinal microbiome has been significantly associated with lower mortality after hematopoietic stem cell transplant (HSCT). Probiotics, such as Lactobacillus species with defined probiotic potential, may have beneficial properties including restoration of commensal species to the intestinal tract, anti-microbial effects, and healing of the intestinal mucosa. However, the use of probiotics in immune-compromised patients raises concerns, specifically regarding the risk for possible Lactobacillus bacteremia. Risk of bacteremia is an even greater concern in HSCT patients with breakdown of mucosal barriers, specifically patients with Clostridium difficile infection (CDI) or gastrointestinal graft-versus-host disease (GVHD). Minimal data have been reported on the safety of probiotics in these high-risk HSCT populations. METHODS We performed a retrospective study of allogeneic HSCT recipients at our institution between 2011 and 2016, and identified 14 patients (median age 7 years) prescribed probiotics, 10 of whom received probiotics prior to day 100 after HSCT. RESULTS Eight of ten patients were diagnosed with acute GVHD, four of whom (40%) specifically had acute GVHD involving the gastrointestinal tract. Five patients (50%) on probiotics prior to day 100 were diagnosed with CDI (median onset at day 13 post-transplant). There were no cases of Lactobacillus bacteremia, including in patients with GVHD or CDI. CONCLUSION This small case series supports the safe use of probiotics in a high-risk population of pediatric HSCT patients with compromised intestinal mucosal integrity. Further studies are needed to determine if probiotics have benefit in preventing and treating gastrointestinal GVHD or CDI.
Collapse
Affiliation(s)
- Arhanti Sadanand
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason G Newland
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Abstract
IMPACT STATEMENT This review describes a growing body of research on relationships between the microbiome and eye disease. Several groups have investigated the microbiota of the ocular surface; dysregulation of this delicate ecosystem has been associated with a variety of pro-inflammatory states. Other research has explored the effects of the gastrointestinal microbiota on ophthalmic diseases. Characterizing the ways these microbiotas influence ophthalmic homeostasis and pathogenesis may lead to research on new techniques for managing ophthalmic disease.
Collapse
Affiliation(s)
- Adam D Baim
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
|
37
|
McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2019; 20:e77-e91. [PMID: 30712808 DOI: 10.1016/s1470-2045(18)30952-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Although novel therapies, including immunotherapy, have dramatically improved outcomes for many patients with cancer, overall outcomes are heterogeneous and existing biomarkers do not reliably predict response. To date, predictors of response to cancer therapy have largely focused on tumour-intrinsic features; however, there is growing evidence that other host factors (eg, host genomics and the microbiome) can substantially affect therapeutic response. The microbiome, which refers to microbiota within a host and their collective genomes, is becoming increasingly recognised for its influence on host immunity, as well as therapeutic responses to cancer treatment. Importantly, microbiota can be modified via several different strategies, affording new angles in cancer treatment to improve outcomes. In this Review, we examine the evidence on the role of the microbiome in cancer and therapeutic response, factors that influence and shape host microbiota, strategies to modulate the microbiome, and present key unanswered questions to be addressed in ongoing and future research.
Collapse
Affiliation(s)
- Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Hematopoietic Stem Cell Transplantation From Unrelated Donors in 2 Cases of Interleukin-10 Receptor Deficiency: Is Surgery Not a Requirement? J Pediatr Hematol Oncol 2019; 41:64-66. [PMID: 29683948 DOI: 10.1097/mph.0000000000001165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in interleukin-10 and its receptors cause infantile inflammatory bowel disease (IBD), a hyperinflammatory disorder characterized by severe, treatment-refractory colitis, multiple abscesses, and enterocutaneous fistulas. Patients with infantile IBD often require several surgical interventions, including complete colectomy, and hematopoietic stem cell transplantation is currently the only known medical therapy. Traditionally, operative management has been preferred before stem cell transplantation because of the latter's increased susceptibility to procedural complications; however, surgical intervention could be delayed, and possibly reconsidered, because our 2 patients with infantile IBD demonstrated a rapid response to treatment via engraftment.
