1
|
Zhang H, Li W, Wang J, Wu Z, Zhao N, Jiang Y. The Role of HbA1c in Parkinson's Disease: An Integrative Analysis by Single-Cell, Bulk Transcriptome and Mendelian Randomization. Mol Neurobiol 2025:10.1007/s12035-025-05063-5. [PMID: 40397357 DOI: 10.1007/s12035-025-05063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Decreased glucose tolerance is recognized as a factor associated with Parkinson's disease (PD) progression, yet the relationship between HbA1c and PD prognosis remains insufficiently explored. Using data from the Integrated Epidemiological Unit (IEU) open Genome-Wide Association Study (GWAS), PD's IEU-b-7 and HbA1c's IEU-b-104 were extracted. RNA-seq data from GSE20292 and single-cell RNA-seq data from GSE157783 were retrieved from Gene Expression Omnibus (GEO). Mendelian Randomization (MR) analysis, with HbA1c as the exposure and PD as the outcome, was performed using the inverse variance weighted (IVW) method. Differentially expressed genes (DEGs) between PD and controls in GSE20292 were identified, and overlapping instrumental variables (IVs) and DEGs pinpointed a set of candidate genes. Machine learning refinement selected biomarkers, leading to the development of a PD biomarker-based nomogram. Key cell lineages in GSE140231 were characterized, and communication and pseudotime analyses explored cell crosstalk and evolution. Using 223 independent single nucleotide polymorphisms (SNPs)as IVs, HbA1c was found causally [IVW: Odds Ratio (OR) = 1.438, P = 0.026, 95% Confidence Interval (CI) = 1.043-1.981].. Among 625 genes associated with these SNPs, 842 DEGs were identified by comparing PD vs. controls, intersecting with 27 candidate genes. Notably, five biomarkers-FASN, MICAL3, TCIRG1, CDK10, and MFSD1-emerged as potential diagnostic targets for PD. The receiver operating characteristic (ROC) curve demonstrated the high diagnostic accuracy of these biomarkers. Analysis of key cell lineages revealed strong interactions between excitatory and inhibitory cells and oligodendrocyte precursor cells and Astrocytes cells. In conclusion, HbA1c is identified as a risk factor for PD, with FASN, MICAL3, TCIRG1, CDK10, and MFSD1 representing promising targets for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Huihe Zhang
- Department of Neurology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Department of Neurology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Juwei Wang
- Graduate College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhimin Wu
- Department of Neurology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Na Zhao
- Department of Neurology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yue Jiang
- Department of Acupuncture, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Vorhees NW, Groenwold SL, Williams MT, Putt LS, Sanchez-Gama N, Stalions GA, Taylor GM, Van Dort HE, Calvo-Ochoa E. Olfactory Dysfunction in a Novel Model of Prodromal Parkinson's Disease in Adult Zebrafish. Int J Mol Sci 2025; 26:4474. [PMID: 40429620 PMCID: PMC12111043 DOI: 10.3390/ijms26104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Olfactory dysfunction is a clinical marker of prodromal Parkinson's disease (PD), yet the underlying mechanisms remain unclear. To explore this relationship, we developed a zebrafish model that recapitulates the olfactory impairment observed in prodromal PD without affecting motor function. We used zebrafish due to their olfactory system's similarity to mammals and their unique nervous system regenerative capacity. By injecting 6-hydroxydopamine (6-OHDA) into the dorsal telencephalic ventricle, we observed a significant loss of dopaminergic (DA) periglomerular neurons in the olfactory bulb (OB) and retrograde degeneration of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). These alterations impaired olfactory responses to cadaverine, an aversive odorant, while responses to alanine remained intact. 6-OHDA also triggered robust neuroinflammatory responses. By 7 days post-injection, dopaminergic synapses in the OB were remodeled, OSNs in the OE appeared recovered, and neuroinflammation subsided, leading to full recovery of olfactory responses to cadaverine. These findings highlight the remarkable neuroplasticity of zebrafish and suggest that this model of olfactory dysfunction associated with dopaminergic loss could provide valuable insights into some features of early PD pathology. Understanding the interplay between dopaminergic loss and olfactory dysfunction in a highly regenerative vertebrate may inform therapeutic strategies for individuals suffering from olfactory loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erika Calvo-Ochoa
- Biology Department and Neuroscience Program, Hope College, Holland, MI 49423, USA
| |
Collapse
|
3
|
Galal A, Moustafa A, Salama M. Transforming neurodegenerative disorder care with machine learning: Strategies and applications. Neuroscience 2025; 573:272-285. [PMID: 40120712 DOI: 10.1016/j.neuroscience.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases (NDs), characterized by progressive neuronal degeneration and manifesting in diverse forms such as memory loss and movement disorders, pose significant challenges due to their complex molecular mechanisms and heterogeneous patient presentations. Diagnosis often relies heavily on clinical assessments and neuroimaging, with definitive confirmation frequently requiring post-mortem autopsy. However, the emergence of Artificial Intelligence (AI) and Machine Learning (ML) offers a transformative potential. These technologies can enable the development of non-invasive tools for early diagnosis, biomarker identification, personalized treatment strategies, patient subtyping and stratification, and disease risk prediction. This review aims to provide a starting point for researchers, both with and without clinical backgrounds, who are interested in applying ML to NDs. We will discuss available data resources for key diseases like Alzheimer's and Parkinson's, explore how ML can revolutionize neurodegenerative care, and emphasize the importance of integrating multiple high-dimensional data sources to gain deeper insights and inform effective therapeutic strategies.
Collapse
Affiliation(s)
- Aya Galal
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt; Institute of Global Health and Human Ecology, American University in Cairo, New Cairo, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt; Institute of Global Health and Human Ecology, American University in Cairo, New Cairo, Egypt; Biology Department, American University in Cairo, New Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, American University in Cairo, New Cairo, Egypt; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Faculty of Medicine, Mansoura University, El Mansura, Egypt.
| |
Collapse
|
4
|
Gao X, Fu S, Liu Y, Yan A, Sun Y, Li X, Liu D, He D. TRPM8 activation inhibits neuroinflammation and ameliorates neurodegeneration by modulating Nrf2/HO-1 and NF-κB pathways in vivo and in vitro. Free Radic Biol Med 2025; 235:248-260. [PMID: 40320219 DOI: 10.1016/j.freeradbiomed.2025.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Neuroinflammation plays a pivotal role in the progression of Parkinson's disease (PD), and molecules capable of inhibiting neuroinflammation hold significant promise as therapeutic targets for PD. The transient receptor potential melastatin 8 (TRPM8), a transmembrane protein with well-documented anti-inflammatory properties, is prominently expressed in macrophages. This study marks the first exploration of the anti-PD effects of TRPM8 activation and its underlying mechanisms. Experimental results demonstrate that Icilin, a small-molecule TRPM8 agonist, conferred beneficial effects in a PD mouse model, including improved motor function, reduced dopaminergic neuronal damage, and suppressed neuroinflammation. Mechanistically, Icilin alleviated neuroinflammation in microglia through TRPM8 activation, which modulated the Nrf2/HO-1 and NF-κB pathways, thereby shielding neurons from microglia-mediated inflammatory injury. These findings not only underscore the therapeutic potential of TRPM8 in PD but also highlight its relevance to functional food science, as TRPM8 activation could be harnessed to develop dietary interventions with neuroprotective and anti-inflammatory properties. In conclusion, our study identifies TRPM8 as a promising therapeutic target for PD by regulating neuroinflammation via the Nrf2/HO-1 and NF-κB pathways, offering novel insights for the development of functional foods aimed at mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiyu Gao
- College of Animal Science, Jilin University, Changchun, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yichen Liu
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Aohan Yan
- College of Animal Science, Jilin University, Changchun, China.
