1
|
Cahill R, Blaber EA, Juran CM, Cheng-Campbell M, Alwood JS, Shirazi-Fard Y, Almeida EAC. 37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites. PLoS One 2025; 20:e0317307. [PMID: 40138271 PMCID: PMC11940681 DOI: 10.1371/journal.pone.0317307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/24/2024] [Indexed: 03/29/2025] Open
Abstract
Exposure to weightlessness in microgravity and elevated space radiation are associated with rapid bone loss in mammals, but questions remain about their mechanisms of action and relative importance. In this study, we tested the hypothesis that bone loss during spaceflight in Low Earth Orbit is primarily associated with site-specific microgravity unloading of weight-bearing sites in the skeleton. Microcomputed tomography and histological analyses of bones from mice space flown on ISS for 37 days in the NASA Rodent Research-1 experiment show significant site-specific cancellous and cortical bone loss occurring in the femur, but not in L2 vertebrae. The lack of bone degenerative effects in the spine in combination with same-animal paired losses in the femur suggests that space radiation levels in Low Earth Orbit or other systemic stresses are not likely to significantly contribute to the observed bone loss. Remarkably, spaceflight is also associated with accelerated progression of femoral head endochondral ossification. This suggests the microgravity environment promotes premature progression of secondary ossification during late stages of skeletal maturation at 21 weeks. Furthermore, mice housed in the NASA ISS Rodent Habitat during 1g ground controls maintained or gained bone relative to mice housed in standard vivarium cages that showed significant bone mass declines. These findings suggest that housing in the Rodent Habitat with greater topological enrichment from 3D wire-mesh surfaces may promote increased mechanical loading of weight-bearing bones and maintenance of bone mass. In summary, our results indicate that in female mice approaching skeletal maturity, mechanical unloading of weight-bearing sites is the major cause of bone loss in microgravity, while sites loaded predominantly by muscle activity, such as the spine, appear unaffected. Additionally, we identified early-onset of femoral head epiphyseal plate secondary ossification as a novel spaceflight skeletal unloading effect that may lead to premature long bone growth arrest in microgravity.
Collapse
Affiliation(s)
- Rukmani Cahill
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| | - Elizabeth A. Blaber
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Cassandra M. Juran
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States of America
| | | | - Joshua S. Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Eduardo A. C. Almeida
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| |
Collapse
|
2
|
Dang AT, Ono M, Wang Z, Tosa I, Hara ES, Mikai A, Kitagawa W, Yonezawa T, Kuboki T, Oohashi T. Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model. Int J Mol Sci 2024; 25:6648. [PMID: 38928355 PMCID: PMC11203997 DOI: 10.3390/ijms25126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/β-Tricalcium phosphate (E-rhBMP-2/β-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/β-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/β-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/β-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.
Collapse
Affiliation(s)
- Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Akihiro Mikai
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Wakana Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| |
Collapse
|
3
|
Ji C, Zhang L, Wang Y, Lin B, Bai X, Yun S, He B. The influence of different shaped osteocyte lacunae on microcrack initiation and propagation. Clin Biomech (Bristol, Avon) 2023; 108:106072. [PMID: 37611387 DOI: 10.1016/j.clinbiomech.2023.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The morphology of osteocyte lacunae varies in bones of different ages and bone pathologies. Osteocyte lacunae can cause stress concentration and initiate microcracks. However, the influence of changes in osteocyte lacunar shape on microcrack is unknown. Therefore, the aim of this study was to determine the effects of osteocyte lacunae with different shapes on microcrack initiation and propagation. METHODS Osteon models containing osteocyte lacunae with different shapes were established. The progressive damage analysis method, based on computer simulations, was used to study the evolution of microdamage within the osteon, including the processes of intralaminar and interlaminar microdamage. FINDINGS Models with larger DoE values can effectively delay or prevent the formation of linear microcracks, which ensures high fracture toughness of cortical bone. It is subjected to stronger mechanical stimulation, making it more sensitive to loads. Models with smaller DoE values increase the load threshold for microdamage generation and reduces its impact on bone mechanical performance, making it less susceptible to microdamage than models with larger DoE values. INTERPRETATION These findings enhance the limited knowledge of the influence of the lacunar shape on microdamage and contribute to a better understanding of bone biomechanics.