Collapse
|
39
|
Baumgartner A, Hoskin K, Schuetz P. Optimization of nutrition during allogeneic hematologic stem cell transplantation. Curr Opin Clin Nutr Metab Care 2018; 21:152-158. [PMID: 29465425 DOI: 10.1097/mco.0000000000000461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Malnutrition before and during hematopoietic stem cell transplantation (HSCT) is an independent risk factor for mortality in patients undergoing hematopoietic stem cell transplantation. Yet, optimal use of nutritional support to improve outcomes remains controversial. Our aim was to do an up-to-date literature review regarding nutritional therapy in allogeneic HSCT, the neutropenic diet and the use of immunonutrients. RECENT FINDINGS Several observational studies find malnutrition to be associated with poor outcome, increased complications and lower overall survival. There are, however, few interventional trials proving the benefits of nutritional therapy in this population compared with no nutritional treatment. Regarding routes of treatment, studies suggested that parenteral nutrition is associated with higher risk for complications compared with enteral nutrition. Whether the use of specific formulas, such as immunonutrition, has a beneficial effect on clinical outcome is not established yet. Strict use of neutropenic diets did not show a reduction in infection risk and clinical outcome, and can no longer be recommended. SUMMARY Our updated search confirms that malnutrition is a strong negative predictor for outcome, yet optimal use of nutritional interventions to prevent or treat malnutrition remains ill-defined. There is need for larger randomized trials to better address these issues in the future.
Collapse
|
40
|
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered to be the strongest curative immunotherapy for various malignancies (primarily, but not limited to, haematologic malignancies). However, application of allo-HSCT is limited owing to its life-threatening major complications, such as graft-versus-host disease (GVHD), relapse and infections. Recent advances in large-scale DNA sequencing technology have facilitated rapid identification of the microorganisms that make up the microbiota and evaluation of their interactions with host immunity in various diseases, including cancer. This has resulted in renewed interest regarding the role of the intestinal flora in patients with haematopoietic malignancies who have received an allo-HSCT and in whether the microbiota affects clinical outcomes, including GVHD, relapse, infections and transplant-related mortality. In this Review, we discuss the potential role of intestinal microbiota in these major complications after allo-HSCT, summarize clinical trials evaluating the microbiota in patients who have received allo-HSCT and discuss how further studies of the microbiota could inform the development of strategies that improve outcomes of allo-HSCT.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Medical College of Cornell University, New York, New York, USA
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
41
|
Antimicrobial Stewardship in the Hematopoietic Stem Cell Transplant Population. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, Del Rio C, Valles B, Kempner ME, Smith M, Brown J, Dey BR, El-Jawahri A, McAfee SL, Spitzer TR, Ballen KK, Sung AD, Dalton TE, Messina JA, Dettmer K, Liebisch G, Oefner P, Taur Y, Pamer EG, Holler E, Mansour MK, van den Brink MRM, Hohmann E, Jenq RR, Chen YB. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv 2018; 2:745-753. [PMID: 29592876 PMCID: PMC5894265 DOI: 10.1182/bloodadvances.2018017731] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
We hypothesized that third-party fecal microbiota transplantation (FMT) may restore intestinal microbiome diversity after allogeneic hematopoietic cell transplantation (allo-HCT). In this open-label single-group pilot study, 18 subjects were enrolled before allo-HCT and planned to receive third-party FMT capsules. FMT capsules were administered no later than 4 weeks after neutrophil engraftment, and antibiotics were not allowed within 48 hours before FMT. Five patients did not receive FMT because of the development of early acute gastrointestinal (GI) graft-versus-host disease (GVHD) before FMT (n = 3), persistent HCT-associated GI toxicity (n = 1), or patient decision (n = 1). Thirteen patients received FMT at a median of 27 days (range, 19-45 days) after HCT. Participants were able to swallow and tolerate all FMT capsules, meeting the primary study endpoint of feasibility. FMT was tolerated well, with 1 treatment-related significant adverse event (abdominal pain). Two patients subsequently developed acute GI GVHD, with 1 patient also having concurrent bacteremia. No additional cases of bacteremia occurred. Median follow-up for survivors is 15 months (range, 13-20 months). The Kaplan-Meier estimates for 12-month overall survival and progression-free survival after FMT were 85% (95% confidence interval, 51%-96%) and 85% (95% confidence interval, 51%-96%), respectively. There was 1 nonrelapse death resulting from acute GI GVHD (12-month nonrelapse mortality, 8%; 95% confidence interval, 0%-30%). Analysis of stool composition and urine 3-indoxyl sulfate concentration indicated improvement in intestinal microbiome diversity after FMT that was associated with expansion of stool-donor taxa. These results indicate that empiric third-party FMT after allo-HCT appears to be feasible, safe, and associated with expansion of recipient microbiome diversity. This trial was registered at www.clinicaltrials.gov as #NCT02733744.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Shuli Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Zeina Dagher
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Ann E Slingerland
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Candice Del Rio
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Betsy Valles
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Maria E Kempner
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Melissa Smith
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Jami Brown
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Bimalangshu R Dey
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Areej El-Jawahri