| | - Yue Sun
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xinyi Li
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| | - Dewei He
- College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Huang Z, Ren Z, Wang S, Xiao L, Ling Y, Xie Y, Wang G, Zhou B. Urolithin A alleviates schizophrenic-like behaviors and cognitive impairment in rats through modulation of neuroinflammation, neurogenesis, and synaptic plasticity. Sci Rep 2025; 15:10477. [PMID: 40140679 PMCID: PMC11947095 DOI: 10.1038/s41598-025-93554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cognitive impairment in schizophrenia occurs in the early stages of the disease and is closely associated with prognosis. Alleviation of cognitive impairment in schizophrenia faces major challenges owing to the lack of preventive and therapeutic drugs that are novel and effective. Urolithin A (UA) is a gut microbial metabolite of ellagic acid that has demonstrated neuroprotective effects in multiple neurological disease models. Nonetheless, the neuromodulatory role of UA in schizophrenia is yet to be elucidated. Wistar rat pups were separated from their mothers for 24 h on postnatal days (PNDs) 9-10 to establish an early-life stress model. The pups were pretreated with UA at different administration times (2, 4, and 6 weeks) and doses (50, 100, and 150 mg/kg) from adolescence (PND29). Behavioral tests were performed after the end of the administration. Subsequently, hippocampal samples were collected for histopathological and molecular evaluations. Male offspring rats subjected to maternal separation exhibited increased sensitivity to prepulse inhibition and cognitive impairment, accompanied by severe neuroinflammation and impaired neurogenesis. However, UA attenuated maternal separation-induced prepulse inhibition deficits and cognitive impairments and restored hippocampal neurogenesis in a dose-dependent manner. Furthermore, UA pretreatment preserved dendritic spine density, synapses, and presynaptic vesicles. In addition, it exerted anti-inflammatory effects by inhibiting microglial activation and expression of the proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. Potential mechanisms included upregulation of brain-derived neurotrophic factor protein expression and activation of the extracellular signal-regulated kinase signaling pathway. This study is the first preclinical evaluation of the effects of UA on cognitive impairment in schizophrenia. The findings suggest that changes in cognitive function linked to schizophrenia are driven by the interaction among neuroinflammation, neurogenesis, and synaptic plasticity and that UA has the potential to reverse these processes. These observations provide evidence for future clinical trials of UA as a dietary supplement for preventing schizophrenia.
Collapse
Affiliation(s)
- Zhengyuan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
- Department of Pharmacy, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
| | - Zhongyu Ren
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
| | - Sanwang Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yipeng Ling
- Department of Pharmacy, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
| | - Yinping Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Donghu Road 115#, Wuhan, 430071, China.
| | - Benhong Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China.
- Department of Pharmacy, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, China.
| |
Collapse
|
6
|
Onuelu JE, Ben-Azu B, Adebayo OG, Fokoua AR, Nekabari MK, Ozah EO, Iwhiwhu P, Ajayi AM, Oyovwi OM, Omogbiy IA, Eduviere AT, Ojezele MO. Taurine, an essential amino acid, attenuates rotenone-induced Parkinson's disease in rats by inhibiting alpha-synuclein aggregation and augmenting dopamine release. Behav Brain Res 2025; 480:115397. [PMID: 39674372 DOI: 10.1016/j.bbr.2024.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Reducing antioxidant levels exacerbates the generation of reactive oxygen/nitrogen species, leading to alpha-synuclein aggregation and the degeneration of dopaminergic neurons. These play a key role in the onset of Parkinson's disease (PD), for which effective treatment remains elusive. This study examined the neuroprotective effects of taurine, an essential β-amino acid with antioxidant and antiinflammation properties, in Swiss male mice exposed to rotenone-induced PD. Mice (20-25 g) were grouped into seven groups (n = 9) and treated with taurine alone (5, 10 and 20 mg/kg, p.o) or levodopa (10 mg/kg, p.o) for 28 consecutive days following intraperitoneal co-administration of rotenone (1.5 mg/kg, in 5 % dimethylsulfoxide) for 14 alternate days. Open-field, rota-rod and hanging-wire motor performance and coordination tests were conducted on days 26-28. Oxidative stress and neuroinflammatory markers; levels of acetylcholinesterase enzyme activity, dopamine, and alpha-synuclein were assayed in the striatal and prefrontal-cortical regions alongside histological examinations. Rotenone significantly reduced latency to fall and akinesia-like behavior with several slip/error relative to vehicle groups. Taurine increased the latency to fall, notably improving motor coordination, locomotor deficit, and neuromuscular competence. Also, rotenone significantly increased malondialdehyde and nitrite; while decreasing acetylcholinesterase activity, glutathione, catalase, superoxide-dismutase, and glutathione-S-transferase levels in the striatum and prefrontal-cortex respectively, which were attenuated by taurine. Taurine increased dopamine levels in the striatum and prefrontal cortex dose-independently. Like carbidopa, taurine decreased alpha-synuclein, tumor-necrosis factor-α and interleukin-6 levels in the striatum and prefrontal-cortex. Additionally, taurine-reversed rotenone-induced neurodegeneration in the striatum and prefrontal cortex indicates neuroprotective function. Conclusively, taurine attenuates rotenone-induced PD-like behavior by enhancing the brain's antioxidant system, inhibiting pro-inflammatory cytokine release, reducing α-synuclein formation, and augmenting dopaminergic release in mice's brains.
Collapse
Affiliation(s)
- Jackson E Onuelu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance R Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Research unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Miracle K Nekabari
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Prosper Iwhiwhu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Obukohwo M Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Itiviere A Omogbiy
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Matthew O Ojezele
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
7
|
Käufer C, Stanojlović M, Schidlitzki A, Bonsberger J, Storch A, Richter F. Alterations in non-REM sleep and EEG spectra precede REM-sleep deficits in a model of synucleinopathy. JOURNAL OF PARKINSON'S DISEASE 2025; 15:311-328. [PMID: 39973511 DOI: 10.1177/1877718x241310723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundSleep disturbances often precede motor symptoms in neurodegenerative diseases like Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Neuroinflammation is implicated in PD pathophysiology and may contribute to non-motor symptoms such as sleep disturbances. The Thy1-αSyn mouse model, overexpressing human alpha-synuclein (αSyn), mimics key aspects of PD and DLB, making it valuable for studying related sleep disturbances and neuroinflammatory changes.ObjectiveTo investigate early-stage alterations in sleep architecture, electroencephalographic (EEG) patterns, and neuroinflammation in Thy1-αSyn mice.MethodsWe used telemetric EEG/electromyography (EMG) with video surveillance to compare sleep patterns and EEG spectral power between 2.5- and 4.5-month-old male Thy1-αSyn transgenic mice and wild-type littermates. Neuroinflammation was assessed by examining microglial (Iba1) and astrocytic (GFAP) activation in key sleep-regulating brain regions.ResultsThy1-αSyn mice showed decreased resting wake time and increased non-REM sleep, with altered sleep bout frequency and length, indicating significant sleep architecture changes. Spectral analysis revealed a shift from higher to lower frequency bands, suggesting early neural circuitry disruptions due to αSyn overexpression. Significant microglial activation was observed at 3 months, with astrogliosis progressing by 5 months in key sleep-regulating regions, indicating that neuroinflammation may contribute to the observed sleep disturbances.ConclusionsEarly-stage Thy1-αSyn mice exhibit significant sleep architecture changes, EEG spectral shifts, and neuroinflammatory alterations. These findings suggest that neuroinflammation may play a role in the initial pathophysiological changes in PD and related synucleinopathies. Sleep, EEG, and neuroinflammatory changes could serve as early biomarkers for these diseases.
