1
|
Shin S, Park J, Choi HY, Bu Y, Lee K. Antihypertensive Effects of Lindera erythrocarpa Makino via NO/cGMP Pathway and Ca 2+ and K + Channels. Nutrients 2024; 16:3003. [PMID: 39275318 PMCID: PMC11397354 DOI: 10.3390/nu16173003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Studies have demonstrated the therapeutic effects of Lindera plants. This study was undertaken to reveal the antihypertensive properties of Lindera erythrocarpa leaf ethanolic extract (LEL). Aorta segments of Sprague-Dawley rats were used to study the vasodilatory effect of LEL, and the mechanisms involved were evaluated by treating specific inhibitors or activators that affect the contractility of blood vessels. Our results revealed that LEL promotes a vasorelaxant effect through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, blocking the Ca2+ channels, opening the K+ channels, and inhibiting the vasoconstrictive action of angiotensin II. In addition, the effects of LEL on blood pressure were investigated in spontaneously hypertensive rats by the tail-cuff method. LEL (300 or 1000 mg/kg) was orally administered to the rats, and 1000 mg/kg of LEL significantly lowered the blood pressure. Systolic blood pressure decreased by -20.06 ± 4.87%, and diastolic blood pressure also lowered by -30.58 ± 5.92% at 4 h in the 1000 mg/kg LEL group. Overall, our results suggest that LEL may be useful to treat hypertensive diseases, considering its vasorelaxing and hypotensive effects.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Olarinoye ZY, Kim CW, Kim JY, Jang S, Kim I. Differential gene expression in the kidneys of SHR and WKY rats after intravenous administration of Akkermansia muciniphila-derived extracellular vesicles. Sci Rep 2024; 14:20056. [PMID: 39209875 PMCID: PMC11362604 DOI: 10.1038/s41598-024-69757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Although Akkermansia muciniphila (Am) plays a beneficial role as a probiotic in the treatment of metabolic syndrome, the mechanisms remain elusive. We tested the hypothesis that Am extracellular vesicles (AmEVs) protect against hypertension through modulation of gene expression in the kidneys of spontaneously hypertensive rats (SHRs). Extracellular vesicles purified from anaerobically cultured Am (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and SHRs weekly for 4 weeks. Renal cortical tissues isolated from both rat strains were analyzed by trichrome stain and RT-qPCR. AmEVs protect against the development of hypertension in SHRs without a serious adverse reaction. AmEVs increased the expression of vasocontracting Agt and At1ar as well as vasodilating At2r, Mas1 and Nos2 in the kidneys of both strains. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Yin XM, Song YY, Jiang WY, Zhang HT, Chen JW, Murao K, Han MX, Sun WP, Zhang GX. Mitochondrial K ATP channel-mediated autophagy contributes to angiotensin II-induced vascular dysfunction in mice. Nutr Metab Cardiovasc Dis 2024; 34:1571-1580. [PMID: 38418351 DOI: 10.1016/j.numecd.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/28/2023] [Accepted: 01/15/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIM The present study aimed to investigate whether the mitochondrial KATP channel contributes to angiotensin II (Ang II)-induced vascular dysfunction, the development of hypertension, and atherosclerosis. METHODS AND RESULTS ApoE (-/-) mice fed a high-fat diet were chronically infused with Ang II for eight weeks and concomitantly treated with losartan (ARB), apocynin, or 5-hydroxy decanoate (5-HD), or 3-methyladenine (3-MA). Systolic blood pressure was measured, and pathological changes of aortic or liver tissue were observed. Nitric oxide (NO), superoxide dismutase 2 (SOD2) levels and vasorelaxation rate were measured, and protein and mRNA expressions were examined by western blot and RT-PCR. Ang II-induced development of hypertension was suppressed not only by ARB, and apocynin but also by 5-HD or 3-MA. Ang II infusion decreased aortic NO production and relaxation, as well as SOD2 activity in liver, which were improved by all treatments. In addition, Ang II-induced activation of autophagy was suppressed by 5-HD in aortic tissue, furthermore, Ang II increases the atherosclerotic index in plasma and exacerbates the development of atherosclerosis by increases of fat deposition in the aorta and liver. Lipid metabolism-related mRNA expressions (LXR-α, LDLR, SRBI, Acca, and FASN) were changed by Ang II. Similarly, not only ARB, and apocynin, but also 5-HD and 3-MA suppressed Ang II-induced these changes. CONCLUSIONS Our present findings evidence that mitochondrial KATP channel-mediated autophagy contributes to Ang II-induced vascular dysfunction, development of hypertension, and atherosclerosis.
Collapse
Affiliation(s)
- Xue-Min Yin
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Yi-Yi Song
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wen-Yi Jiang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Hao-Tian Zhang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Jing-Wei Chen
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou 215003, PR China
| | - Koji Murao
- Department of Endocrine and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Meng-Xiao Han
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China.
| | - Wan-Ping Sun
- Laboratory of Molecular Diagnostics, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China.
| | - Guo-Xing Zhang
- Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China; Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, PR China.
| |
Collapse
|
4
|
Elmarasi M, Elmakaty I, Elsayed B, Elsayed A, Zein JA, Boudaka A, Eid AH. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J Cell Physiol 2024; 239:e31200. [PMID: 38291732 DOI: 10.1002/jcp.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Basel Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Poonam, Chaudhary S. Interactions between AT1R and GRKs: the determinants for activation of signaling pathways involved in blood pressure regulation. Mol Biol Rep 2023; 51:46. [PMID: 38158508 DOI: 10.1007/s11033-023-08995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
The success of Angiotensin II receptor blockers, specifically Angiotensin II type 1 receptor (AT1R) antagonists as antihypertensive drug emphasizes the involvement of AT1R in Essential hypertension. The structural insights and mutational studies of Ang II-AT1R have brought about the vision to design Ang II analogs that selectively activate the pathways with beneficial and cardioprotective effects such as cell survival and hinder the deleterious effects such as hypertrophy and cell death. AT1R belongs to G-protein coupled receptors and is regulated by G-protein coupled receptor kinases (GRKs) that either uncouples Gq protein for receptor desensitization or phosphorylate C-terminus to recruit β-arrestin for internalization of the receptor. The interaction of GRKs with ligand activated AT1R induces conformational changes and signal either Gq dependent or Gq independent pathways. These interactions might explain the complex regulatory mechanisms and offer promising ideas for hypertension therapeutics. This article reviews the functional role of AT1R, organization of GRK genes and regulation of AT1R by GRKs that play significant role in desensitization and internalization of the receptors.
Collapse
Affiliation(s)
- Poonam
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160014, India
| | - Shashi Chaudhary
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Shin S, Park J, Choi HY, Lee K. Hypotensive and Endothelium-Dependent Vasorelaxant Effects of Grayblue Spicebush Ethanol Extract in Rats. Foods 2023; 12:4282. [PMID: 38231748 DOI: 10.3390/foods12234282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Hypertension is one of the most common chronic diseases, and its prevalence is increasing worldwide. Lindera glauca (Siebold & Zucc.) Blume, known as grayblue spicebush (GS), has been used as food and for medicinal purposes; however, studies about its hypotensive or vasorelaxant effects are lacking. Therefore, the hypotensive effect of an ethanolic extract of the GS branch (GSE) was investigated in 15-week-old spontaneously hypertensive rats (SHRs) using the tail cuff method. The GSE administration group (1000 mg/kg SHR body weight) showed a decrease in their systolic and diastolic blood pressure measured 4 h after its administration. In addition, we investigated its vasorelaxant effect using the thoracic aorta dissected from Sprague-Dawley rats. The GSE (0.5, 1, 2, 5, 10, and 20 μg/mL) showed an endothelium-dependent vasorelaxant effect, and its mechanisms were found to be relevant to the inward rectifier, voltage-dependent, and non-selective K+ channels. Moreover, the GSE (20 μg/mL) showed an inhibitory effect on aortic rings constricted with angiotensin II. Considering its hypotensive and vasorelaxant effects, GSE has potential as a functional food to help treat and prevent high blood pressure. However, further studies on the identification of the active components of GSE and safety evaluations of its use are needed.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. J Clin Med 2023; 12:6873. [PMID: 37959338 PMCID: PMC10649249 DOI: 10.3390/jcm12216873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
In the last two decades, the study of the renin-angiotensin-aldosterone system (RAAS) has revealed a counterregulatory protective axis. This protective arm is characterized by ACE2/Ang 1-7/MasR and Ang 1-9 that largely counteracts the classic arm of the RAAS mediated by ACE/Ang II/AT1R/aldosterone and plays an important role in the prevention of inflammation, oxidative stress, hypertension, and cardiovascular remodeling. A growing body of evidence suggests that enhancement of this counterregulatory arm of RAAS represents an important therapeutic approach to facing cardiovascular comorbidities. In this review, we provide an overview of the beneficial effects of ACE2, Ang 1-7/MasR, and Ang 1-9 in the context of oxidative stress, vascular dysfunction, and organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani, 2, 35128 Padova, Italy; (I.C.); (G.B.); (G.D.); (M.C.)