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Steven L McAfee
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Thomas R Spitzer
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Karen K Ballen
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapies and
| | - Tara E Dalton
- Division of Hematologic Malignancies and Cellular Therapies and
| | - Julia A Messina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Ying Taur
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Infectious Disease Service and Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eric G Pamer
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Infectious Disease Service and Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ernst Holler
- Department of Hematology and Oncology, Internal Medicine III, University Medical Center, Regensburg, Germany; and
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Elizabeth Hohmann
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Robert R Jenq
- Department of Genomic Medicine and
- Department of Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yi-Bin Chen
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
43
|
Beckerson J, Szydlo RM, Hickson M, Mactier CE, Innes AJ, Gabriel IH, Palanicawandar R, Kanfer EJ, Macdonald DH, Milojkovic D, Rahemtulla A, Chaidos A, Karadimitris A, Olavarria E, Apperley JF, Pavlu J. Impact of route and adequacy of nutritional intake on outcomes of allogeneic haematopoietic cell transplantation for haematologic malignancies. Clin Nutr 2018; 38:738-744. [PMID: 29650256 DOI: 10.1016/j.clnu.2018.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Allogeneic haematopoietic cell transplantation (HCT) is often associated with poor oral intake due to painful mucositis and gastrointestinal sequalae that occur following a preparative regimen of intensive chemotherapy and/or total body radiation. Although attractive to assume that optimal nutrition improves HCT outcomes, there are limited data to support this. It is also unclear whether artificial nutrition support should be provided as enteral tube feeding or parenteral nutrition (PN). METHODS We analysed day-100 non-relapse mortality (NRM), incidence of acute graft-versus-host disease (GvHD), acute gastrointestinal GvHD, 5-year survival and GvHD-free/relapse-free survival (GRFS) according to both route and adequacy of nutritional intake prior to neutrophil engraftment, together with other known prognostic factors, in a retrospective cohort of 484 patients who underwent allogeneic HCT for haematologic malignancy between 2000 and 2014. RESULTS Multivariate analyses showed increased NRM with inadequate nutrition (hazard ratio (HR) 4.1; 95% confidence interval (CI) 2.2-7.2) and adequate PN (HR 2.9; 95% CI 1.6-5.4) compared to adequate enteral nutrition (EN) both P < .001. There were increased incidences of gastrointestinal GvHD of any stage and all GvHD ≥ grade 2 in patients who received PN (odds ratio (OR) 2.0; 95% CI 1.2-3.3; P = .006, and OR 1.8; 95% CI 1.1-3.0; P = .018, respectively), compared to adequate EN. Patients who received adequate PN and inadequate nutrition also had reduced probabilities of survival and GRFS at 5 years. CONCLUSION Adequate EN during the early transplantation course is associated with reduced NRM, improved survival and GRFS at 5 years. Furthermore, adequate EN is associated with lower incidence of overall and gut acute GvHD than PN, perhaps because of its ability to maintain mucosal integrity, modulate the immune response to intensive chemo/radiotherapy and support the gastrointestinal tract environment, including gut microflora.
Collapse
Affiliation(s)
- Julie Beckerson
- Nutrition and Dietetics, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| | - Richard M Szydlo
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Mary Hickson
- Institute of Health and Community, Plymouth University, Devon, UK
| | - Catriona E Mactier
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Andrew J Innes
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Ian H Gabriel
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | | | - Edward J Kanfer
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Donald H Macdonald
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Dragana Milojkovic
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Amin Rahemtulla
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Aristeidis Chaidos
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | | | - Eduardo Olavarria
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Jane F Apperley
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Jiri Pavlu
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| |
Collapse
|
44
|
Abstract
The gut microbiota is mainly composed of a diverse population of commensal bacterial species and plays a pivotal role in the maintenance of intestinal homeostasis, immune modulation and metabolism. The influence of the gut microbiota on solid organ transplantation has recently been recognized. In fact, several studies indicated that acute and chronic allograft rejection in small bowel transplantation (SBT) is closely associated with the alterations in microbial patterns in the gut. In this review, we focused on the recent findings regarding alterations in the microbiota following SBTand the potential roles of these alterations in the development of acute and chronic allograft rejection. We also reviewed important advances with respect to the interplays between the microbiota and host immune systems in SBT. Furthermore, we explored the potential of the gut microbiota as a microbial marker and/or therapeutic target for the predication and intervention of allograft rejection and chronic dysfunction. Given that current research on the gut microbiota has become increasingly sophisticated and comprehensive, large cohort studies employing metagenomic analysis and multivariate linkage should be designed for the characterization of host-microbe interaction and causality between microbiota alterations and clinical outcomes in SBT. The findings are expected to provide valuable insights into the role of gut microbiota in the development of allograft rejection and other transplant-related complications and introduce novel therapeutic targets and treatment approaches in clinical practice.