Collapse
Affiliation(s)
- Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Miloš Stanojlović
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Neurobiology, Institute for Biological Research Siniša Stanković - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jana Bonsberger
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
8
|
Khaligh SS, Khalid-Salako F, Kurt H, Yüce M. Exploring the Interaction of Biotinylated FcGamma RI and IgG1 Monoclonal Antibodies on Streptavidin-Coated Plasmonic Sensor Chips for Label-Free VEGF Detection. BIOSENSORS 2024; 14:634. [PMID: 39727899 PMCID: PMC11674972 DOI: 10.3390/bios14120634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration. Subsequently, we characterized the binding of FcγRI-captured AVT to VEGF, calculating kinetic constants and binding affinity. A calibration curve was established to analyze the VEGF quantification capacity and accuracy of the biosensor, computing the limits of blank, detection, and quantification at a 95% confidence interval. Additionally, the specificity of the biosensor for VEGF over other protein analytes was assessed. This innovative biomimetic approach enabled FcγRI-mediated site-specific AVT capture, establishing a stable and reusable platform for detecting and accurately quantifying VEGF. The results indicate the effectiveness of the plasmonic sensor platform for VEGF detection, making it suitable for research applications and, potentially, clinical diagnostics. Utilizing FcγRI-IgG1 antibody binding, this study highlights the industrial and clinical value of advanced biosensing technologies, offering insights to enhance therapeutic monitoring and improve outcomes in anti-VEGF therapies.
Collapse
Affiliation(s)
- Soodeh Salimi Khaligh
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; (S.S.K.); (F.K.-S.)
| | - Fahd Khalid-Salako
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; (S.S.K.); (F.K.-S.)
| | - Hasan Kurt
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; (S.S.K.); (F.K.-S.)
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Kim JH, Huh E, Eo H, Kim JS, Kwon Y, Ju IG, Choi Y, Yoon HJ, Son SR, Jang DS, Hong SP, Park HJ, Oh MS. Tribuli Fructus alleviates 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease by suppressing neuroinflammation via JNK signaling. Metab Brain Dis 2024; 40:69. [PMID: 39699803 DOI: 10.1007/s11011-024-01498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons. In particular, neuroinflammation associated with phosphorylation of c-Jun N-terminal kinase (JNK) is likely to cause the death of dopaminergic neurons. Therefore, protecting dopaminergic neurons through anti-neuroinflammation is a promising therapeutic strategy for PD. This study investigated whether Tribuli Fructus (TF) could alleviate PD by inhibiting neuroinflammation. Mouse primary mixed glial culture cells from the mouse cortex were treated with lipopolysaccharide (LPS) to induce neuroinflammation, and 1 h later, cells were treated with TF. 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) was injected into C57BL/6J mice for 5 days, and TF was co and post-administered for 12 days. Our study showed that TF attenuated pro-inflammatory mediators and cytokines in LPS-stimulated primary mixed glial cultures. In the brains of MPTP-induced PD mouse model, TF inhibited the activation of microglia and astrocytes, protected dopaminergic neurons, and increased dopamine levels. TF alleviated MPTP-induced bradykinesia, a representative behavioral disorder in PD. In addition, the results in vitro and in vivo revealed that TF regulates the phosphorylation of JNK. Collectively, our data suggest that TF may be a new therapeutic candidate for PD by regulating JNK signaling.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Formulae Pharmacology, College of Korean Medicine, Gachon University, Seongnam, 1342, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jin Se Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Youngji Kwon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Hae-Jee Yoon
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Hi-Joon Park
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, South Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
10
|
Parekh P, Serra M, Allaw M, Perra M, Pinna A, Manconi M, Morelli M. Extract from Nasco pomace loaded in nutriosomes exerts anti-inflammatory effects in the MPTP mouse model of Parkinson's disease. Exp Neurol 2024; 382:114958. [PMID: 39303846 DOI: 10.1016/j.expneurol.2024.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Italy.
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
11
|
Jiang Y, Wu W, Xie L, Zhou Y, Yang K, Wu D, Xu W, Fang R, Ge J. Molecular targets and mechanisms of Sijunzi decoction in the treatment of Parkinson's disease: evidence from network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation. Front Pharmacol 2024; 15:1487474. [PMID: 39660000 PMCID: PMC11629541 DOI: 10.3389/fphar.2024.1487474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Aim To explore the molecular mechanism of Sijunzi Decoction (SJZD) in the treatment of Parkinson's disease (PD) through the application of network pharmacology, molecular docking, and molecular dynamics simulations, complemented by experimental verification. Methods The BATMAN-TCM, GeneCards, and DisGeNet databases were searched to screen the active components and therapeutic targets of SJZD. Cytoscape (3.7.1) was used to create a network diagram of the components and targets. The STRING platform was used to construct a protein-protein interaction (PPI) network. The Bioconductor database and RX64 (4.0.0) software were used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the core target genes. The binding sites and binding energies between SJZD active components and the target were analyzed by molecular docking and dynamic simulation. Finally, the therapeutic effect and mechanism of SJZD were verified by Cell Counting Kit-8 (CCK-8) and Western blotting (WB). Results This research identified 188 active compounds in SJZD, 1568 drug targets, 2069 PD targets, and 451 intersection targets related to PD. According to network analysis, Adenosine Triphosphate, Tridecanoic Acid, Hexadecanoic Acid, Pentadecanoic Acid, and Adenosine were identified as the core components of SJZD in the treatment of PD. The five targets with the highest Degree values in the PPI network were AKT1, INS, TNF, IL-6, and TP53. The GO and KEGG enrichment analyses, in turn, determined that the administration of SJZD for the treatment of PD may engage processes such as xenobiotic stimulation and biological stimulus response. Furthermore, AGE-RAGE and cAMP signaling pathways related to diabetic complications may be involved. Molecular docking and kinetic simulations showed that IL-6 and AKT1 bind best to Adenosine. Experimental results showed that SJZD significantly reduced 6-OHDA-induced apoptosis of SH⁃SY5Y cells by activating the PI3K/AKT signaling pathway and regulating the expression of apoptosis factors such as Bcl⁃2 and Bax. Conclusion SJZD is essential in the processes of apoptosis and neuronal protection, acting through various components that target multiple pathways. Notably, the PI3K/AKT pathway is a verified SJZD-PD target, providing a reference for clinical precision drug use for PD.