Collapse
Affiliation(s)
- Chunhui Ji
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Liang Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300072, PR China
| | - Bin Lin
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Xinlei Bai
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Shiyue Yun
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bingnan He
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Wang H, Falcoz S, Morales J, Berteau JP. Investigating bone resorption in Atlantic herring fish intermuscular bones with solid-state NMR. Phys Chem Chem Phys 2023; 25:9336-9348. [PMID: 36920434 DOI: 10.1039/d2cp03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Bones are connective tissues mainly made of collagen proteins with calcium phosphate deposits. They undergo constant remodeling, including destroying existing bones tissues (known as bone resorption) and rebuilding new ones. Bone remodeling has been well-described in mammals, but it is not the case in fish. Here, we focused on the mobile phase of the bone vascular system by carefully preserving moisture in adult Atlantic herring intermuscular bones. We detected pore water with high ionic strength and soluble degraded peptides whose 1H-transverse relaxation times, T2s, exceed 15 milliseconds. With favorable T2s, we incorporated a solution state spinlock scheme into the INEPT techniques to unequivocally demonstrate collagen degradation. In addition, we detected a substantial amount of inorganic phosphate in solution with 31P-NMR in the considerable background of solid hydroxyapatite calcium phosphate by saturation recovery experiment. It is consistent with the idea that bone resorption degrades bone collagen and releases calcium ions and phosphate ions in the pore water with increased ionic strength. Our report is the first to probe the resorption process in the heterogenous bone microstructure with a rigorous characterization of 1H and 13C relaxation behavior and direct assignments. In addition, we contribute to the fish bones literature by investigating fish bone remodeling using NMR for the first time.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jorge Morales
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York 10031, USA.,Nanosciences Initiative, City University of New York - Advanced Science Research Center, New York 10031, USA
| |
Collapse
|
5
|
Taipaleenmäki H, Hesse E. MicroRNAs in Bone Formation and Homeostasis. MICRORNA IN REGENERATIVE MEDICINE 2023:369-394. [DOI: 10.1016/b978-0-12-820719-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Iolascon G, Paoletta M, Liguori S, Gimigliano F, Moretti A. Bone fragility: conceptual framework, therapeutic implications, and COVID-19-related issues. Ther Adv Musculoskelet Dis 2022; 14:1759720X221133429. [PMID: 36317067 PMCID: PMC9614590 DOI: 10.1177/1759720x221133429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bone fragility is the susceptibility to fracture even for common loads because of structural, architectural, or material alterations of bone tissue that result in poor bone strength. In osteoporosis, quantitative and qualitative changes in density, geometry, and micro-architecture modify the internal stress state predisposing to fragility fractures. Bone fragility substantially depends on the structural behavior related to the size and shape of the bone characterized by different responses in the load-deformation curve and on the material behavior that reflects the intrinsic material properties of the bone itself, such as yield and fatigue. From a clinical perspective, the measurement of bone density by DXA remains the gold standard for defining the risk of fragility fracture in all population groups. However, non-quantitative parameters, such as macro-architecture, geometry, tissue material properties, and microcracks accumulation can modify the bone's mechanical strength. This review provides an overview of the role of different contributors to bone fragility and how these factors might be influenced by the use of anti-osteoporotic drugs and by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
7
|
A comparison between the effect of systemic and coated drug delivery in osteoporotic bone after dental implantation. Med Eng Phys 2022; 107:103859. [DOI: 10.1016/j.medengphy.2022.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
|
8
|
Nanda R, Hazan S, Sauer K, Aladin V, Keinan-Adamsky K, Corzilius B, Shahar R, Zaslansky P, Goobes G. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomater 2022; 144:195-209. [PMID: 35331939 DOI: 10.1016/j.actbio.2022.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications for the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Collapse
|
9
|
First osteohistological and histotaphonomic approach of Equus occidentalis Leidy, 1865 (Mammalia, Equidae) from the late Pleistocene of Rancho La Brea (California, USA). PLoS One 2021; 16:e0261915. [PMID: 34962948 PMCID: PMC8714125 DOI: 10.1371/journal.pone.0261915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Rancho La Brea (California, USA) is the most emblematic Quaternary fossiliferous locality in the world, since both the high number and diversity of the specimens recovered and their excellent preservational quality. In the last decades, paleobiological and paleoecological knowledge of the different groups of mammals from this site has increased notably; however, some aspects have not yet been inquired or there is little information. In this work we provide information on one of the most abundant mammals of this site, the equid Equus occidentalis, based on the study, from osteohistological and histotaphonomic perspectives, of thin sections of different limb bones. On the one hand, from an osteohistological viewpoint, we observe that the distribution and characterization of bone tissues in the different skeletal elements are, in general lines, similar to that mentioned for other extant and extinct equids. Cyclical growth marks allowed us to propose preliminary skeletochronological interpretations. On the other hand, from a taphonomic viewpoint, we note that all the samples reflect an excellent preservation of the bone microstructure, slightly altered by different pre- and post-burial processes. The variations recorded evidence different taphonomic history and preservation conditions among pits. This is the first study including fossil material from Rancho La Brea exclusively based on the analysis of the bone microstructure features.