| |
Collapse
|
8
|
Jung J, Shin S, Park J, Lee K, Choi HY. Hypotensive and Vasorelaxant Effects of Sanguisorbae Radix Ethanol Extract in Spontaneously Hypertensive and Sprague Dawley Rats. Nutrients 2023; 15:4510. [PMID: 37960162 PMCID: PMC10647409 DOI: 10.3390/nu15214510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Hypertension requires proper management because of the increased risk of cardiovascular disease and death. For this purpose, functional foods containing tannins have been considered an effective treatment. Sanguisorbae radix (SR) also contains various tannins; however, there have been no studies on its vasorelaxant or antihypertensive effects. In this study, the vasorelaxant effect of the ethanol extract of SR (SRE) was investigated in the thoracic aorta of Sprague Dawley rats. SRE (1, 3, 10, 30, and 100 μg/mL) showed this effect in a dose-dependent manner, and its mechanisms were related to the NO/cGMP pathway and voltage-gated K+ channels. Concentrations of 300 and 1000 μg/mL blocked the influx of extracellular Ca2+ and inhibited vasoconstriction. Moreover, 100 μg/mL of SRE showed a relaxing effect on blood vessels constricted by angiotensin II. The hypotensive effect of SRE was investigated in spontaneously hypertensive rats (SHR) using the tail-cuff method. Blood pressure significantly decreased 4 and 8 h after 1000 mg/kg of SRE administration. Considering these hypotensive effects and the vasorelaxant mechanisms of SRE, our findings suggests that SRE can be used as a functional food to prevent and treat hypertension. Further studies are needed for identifying the active components and determining the optimal dosage.
Collapse
Affiliation(s)
- Jaesung Jung
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.S.)
| | - Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.S.)
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Thakuri B, Kumar Das J, Kumar Roy A, Chakraborty A. Circulating renin-angiotensin systems mediated feedback controls over the mean-arterial pressure. J Theor Biol 2023; 572:111589. [PMID: 37532028 DOI: 10.1016/j.jtbi.2023.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The renin-angiotensin systems play pivotal role in cardiovascular physiology through its effects on regulating blood pressure and electrolyte homeostasis. Components of circulating RAS (cRAS) that include precursor angiotensinogen, two critical enzymes (renin and angiotensin-converting enzyme, ACE), their bioactive products, angiotensin- I, II together with its receptors (AT1R and AT2R) essentially determine this homeostasis. Most classical studies, however, showed the deleterious role of cRAS in elevating the blood pressure. Contemporary discovery of non-canonical components of the RAS has challenged this classic hypothesis that it can only exert deleterious effects on the cardiovascular systems. Using the classic cRAS model, we have designed in-silico experiments to test the hypothesis that AT2R-mediated feedback effects play pivotal role for maintaining the normal variation of the mean-arterial pressure (MAP).Beside the AT2R-mediation of downstream singling pathways consisting of several non-canonical RAS components, this study first time illustrated AT2R mediated feedback controls over the blood pressure regulation: one that impedes AT1R activity, and the other that downregulates renin. It has been shown that relatively stronger suppression of renin activity significantly contributes in maintaining the normal MAP and that tight AT2R-mediated regulation is relaxed in hyper-and hypotension. This control mechanism is noted to be robustly maintained with the MAP variations through an established linear steady-state relationship among renin, angiotensin I and angiotensin II. This examination suggests that AT2R-mediated downregulation of renin activities potentially counteracts the AT1R-mediated deleterious actions of Ang II. This study, therefore, provides a solid ground for considering different AT2 receptor adaptor protein and direct agonism at AT2R that can cause greater effects along with contemporary approaches of blocking AT1R mediation to attenuate hypertension or other cardiovascular disorders.
Collapse
Affiliation(s)
- Bikash Thakuri
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Jayanta Kumar Das
- Biomedical Research Centre, National Institute of Aging, National Institutes of Health, Bethesda, MD 20814, United States
| | - Amit Kumar Roy
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Chakraborty
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
10
|
Shan M, Li S, Zhang Y, Chen Y, Zhou Y, Shi L. Maternal exercise upregulates the DNA methylation of Agtr1a to enhance vascular function in offspring of hypertensive rats. Hypertens Res 2023; 46:654-666. [PMID: 36539461 DOI: 10.1038/s41440-022-01124-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022]
Abstract
The angiotensin II signaling system regulates vascular dysfunction and is involved in the programming of hypertension. Maternal exercise has been linked to both short-term and long-term benefits for the mother and fetus. However, the impacts of maternal exercise on the intravascular renin-angiotensin system (RAS) in hypertensive offspring remain unexamined. This study examined whether maternal exercise has an epigenetic effect in repressing angiotensin II type 1 receptor (AT1R) expression, which leads to favorable alterations in the mesenteric artery (MA) function of spontaneously hypertensive offspring. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) pregnant rats were randomly divided into an exercise group and a control group. Blood pressure, vascular tone, AT1R protein and mRNA expression, and AT1R gene (Agtr1a) promoter methylation status were examined in the MAs of 3-month-old male offspring. Maternal exercise significantly reduced the resting blood pressure and cardiovascular reactivity of offspring from SHRs. Furthermore, Ang II-AT1R activity in regulating vascular tone and AT1R expression was decreased in the MAs of the SHR offspring from the exercise groups. Importantly, exercise during gestation suppressed AT1R expression via hypermethylation of the Agtr1a promoter region and upregulated DNA methyltransferase (DNMT) expression in MAs of SHR offspring. These results suggest that maternal exercise upregulates DNMT expression, resulting in hypermethylation and repression of the Agtr1a gene, which may prevent MA dysfunction in the offspring of SHRs. A mechanistic model on the epigenetics of exercise during pregnancy. Maternal exercise during pregnancy triggers hypermethylation and transcriptional suppression of the Agtr1a gene via increased DNMT1 and DNMT3B expression in MAs of SHR offspring. Downregulation of AT1R expression reduces the contribution of Ang II to vascular tone, ultimately improving vascular structure and function. VSMC vascular smooth muscle cell; Ang II angiotensin II; AT1aR angiotensin type 1 receptor (AT1R) alpha subtypes; Agtr1a AT1R alpha isoform gene; MAs mesenteric arteries; BP blood pressure.
Collapse
Affiliation(s)
- Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China.,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yang Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China. .,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
11
|
Contini C, Kuntz J, Massing U, Merfort I, Winkler K, Pütz G. On the validity of fluorimetric intracellular calcium detection: Impact of lipid components. Biochem Biophys Res Commun 2023; 643:186-191. [PMID: 36621114 DOI: 10.1016/j.bbrc.2022.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
We investigated the effects of different lipids on the activity of the angiotensin II type 1 receptor (AT1R). As calcium plays a key role in the signaling of the AT1R, we used the calcium-sensitive fluorescence indicators fura-2 to detect intracellular calcium release upon stimulation with the agonist angiotensin II. At first sight, cells preincubated with Very low-density lipoprotein (VLDL) showed a reduced calcium release triggered by angiontensin II compared to untreated control. However, on closer examination, this result seemed to be an artifact. Incubation with VLDL reduced also the amount of intracellular fura-2, as measured by fluorescence in the isosbestic point. Additionally, the maximal obtainable ratio, obtained after complete saturation with calcium ions, was reduced in cells preincubated with VLDL. These findings rendered our initial results questionable. We report the results of our work and our suggestions regarding the experimental setup to contribute to the understanding of the interpretation of fura-2 measurements and to avoid erroneous conclusions.
Collapse
Affiliation(s)
- Christine Contini
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany.
| | - Julia Kuntz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| | - Ulrich Massing
- Andreas Hettich GmbH & Co KG, Bismarckallee 7, 79098 Freiburg im Breisgau, Germany
| | - Irmgard Merfort
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Straße 19 VF, 79104 Freiburg im Breisgau, Germany
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| | - Gerhard Pütz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Deng Z, Zhang Y, Zhang Q, Li X, Zeng W, Jun C, Yuan D. Function of connexin 43 and RhoA/LIMK2/Cofilin signaling pathway in transient changes of contraction and dilation of human umbilical arterial smooth muscle cells. Int J Biochem Cell Biol 2022; 153:106326. [DOI: 10.1016/j.biocel.2022.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
13
|
Aguiar ASN, Borges ID, Borges LL, Dias LD, Camargo AJ, Perjesi P, Napolitano HB. New Insights on Glutathione's Supramolecular Arrangement and Its In Silico Analysis as an Angiotensin-Converting Enzyme Inhibitor. Molecules 2022; 27:7958. [PMID: 36432059 PMCID: PMC9695799 DOI: 10.3390/molecules27227958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are one of the most active classes for cardiovascular diseases and hypertension treatment. In this regard, developing active and non-toxic ACE inhibitors is still a continuous challenge. Furthermore, the literature survey shows that oxidative stress plays a significant role in the development of hypertension. Herein, glutathione's molecular structure and supramolecular arrangements are evaluated as a potential ACE inhibitor. The tripeptide molecular modeling by density functional theory, the electronic structure by the frontier molecular orbitals, and the molecular electrostatic potential map to understand the biochemical processes inside the cell were analyzed. The supramolecular arrangements were studied by Hirshfeld surfaces, quantum theory of atoms in molecules, and natural bond orbital analyses. They showed distinct patterns of intermolecular interactions in each polymorph, as well as distinct stabilizations of these. Additionally, the molecular docking study presented the interactions between the active site residues of the ACE and glutathione via seven hydrogen bonds. The pharmacophore design indicated that the hydrogen bond acceptors are necessary for the interaction of this ligand with the binding site. The results provide useful information for the development of GSH analogs with higher ACE inhibitor activity.