Collapse
Affiliation(s)
- Yang Jiang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Gastroenterology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Wanfeng Wu
- Department of Gastroenterology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Le Xie
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Yue Zhou
- Department of Scientific Research, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dahua Wu
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Wenfeng Xu
- Department of Nephrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Institute of Clinical Pharmacology of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
12
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
13
|
Liu Y, Feng D, Liu F, Liu Y, Zuo F, Wang Y, Chen L, Guo X, Tian J. LncRNA MALAT1 Facilitates Parkinson's Disease Progression by Increasing SOCS3 Promoter Methylation. Gerontology 2024; 70:1294-1304. [PMID: 39413738 DOI: 10.1159/000541719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to be involved in Parkinson's disease (PD) progression, but its mechanism needs to be further explored. METHODS Mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD mice models, and BV2 cells were treated with lipopolysaccharides (LPS) to mimic PD cell models. MALAT1 expression and suppressor of cytokine signaling 3 (SOCS3) protein level were examined using quantitative real-time PCR and Western blot, respectively. Cell functions were tested by cell counting kit 8 assay and flow cytometry. The interaction between MALAT1 and SOCS3 was confirmed using RNA pull-down and RIP assays. RESULTS MALAT1 was upregulated in MPTP-induced PD mice and LPS-induced BV2 cells. Silencing of MALAT1 increased viability, while inhibiting apoptosis and inflammation in LPS-induced BV2 cells. Besides, MALAT1 enhanced the SOCS3 promoter methylation to decrease its expression by recruiting DNMT1, DNMT3A, and DNMT3B. Furthermore, SOCS3 knockdown eliminated sh-MALAT1-mediated the inhibition effect on LPS-induced BV2 cell injury. In vivo, MALAT1 silencing ameliorated neurological impairment and neuroinflammation in MPTP-induced PD mice. CONCLUSION Our data revealed that MALAT1 worsened PD processes via inhibiting SOCS3 expression by increasing its promoter methylation.
Collapse
Affiliation(s)
- Yuqi Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dan Feng
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fenfen Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yun Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fangya Zuo
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yujie Wang
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lanlan Chen
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, China
| | - Xiuhong Guo
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jinyong Tian
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
14
|
Kalia LV, Berg D, Kordower JH, Shannon KM, Taylor JP, Cardoso F, Goldman JG, Jeon B, Meissner WG, Tijssen MAJ, Burn DJ, Fung VSC. International Parkinson and Movement Disorder Society Viewpoint on Biological Frameworks of Parkinson's Disease: Current Status and Future Directions. Mov Disord 2024; 39:1710-1715. [PMID: 39250594 DOI: 10.1002/mds.30007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel, Kiel, Germany
| | - Jeffery H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kathleen M Shannon
- Department of Neurology, University of Wisconsin School of Public Health, Madison, Wisconsin, USA
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jennifer G Goldman
- Barrow Neurological Institute, Phoenix, Arizona, USA
- JPG Enterprises LLC, Chicago, Illinois, USA
| | - Beomseok Jeon
- BJ Center for Comprehensive Parkinson Care and Rare Movement Disorders, Chung-Ang University Health Care System, Hyundae Hospital, Namyangju-si, South Korea
| | - Wassilos G Meissner
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, Bordeaux, France
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Marina A J Tijssen
- Department of Neurology, Expertise Centre Movement Disorders, University Medical Centre Groningen, Groningen, The Netherlands
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
16
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
17
|
Lu R, Zhou X, Zhang L, Hao M, Yang X. Nrf2 Deficiency Exacerbates Parkinson's Disease by Aggravating NLRP3 Inflammasome Activation in MPTP-Induced Mouse Models and LPS-Induced BV2 Cells. J Inflamm Res 2024; 17:6277-6295. [PMID: 39281779 PMCID: PMC11401530 DOI: 10.2147/jir.s478683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Background Parkinson's disease (PD) is a movement disorder characterized by the progressive loss of dopamine neurons. Microglia-mediated neuroinflammation drives disease progression and becomes a critical factor in neuronal degeneration. Recent studies have found that nuclear factor-erythroid 2-related-2 (Nrf2) expression levels are reduced during aging and neurodegenerative diseases, but its regulatory mechanism on microglia-induced neuroinflammation has not been fully elucidated. Methods In vivo, we used the intraperitoneal injection of the neurotoxic drug neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish an animal model of PD and, at the same time, administered Nrf2 inhibitors ML385 and dimethyl fumarate to regulate Nrf2 protein levels. In vitro, we used si-RNA to knock out the Nrf2 gene to intervene in BV2 cells and used lipopolysaccharide (LPS) to stimulate and induce the cell model. Results The study found that inhibition of Nrf2 expression aggravated the motor defects of PD mice, accompanied by a significant loss of dopaminergic neurons in the substantia nigra and striatum of the brain. In addition, after inhibition of Nrf2, the malondialdehyde (MDA) level in the substantia nigra of the midbrain of mice increased, and the levels of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) decreased, accompanied by the proliferation of microglia and astrocytes. In addition, the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, the assembly of apoptosis-associated speck-like protein containing a CARD (ASC) protein in microglia, and the release of downstream inflammatory factors caspase-1 and interleukin (IL)-1β, were aggravated. At the cellular level, it was found that knocking out the expression of Nrf2 would aggravate the activation of NLRP3 inflammasomes and the assembly of ASC in LPS-induced BV2 cells. Conclusion Inhibited Nrf2 activity can reduce the downstream antioxidant enzyme HO-1 and antioxidant levels, induce NLRP3 inflammasome activation and ASC protein assembly in microglia, and ultimately aggravate PD inflammatory response and dopamine neuron degeneration.
Collapse
Affiliation(s)
- Ranran Lu
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, Xinjiang, People's Republic of China
| | - Xu Zhou
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, Xinjiang, People's Republic of China
| | - Lijie Zhang
- Xinjiang Production and Construction Corps Hospital, Ürümqi, Xinjiang, People's Republic of China
| | - Mengdie Hao
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, Xinjiang, People's Republic of China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xingjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| |
Collapse
|
18
|
Kumar A, Gupta AK, Singh PK. Novel perspective of therapeutic modules to overcome motor and nonmotor symptoms in Parkinson's disease. AIMS Neurosci 2024; 11:312-340. [PMID: 39431269 PMCID: PMC11486614 DOI: 10.3934/neuroscience.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that involves the loss of dopaminergic neurons, which leads to motor and non-motor symptoms that have a significant impact. The pathophysiology of PD is complex and involves environmental and genetic factors that contribute to alpha-synuclein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. The current treatments of PD primarily focus on symptom management and have limitations in addressing disease progression and non-motor symptoms. Epidemiological data indicates a rise in PD cases worldwide, which highlights the need for effective treatments. Pathophysiological insights point out the involvement of various factors in PD progression, such as dopamine dysregulation, genetic mutations, oxidative stress, mitochondrial damage, alpha-synuclein aggregation, and neuroinflammation. Although current treatments, which include dopamine precursors, monoamine oxidase (MAO) inhibitors, and non-dopaminergic drugs, can alleviate motor symptoms, they are not effective in preventing disease progression or managing non-motor symptoms. Additionally, they can lead to adverse effects and become less effective over time. Novel therapeutic approaches, including cell-based therapies, gene therapies, targeted drug delivery therapies, and magnetic field therapies, are promising in improving symptom management and providing personalized treatment. Additionally, emerging therapies that target alpha-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation may have potential disease-modifying effects. To sum up, for dealing with the multiple aspects of PD, there is a great need to come up with new and creative therapeutic approaches that not only relieve symptoms, but also prevent the progression of disease and non-motor symptoms. The progress made in comprehending the underlying mechanisms of PD provides optimism for developing successful treatments that can enhance the outcomes and quality of life.