Collapse
|
10
|
Cerqueni G, Scalzone A, Licini C, Gentile P, Mattioli-Belmonte M. Insights into oxidative stress in bone tissue and novel challenges for biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112433. [PMID: 34702518 DOI: 10.1016/j.msec.2021.112433] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022]
Abstract
The presence of Reactive Oxygen Species (ROS) in bone can influence resident cells behaviour as well as the extra-cellular matrix composition and the tissue architecture. Aging, in addition to excessive overloads, unbalanced diet, smoking, predisposing genetic factors, lead to an increase of ROS and, if it is accompanied with an inappropriate production of scavengers, promotes the generation of oxidative stress that encourages bone catabolism. Furthermore, bone injuries can be triggered by numerous events such as road and sports accidents or tumour resection. Although bone tissue possesses a well-known repair and regeneration capacity, these mechanisms are inefficient in repairing large size defects and bone grafts are often necessary. ROS play a fundamental role in response after the implant introduction and can influence its success. This review provides insights on the mechanisms of oxidative stress generated by an implant in vivo and suitable ways for its modulation. The local delivery of active molecules, such as polyphenols, enhanced bone biomaterial integration evidencing that the management of the oxidative stress is a target for the effectiveness of an implant. Polyphenols have been widely used in medicine for cardiovascular, neurodegenerative, bone disorders and cancer, thanks to their antioxidant and anti-inflammatory properties. In addition, the perspective of new smart biomaterials and molecular medicine for the oxidative stress modulation in a programmable way, by the use of ROS responsive materials or by the targeting of selective molecular pathways involved in ROS generation, will be analysed and discussed critically.
Collapse
Affiliation(s)
- Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 204, 10129 Torino, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy.
| |
Collapse
|
11
|
The effect of body configuration on the strain magnitude and distribution within the acetabulum during sideways falls: A finite element approach. J Biomech 2020; 114:110156. [PMID: 33302183 DOI: 10.1016/j.jbiomech.2020.110156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/17/2023]
Abstract
While the incidence of hip fractures has declined during the last decades, the incidence of acetabular fractures resulting from low-energy sideways falls has increased, and the mechanisms responsible for this trend remain unknown. Previous studies have suggested that body configuration during the impact plays an important role in a hip fracture. Thus, the aim of this study was to investigate the effect of body configuration angles (trunk tilt angle, trunk flexion angle, femur horizontal rotation angle, and femur diaphysis angle) on low-energy acetabular fractures via a parametric analysis. A computed tomography-based (CT) finite element model of the ground-proximal femur-pelvis complex was created, and strain magnitude, time-history response, and distribution within the acetabulum were evaluated. Results showed that while the trunk tilt angle and femur diaphysis angle have the greatest effect on strain magnitude, the direction of the fall (lateral vs. posterolateral) contributes to strain distribution within the acetabulum. The results also suggest that strain level and distribution within the proximal femur and acetabulum resulting from a sideways fall are not similar and, in some cases, even opposite. Taken together, our simulations suggest that a more horizontal trunk and femoral shaft at the impact phase can increase the risk of low-energy acetabular fractures.