Collapse
Affiliation(s)
- Antônio S. N. Aguiar
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anapolis 75132-903, GO, Brazil
| | - Igor D. Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anapolis 75132-903, GO, Brazil
- Centro de Pesquisa e Eficiência Energética, CAOA Montadora de Veículos LTDA, Anapolis 75184-000, GO, Brazil
| | - Leonardo L. Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anapolis 75132-903, GO, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiania 74605-010, GO, Brazil
| | - Lucas D. Dias
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anapolis 75132-903, GO, Brazil
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anapolis 75083-515, GO, Brazil
| | - Ademir J. Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anapolis 75132-903, GO, Brazil
| | - Pál Perjesi
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anapolis 75083-515, GO, Brazil
| | - Hamilton B. Napolitano
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anapolis 75132-903, GO, Brazil
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anapolis 75083-515, GO, Brazil
| |
Collapse
|
14
|
Mironova GY, Mazumdar N, Hashad AM, El-Lakany MA, Welsh DG. Defining a Role of NADPH Oxidase in Myogenic Tone Development. Microcirculation 2022; 29:e12756. [PMID: 35289024 DOI: 10.1111/micc.12756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The myogenic response sets the foundation for blood flow control. Recent findings suggest a role for G-protein coupled receptors (GPCR) and signaling pathways tied to the generation of reactive oxygen species (ROS). In this regard, this study ascertained the impact of NADPH oxidase (Nox) on myogenic tone in rat cerebral resistance arteries. METHODS The study employed real-time qPCR (RT-qPCR), pressure myography, and immunohistochemistry. RESULTS Gq blockade abolished myogenic tone in rat cerebral arteries, linking GPCR to mechanosensation. Subsequent work revealed that general (TEMPOL) and mitochondrial specific (MitoTEMPO) ROS scavengers had little impact on myogenic tone, whereas apocynin, a broad spectrum Nox inhibitor, initiated transient dilation. RT-qPCR revealed Nox1 and Nox2 mRNA expression in smooth muscle cells. Pressure myography defined Nox1 rather than Nox2 is facilitating myogenic tone. We rationalized that Nox1-generated ROS was initiating this response by impairing the ability of the CaV 3.2 channel to elicit negative feedback via BKCa . This hypothesis was confirmed in functional experiments. The proximity ligation assay further revealed that Nox1 and CaV 3.2 colocalize within 40 nm of one another. CONCLUSIONS Our data highlight that vascular pressurization augments Nox1 activity and ensuing ROS production facilitates myogenic tone by limiting Ca2+ influx via CaV 3.2.
Collapse
Affiliation(s)
- Galina Yu Mironova
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Neil Mazumdar
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed M Hashad
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohammed A El-Lakany
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Donald G Welsh
- Robarts Research Institute and Dept. of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Chamata Y, Jackson KG, Watson KA, Jauregi P. Whey-Derived Peptides at the Heart of the COVID-19 Pandemic. Int J Mol Sci 2021; 22:11662. [PMID: 34769093 PMCID: PMC8584039 DOI: 10.3390/ijms222111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and hypertension. Angiotensin-converting enzyme 2 (ACE2) and angiotensin-converting enzyme I (ACE) are two main components of the RAS that play a major role in blood pressure homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 as a receptor to enter cells. Despite some controversies, numerous studies have reported a significant association between the use of ACE inhibitors and reduced risk of COVID-19. In our previous studies, we produced and identified peptide sequences present in whey hydrolysates exhibiting high ACE inhibitory activity. Therefore, the aim of this work is to obtain an improved understanding of the function of these natural peptides as RAS inhibitors and investigate their potential therapeutic role in the COVID-19 pandemic. The molecular interactions between peptides IPP, LIVTQ, IIAE, LVYPFP, and human ACE2 were assessed by employing a molecular docking approach. The results show that natural whey-derived peptides have a dual inhibitory action against both ACE and ACE2. This dual activity distinguishes these ACE inhibitory peptides from synthetic drugs, such as Captopril and Lisinopril which were not shown to inhibit ACE2 activity, and may represent a potential strategy in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yara Chamata
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| | - Kim G. Jackson
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| | - Kimberly A. Watson
- Health and Life Sciences Building, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK;
| | - Paula Jauregi
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| |
Collapse
|
16
|
Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin-Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021; 9:biomedicines9101332. [PMID: 34680449 PMCID: PMC8533592 DOI: 10.3390/biomedicines9101332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Placental development and function implicate important morphological and physiological adaptations to thereby ensure efficient maternal–fetal exchanges, as well as pregnancy-specific hormone secretion and immune modulation. Incorrect placental development can lead to severe pregnancy disorders, such as preeclampsia (PE), which endangers both the mother and the infant. The implication of the systemic renin–angiotensin system (RAS) in the pregnancy-related physiological changes is now well established. However, despite the fact that the local uteroplacental RAS has been described for several decades, its role in placental development and function seems to have been underestimated. In this review, we provide an overview of the multiple roles of the uteroplacental RAS in several cellular processes of placental development, its implication in the regulation of placental function during pregnancy, and the consequences of its dysregulation in PE pathogenesis.
Collapse
Affiliation(s)
- Lucile Yart
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
- Correspondence:
| |
Collapse
|
17
|
The Pivotal Role of Oxidative Stress in the Pathophysiology of Cardiovascular-Renal Remodeling in Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10071041. [PMID: 34209494 PMCID: PMC8300817 DOI: 10.3390/antiox10071041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The excessive activation of the renin-angiotensin system in kidney disease leads to alteration of intracellular pathways which concur altogether to the induction of cardiovascular and renal remodeling, exposing these patients since the very beginning of the renal injury to chronic kidney disease and progression to end stage renal disease, a very harmful and life threatening clinical condition. Oxidative stress plays a pivotal role in the pathophysiology of renal injury and cardiovascular-renal remodeling, the long-term consequence of its effect. This review will examine the role of oxidative stress in the most significant pathways involved in cardiovascular and renal remodeling with a focus on the detrimental effects of oxidative stress-mediated renal abnormalities on the progression of the disease and of its complications. Food for thoughts on possible therapeutic target are proposed on the basis of experimental evidences.
Collapse
|
18
|
The role of leukemia inhibitory factor in pathogenesis of pre-eclampsia: molecular and cell signaling approach. J Mol Histol 2021; 52:635-642. [PMID: 34076833 DOI: 10.1007/s10735-021-09989-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Endothelial dysfunction is considered as the main hallmark of Preeclampsia (PE). Despite the unknown pathogenesis of PE, different possible causes have been suggested in various studies. In this review, we first studied the Leukemia inhibitory factor (LIF) role in the related pathways to the PE pathogenesis, such as inflammation, endothelial dysfunction and hypertension. LIF can increase the expression of ICAM-1 and VCAM-1 via the JAK/STAT3 pathway, thereby inducing inflammatory responses and endothelial dysfunction. It can also be involved in the vascular vasoconstriction and hypertension by reducing the nitric oxide (NO) synthesis. Identifying the link between LIF and pathways associated with PE pathogenesis could be effective to achieve an effective PE treatment in the future.
Collapse
|
19
|
Negi P, Cheke RS, Patil VM. Recent advances in pharmacological diversification of Src family kinase inhibitors. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Src kinase, a nonreceptor protein-tyrosine kinase is composed of 11 members (in human) and is involved in a wide variety of essential functions required to sustain cellular homeostasis and survival.
Main body of the abstract
Deregulated activity of Src family kinase is related to malignant transformation. In 2001, Food and Drug Administration approved imatinib for the treatment of chronic myeloid leukemia followed by approval of various other inhibitors from this category as effective therapeutics for cancer patients. In the past decade, Src family kinase has been investigated for the treatment of diverse pathologies in addition to cancer. In this regard, we provide a systematic evaluation of Src kinase regarding its mechanistic role in cancer and other diseases. Here we comment on preclinical and clinical success of Src kinase inhibitors in cancer followed by diabetes, hypertension, tuberculosis, and inflammation.
Short conclusion
Studies focusing on the diversified role of Src kinase as potential therapeutical target for the development of medicinally active agents might produce significant advances in the management of not only various types of cancer but also other diseases which are in demand for potent and safe therapeutics.