Collapse
|
45
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
46
|
Shallis RM, Terry CM, Lim SH. Changes in intestinal microbiota and their effects on allogeneic stem cell transplantation. Am J Hematol 2018; 93:122-128. [PMID: 28842931 DOI: 10.1002/ajh.24896] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/31/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The human intestinal microbiota is essential for microbial homeostasis, regulation of metabolism, and intestinal immune tolerance. Rapidly evolving understanding of the importance of the microbiota implicates changes in the composition and function of intestinal microbial communities in an assortment of systemic conditions. Complications following allogeneic stem cell transplant now join the ever-expanding list of pathologic states regulated by intestinal microbiota. Dysbiosis, or disruption of the normal ecology of this microbiome, has been directly implicated in the pathogenesis of entities such as Clostridium difficile infections, graft-versus-host disease (GVHD), and most recently disease relapse, all of which are major causes of morbidity and mortality in patients undergoing allogeneic stem cell transplant. In this review, we elucidate the key origins of microbiotic alterations and discuss how dysbiosis influences complications following allogeneic stem cell transplant. Our emerging understanding of the importance of a balanced and diverse intestinal microbiota is prompting investigation into the appropriate treatment of dysbiosis, reliable and early detection of such, and ultimately its prevention in patients to improve the outcome following allogeneic hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Rory M. Shallis
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| | - Christopher M. Terry
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| | - Seah H. Lim
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| |
Collapse
|
47
|
Kim YS, Lee HJ, Park JM, Han YM, Kangwan N, Oh JY, Lee DY, Hahm KB. Targeted molecular ablation of cancer stem cells for curing gastrointestinal cancers. Expert Rev Gastroenterol Hepatol 2017; 11:1059-1070. [PMID: 28707966 DOI: 10.1080/17474124.2017.1356224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abundance of the ATPase-binding cassette (ABC) transporters and deranged self-renewal pathways characterize the presence of cancer stem cells (CSCs) in gastrointestinal cancers (GI cancers), which play crucial roles in tumorigenesis, chemotherapy resistance, tumor recurrence, and cancer metastasis. Therefore, in order to ensure high cure rates, chemoquiescence, CSCs should be ablated. Recent advances in either understanding CSCs or biomarker identification enable scientists to develop techniques for ablating CSCs and clinicians to provide cancer cure, especially in GI cancers characterized by inflammation-driven carcinogenesis. Areas covered: A novel approach to ablate CSCs in GI cancers, including esophageal, gastric, and colon cancers, is introduced along with explored underlying molecular mechanisms. Expert commentary: Though CSC ablation is still in the empirical stages and not in clinical practice, several strategies for ablating CSCs in GI cancers had been published, proton-pump inhibitors (PPIs) that regulate the membrane-bound ABC transporters, which underlie drug resistance; chloroquine (CQ) that inhibits autophagy, which is responsible for tumor survival; Hedgehog/Wnt/Notch inhibitors that influence the underlying stem-cell growth, and some natural products including Korean red ginseng, cancer-preventive kimchi, Artemisia extract, EGCG from green tea, and walnut extracts.
Collapse
Affiliation(s)
- Yong Seok Kim
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea
| | - Ho Jae Lee
- b Department of Biochemistry , Gachon University College of Medicine , Incheon , Korea
| | - Jong-Min Park
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Young-Min Han
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Napapan Kangwan
- d Division of Physiology, School of Medical Sciences , University of Phayao , Phayao , Thailand
| | | | | | - Ki Baik Hahm
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea.,c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea.,f Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|
48
|
Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors. Bone Marrow Transplant 2017; 52:1643-1650. [PMID: 28967895 DOI: 10.1038/bmt.2017.200] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that host-microbiota interactions influence GvHD risk following allogeneic hematopoietic stem cell transplant. However, little is known about the influence of the transplant recipient's pre-conditioning microbiota nor the influence of the transplant donor's microbiota. Our study examines associations between acute gastrointestinal GvHD (agGvHD) and 16S rRNA fecal bacterial profiles in a prospective cohort of N=57 recipients before preparative conditioning, as well as N=22 of their paired HLA-matched sibling donors. On average, recipients had lower fecal bacterial diversity (P=0.0002) and different phylogenetic membership (UniFrac P=0.001) than the healthy transplant donors. Recipients with lower phylogenetic diversity had higher overall mortality rates (hazard ratio=0.37, P=0.008), but no statistically significant difference in agGvHD risk. In contrast, high bacterial donor diversity was associated with decreased agGvHD risk (odds ratio=0.12, P=0.038). Further investigation is warranted as to whether selection of hematopoietic stem cell transplant donors with high gut microbiota diversity and/or other specific compositional attributes may reduce agGvHD incidence, and by what mechanisms.