Collapse
|
12
|
A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach. Biomech Model Mechanobiol 2020; 19:2499-2523. [PMID: 32623542 DOI: 10.1007/s10237-020-01353-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Bone remodeling is a fundamental biological process that develops in bone tissue along its whole lifetime. It refers to a continuous bone transformation with new bone formation and old bone resorption that changes the internal microstructure and composition of the tissue. The main objectives of bone remodeling are: repair of the internal microcracks; adaptation of the macroscopic stiffness and strength to the actual changing mechanical demands; and control of the calcium homeostasis. Understanding this process and predicting its evolution is critical to reduce the effects of long-term disuse as happens during periods of reduced mobility. It is also important in the design of bone implants to avoid long-term stress shielding. Many mathematical models have been proposed from the earliest purely phenomenological to the latest that include biological knowledge. However, there still exists a lack of connection between the mechanical driving force and the biochemical and cell processes it triggers. Here, and following previous works that model independently the mechanobiological and biochemical processes in bone remodeling, we present a more complete model, useful for both cortical and trabecular bone, that uses a new mechanotransduction approach based on the effect of strains onto the bonding-unbonding rate of RANK/RANKL/OPG receptor-ligand reactions. We compare the results of this model with previous ones, showing a good agreement in similar conditions. We also apply it to realistic situations such as a femoral bone after implantation of a hip prosthesis, getting similar results to the clinical ones in the final bone density distribution. Finally, we extend this approach to the anisotropic case, getting not only the mean density, but also the directional homogenization of the microstructure. This biochemical approach permits, not only to predict the bone evolution under changes in the mechanical loads, but also, to consider anabolic and catabolic drugs to control bone density, such as those used in osteoporosis.
Collapse
|
13
|
Gandhi RA, Hesketh PJ, Bannister ER, Sebro R, Mehta S. Age-Related Variations in Volar Cortical Angle of the Distal Radius. Hand (N Y) 2020; 15:573-577. [PMID: 30596285 PMCID: PMC7370401 DOI: 10.1177/1558944718820962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The ideal volar locking plate for the treatment of distal radius fracture should anatomically fit the volar surface of the distal radius. The purpose of this study was to measure the volar cortical angle (VCA) of uninjured adult distal radii to determine how well the VCA matches that of modern volar locking plates and whether variations in the VCA are related to demographic factors. Methods: A retrospective radiographic analysis of 273 uninjured adult distal radii was performed. Patients were stratified into age quintiles: less than 27 years, 27 to 43 years, 44 to 51 years, 52 to 64 years, and 65 years or older. The VCA was measured on lateral wrist radiographs, and patient demographics, including age and sex, were collected. Multivariable linear regression analyses were performed to determine the relationship between VCA and demographic factors. Results: The VCA ranged from 23.2° to 42.6°, with a mean of 32.2° (SD = 3.79). Mean VCA was 32.8 (SD = 4.17) in the youngest cohort (<27 years) and 30.4 (SD = 3.63) in the oldest cohort (>65 years). Mean VCA decreased with age, approximately 0.04° per year after adjusting for sex. Men had a 1.6° greater VCA than women after adjusting for age. Conclusion: Mean VCA was greater than the VCA of modern volar locking plates. The VCA decreased with age in both men and women, and men had a greater VCA than women. Such differences must be taken into account to avoid malreduction, tendon irritation, or intra-articular screw placement using current volar plate designs.
Collapse
Affiliation(s)
| | | | | | | | - Samir Mehta
- University of Pennsylvania, Philadelphia, USA,Samir Mehta, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Kim GJ, Kim D, Lee KJ, Kim D, Chung KH, Choi JW, An JH. Effect of Nano-Montmorillonite on Osteoblast Differentiation, Mineral Density, and Osteoclast Differentiation in Bone Formation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E230. [PMID: 32013042 PMCID: PMC7075198 DOI: 10.3390/nano10020230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
Calcium-type montmorillonite, a phyllosilicate mineral, has diverse health benefits when introduced into the gastrointestinal tract or applied to the skin. However, the predominant use of this layered material has thus far been in traditional industries, despite its potential application in the pharmaceutical industry. We investigated the effects and mechanism of nano-montmorillonite (NM) on osteoblast and osteoclast differentiation in vivo and in vitro. We examined the osteogenic effects of NM with high calcium content (3.66 wt%) on alkaline phosphatase (ALP) activity, mineralization, bone microarchitecture, and expression level of osteoblast and osteoclast related genes in Ca-deficient ovariectomized (OVX) rats. Micro-computed tomography of OVX rats revealed that NM attenuated the low-Ca-associated changes in trabecular and cortical bone mineral density. It improved ALP activity and mineralization, as well as the expression of osteoblast and osteoclast differentiation associated genes. NM also activated the expression of runt-related transcription factor 2, osteocalcin, bone morphogenetic protein 2, and type 1 collagen via phosphorylated small mothers against decapentaplegic homolog 1/5/8 signaling. Further, NM repressed the expression of receptor activator for cathepsin K, nuclear factor kappa-B ligand and tartrate-resistant acid phosphatase. Therefore, NM inhibits osteoclastogenesis, stimulates osteoblastogenesis, and alleviates osteoporosis.