Collapse
|
20
|
Liu D, Sun WP, Chen JW, Jiang Y, Xue R, Wang LH, Murao K, Zhang GX. Autophagy contributes to angiotensin II induced dysfunction of HUVECs. Clin Exp Hypertens 2021; 43:462-473. [PMID: 33775188 DOI: 10.1080/10641963.2021.1901110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Signal transduction of Angiotensin II (Ang II) induced autophagy and its role in Ang II-induced dysfunction of HUVECs are still unclear. METHODS HUVECs are stimulated with different doses of Ang II (10-9-10-5 mol/L) for different time (6-48 hours). Autophagy-related protein markers: LC3, Beclin-1 and SQSTM1/p62 are measured by western blot. RESULTS Incubation with Ang II increases autophagic flux (Beclin-1, autophagosomes formation, and degradation of SQSTM1/p62, LC3-I). Increased autophagic levels are inhibited by pretreatment with Ang II type 1 receptor (AT1) blocker (Candesartan), NADPH Oxidase inhibitor (apocycin), mitochondrial KATP channels inhibitor (5-hydroxydecanoate, 5HD). 3-Methyladenine (inhibitors of autophagy) and rapamycin (activator of autophagy) respectively inhibits or activates Ang II-induced autophagy levels. Ang II decreases phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production in HUVECs. L-NAME (NOS inhibitor) totally mimics the actions of Ang II on eNOS, NO production and autophagy levels. Rapamycin further decreases NO production combined with Ang II. Silence Atg5 completely reverses Ang II-activated autophagy levels. CONCLUSIONS Our results demonstrate that Ang II stimulation increases autophagy levels via AT1 receptor, NADPH oxidase, mitochondrial KATP channel, eNOS, Atg5 signal pathway in HUVECs, and activation of autophagy contributes to Ang II induced dysfunction of HUVECs.
Collapse
Affiliation(s)
- Di Liu
- Department of Physiology and Neuroscience, Soochow University - Dushu Lake Campus, Suzhou, China
| | - Wan-Pin Sun
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, Laboratory of Molecular Diagnostics, Medical College of Soochow University, Suzhou, P.R. China
| | - Jing-Wei Chen
- Department of Internal Medicine, the Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Yan Jiang
- Department of Physiology and Neuroscience, Soochow University - Dushu Lake Campus, Suzhou, China
| | - Rong Xue
- Department of Physiology and Neuroscience, Soochow University - Dushu Lake Campus, Suzhou, China
| | - Lin-Hui Wang
- Department of Physiology and Neuroscience, Soochow University - Dushu Lake Campus, Suzhou, China
| | - Koji Murao
- Department of Clinical Laboratory, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Guo-Xing Zhang
- Department of Physiology and Neuroscience, Soochow University - Dushu Lake Campus, Suzhou, China
| |
Collapse
|
21
|
The Effects of Valsartan on Cardiac Function and Pro-Oxidative Parameters in the Streptozotocin-Induced Diabetic Rat Heart. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2018-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diabetes mellitus is a major risk factor for cardiovascular diseases, while cardiovascular diseases are a leading cause of morbidity and mortality worldwide. The renin–angiotensin– aldosterone system controls renal, cardiovascular, adrenal function and regulates fluid and electrolyte balance as well as blood pressure. Because of his role, inhibition of reninangiotensin-aldosteron system is another therapy approach that reduces the risk of diabetes and cardiovascular disease. In this study, our goal was to evaluate effect of valsartan,as inhibitor of angiotensin II receptor type 1, on cardiac tissue and function, with focus on cardiodynamic and oxidative stress. The present study was carried out on 20 adult male Wistar albino rats (8 week old and with body masses of 180-200 g). Rats were divided randomly into 2 groups (10 animals per group). Healthy animals treated with 1 μM of valsartan and streptozotocin-induced diabetic animals perfused with 1 μM of valsartan 4 weeks after the induction of diabetes. Our results demonstrated that acute application of valsartan has different effect on cardiodynamics in rat heart of diabetic and healthy animals but did not improve cardiac function in hyperglycemia-induced changes. A challenge for further investigations are studies with chronic or acute administration, alone or in combination with other angiotensin-converting-enzyme inhibitor in various models of diabetes.
Collapse
|
22
|
Bertoni APS, de Campos RP, Tamajusuku ASK, Stefani GP, Braganhol E, Battastini AMO, Wink MR. Biochemical analysis of ectonucleotidases on primary rat vascular smooth muscle cells and in silico investigation of their role in vascular diseases. Life Sci 2020; 256:117862. [PMID: 32473244 DOI: 10.1016/j.lfs.2020.117862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências UFRGS, Porto Alegre, RS, Brazil
| | | | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia Experimental, UFCSPA, Porto Alegre, RS, Brazil; Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Bryson TD, Pandrangi TS, Khan SZ, Xu J, Pavlov TS, Ortiz PA, Peterson E, Harding P. The deleterious role of the prostaglandin E 2 EP 3 receptor in angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H867-H882. [PMID: 32142358 DOI: 10.1152/ajpheart.00538.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin II (ANG II) plays a key role in regulating blood pressure and inflammation. Prostaglandin E2 (PGE2) signals through four different G protein-coupled receptors, eliciting a variety of effects. We reported that activation of the EP3 receptor reduces cardiac contractility. More recently, we have shown that overexpression of the EP4 receptor is protective in a mouse myocardial infarction model. We hypothesize in this study that the relative abundance of EP3 and EP4 receptors is a major determinant of end-organ damage in the diseased heart. Thus EP3 is detrimental to cardiac function and promotes inflammation, whereas antagonism of the EP3 receptor is protective in an ANG II hypertension (HTN) model. To test our hypothesis, male 10- to 12-wk-old C57BL/6 mice were anesthetized with isoflurane and osmotic minipumps containing ANG II were implanted subcutaneously for 2 wk. We found that antagonism of the EP3 receptor using L798,106 significantly attenuated the increase in blood pressure with ANG II infusion. Moreover, antagonism of the EP3 receptor prevented a decline in cardiac function after ANG II treatment. We also found that 10- to 12-wk-old EP3-transgenic mice, which overexpress EP3 in the cardiomyocytes, have worsened cardiac function. In conclusion, activation or overexpression of EP3 exacerbates end-organ damage in ANG II HTN. In contrast, antagonism of the EP3 receptor is beneficial and reduces cardiac dysfunction, inflammation, and HTN.NEW & NOTEWORTHY This study is the first to show that systemic treatment with an EP3 receptor antagonist (L798,106) attenuates the angiotensin II-induced increase in blood pressure in mice. The results from this project could complement existing hypertension therapies by combining blockade of the EP3 receptor with antihypertensive drugs.
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Teja S Pandrangi
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Safa Z Khan
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Tengis S Pavlov
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
24
|
Papali'i-Curtin JC, Brasch HD, van Schaijik B, de Jongh J, Marsh RW, Tan ST, Itinteang T. Expression of Components of the Renin-Angiotensin System in Pyogenic Granuloma. Front Surg 2019; 6:13. [PMID: 31024924 PMCID: PMC6465765 DOI: 10.3389/fsurg.2019.00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Background: There is a growing body of research demonstrating expression of the renin-angiotensin system (RAS) by a putative embryonic stem cell (ESC)-like population within vascular anomalies. This study investigated the expression of components of the RAS in relation to the putative ESC-like population within pyogenic granuloma (PG) that we have recently reported. Methods: PG samples from 14 patients were analyzed for the expression of components of the RAS: pro-renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2), using 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining. Immunofluorescence (IF) IHC staining was performed to localize these proteins on four of the PG samples. RT-qPCR was performed on two snap-frozen PG samples. Western blotting (WB) was performed on one snap-frozen PG sample and two PG-derived primary cell lines. Results: DAB IHC staining demonstrated the expression of ACE, PRR, ATIIR1, and ATIIR2 in all 14 PG tissue samples. RT-qPCR analysis confirmed abundant mRNA transcripts for PRR, ACE, AIITR1 and ATIIR2, relative to the housekeeping gene. WB confirmed the presence of PRR, ATIIR1, and ACE in the PG tissue sample, and PRR and ATIIR1, in the PG-derived primary cell lines. IF IHC staining demonstrated the expression of PRR, ACE, ATIIR1 on the primitive population that expressed NANOG and SOX2 on the ERG+ endothelium of the microvessels within PG. Conclusion: We have demonstrated the expression of PRR, ACE, and ATIIR1 by the putative the ESC-like population within PG.
Collapse
Affiliation(s)
- Jessica C Papali'i-Curtin
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study and Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study and Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | | | | | | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study and Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
25
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
28
|
Radwan E, Mali V, Haddox S, El-Noweihi A, Mandour M, Ren J, Belmadani S, Matrougui K. Treg cells depletion is a mechanism that drives microvascular dysfunction in mice with established hypertension. Biochim Biophys Acta Mol Basis Dis 2018; 1865:403-412. [PMID: 30414897 DOI: 10.1016/j.bbadis.2018.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Microvascular dysfunction is a major complication in hypertensive patients. We previously reported that CD4+CD25+ T regulatory cells (Treg) play an important preventive role in hypertension-induced vascular dysfunction. However, whether Treg cells therapy and autophagy inhibition could rescue Treg cells survival and microvascular function in established hypertension is an important question that remained unanswered. METHODS & RESULTS Here we showed that Treg cells from mice model of established hypertension displayed an enhanced apoptotic rate, which was rescued with Treg cells transfer and autophagy inhibition. We also showed increased autophagy in mesenteric resistance artery (MRA) in mice with established hypertension. Importantly, the inhibition of autophagy or one single transfer of Treg cells into mice with established hypertension improved the microvascular function independently of high blood pressure. The protection involves the modulation of interleukin-10 (IL-10), inflammation, endoplasmic reticulum (ER) stress, oxidative stress, Akt, and eNOS. CONCLUSIONS The present study suggests that Treg cells survival is regulated by autophagy. Also, Treg cells as a cellular therapy aimed at rescuing the microvascular function through an autophagy-dependent mechanism and independently of arterial blood pressure lowering effects. Because our mouse model of established hypertension mimics the clinical situation, our results have the potential for new therapeutic approaches that involve the manipulation of Treg cells and autophagy to overcome established hypertension-induced cardiovascular complications.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA; Department of Medical Biochemistry, Assiut University, Egypt
| | - Vishal Mali
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA
| | - Samuel Haddox
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA
| | | | - Manal Mandour
- Department of Medical Biochemistry, Assiut University, Egypt
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA 23501, USA.
| |
Collapse
|
29
|
Lee H, Kim KC, Hong YM. Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment. KOREAN JOURNAL OF PEDIATRICS 2018; 62:95-101. [PMID: 30360036 PMCID: PMC6434229 DOI: 10.3345/kjp.2018.06856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 01/28/2023]
Abstract
Purpose Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. Methods Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. Results Expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, TGF-β1, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. Conclusion Losartan treatment reduced expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis.