Collapse
|
49
|
Barta SK, Jain R, Mazumder A, Carter J, Almanzar L, Browne R, Shahnaz S, Elkind R, Kaminetzky D, Battini R, Derman O, Kornblum N, Verma A, Braunschweig I. Pharmacokinetics-directed Intravenous Busulfan Combined With High-dose Melphalan and Bortezomib as a Conditioning Regimen for Patients With Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:650-657. [PMID: 28684379 DOI: 10.1016/j.clml.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) has a well-established role in the treatment of patients with multiple myeloma. Melphalan 200 mg/m2 (Mel200) is the most commonly used preparative regimen. Several studies have provided evidence for potential synergism and safety when combining bortezomib (Btz) or busulfan (Bu) with melphalan (Mel). PATIENTS AND METHODS We conducted a prospective phase II study to investigate the safety and efficacy of conditioning with pharmacokinetics (PK)-directed intravenous (IV) Bu with Btz and Mel. Bu dosing was adjusted to target a total area under the curve (AUC) of 20,000 μM × min. Patients received Btz (1 mg/m2 × 4 doses) and Mel (140 mg/m2). RESULTS A total of 19 subjects were enrolled. Their median age was 55 years, and the median follow-up period was 23.7 months. PK testing resulted in 86% of patients achieving an estimated total AUC of 20,000 ± 2500 μM × min. The overall response rate (ORR) at day +100 after ASCT was 100% in the evaluable patients, with 11% of patients achieving a complete response. The 2-year progression-free survival rate was 57.9% (95% confidence interval [CI], 38%-89%), and the 2-year overall survival rate was 88.5% (95% CI, 76%-100%). The most common grade 3 and 4 toxicities were febrile neutropenia, dysphagia/odynophagia, and oral mucositis. No case of hepatic sinusoidal obstruction syndrome developed. One treatment-related mortality occurred before day +100. CONCLUSION A preparative regimen of PK-directed IV Bu with Btz and Mel led to an ORR of 100% with acceptable toxicity and should be considered for direct comparison with the Mel200 regimen in future trials.
Collapse
Affiliation(s)
- Stefan K Barta
- Fox Chase Cancer Center, Philadelphia, PA; Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY.
| | - Rishi Jain
- Fox Chase Cancer Center, Philadelphia, PA; Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | - Amithaba Mazumder
- NYU Clinical Cancer Institute, New York, NY; Westchester Medical Center, New York Medical College, Valhalla, NY
| | - Jason Carter
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY; Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Roy Browne
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | | | - Richard Elkind
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | | | | | - Olga Derman
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | - Noah Kornblum
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | - Amit Verma
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| | - Ira Braunschweig
- Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY
| |
Collapse
|
50
|
Revisiting nutritional support for allogeneic hematologic stem cell transplantation-a systematic review. Bone Marrow Transplant 2017; 52:506-513. [PMID: 28067888 DOI: 10.1038/bmt.2016.310] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022]
Abstract
In 2009, the American Society of Parenteral and Enteral Nutrition and its European counterpart (Euopean Society for Parenteral and Enteral Nutrition) published guidelines regarding nutritional support of patients with hematologic stem cell transplantation. Our aim was to do an up-to-date literature review regarding benefit of nutritional interventions and treatment recommendations. We searched MEDLINE, EMBASE and Cochrane Library for interventional and observational clinical studies. We extracted data based on a predefined case report form and assessed bias. Out of 459 potential abstracts, 13 studies of mostly moderate quality with a total of 18 167 patients were included. Two very large trials reported negative associations of malnutrition and survival, transplant-related mortality and relapse risk. Some trials found enteral nutrition (EN) to be as effective as parenteral nutrition (PN) with lower complication rates. In addition, EN was associated with better survival, less acute GvHD and faster neutrophil recovery. A neutropenic diet was not superior regarding overall survival, but in contrast resulted in higher infection risk. Current moderate quality studies show negative associations of malnutrition and clinical outcomes, with EN being superior to PN. There was no benefit of neutropenic diets. Large, randomized controlled studies are needed to better understand optimal nutritional support in this patient population.
Collapse
|