Collapse
Affiliation(s)
- Gyeong-Ji Kim
- Department of Food and Nutrition, KC University, Seoul 07661, Korea;
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Daniel Kim
- Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea;
| | - Kwon-Jai Lee
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea;
| | - Daeyoung Kim
- Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Korea;
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea;
| | - Jeong Woo Choi
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107l, Korea
| | - Jeung Hee An
- Department of Food and Nutrition, KC University, Seoul 07661, Korea;
| |
Collapse
|
15
|
Dominguez VM, Agnew AM. Microdamage as a Bone Quality Component: Practical Guidelines for the Two-Dimensional Analysis of Linear Microcracks in Human Cortical Bone. JBMR Plus 2019; 3:e10203. [PMID: 31346569 PMCID: PMC6636773 DOI: 10.1002/jbm4.10203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 01/23/2023] Open
Abstract
Microdamage is a component of bone quality believed to play an integral role in bone health. However, comparability between existing studies is fraught with issues due to highly variable methods of sample preparation and poorly defined quantification criteria. To address these issues, this article has two aims. First, detailed methods for preparation and analysis of linear microcracks in human ribs, specifically addressing troubleshooting issues cited in previous studies, are laid out. Second, new, partially validated criteria are proposed in an effort to reduce subjective differences in microcrack counts and measures, ensuring more comparable results between studies. Revised definitions based on current literature in conjunction with a digital atlas to reduce observer inaccuracy and bias are presented. The goal is to provide a practical methodology for bone biologists and biomechanists to collect and analyze linear microcracks for basic science research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Victoria M Dominguez
- Skeletal Biology Research Laboratory The Ohio State University Columbus OH USA.,Department of Anthropology Lehman College CUNY New York NY USA
| | - Amanda M Agnew
- Skeletal Biology Research Laboratory The Ohio State University Columbus OH USA
| |
Collapse
|
16
|
|
17
|
Turpin C. The Micro-Taphonomy of Cold: Differential Microcracking in Response to Experimental Cold-Stresses. J Forensic Sci 2017; 62:1134-1139. [PMID: 28105632 DOI: 10.1111/1556-4029.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 11/30/2022]
Abstract
Cold is a central feature of environments at higher latitudes and elevations. Thus, cold-induced taphonomic changes are relevant in many forensic contexts. Fifty-two lamb bone segments were used to assess the impact of cold, freeze-thaw cycles, freeze-drying, and water immersion on microstructural cracking of bone in a series of controlled exposure experiments. For each bone segment, three thin sections were examined under a light microscope. Cold exposure caused taphonomic changes in the form of microscopic cracking. Transverse cracks occurred in all treatments, whereas osteonal cracks were restricted to rapid freezing treatments. Type of cold exposure had a statistically significant effect on both the total number of cracks and each type of crack observed. Skeletal microcracking could potentially be used as a taphonomic indicator of postmortem bone exposure to sub-zero temperatures. The type and prevalence of this damage could also be used to distinguish between different types of cold exposure.
Collapse
Affiliation(s)
- Chantal Turpin
- School of Criminology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Despite the increased knowledge of osteocyte biology, the contribution of this most abundant bone cell to the development and progression of multiple myeloma in bone is practically unexplored. RECENT FINDINGS Multiple myeloma bone disease is characterized by exacerbated bone resorption and the presence of osteolytic lesions that do not heal because of a concomitant reduction in bone formation. Osteocytes produce molecules that regulate both bone formation and resorption. Recent findings suggest that the life span of osteocytes is compromised in multiple myeloma patients with bone lesions. In addition, multiple myeloma cells affect the transcriptional profile of osteocytes by upregulating the production of pro-osteoclastogenic cytokines, stimulating osteoclast formation and activity. Further, patients with active multiple myeloma have elevated circulating levels of sclerostin, a potent inhibitor of bone formation which is specifically expressed by osteocytes in bone. SUMMARY Understanding the contribution of osteocytes to the mechanisms underlying the skeletal consequences of multiple myeloma bone disease has the potential to provide important new therapeutic strategies that specifically target multiple myeloma-osteocyte interactions.