Collapse
Affiliation(s)
- Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of College, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of College, Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of College, Seoul, Korea
| |
Collapse
|
30
|
Yadav VR, Teng B, Mustafa SJ. Enhanced A 1 adenosine receptor-induced vascular contractions in mesenteric artery and aorta of in L-NAME mouse model of hypertension. Eur J Pharmacol 2018; 842:111-117. [PMID: 30347181 DOI: 10.1016/j.ejphar.2018.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 01/28/2023]
Abstract
L-NAME-induced hypertension is commonly used to study endothelial dysfunction and related vascular effects. It has been reported that genetic deletion of A1 adenosine receptor (AR) reduces blood pressure (BP) increases in mice and thus, suggesting the involvement of A1AR. Thus, we sought to determine whether A1AR-induced vascular responses were altered in this mouse model of hypertension. L-NAME (1 mg/ml) was given in the drinking water for 28 days to mice. The BP was monitored using non-invasive tail-cuff system. Muscle tension studies were performed using DMT for mesenteric arteries (MAs) and organ bath for aorta. Protein expression was analyzed by western blot. Significantly, higher systolic and mean arterial blood pressure was noted in L-NAME mice. In MAs, higher 2-Chloro-N6-cyclopentyladenosine (CCPA, selective A1AR agonist) induced contractions in hypertensive mice were observed. This enhanced contraction was inhibited by HET0016 (Cytochrome 450 4A inhibitor, 10 µM, 15 min). Contrary, 5'-(N-Ethylcarboxamido) adenosine (NECA, non-selective AR agonist) induced vascular responses were comparable in both groups. Pinacidil (KATP channel opener) induced relaxation was significantly increased in hypertensive mice. In aorta, CCPA-induced contractions were enhanced and inhibited by HET0016 in hypertensive mice. Notably, NECA-induced contractions in aorta were enhanced in hypertensive mice. Higher expressions of A1AR and Cyp4A were noted in MAs of hypertensive mice. In addition, in aorta, higher A1AR and comparable Cyp4A levels were observed in hypertensive mice. A1AR-induced vascular contractions were enhanced in hypertensive mice aorta and MAs. Cyp4A plays a role in altered vascular responses in MAs.
Collapse
Affiliation(s)
- Vishal R Yadav
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Bunyen Teng
- Coagulation and Blood Research Task Area, US Army Institute of Surgical Research, San Antonio, TX, USA
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Center for Translational Science Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
31
|
Apelin/APJ system: A novel promising target for anti-aging intervention. Clin Chim Acta 2018; 487:233-240. [PMID: 30296443 DOI: 10.1016/j.cca.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is widely expressed in various organs. Recent research has indicated that the Apelin/APJ system plays an important role in aging. Apelin and APJ receptor expression are down-regulated with increasing age. In murine models, Apelin and APJ knockouts exhibit accelerated senescence whereas Apelin-restoration results in enhanced vigor and rejuvenated behavioral and circadian phenotypes. Furthermore, aged Apelin knockout mice develop progressive impairment of cardiac contractility associated with systolic dysfunction. Apelin is crucial to maintain cardiac contractility in aging. Moreover, the Apelin/APJ system appears to be involved in regulation of renin-angiotensin-aldosterone system (RAAS), apoptosis, inflammation and oxidative stress which promotes aging. Likewise, the Apelin/APJ system regulates autophagy, stem cells and the sirtuin family thus contributing to anti-aging. In this review, we describe the relationship between Apelin/APJ system and aging. We elaborate on the role of the Apelin/APJ system in aging stimulators, aging inhibitors and age-related diseases such as obesity, diabetes and cardiovascular disease. We conclude that Apelin/APJ system might become a novel promising therapeutic target for anti-aging.
Collapse
|
32
|
Xiao YF, Zeng ZX, Guan XH, Wang LF, Wang CJ, Shi H, Shou W, Deng KY, Xin HB. FKBP12.6 protects heart from AngII-induced hypertrophy through inhibiting Ca 2+ /calmodulin-mediated signalling pathways in vivo and in vitro. J Cell Mol Med 2018; 22:3638-3651. [PMID: 29682889 PMCID: PMC6010737 DOI: 10.1111/jcmm.13645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
We previously observed that disruption of FK506‐binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)‐induced cardiac hypertrophy in mice, whereas the adenovirus‐mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)‐induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6−/−) mice and cardiac‐specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini‐pump. The results showed that FKBP12.6 deficiency aggravated AngII‐induced cardiac hypertrophy, while cardiac‐specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII‐induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII‐induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+]i), in which the protein significantly inhibited the key Ca2+/calmodulin‐dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF‐2, AKT/Glycogen synthase kinase 3β (GSK3β)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII‐induced cardiac hypertrophy through inhibiting Ca2+/calmodulin‐mediated signalling pathways.
Collapse
Affiliation(s)
- Yun-Fei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Zhi-Xiong Zeng
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ling-Fang Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Chan-Juan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Weinian Shou
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Patel J, Chuaiphichai S, Douglas G, Gorvin CM, Channon KM. Vascular wall regulator of G-protein signalling-1 (RGS-1) is required for angiotensin II-mediated blood pressure control. Vascul Pharmacol 2018; 108:15-22. [PMID: 29654907 PMCID: PMC6073721 DOI: 10.1016/j.vph.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 03/18/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
G-Protein coupled receptors (GPCRs) activate intracellular signalling pathways by coupling to heterotrimeric G-proteins that control many physiological processes including blood pressure homeostasis. The Regulator of G-Protein Signalling-1 (RGS1) controls the magnitude and duration of downstream GPCR signalling by acting as a GTPase-activating protein for specific Gα-proteins. RGS1 has contrasting roles in haematopoietic and non-haematopoietic cells. Rgs1−/−ApoE−/− mice are protected from Angiotensin II (Ang II)-induced aortic aneurysm rupture. Conversely, Ang II treatment increases systolic blood pressure to a greater extent in Rgs1−/−ApoE−/− mice than ApoE−/− mice, independent of its role in myeloid cells. However the precise role of RGS1 in hypertension and vascular-derived cells remains unknown. We determined the effects of Rgs1 deletion on vascular function in ApoE−/− mice. Rgs1 deletion led to enhanced vasoconstriction in aortas and mesenteric arteries from ApoE−/− mice in response to phenylephrine (PE) and U46619 respectively. Rgs1 was shown to have a role in the vasculature, with endothelium-dependent vasodilation being impaired, and endothelium-independent dilatation to SNP being enhanced in Rgs1−/−ApoE−/− mesenteric arteries. To address the downstream signalling pathways in vascular smooth muscle cells (VSMCs) in response to Ang II-stimulation, we assessed pErk1/2, pJNK and pp38 MAPK activation in VSMCs transiently transfected with Rgs1. pErk1/2 signalling but not pJNK and pp38 signalling was impaired in the presence of Rgs1. Furthermore, we demonstrated that the enhanced contractile response to PE in Rgs1−/−ApoE−/− aortas was reduced by a MAPK/Erk (MEK) inhibitor and an L-type voltage gated calcium channel antagonist, suggesting that Erk1/2 signalling and calcium influx are major effectors of Rgs1-mediated vascular contractile responses, respectively. These findings indicate RGS1 is a novel regulator of blood pressure homeostasis and highlight RGS1-controlled signalling pathways in the vasculature that may be new drug development targets for hypertension.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Blood Pressure/genetics
- Calcium Signaling
- Cell Line
- Disease Models, Animal
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mice, Knockout, ApoE
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Phosphorylation
- RGS Proteins/deficiency
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Vasoconstriction
- Vasodilation
Collapse
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
34
|
Martin M, Deussen A. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Crit Rev Food Sci Nutr 2017; 59:1264-1283. [PMID: 29244531 DOI: 10.1080/10408398.2017.1402750] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death. The underlying pathophysiology is largely contributed by an overactivation of the renin-angiotensin-aldosterone-system (RAAS). Herein, angiotensin II (AngII) is a key mediator not only in blood pressure control and vascular tone regulation, but also involved in inflammation, endothelial dysfunction, atherosclerosis, hypertension and congestive heart failure. Since more than three decades suppression of AngII generation by inhibition of the angiotensin-converting enzyme (ACE) or blockade of the AngII-receptor has shown clinical benefit by reducing hypertension, atherosclerosis and other inflammation-associated cardiovascular diseases. Besides pharmaceutical ACE-inhibitors some natural peptides derived from food proteins reduce in vitro ACE activity. Several animal studies and a few human clinical trials have shown antihypertensive effects of such peptides, which might be attractive as food additives to prevent age-related RAAS activation. However, their inhibitory potency on in vitro ACE activity does not always correlate with an antihypertensive impact. While some peptides with high inhibitory activity on ACE-activity in vitro show no antihypertensive effect in vivo, other peptides with only a moderate ACE inhibitory activity in vitro cause such effects. The explanation for this conflicting phenomenon between inhibitory activity and antihypertensive effect remains unclear to date. This review shall critically address the effects of natural peptides derived from different food proteins on the cardiovascular system and the possible underlying mechanisms. A central aspect will be to point to conceptual gaps in the current understanding of the action of these peptides with respect to in vivo blood pressure lowering effects.