Collapse
Affiliation(s)
- Anmol Kumar
- School of Pharmaceutical Science (formerly University Institute of Pharmacy), Chhatrapati Shahu Ji Maharaj University (formerly Kanpur University), Kanpur 208024, India
| | - Ajay Kumar Gupta
- School of Pharmaceutical Science (formerly University Institute of Pharmacy), Chhatrapati Shahu Ji Maharaj University (formerly Kanpur University), Kanpur 208024, India
| | | |
Collapse
|
19
|
Zaigham SB, Paeng DG. Effects of Mucuna pruriens (L.) DC. and Levodopa in Improving Parkinson's Disease in Rotenone Intoxicated Mice. Curr Issues Mol Biol 2024; 46:9234-9244. [PMID: 39194762 DOI: 10.3390/cimb46080545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease after Alzheimer's disease. Mucuna pruriens (L.) DC. (MP) is a plant that contains Levodopa (L-DOPA) and has been known to improve the symptoms of PD. In this preliminary study, we investigated the anti-parkinsonian potential of MP to compare the effects of L-DOPA. We first developed an in vivo model of the PD in C57BL/6 male mice using rotenone. A total of twelve mice were used for this experiment. Nine mice were injected with rotenone (28 mg/kg) daily for 28 days. The mice experiments were performed to validate the effectiveness of MP to treat PD. Synthetic L-DOPA in a ratio of 1:20 with MP was used as MP contains 5% L-DOPA by weight in it. MP and L-DOPA were injected for 19 days on a daily basis. Cognitive function was evaluated using beam balance and olfactory tests. Serum analysis was performed using serum enzyme-linked immunosorbent assay (ELISA) analysis test. IL-12, IL-6, and TGF-β 1 were evaluated to validate the PD inducement and treatment. The levels of IL-12, IL-6, and TGF-β1 (p < 0.0001) in the PD mice group were significantly higher than those in the control group. The PD mice also showed higher latencies in beam balance and olfactory tests (p < 0.0001) compared to the control group. Both MP and L-DOPA-treated groups showed alleviation in latencies in beam balance and olfactory tests and decreased neuroinflammation in ELISA analysis (p < 0.001). The results treated by MP and L-DOPA showed insignificant differences in their values (p > 0.05). This proved that the MP and L-DOPA had similar effects in improving the symptoms of PD when used in the ratio of 1:20. Furthermore, both MP and L-DOPA reduced the level of IL-6 and TGF-β1 in this study. It may be inferred that a reduction in the level of IL-6 and TGF-β1 eventually leads to a reduction in the Th17 cells. The pathogenic Th17 is thought to be present in virtually all chronic inflammatory disorders. This can be an interesting area of research in further understanding the immunological effect of MP in ameliorating PD symptoms.
Collapse
Affiliation(s)
- Sheher Bano Zaigham
- Department of Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
20
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
21
|
Li K, Ling H, Huang W, Luo W, Gu C, Tao B, Xie Q, Qiu P. Single-cell RNA-sequencing analysis reveals α-syn induced astrocyte-neuron crosstalk-mediated neurotoxicity. Int Immunopharmacol 2024; 139:112676. [PMID: 39053230 DOI: 10.1016/j.intimp.2024.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Accumulation of alpha-synuclein (α-syn) is a key pathological hallmark of synucleinopathies and has been shown to negatively impact neuronal function and activity. α-syn is an important factor contributing to astrocyte overactivation, though the effect of astrocyte overactivation on neurons remains unclear. Single-cell RNA sequencing data of mouse brain frontal cortex and midbrain from Hua-Syn (A53T) and wild type mice were utilized from the GEO database. Enrichment analysis, protein-protein interaction networks, and cell-cell interaction networks all indicated enhanced communication between astrocytes and neurons, along with the involvement of TNF and inflammation-related signaling pathways. In vitro experiments were performed to further explore the mechanism of neurotoxicity in astrocyte-neuron crosstalk. Astrocytes were treated by α-syn, neuronal TNFR1 receptors were antagonized by R-7050, and the cells were co-cultured after 24 h treatment. ELISA results revealed that cytokines such as TNF-α and IL-6 were significantly upregulated in astrocytes following the endocytosis of α-syn. Immunofluorescence (IF) showed neuronal dendritic reduction, axon elongation and increased co-localisation of TNFR1 receptor expression. Western blot showed up-regulation of PKR, P-eIF2α and ATF4 protein expression. Conversely, after antagonizing neuronal TNFR1 receptors with the R-7050 chemical inhibitor, neuronal synaptic structure was significantly restored and the expression of PKR, P-eIF2α and ATF4 was down-regulated. In summary, TNF-α acts as a signaling molecule mediating the up-regulated astrocyte-neuron crosstalk, providing new insights into the pathogenesis of α-syn-related neurological disorders.
Collapse
Affiliation(s)
- Kuan Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haosen Ling
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wenyu Luo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Cihang Gu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bowen Tao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China; Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Pereira-Santos AR, Candeias E, Magalhães JD, Empadinhas N, Esteves AR, Cardoso SM. Neuronal control of microglia through the mitochondria. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167167. [PMID: 38626829 DOI: 10.1016/j.bbadis.2024.167167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.
Collapse
Affiliation(s)
- A R Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - J D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
24
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
25
|
Rombaut A, Jovancevic D, Wong RCB, Nicol A, Brautaset R, Finkelstein DI, Nguyen CTO, Tribble JR, Williams PA. Intravitreal MPTP drives retinal ganglion cell loss with oral nicotinamide treatment providing robust neuroprotection. Acta Neuropathol Commun 2024; 12:79. [PMID: 38773545 PMCID: PMC11107037 DOI: 10.1186/s40478-024-01782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.
Collapse
Affiliation(s)
- Anne Rombaut
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Danica Jovancevic
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Alan Nicol
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Involvement of pro-inflammatory mediators and cell cycle disruption in neuronal cells induced by gliotoxin and ochratoxin A after individual and combined exposure. Toxicol Lett 2024; 393:24-32. [PMID: 38244709 DOI: 10.1016/j.toxlet.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Mycotoxins such as gliotoxin (GTX) and ochratoxin A (OTA) are secondary metabolites of Aspergillus and Penicillum found in food and feed. Both mycotoxins have shown to exert a detrimental effect on neuronal activity. The following study was carried out to elucidate the mechanisms by which GTX and OTA exert their toxicity. Non-differentiated SH-SY5Y neuronal-like cells were treated with GTX, OTA and their combinations to assess their cytotoxic effect using the MTT assay during 24, 48 and 72 h of exposure. Based on the results of the cytotoxic assays, cell cycle proliferation and immunological mediators were measured by determining the production of IL-6 and TNF-α using flow cytometry and ELISA, respectively. The IC50 values obtained were 1.24 and 1.35 µM when SH-SY5Y cells were treated with GTX at 48 h and 72 h, respectively. IC50 values of 8.25, 5.49 and 4.5 µM were obtained for OTA treatment at 24 h, 48 h and 72 h, respectively. The SubG0 phase increased in both treatments at 24 and 48 h. On the other hand, IL-6 and TNF-α production was increased in all mycotoxin treatments studied and was more pronounced for [GTX + OTA] after 48 h exposure. The additive and synergistic effect observed by the isobologram analysis between GTX and OTA resulted to a higher cytotoxicity which can be explained by the increased production of IL-6 and TNF-α inflammatory mediators that play an important role in the toxicity mechanism of these mycotoxins.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
27
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
28
|
Wang ZP, Zhang W, Xing LZ, Zhao YD, Xu J, Zhang YX. Therapeutic potential of Coumarin-polyphenolic acid hybrids in PD: Inhibition of α-Syn aggregation and disaggregation of preformed fibrils, leading to reduced neuronal inclusion formation. Bioorg Med Chem Lett 2024; 99:129618. [PMID: 38219887 DOI: 10.1016/j.bmcl.2024.129618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 μM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of β-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.