Collapse
|
19
|
Tong XY, Malo M, Tamminen IS, Isaksson H, Jurvelin JS, Kröger H. Development of new criteria for cortical bone histomorphometry in femoral neck: intra- and inter-observer reproducibility. J Bone Miner Metab 2015; 33:109-18. [PMID: 24570270 DOI: 10.1007/s00774-014-0562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Histomorphometry is commonly applied to study bone remodeling. Histological definitions of cortical bone boundaries have not been consistent. In this study, new criteria for specific definition of the transitional zone between the cortical and cancellous bone in the femoral neck were developed. The intra- and inter-observer reproducibility of this method was determined by quantitative histomorphometry and areal overlapping analysis. The undecalcified histological sections of femoral neck specimens (n = 6; from men aged 17-59 years) were processed and scanned to acquire histological images of complete bone sections. Specific criteria were applied to define histological boundaries. "Absolute cortex area" consisted of pure cortical bone tissue only, and was defined mainly based on the size of composite canals and their distance to an additional "guide" boundary (so-called "preliminary cortex boundary," the clear demarcation line of density between compact cortex and sparse trabeculae). Endocortical bone area was defined by recognizing characteristic endocortical structures adjacent to the preliminary cortical boundary. The present results suggested moderate to high reproducibility for low-magnification parameters (e.g., cortical bone area). The coefficient of variation (CV %) ranged from 0.02 to 5.61 in the intra-observer study and from 0.09 to 16.41 in the inter-observer study. However, the intra-observer reproducibility of some high-magnification parameters (e.g., osteoid perimeter/endocortical perimeter) was lower (CV %, 0.33-87.9). The overlapping of three histological areas in repeated analyses revealed highest intra- and inter-observer reproducibility for the absolute cortex area. This study provides specific criteria for the definition of histological boundaries for femoral neck bone specimens, which may aid more precise cortical bone histomorphometry.
Collapse
Affiliation(s)
- Xiao-Yu Tong
- Bone and Cartilage Research Unit (BCRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland,
| | | | | | | | | | | |
Collapse
|
20
|
Wang G, Qu X, Yu Z. Changes in the mechanical properties and composition of bone during microdamage repair. PLoS One 2014; 9:e108324. [PMID: 25313565 PMCID: PMC4196754 DOI: 10.1371/journal.pone.0108324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
Under normal conditions, loading activities result in microdamage in the living skeleton, which is repaired by bone remodeling. However, microdamage accumulation can affect the mechanical properties of bone and increase the risk of fracture. This study aimed to determine the effect of microdamage on the mechanical properties and composition of bone. Fourteen male goats aged 28 months were used in the present study. Cortical bone screws were placed in the tibiae to induce microdamage around the implant. The goats were euthanized, and 3 bone segments with the screws in each goat were removed at 0 days, 21 days, 4 months, and 8 months after implantation. The bone segments were used for observing microdamage and bone remodeling, as well as nanoindentation and bone composition, separately. Two regions were measured: the first region (R1), located 1.5 mm from the interface between the screw hole and bone; and the second region (R2), located>1.5 mm from the bone-screw interface. Both diffuse and linear microdamage decreased significantly with increasing time after surgery, with the diffuse microdamage disappearing after 8 months. Thus, screw implantation results in increased bone remodeling either in the proximal or distal cortical bone, which repairs the microdamage. Moreover, bone hardness and elastic modulus decreased with microdamage repair, especially in the proximal bone tissue. Bone composition changed greatly during the production and repair of microdamage, especially for the C (Carbon) and Ca (Calcium) in the R1 region. In conclusion, the presence of mechanical microdamage accelerates bone remodeling either in the proximal or distal cortical bone. The bone hardness and elastic modulus decreased with microdamage repair, with the micromechanical properties being restored on complete repair of the microdamage. Changes in bone composition may contribute to changes in bone mechanical properties.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
21
|
Lander S, Brits D, Hosie M. The effects of freezing, boiling and degreasing on the microstructure of bone. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2014; 65:131-42. [DOI: 10.1016/j.jchb.2013.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
|
22
|
Barbe MF, Gallagher S, Massicotte VS, Tytell M, Popoff SN, Barr-Gillespie AE. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet Disord 2013; 14:303. [PMID: 24156755 PMCID: PMC3924406 DOI: 10.1186/1471-2474-14-303] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/22/2013] [Indexed: 12/01/2022] Open
Abstract
Background We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Methods Rats underwent initial training for 4–6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Results Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw mechanical allodynia by task week 12. Conclusions Although not consistent in all tissues, we found several significant interactions between the critical musculoskeletal risk factors of force and repetition, consistent with a fatigue failure process in musculoskeletal tissues. Prolonged performance of HRHF tasks exhibited significantly increased risk for musculoskeletal disorders, while performance of moderate level tasks exhibited adaptation to task demands.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500 North Broad St, Philadelphia 19140, PA, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Carter Y, Thomas CDL, Clement JG, Cooper DM. Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. J Struct Biol 2013; 183:519-526. [DOI: 10.1016/j.jsb.2013.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 01/02/2023]
|
24
|
Tarlton JF, Wilkins LJ, Toscano MJ, Avery NC, Knott L. Reduced bone breakage and increased bone strength in free range laying hens fed omega-3 polyunsaturated fatty acid supplemented diets. Bone 2013; 52:578-86. [PMID: 23142806 DOI: 10.1016/j.bone.2012.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.