Collapse
Affiliation(s)
- Melanie Martin
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| | - Andreas Deussen
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| |
Collapse
|
35
|
Zhang Y, Zhang JD, Zhu MQ, Zhang M, Xu YJ, Cui L, Dhalla NS. Effect of lysophosphatidylglycerol on intracellular free Ca 2+ concentration in A10 vascular smooth muscle cells. Can J Physiol Pharmacol 2017; 95:1283-1288. [PMID: 28727921 DOI: 10.1139/cjpp-2017-0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although plasma levels of lysophosphatidylglycerol (LPG) are increased in hypertension, its role in the pathogenesis of vascular defects is not clear. In view of the importance of Ca2+ overload in causing vascular smooth muscle (VSM) dysfunction, the action of LPG on [Ca2+]i in cultured A10 VSM cell line was examined by using Fura 2-AM acetoxymethyl ester technique. LPG was found to induce a concentration-dependent increase in [Ca2+]i in VSM cells. This change was dependent both on the extracellular and intracellular Ca2+ sources, as it was reduced by 30% by EGTA, an extracellular Ca2+ chelator, and 70% by thapsigargin, a sarcoplasmic reticulum (SR) Ca2+-pump inhibitor. However the increase in [Ca2+]i due to LPG was not altered by caffeine or ryanodine, which affect Ca2+-release through the ryanodine receptors in the SR. On the other hand, LPG-induced change in [Ca2+]i was suppressed by 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate, a phospholipase C (PLC) inhibitor, as well as by xestospongin and 2-aminoethoxydiphenyl borate, two inositol trisphosphate (IP3) receptor inhibitors in the SR. These observations support the view that LPG-induced increase in [Ca2+]i in VSM cells is mainly a result of Ca2+ release from Ca2+ pool in the SR through PLC/IP3-sensitive signal transduction mechanism. Furthermore, it is suggested that the elevated level of LPG may induce intracellular Ca2+ overload and thus play a critical role in the development of vascular abnormalities.
Collapse
Affiliation(s)
- Ying Zhang
- a Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130000, China
| | - Jing-Dian Zhang
- a Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130000, China
| | - Ming-Qin Zhu
- a Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130000, China
| | - Ming Zhang
- b Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun 130021, China
| | - Yan-Jun Xu
- c Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Li Cui
- a Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130000, China
| | - Naranjan S Dhalla
- c Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
36
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
37
|
Zhou Z, Yadav VR, Sun C, Teng B, Mustafa JS. Impaired Aortic Contractility to Uridine Adenosine Tetraphosphate in Angiotensin II-Induced Hypertensive Mice: Receptor Desensitization? Am J Hypertens 2017; 30:304-312. [PMID: 28034895 PMCID: PMC5861566 DOI: 10.1093/ajh/hpw163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE We previously showed that uridine adenosine tetraphosphate (Up4A)-mediated aortic contraction is partly mediated through purinergic P2X1 receptors (P2X1R). It has been reported that the plasma level of Up4A is elevated in hypertensive patients, implying a potential role for Up4A-P2X1R signaling in hypertension. This study investigated the vasoactive effect of Up4A in aortas isolated from angiotensin (Ang) II-infused (21 days) hypertensive mice. METHODS Blood pressure was measured by tail cuff plethysmography. Aortas were isolated for isometric tension measurements, and protein expression was analyzed by western blot. RESULTS Mean and systolic arterial pressures were elevated by ~50% in Ang II-infused mice. Protein levels of both AT1R and P2X1R were upregulated in Ang II-infused aortas. Surprisingly, Up4A (10-9-10-5 M)-induced concentration-dependent contraction was significantly impaired in Ang II-infused mice. Studies in control mice revealed that both P2X1R (MRS2159) and AT1R (losartan) antagonists significantly attenuated Up4A-induced aortic contraction. In addition, desensitization of AT1R by prior Ang II (100 nM) exposure had no effect on Up4A-induced aortic contraction. However, subsequent serial exposure responses to Up4A-induced aortic contraction were markedly reduced, suggesting a desensitization of purinergic receptors. This desensitization was further confirmed in control mice by prior exposure of aortas to the P2X1R desensitizer α, β-methylene ATP (10 μM). CONCLUSION Despite upregulation of AT1R and P2X1R in hypertension, Up4A-mediated aortic contraction was impaired in Ang II-infused mice, likely through the desensitization of P2X1R but not AT1R. This implies that vascular P2X1R activity, rather than plasma Up4A level, may determine the role of Up4A in hypertension.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia, USA
- Present address: Division of Cardiology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Vishal R Yadav
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Changyan Sun
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia, USA
- Present address: Molecular Vascular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Bunyen Teng
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Jamal S Mustafa
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
38
|
Lu W, Kang J, Hu K, Tang S, Zhou X, Xu L, Li Y, Yu S. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia. Sleep Breath 2017; 21:667-677. [PMID: 28078487 DOI: 10.1007/s11325-016-1449-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome, which is a risk factor for resistant hypertension, is characterized by chronic intermittent hypoxia (CIH) and is associated with many cardiovascular diseases. CIH elicits systemic oxidative stress and sympathetic hyperactivity, which lead to hypertension. Rho kinases (ROCKs) are considered to be major effectors of the small GTPase RhoA and have been extensively studied in the cardiovascular field. Upregulation of the RhoA/ROCK signaling cascade is observed in various cardiovascular disorders, such as atherosclerosis, pulmonary hypertension, and stroke. However, the exact molecular function of RhoA/ROCK in CIH remains unclear and requires further study. OBJECTIVE This study aimed to investigate the role of the NADPH oxidase 4 (Nox4)-induced ROS/RhoA/ROCK pathway in CIH-induced hypertension in rats. METHODS Male Sprague-Dawley rats were exposed to CIH for 21 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 h/day). We randomly assigned 56 male rats to groups of normoxia (RA) or vertically implemented CIH together with vehicle (CIH-V), GKT137831 (CIH-G), N-acetyl cysteine (NAC) (CIH-N), or Y27632 (CIH-Y). The rats in the RA group were continuously exposed to room air, whereas the rats in the other groups were exposed to CIH. Systolic blood pressure (BP) was monitored at the beginning of each week. After the experiment, renal sympathetic nerve activity (RSNA) was recorded, and serum and renal tissues were subjected to molecular biological and biochemical analyses. RESULTS Compared with the BP of RA rats, the BP of CIH-V rats started to increase 2 weeks after the beginning of the experiment, subsequently stabilizing at a high level at the end of the third week. CIH increased both RSNA and oxidative stress. This response was attenuated by treatment of the rats with GKT137831 or NAC. Inhibiting Nox4 activity or ROS production reduced RhoA/ROCK expression. Treatment with Y27632 reduced both BP and RSNA in rats exposed to CIH. CONCLUSION Hypertension can be induced by CIH in SD rats. The CIH-induced elevation of BP is at least partially mediated via the Nox4-induced ROS/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Wen Lu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Jing Kang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Si Tang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Xiufang Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Lifang Xu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yuanyuan Li
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Shuhui Yu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| |
Collapse
|
39
|
Abstract
The NADPH oxidase (Nox) family of enzymes is expressed in many tissues that are involved in hypertension, including blood vessels, kidney, and brain. In these tissues, the products of NADPH oxidase activity, superoxide and ultimately hydrogen peroxide, act as intracellular and extracellular messengers during compartmentalized cellular signaling. The correct measurement of Nox activity and its products is crucial to enable studies of how these signaling pathways affect the molecular mechanisms underlying hypertension. Here, we describe methods for detection and measurement of hydrogen peroxide and superoxide derived from NADPH oxidases in biological samples such as cells and tissues.