Collapse
Affiliation(s)
- Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ji Xu
- Deparment of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| |
Collapse
|
29
|
Serrano-Martínez I, Pedreño M, Castillo-González J, Ferraz-de-Paula V, Vargas-Rodríguez P, Forte-Lago I, Caro M, Campos-Salinas J, Villadiego J, Peñalver P, Morales JC, Delgado M, González-Rey E. Cortistatin as a Novel Multimodal Therapy for the Treatment of Parkinson's Disease. Int J Mol Sci 2024; 25:694. [PMID: 38255772 PMCID: PMC10815070 DOI: 10.3390/ijms25020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.
Collapse
Affiliation(s)
- Ignacio Serrano-Martínez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Pedreño
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Julia Castillo-González
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Viviane Ferraz-de-Paula
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Pablo Vargas-Rodríguez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Irene Forte-Lago
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Caro
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Jenny Campos-Salinas
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain;
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Mario Delgado
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Elena González-Rey
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| |
Collapse
|
30
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
31
|
Mendes-Oliveira J, Campos FL, Ferreira SA, Tomé D, Fonseca CP, Baltazar G. Endogenous GDNF Is Unable to Halt Dopaminergic Injury Triggered by Microglial Activation. Cells 2023; 13:74. [PMID: 38201277 PMCID: PMC10778367 DOI: 10.3390/cells13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Overactivation of microglial cells seems to play a crucial role in the degeneration of dopaminergic neurons occurring in Parkinson's disease. We have previously demonstrated that glial cell line-derived neurotrophic factor (GDNF) present in astrocytes secretome modulates microglial responses induced by an inflammatory insult. Therefore, astrocyte-derived soluble factors may include relevant molecular players of therapeutic interest in the control of excessive neuroinflammatory responses. However, in vivo, the control of neuroinflammation is more complex as it depends on the interaction between different types of cells other than microglia and astrocytes. Whether neurons may interfere in the astrocyte-microglia crosstalk, affecting the control of microglial reactivity exerted by astrocytes, is unclear. Therefore, the present work aimed to disclose if the control of microglial responses mediated by astrocyte-derived factors, including GDNF, could be affected by the crosstalk with neurons, impacting GDNF's ability to protect dopaminergic neurons exposed to a pro-inflammatory environment. Also, we aimed to disclose if the protection of dopaminergic neurons by GDNF involves the modulation of microglial cells. Our results show that the neuroprotective effect of GDNF was mediated, at least in part, by a direct action on microglial cells through the GDNF family receptor α-1. However, this protective effect seems to be impaired by other mediators released in response to the neuron-astrocyte crosstalk since neuron-astrocyte secretome, in contrast to astrocytes secretome, was unable to protect dopaminergic neurons from the injury triggered by lipopolysaccharide-activated microglia. Supplementation with exogenous GDNF was needed to afford protection of dopaminergic neurons exposed to the inflammatory environment. In conclusion, our results revealed that dopaminergic protective effects promoted by GDNF involve the control of microglial reactivity. However, endogenous GDNF is insufficient to confer dopaminergic neuron protection against an inflammatory insult. This reinforces the importance of further developing new therapeutic strategies aiming at providing GDNF or enhancing its expression in the brain regions affected by Parkinson's disease.
Collapse
Affiliation(s)
- Julieta Mendes-Oliveira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Filipa L. Campos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Susana A. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Diogo Tomé
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Carla P. Fonseca
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Graça Baltazar
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
32
|
Nourizad A, Golmohammadi S, Aghanejad A, Tohidkia MR. Recent trends in aptamer-based nanobiosensors for detection of vascular endothelial growth factors (VEGFs) biomarker: A review. ENVIRONMENTAL RESEARCH 2023; 236:116726. [PMID: 37495062 DOI: 10.1016/j.envres.2023.116726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a remarkable cytokine that plays an important role in regulating vascular formation during the angiogenesis process. Therefore, real-time detection and quantification of VEGF is essential for clinical diagnosis and treatment due to its overexpression in various tumors. Among various sensing strategies, the aptamer-based sensors in combination with biological molecules improve the detection ability VEGFs. Aptamers are suitable biological recognition agents for the preparation of sensitive and reproducible aptasensors (Apt-sensors) due to their low immunogenicity, simple and straightforward chemical modification, and high resistance to denaturation. Here, a summary of the strategies for immobilization of aptamers (e.g., direct or self-assembled monolayer (SAM) attachment, etc.) on different types of electrodes was provided. Moreover, we discussed nanoparticle deposition techniques and surface modification methods used for signal amplification in the detection of VEGF. Furthermore, we are investigating various types of optical and electrochemical Apt-sensors used to improve sensor characterization in the detection of VEGF biomarkers.
Collapse
Affiliation(s)
- Abolfazl Nourizad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Saeed Golmohammadi
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Shaikh A, Roy H. Folate deprivation induced neuroinflammation impairs cognition. Neurosci Lett 2023; 807:137264. [PMID: 37086862 DOI: 10.1016/j.neulet.2023.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Nutritional status is associated with many neurocognitive diseases. Folate is one of the micronutrients, and its deficiency is associated with clinical outcomes of neurological diseases. Nevertheless, molecular mechanism behind the folate deficiency induced neurological disorders are not well-known. We have hypothesized that folate-deficiency is a cardinal determinant responsible for manifestation of cognitive impairment through inflammation mediated neurodegenerative pathologies. Objective of the current study was to assess whether folate deficiency is associated with cognitive dysfunction or is merely an epiphenomenon and to identify the underlying mechanisms. We developed folate insufficient zebrafish model through intra-peritoneal treatment of methotrexate. T-maze test was carried to assess the spatial learning and memory of the fish. Higher latency of the folate-deprived zebrafishes in the T-maze test is a reflection of altered cognition. This result is supported by declined levels of dopamine and serotonin, neurotransmitters linked with learning and memory. Elevated IL-6 and CRP in peripheral blood, along with increased expression of NF-ĸB in brain indicates manifestation of neuroinflammation. Indeed, together with upregulation of maptb gene it can be implied that folate deficiency acts as a risk factor for neurodegeneration in the form of tauopathies. Furthermore, diminished localisation of synaptopodin, a protein linked to neural plasticity, suggests that neuroinflammation caused by folate deprivation hampers the plasticity of brain. Histological analysis of brain revealed the development of histopathological features including spongiform degeneration and neuronal loss in folate deprived condition. We thus conclude that folate deficiency results in NF-ĸB activation, which through multiple processes mediated by neuroinflammation could lead to cognitive decline.