Collapse
Affiliation(s)
- John F Tarlton
- Matrix Biology Research Group, University of Bristol, Langford, Bristol BS40 5DU, UK.
| | | | | | | | | |
Collapse
|
25
|
Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MC. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone 2013; 52:326-36. [PMID: 23092698 PMCID: PMC3612543 DOI: 10.1016/j.bone.2012.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 11/17/2022]
Abstract
Osteoporosis and treatment may affect both composition and nanomechanical properties and their spatial distributions within the individual trabeculae of cancellous bone at length scales that cannot be captured by bulk measurements. This study utilized 25 mature adult ewes divided into 5 treatment groups. Four treatment groups were given a dietary model for human high-turnover osteoporosis, and two of these were treated with antiresorptive drugs, either zoledronate (ZOL) or raloxifene (RAL), to examine their effects on bulk tissue properties and nanoscale tissue composition and mechanical properties within trabeculae. Treatment effects were most pronounced at the nanoscale, where RAL increased indentation modulus and hardness throughout trabeculae by 10% relative to the osteoporosis model. In comparison, ZOL increased these properties exclusively at the surfaces of trabeculae (indentation modulus +12%, hardness +16%). Nanomechanical alterations correlated with changes in tissue mineralization, carbonate substitution, crystallinity, and aligned collagen. Despite only minimal changes in bulk tissue tBMD, the nanomechanical improvements within trabeculae with both treatments greatly improved the predicted theoretical bending stiffness of individual trabeculae when idealized as cylindrical struts. Hence, small tissue-level alterations in critical locations for resisting trabecular failure could account for some of the discrepancy between the large reductions in fracture risk and the only modest changes in BMD with antiresorptive treatments.
Collapse
Affiliation(s)
- Jayme C. Burket
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Daniel J. Brooks
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Jennifer M. MacLeay
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Shefford P. Baker
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Adele L. Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, 10021, USA
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - Marjolein C.H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, 10021, USA
| |
Collapse
|
26
|
Jimbo R, Giro G, Marin C, Granato R, Suzuki M, Tovar N, Lilin T, Janal M, Coelho PG. Simplified drilling technique does not decrease dental implant osseointegration: a preliminary report. J Periodontol 2012; 84:1599-605. [PMID: 23215672 DOI: 10.1902/jop.2012.120565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND To date, some experimental studies have addressed the effect of bone drilling technique and sequence on dental implant osseointegration. In the present study, the authors hypothesize that there would be no differences in osseointegration when reducing the number of drills for osteotomy compared to the conventional drilling protocols. METHODS Seventy-two implants (diameters 3.75 mm and 4.2 mm; n = 36 for each diameter) were bilaterally placed in the tibia of 18 beagles for 1, 3, and 5 weeks. Half of the implants of each diameter were placed using a simplified drilling procedure (pilot and final drill), and the other half were placed using a conventional drilling procedure (all drills in sequence). The retrieved samples were subjected to histologic and histomorphometric evaluation. RESULTS Histology showed that new bone formed around the implant, and inflammation or bone resorption was not evident for both groups. Histomorphometrically, the simplified group presented significantly higher bone-to-implant contact and bone area fraction occupancy compared to the conventional group after 1 week; however, no differences were detected at 3 and 5 weeks. CONCLUSION Bone responses to the implant with the simplified protocol can be comparable to the conventional protocol.