Collapse
|
40
|
Costa G, Garabito M, Jiménez-Altayó F, Onetti Y, Sabate M, Vila E, Dantas AP. Sex differences in angiotensin II responses contribute to a differential regulation of cox-mediated vascular dysfunction during aging. Exp Gerontol 2016; 85:71-80. [DOI: 10.1016/j.exger.2016.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 12/01/2022]
|
41
|
Côco H, Pernomian L, Pereira PC, Gomes MS, Marchi KC, Lopes AH, Cunha TM, Tirapelli CR, de Oliveira AM. Chronic restraint stress increases angiotensin II potency in the rat carotid: role of cyclooxygenases and reactive oxygen species. ACTA ACUST UNITED AC 2016; 69:52-65. [PMID: 27774650 DOI: 10.1111/jphp.12659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/02/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the mechanisms underlying the effects of chronic restraint stress on the vascular contractile response induced by angiotensin (Ang) II in rat carotid. METHODS Concentration-response curves for AngII were obtained in endothelium-intact or endothelium-denuded carotid rings, in the absence or presence of SC-560 (COX-1 inhibitor), SC-236 (COX-2 inhibitor), wortmannin (PI3 K-Akt inhibitor), ML171 (NOX-1 inhibitor), VAS2870 (NOX-4 inhibitor), tiron (O2- scavenger) or PEG-catalase (H2 O2 scavenger). 6-ketoPGF1α , TXB2 , O2- or H2 O2 levels and superoxide dismutase and catalase activity or expression were also measured in rat carotid. KEY FINDINGS Stress increased AngII potency in rat carotid. Muscular COX-1 or COX-2-derived metabolites negatively modulated AngII-induced contraction in control rat carotid. Endothelial COX-1 or COX-2-derived metabolites positively modulated AngII-induced contraction in stressed rat carotid. PI3 K-Akt, NOX-1, NOX-4, O2- and H2 O2 positively modulated AngII-induced contraction in stressed rat carotid. Stress increased 6-ketoPGF1α or H2 O2 generation and reduced catalase activity in rat carotid. Protein expression of COX-1, NOX-4 or p-Akt was increased in stressed rat carotid. CONCLUSIONS Stress increases AngII potency in rat carotid by a mechanism that involves the increased generation of PGI2 and H2 O2 and the activation of Akt pathway. Such mechanism could play a pathophysiological role in cardiovascular diseases correlated with stress.
Collapse
Affiliation(s)
- Hariane Côco
- Departament of Pharmacology, School of Medicine from Ribeirão Preto, Ribeirão Preto, SP, Brazil.,Laboratory of Vascular Injury, School of Pharmaceutical Sciences from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Larissa Pernomian
- Laboratory of Vascular Injury, School of Pharmaceutical Sciences from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Priscila C Pereira
- Departament of Pharmacology, School of Medicine from Ribeirão Preto, Ribeirão Preto, SP, Brazil.,Laboratory of Vascular Injury, School of Pharmaceutical Sciences from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Mayara S Gomes
- Laboratory of Vascular Injury, School of Pharmaceutical Sciences from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Katia C Marchi
- Departament of Pharmacology, School of Medicine from Ribeirão Preto, Ribeirão Preto, SP, Brazil.,Laboratory of Pharmacology, School of Nursing from Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre H Lopes
- Departament of Pharmacology, School of Medicine from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Departament of Pharmacology, School of Medicine from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratory of Pharmacology, School of Nursing from Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana M de Oliveira
- Laboratory of Vascular Injury, School of Pharmaceutical Sciences from Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
42
|
Pellegrino PR, Schiller AM, Haack KKV, Zucker IH. Central Angiotensin-II Increases Blood Pressure and Sympathetic Outflow via Rho Kinase Activation in Conscious Rabbits. Hypertension 2016; 68:1271-1280. [PMID: 27672026 DOI: 10.1161/hypertensionaha.116.07792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
Elevated sympathetic tone and activation of the renin-angiotensin system are pathophysiologic hallmarks of hypertension, and the interactions between these systems are particularly deleterious. The importance of Rho kinase as a mediator of the effects of angiotensin-II (AngII) in the periphery is clear, but the role of Rho kinase in sympathoexcitation caused by central AngII is not well established. We hypothesized that AngII mediates its effects in the brain by the activation of the RhoA/Rho kinase pathway. Chronically instrumented, conscious rabbits received the following intracerebroventricular infusion treatments for 2 weeks via osmotic minipump: AngII, Rho kinase inhibitor Fasudil, AngII plus Fasudil, or a vehicle control. AngII increased mean arterial pressure over the course of the infusion, and this effect was prevented by the coadministration of Fasudil. AngII increased cardiac and vascular sympathetic outflow as quantified by the heart rate response to metoprolol and the depressor effect of hexamethonium; coadministration of Fasudil abolished both of these effects. AngII increased baseline renal sympathetic nerve activity in conscious animals and impaired baroreflex control of sympathetic nerve activity; again Fasudil coinfusion prevented these effects. Each of these end points showed a statistically significant interaction between AngII and Fasudil. Quantitative immunofluorescence of brain slices confirmed that Rho kinase activity was increased by AngII and decreased by Fasudil. Taken together, these data indicate that hypertension, elevated sympathetic outflow, and baroreflex dysfunction caused by central AngII are mediated by Rho kinase activation and suggest that Rho kinase inhibition may be an important therapeutic target in sympathoexcitatory cardiovascular diseases.
Collapse
Affiliation(s)
- Peter R Pellegrino
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.)
| | - Alicia M Schiller
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.)
| | - Karla K V Haack
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.)
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.).
| |
Collapse
|
43
|
Kraemer MP, Choi H, Reese J, Lamb FS, Breyer RM. Regulation of arterial reactivity by concurrent signaling through the E-prostanoid receptor 3 and angiotensin receptor 1. Vascul Pharmacol 2016; 84:47-54. [PMID: 27260940 DOI: 10.1016/j.vph.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 12/28/2022]
Abstract
Prostaglandin E2 (PGE2), a cyclooxygenase metabolite that generally acts as a systemic vasodepressor, has been shown to have vasopressor effects under certain physiologic conditions. Previous studies have demonstrated that PGE2 receptor signaling modulates angiotensin II (Ang II)-induced hypertension, but the interaction of these two systems in the regulation of vascular reactivity is incompletely characterized. We hypothesized that Ang II, a principal effector of the renin-angiotensin-aldosterone system, potentiates PGE2-mediated vasoconstriction. Here we demonstrate that pre-treatment of arterial rings with 1nM Ang II potentiated PGE2-evoked constriction in a concentration dependent manner (AUC-Ang II 2.778±2.091, AUC+Ang II 22.830±8.560, ***P<0.001). Using genetic deletion models and pharmacological antagonists, we demonstrate that this potentiation effect is mediated via concurrent signaling between the angiotensin II receptor 1 (AT1) and the PGE2 E-prostanoid receptor 3 (EP3) in the mouse femoral artery. EP3 receptor-mediated vasoconstriction is shown to be dependent on extracellular calcium in combination with proline-rich tyrosine kinase 2 (Pyk2) and Rho-kinase. Thus, our findings reveal a novel mechanism through which Ang II and PGE2 regulate peripheral vascular reactivity.
Collapse
Affiliation(s)
- Maria P Kraemer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Hyehun Choi
- Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeff Reese
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fred S Lamb
- Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard M Breyer
- Department of Medicine, Veterans Affairs Hospital, Nashville, TN, United States; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
44
|
Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae: insights from Bartter's and Gitelman's syndromes, human models of endogenous angiotensin II signaling antagonism. J Hypertens 2016; 32:2109-19; discussion 2119. [PMID: 25202962 DOI: 10.1097/hjh.0000000000000321] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Angiotensin II (Ang II) plays a key role in hypertension, renal and cardiovascular pathophysiology via intracellular pathways that involve the activation of a multiplicity of signaling mechanisms. Although experimental and genetic animal models have been developed and used to explore Ang II signaling's role in hypertension, a complete understanding of the processes mediating Ang II signaling in hypertension in humans remains elusive. One impediment is that these animal models do not exhibit all the traits of human hypertension, making it impossible to extrapolate from them to humans. To overcome this issue, we have used patients with Bartter's and Gitelman's syndromes, a human model of endogenously blunted and blocked Ang II signaling that presents a constellation of clinical findings which manifest themselves as the opposite of hypertension. This article reviews the aspects of the pathophysiology of human hypertension and its short and long term sequelae, and uses the results of our studies in Bartter's and Gitelman's syndromes along with those of others to gain better insight and understanding of the role of Ang II signaling in these processes.
Collapse
|
45
|
Guo HL, Liao XH, Liu Q, Zhang L. Angiotensin II Type 2 Receptor Decreases Transforming Growth Factor-β Type II Receptor Expression and Function in Human Renal Proximal Tubule Cells. PLoS One 2016; 11:e0148696. [PMID: 26867007 PMCID: PMC4750982 DOI: 10.1371/journal.pone.0148696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-β (TGF-β), via its receptors, induces epithelial-mesenchymal transition (EMT) and plays an important role in the development of renal tubulointersitial fibrosis. Angiotensin II type 2 receptor (AT2R), which mediates beneficial renal physiological functions, has received attention as a prospective therapeutic target for renoprotection. In this study, we investigated the effect and underlying mechanism of AT2R on the TGF-β receptor II (TGF-βRII) expression and function in human proximal tubular cells (HK-2). Here, we show that the AT2R agonist CGP42112A decreased TGF-βRII protein expression in a concentration- and time-dependent manner in HK-2 cells. The inhibitory effect of the AT2R on TGF-βRII expression was blocked by the AT2R antagonists PD123319 or PD123177. Stimulation with TGF-β1 enhanced EMT in HK-2 cells, which was prevented by pre-treatment with CGP42112A. One of mechanisms in this regulation is associated with the increased TGF-βRII degradation after activation of AT2R. Furthermore, laser confocal immunofluorescence microscopy showed that AT2R and TGF-βRII colocalized in HK-2 cells. AT2R and TGF-βRII coimmunoprecipitated and this interaction was increased after AT2R agonist stimulation for 30 min. The inhibitory effect of the AT2R on TGF-βRII expression was also blocked by the nitric oxide synthase inhibitor L-NAME, indicating that nitric oxide is involved in the signaling pathway. Taken together, our study indicates that the renal AT2R regulates TGF-βRII expression and function via the nitric oxide pathway, which may be important in the control of renal tubulointerstitial fibrosis.