Collapse
Affiliation(s)
- Afridi Shaikh
- Nutrigenomics and Cancer Biology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Hetal Roy
- Nutrigenomics and Cancer Biology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
34
|
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023; 12:cells12071012. [PMID: 37048085 PMCID: PMC10093562 DOI: 10.3390/cells12071012] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Uskudar, Istanbul 34662, Turkey
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Correspondence: ; Tel.: +90-216-400-2222 (ext. 2462)
| | - Bercem Yeman Kiyak
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Medicine, Institute of Hamidiye Health Sciences, University of Health Sciences, Uskudar, Istanbul 34668, Turkey
| | - Rumeysa Akbayir
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Rama Seyhali
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Tahire Arpaci
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| |
Collapse
|
35
|
Castillo-Rangel C, Marin G, Hernández-Contreras KA, Vichi-Ramírez MM, Zarate-Calderon C, Torres-Pineda O, Diaz-Chiguer DL, De la Mora González D, Gómez Apo E, Teco-Cortes JA, Santos-Paez FDM, Coello-Torres MDLÁ, Baldoncini M, Reyes Soto G, Aranda-Abreu GE, García LI. Neuroinflammation in Parkinson's Disease: From Gene to Clinic: A Systematic Review. Int J Mol Sci 2023; 24:5792. [PMID: 36982866 PMCID: PMC10051221 DOI: 10.3390/ijms24065792] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease whose progression and clinical characteristics have a close bidirectional and multilevel relationship with the process of neuroinflammation. In this context, it is necessary to understand the mechanisms involved in this neuroinflammation-PD link. This systematic search was, hereby, conducted with a focus on the four levels where alterations associated with neuroinflammation in PD have been described (genetic, cellular, histopathological and clinical-behavioral) by consulting the PubMed, Google Scholar, Scielo and Redalyc search engines, including clinical studies, review articles, book chapters and case studies. Initially, 585,772 articles were included, and, after applying the inclusion and exclusion criteria, 84 articles were obtained that contained information about the multilevel association of neuroinflammation with alterations in gene, molecular, cellular, tissue and neuroanatomical expression as well as clinical-behavioral manifestations in PD.
Collapse
Affiliation(s)
- Carlos Castillo-Rangel
- Neurosurgery Department, “Hospital Regional 1° de Octubre”, Institute of Social Security and Services for State Workers (ISSSTE), México City 07300, Mexico; (C.C.-R.); (D.L.D.-C.)
| | - Gerardo Marin
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Karla Aketzalli Hernández-Contreras
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Micheel Merari Vichi-Ramírez
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Cristofer Zarate-Calderon
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Osvaldo Torres-Pineda
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Dylan L. Diaz-Chiguer
- Neurosurgery Department, “Hospital Regional 1° de Octubre”, Institute of Social Security and Services for State Workers (ISSSTE), México City 07300, Mexico; (C.C.-R.); (D.L.D.-C.)
| | - David De la Mora González
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Erick Gómez Apo
- Pathology Department, “Hospital General de México”, Dr. Eduardo Liceaga, México City 06720, Mexico; (E.G.A.); (J.A.T.-C.)
| | - Javier Alejandro Teco-Cortes
- Pathology Department, “Hospital General de México”, Dr. Eduardo Liceaga, México City 06720, Mexico; (E.G.A.); (J.A.T.-C.)
| | - Flor de María Santos-Paez
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | | | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires C1052AAA, Argentina;
| | | | - Gonzalo Emiliano Aranda-Abreu
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Luis I. García
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| |
Collapse
|
36
|
Wang HL, Cheng YC, Yeh TH, Liu HF, Weng YH, Chen RS, Chen YC, Lu JC, Hwang TL, Wei KC, Liu YC, Wang YT, Hsu CC, Chiu TJ, Chiu CC. HCH6-1, an antagonist of formyl peptide receptor-1, exerts anti-neuroinflammatory and neuroprotective effects in cellular and animal models of Parkinson’s disease. Biochem Pharmacol 2023; 212:115524. [PMID: 37001680 DOI: 10.1016/j.bcp.2023.115524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Microglial activation-induced neuroinflammation contributes to onset and progression of sporadic and hereditary Parkinson's disease (PD). Activated microglia secrete pro-inflammatory and neurotoxic IL-1β, IL-6 and TNF-α, which subsequently promote neurodegeneration. Formyl peptide receptor-1 (FPR1) of CNS microglia functions as pattern recognition receptor and is activated by N-formylated peptides, leading to microglial activation, induction of inflammatory responses and resulting neurotoxicity. In this study, it was hypothesized that FPR1 activation of microglia causes loss of dopaminergic neurons by activating inflammasome and upregulating IL-1β, IL-6 or TNF-α and that FPR1 antagonist HCH6-1 exerts neuroprotective effect on dopaminergic neurons. FPR1 agonist fMLF induced activation of microglia cells by causing activation of NLRP3 inflammasome and upregulation and secretion of IL-1β, IL-6 or TNF-α. Conditioned medium (CM) of fMLF-treated microglia cells, which contains neurotoxic IL-1β, IL-6 and TNF-α, caused apoptotic death of differentiated SH-SY5Y dopaminergic neurons by inducing mitochondrial oxidative stress and activating pro-apoptotic signaling. FPR1 antagonist HCH6-1 prevented fMLF-induced activation of inflammasome and upregulation of pro-inflammatory cytokines in microglia cells. HCH6-1 co-treatment reversed CM of fMLF-treated microglia-induced apoptotic death of dopaminergic neurons. FPR1 antagonist HCH6-1 inhibited rotenone-induced upregulation of microglial marker Iba-1 protein level, cell death of dopaminergic neurons and motor impairment in zebrafish. HCH6-1 ameliorated rotenone-induced microglial activation, upregulation of FPR1 mRNA, activation of NLRP3 inflammasome, cell death of SN dopaminergic neurons and PD motor deficit in mice. Our results suggest that FPR1 antagonist HCH6-1 possesses anti-neuroinflammatory and neuroprotective effects on dopaminergic neurons by inhibiting microglial activation and upregulation of inflammasome activity and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Han-Fang Liu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Ting Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Ju Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
37
|
The Role of Bacteria-Mitochondria Communication in the Activation of Neuronal Innate Immunity: Implications to Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054339. [PMID: 36901773 PMCID: PMC10001700 DOI: 10.3390/ijms24054339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson's disease etiology.
Collapse
|
38
|
The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. Int J Mol Sci 2023; 24:ijms24032477. [PMID: 36768798 PMCID: PMC9916729 DOI: 10.3390/ijms24032477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Synucleinopathies are a set of devastating neurodegenerative diseases that share a pathologic accumulation of the protein α-synuclein (α-syn). This accumulation causes neuronal death resulting in irreversible dementia, deteriorating motor symptoms, and devastating cognitive decline. While the etiology of these conditions remains largely unknown, microglia, the resident immune cells of the central nervous system (CNS), have been consistently implicated in the pathogenesis of synucleinopathies. Microglia are generally believed to be neuroprotective in the early stages of α-syn accumulation and contribute to further neurodegeneration in chronic disease states. While the molecular mechanisms by which microglia achieve this role are still being investigated, here we highlight the major findings to date. In this review, we describe how structural varieties of inherently disordered α-syn result in varied microglial receptor-mediated interactions. We also summarize which microglial receptors enable cellular recognition and uptake of α-syn. Lastly, we review the downstream effects of α-syn processing within microglia, including spread to other brain regions resulting in neuroinflammation and neurodegeneration in chronic disease states. Understanding the mechanism of microglial interactions with α-syn is vital to conceptualizing molecular targets for novel therapeutic interventions. In addition, given the significant diversity in the pathophysiology of synucleinopathies, such molecular interactions are vital in gauging all potential pathways of neurodegeneration in the disease state.