Collapse
MESH Headings
- Cell Line
- Dose-Response Relationship, Drug
- Epithelial-Mesenchymal Transition
- Fibrosis/pathology
- Humans
- Imidazoles/chemistry
- Kidney/pathology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/pathology
- Microscopy, Confocal
- Microscopy, Fluorescence
- Nitric Oxide/chemistry
- Oligopeptides/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyridines/chemistry
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Time Factors
Collapse
Affiliation(s)
- Hui-Lin Guo
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qi Liu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| |
Collapse
|
46
|
Javkhedkar AA, Banday AA. Antioxidant resveratrol restores renal sodium transport regulation in SHR. Physiol Rep 2015; 3:3/11/e12618. [PMID: 26603454 PMCID: PMC4673646 DOI: 10.14814/phy2.12618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Previously we have shown that in spontaneously hypertensive rats (SHR) renal angiotensin (Ang) II receptor (AT1R) upregulation leads to overstimulation of Na/K-ATPase by Ang II. There are reports that antioxidants can reduce oxidative stress and blood pressure (BP) in SHR, however the effect of these compounds on AT1R function remains to be determined. Therefore, we hypothesized that polyphenol antioxidant resveratrol would mitigate oxidative stress, normalize renal AT1R signaling, and reduce BP in SHR. SHR and wistar-kyoto (WKY) rats were treated with resveratrol for 8 weeks. Untreated SHR exhibited oxidative stress and enhanced renal proximal tubular Ang II-induced G-protein activation and Na/K-ATPase stimulation. Treatment of SHR with resveratrol mitigated oxidative stress, reduced BP, and normalized renal AT1R signaling. In SHR, nuclear expression of transcription factor NF-κB was increased while expression of Nrf2 was reduced. SHR also exhibited a significant decrease in renal antioxidant capacity and activities of phase II antioxidant enzymes. Resveratrol treatment of SHR abolished renal NF-κB activation, restored Nrf2-phase II antioxidant signaling and Ang II-mediated Na/K-ATPase regulation. These data show that in SHR, oxidative stress via activation of NF-κB upregulates AT1R–G-protein signaling resulting in overstimulation Na/K-ATPase which contributes to hypertension. Resveratrol, via Nrf2, activates phase II antioxidant enzymes, mitigates oxidative stress, normalizes AT1R–G-protein signaling and Na/K-ATPase regulation, and decreases BP in SHR.
Collapse
Affiliation(s)
- Apurva A Javkhedkar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| | - Anees A Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
47
|
Maiolino G, Azzolini M, Rossi GP, Davis PA, Calò LA. Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans. Free Radic Biol Med 2015; 88:51-8. [PMID: 25770663 DOI: 10.1016/j.freeradbiomed.2015.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are intermediates in reduction-oxidation reactions that begin with the addition of one electron to molecular oxygen, generating the primary ROS superoxide, which in turn interacts with other molecules to produce secondary ROS, such as hydrogen peroxide, hydroxyl radical, and peroxynitrite. ROS are continuously produced during metabolic processes and are deemed to play an important role in cardiovascular diseases, namely, myocardial hypertrophy and fibrosis and atherosclerosis, via oxidative damage of lipids, proteins, and deoxyribonucleic acid. Angiotensin II (Ang II) is a potent vasoactive agent that also exerts mitogenic, proinflammatory, and profibrotic effects through several signaling pathways, in part involving ROS, particularly superoxide and hydrogen peroxide. Moreover, Ang II stimulates NADPH oxidases, leading to higher ROS generation and oxidative stress. Bartter/Gitelman syndrome patients, despite elevated plasma renin activity, Ang II, and aldosterone levels, exhibit reduced peripheral resistance, normal/low blood pressure, and blunted pressor effect of vasoconstrictors. In addition, notwithstanding the activation of the renin-angiotensin system and the increased plasma levels of Ang II, these patients display decreased production of ROS, reduced oxidative stress, and increased antioxidant defenses. In fact, Bartter/Gitelman syndrome patients are characterized by reduced levels of p22(phox) gene expression and undetectable plasma peroxynitrite levels, while showing increased plasma antioxidant power and expression of antioxidant enzymes, such as heme oxygenase-1. In conclusion, multifarious data suggest that Bartter and Gitelman syndrome patients are a model of low oxidative stress and high antioxidant defenses. The contribution offered by the study of these syndromes in elucidating the molecular mechanisms underlying this favorable status could offer chances for new therapeutic targets in disease characterized by high levels of reactive oxygen species.
Collapse
Affiliation(s)
- Giuseppe Maiolino
- Nephrology and Hypertension Clinic, Department of Medicine, University of Padova, 35126 Padova, Italy
| | - Matteo Azzolini
- Nephrology and Hypertension Clinic, Department of Medicine, University of Padova, 35126 Padova, Italy
| | - Gian Paolo Rossi
- Nephrology and Hypertension Clinic, Department of Medicine, University of Padova, 35126 Padova, Italy
| | - Paul A Davis
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Lorenzo A Calò
- Nephrology and Hypertension Clinic, Department of Medicine, University of Padova, 35126 Padova, Italy.
| |
Collapse
|
48
|
Abstract
Substances historically thought to cause direct vascular injury in laboratory animals are a heterogeneous group of toxic agents with varied mechanisms of action. Morphologically, the reviewed agents can be broadly categorized into those targeting endothelial cell (ECs) and those targeting smooth muscle cells (SMCs). Anticancer drugs, immunosuppressants, and heavy metals are targeting primarily ECs while allylamine, β-aminopropionitrile, and mitogen-activated protein kinase kinase inhibitors affect mainly SMCs. It is now recognized that the pathogenicity of some of these agents is often mediated through intermediary events, particularly vasoconstriction. There are clear similarities in the clinical and microscopic findings associated with many of these agents in animals and man, allowing the use of animal models to investigate mechanisms and pathogenesis. The molecular pathogenic mechanisms and comparative morphology in animals and humans will be reviewed.
Collapse
|
49
|
Qin B, Zhou J. Src Family Kinases (SFK) Mediate Angiotensin II-Induced Myosin Light Chain Phosphorylation and Hypertension. PLoS One 2015; 10:e0127891. [PMID: 26011449 PMCID: PMC4444283 DOI: 10.1371/journal.pone.0127891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Angiotensin (Ang) II is the major bioactive peptide of the renin–angiotensin system (RAS); it contributes to the pathogenesis of hypertension by inducing vascular contraction and adverse remodeling, thus elevated peripheral resistance. Ang II also activates Src family kinases (SFK) in the vascular system, which has been implicated in cell proliferation and migration. However, the role of SFK in Ang II-induced hypertension is largely unknown. In this study, we found that administration of a SFK inhibitor SU6656 markedly lowered the level of systemic BP in Ang II-treated mice, which was associated with an attenuated phosphorylation of the smooth-muscle myosin-light-chain (MLC) in the mesenteric resistant arteries. In the cultured human coronary artery smooth muscle cells (SMCs), pretreatment with SU6656 blocked Ang II-induced MLC phosphorylation and contraction. These results for the first time demonstrate that SFK directly regulate vascular contractile machinery to influence BP. Thus our study provides an additional mechanistic link between Ang II and vasoconstriction via SFK-enhanced MLC phosphorylation in SMCs, and suggests that targeted inhibition of Src may provide a new therapeutic opportunity in the treatment of hypertension.
Collapse
Affiliation(s)
- Bo Qin
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States of America
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
50
|
Yang J, Villar VAM, Jones JE, Jose PA, Zeng C. G protein-coupled receptor kinase 4: role in hypertension. Hypertension 2015; 65:1148-55. [PMID: 25870190 DOI: 10.1161/hypertensionaha.115.05189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/22/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Yang
- From the Departments of Cardiology (J.Y., C.Z.) and Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China; and Division of Nephrology, Department of Medicine (V.A.M.V., J.E.J., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Van Anthony M Villar
- From the Departments of Cardiology (J.Y., C.Z.) and Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China; and Division of Nephrology, Department of Medicine (V.A.M.V., J.E.J., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - John E Jones
- From the Departments of Cardiology (J.Y., C.Z.) and Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China; and Division of Nephrology, Department of Medicine (V.A.M.V., J.E.J., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Pedro A Jose
- From the Departments of Cardiology (J.Y., C.Z.) and Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China; and Division of Nephrology, Department of Medicine (V.A.M.V., J.E.J., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Chunyu Zeng
- From the Departments of Cardiology (J.Y., C.Z.) and Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China; and Division of Nephrology, Department of Medicine (V.A.M.V., J.E.J., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore.
| |
Collapse
|