Collapse
|
39
|
Gerasimova T, Stepanenko E, Novosadova L, Arsenyeva E, Shimchenko D, Tarantul V, Grivennikov I, Nenasheva V, Novosadova E. Glial Cultures Differentiated from iPSCs of Patients with PARK2-Associated Parkinson's Disease Demonstrate a Pro-Inflammatory Shift and Reduced Response to TNFα Stimulation. Int J Mol Sci 2023; 24:ijms24032000. [PMID: 36768317 PMCID: PMC9916517 DOI: 10.3390/ijms24032000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the PARK2 gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events. In response to inflammatory factors produced by activated microglia, astrocytes change their transcriptional programs and secretion profiles, thus acting as immunocompetent cells. Here, we investigated iPSC-derived glial cell cultures obtained from healthy donors (HD) and from PD patients with PARK2 mutations in resting state and upon stimulation by TNFα. The non-stimulated glia of PD patients demonstrated higher IL1B and IL6 expression levels and increased IL6 protein synthesis, while BDNF and GDNF expression was down-regulated when compared to that of the glial cells of HDs. In the presence of TNFα, all of the glial cultures displayed a multiplied expression of genes encoding inflammatory cytokines: TNFA, IL1B, and IL6, as well as IL6 protein synthesis, although PD glia responded to TNFα stimulation less strongly than HD glia. Our results demonstrated a pro-inflammatory shift, a suppression of the neuroprotective gene program, and some depletion of reactivity to TNFα in PARK2-deficient glia compared to glial cells of HDs.
Collapse
Affiliation(s)
- Tatiana Gerasimova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Correspondence:
| | - Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Lyudmila Novosadova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Elena Arsenyeva
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Darya Shimchenko
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Igor Grivennikov
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Ekaterina Novosadova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| |
Collapse
|
40
|
Sancandi M, De Caro C, Cypaite N, Marascio N, Avagliano C, De Marco C, Russo E, Constanti A, Mercer A. Effects of a probiotic suspension Symprove™ on a rat early-stage Parkinson's disease model. Front Aging Neurosci 2023; 14:986127. [PMID: 36742204 PMCID: PMC9890174 DOI: 10.3389/fnagi.2022.986127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing number of studies in recent years have focused on the role that the gut may play in Parkinson's Disease (PD) pathogenesis, suggesting that the maintenance of a healthy gut may lead to potential treatments of the disease. The health of microbiota has been shown to be directly associated with parameters that play a potential role in PD including gut barrier integrity, immunity, function, metabolism and the correct functioning of the gut-brain axis. The gut microbiota (GM) may therefore be employed as valuable indicators for early diagnosis of PD and potential targets for preventing or treating PD symptoms. Preserving the gut homeostasis using probiotics may therefore lead to a promising treatment strategy due to their known benefits in improving constipation, motor impairments, inflammation, and neurodegeneration. However, the mechanisms underlying the effects of probiotics in PD are yet to be clarified. In this project, we have tested the efficacy of an oral probiotic suspension, Symprove™, on an established animal model of PD. Symprove™, unlike many commercially available probiotics, has been shown to be resistant to gastric acidity, improve symptoms in gastrointestinal diseases and improve gut integrity in an in vitro PD model. In this study, we used an early-stage PD rat model to determine the effect of Symprove™ on neurodegeneration and neuroinflammation in the brain and on plasma cytokine levels, GM composition and short chain fatty acid (SCFA) release. Symprove™ was shown to significantly influence both the gut and brain of the PD model. It preserved the gut integrity in the PD model, reduced plasma inflammatory markers and changed microbiota composition. The treatment also prevented the reduction in SCFAs and striatal inflammation and prevented tyrosine hydroxylase (TH)-positive cell loss by 17% compared to that observed in animals treated with placebo. We conclude that Symprove™ treatment may have a positive influence on the symptomology of early-stage PD with obvious implications for the improvement of gut integrity and possibly delaying/preventing the onset of neuroinflammation and neurodegeneration in human PD patients.
Collapse
Affiliation(s)
- Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Carmen De Caro
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Neringa Cypaite
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Nadia Marascio
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom,*Correspondence: Audrey Mercer,
| |
Collapse
|
41
|
Cui Y, Jiang X, Feng J. The therapeutic potential of triptolide and celastrol in neurological diseases. Front Pharmacol 2022; 13:1024955. [PMID: 36339550 PMCID: PMC9626530 DOI: 10.3389/fphar.2022.1024955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Neurological diseases are complex diseases affecting the brain and spinal cord, with numerous etiologies and pathogenesis not yet fully elucidated. Tripterygium wilfordii Hook. F. (TWHF) is a traditional Chinese medicine with a long history of medicinal use in China and is widely used to treat autoimmune and inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis. With the rapid development of modern technology, the two main bioactive components of TWHF, triptolide and celastrol, have been found to have anti-inflammatory, immunosuppressive and anti-tumor effects and can be used in the treatment of a variety of diseases, including neurological diseases. In this paper, we summarize the preclinical studies of triptolide and celastrol in neurological diseases such as neurodegenerative diseases, brain and spinal cord injury, and epilepsy. In addition, we review the mechanisms of action of triptolide and celastrol in neurological diseases, their toxicity, related derivatives, and nanotechnology-based carrier system.
Collapse
Affiliation(s)
- Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejiao Jiang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Juan Feng,
| |
Collapse
|
42
|
Network Pharmacology and Molecular Docking Analyses Unveil the Mechanisms of Yiguanjian Decoction against Parkinson’s Disease from Inner/Outer Brain Perspective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4758189. [PMID: 36237735 PMCID: PMC9552692 DOI: 10.1155/2022/4758189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aims to explore the pharmacodynamic mechanism of Yiguanjian (YGJ) decoction against Parkinson's disease (PD) through integrating the central nervous (inner brain) and peripheral system (outer brain) relationship spectrum. Methods The active components of YGJ were achieved from the TCMSP, TCMID, and TCM@Taiwan databases. The blood-brain barrier (BBB) permeability of the active components along with their corresponding targets was evaluated utilizing the existing website, namely, SwissADME and SwissTargetPrediction. The targets of PD were determined through database retrieval. The interaction network was constructed upon the STRING database, followed by the visualization using Cytoscape software. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on potential targets. Finally, the molecular docking approach was employed to assess the binding affinity between key components and key targets. Results Overall, we identified 79 active components, 128 potential targets of YGJ, and 97 potential targets of YGJ-BBB potentially suitable for the treatment of PD. GO and KEGG analyses showed that the YGJ treatment of PD mainly relied on PI3K-Akt pathway while the YGJ-BBB was mostly involved in endocrine resistance. The molecular docking results displayed high affinity between multiple compounds and targets in accordance with previous observations. Conclusions Our study unveiled the potential mechanisms of YGJ against PD from a systemic perspective: (1) for the YGJ, they have potential exerting effects on the peripheral system and inhibiting neuronal apoptosis through regulating the PI3K-Akt pathway; (2) for the YGJ-BBB, they can directly modulate endocrine resistance of the central nervous and holistically enhance body resistance to PD along with YGJ on PI3K-Akt pathway.
Collapse
|