Collapse
Affiliation(s)
- Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang L, Shao J, Ye T, Deng L, Qiu S. Three-dimensional morphology of microdamage in peri-screw bone: a scanning electron microscopy of methylmethacrylate cast replica. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1106-1111. [PMID: 23046724 DOI: 10.1017/s1431927612001286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Screw implantation inevitably causes microdamage in surrounding bone. However, little is known about the detailed characteristics of microdamage in peri-screw bone. In this study, we developed a method to construct microdamage cast with methylmethacrylate (MMA) and observed the cast using scanning electron microscopy (SEM). In basic fuchsin stained bone sections observed by bright-field and fluorescence microscopy, diffuse damage, cross-hatched damage, and linear cracks were all presented in peri-screw bone. Using MMA casting/SEM method, we found numerous densely packed microcracks in the areas with diffuse damage. The osteocyte canaliculi and the microcracks consisting of diffuse damage had a similar diameter (or width), usually <0.5 μm, but their morphology was largely different. In the area with cross-hatched damage, the orientation of microcracks was similar to that in diffuse damage, but the number was significantly decreased. Many microcracks were thicker than 1 μm and associated with a rough surface. Large linear cracks (∼10 μm in diameter) occurred in different areas. Plenty of microcracks were present on the surface of some linear cracks. In conclusion, the MMA casting/SEM method can demonstrate the three-dimensional morphology of different types of microdamage, particularly the microcracks in diffuse damage, which are unable to be shown by light microscopy.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | |
Collapse
|
28
|
van der Meulen MCH, Boskey AL. Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Res Ther 2012; 14:220. [PMID: 22958475 PMCID: PMC3580578 DOI: 10.1186/ar4013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with 'atypical femoral fractures' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.
Collapse
|
29
|
Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem 2011; 112:2412-23. [PMID: 21538477 DOI: 10.1002/jcb.23164] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fatigue loading causes a spatial distribution of osteocyte apoptosis co-localized with bone resorption spaces peaking around microdamage sites. Since osteocytes have been shown to regulate osteoclast formation and activity, we hypothesize that osteocyte apoptosis regulates osteoclastogenesis. In this study, we used serum-starvation to mimic reduced nutrient transport in microdamaged bone and induce apoptosis in MLO-Y4 osteocyte-like cells; conditioned medium was used to apply soluble factors released by apoptotic osteocytes (aOCY) to healthy non-apoptotic MLO-Y4 cells. Osteoclast precursor (RAW264.7 monocyte) migration and differentiation were assessed in the presence of conditioned media (CM) from: (A) aOCY, (B) osteocytes treated with apoptosis conditioned medium (i.e., healthy osteocytes in the presence of apoptosis cues; apoptosis CM-treated osteocytes (atOCY)), and (C) osteocytes treated with non-apoptosis conditioned medium (i.e., healthy osteocytes in the absence of apoptosis cues; non-apoptosis CM-treated osteocytes (natOCY)). Receptor activator for nuclear factor-κB ligand (RANKL), macrophage colony stimulating factor (M-CSF), vascular endothelial growth factor (VEGF) and osteoprotegerin (OPG) mRNA, and protein expression were measured. Our findings indicate that soluble factors released by aOCY and atOCY promoted osteoclast precursor migration (up to 64% and 24% increase, respectively) and osteoclast formation (up to 450% and 265% increase, respectively). Osteoclast size increased up to 233% in the presence of aOCY and atOCY CM. Recruitment, formation and size were unaltered by natOCY. RANKL mRNA and protein expression were upregulated only in aOCY, while M-CSF and VEGF increased in atOCY. Addition of RANKL-blocking antibody abolished aOCY-induced osteoclast precursor migration and osteoclast formation. VEGF and M-CSF blocking antibodies abolished atOCY-induced osteoclastogenesis. These findings suggest that aOCY directly and indirectly (through atOCY) initiate targeted bone resorption by regulating osteoclast precursor recruitment and differentiation.
Collapse
Affiliation(s)
- Saja A Al-Dujaili
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Burt-Pichat B, Follet H, Toulemonde G, Arlot M, Delmas P, Chapurlat R. Methodological approach for the detection of both microdamage and fluorochrome labels in ewe bone and human trabecular bone. J Bone Miner Metab 2011; 29:756-64. [PMID: 21748462 DOI: 10.1007/s00774-011-0291-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to adapt various staining methods for the detection of microdamage in human bone, while preserving tetracycline labels. We describe two staining methods using calcein green and xylenol orange, first developed in ewe bone samples and validated in human trabecular bone samples. In ewe bones, we found that calcein green at 0.5 mM concentration diluted in 100% ethanol as well as xylenol orange at 5 mM were the most adequate fluorochromes both to detect microdamage and preserve the double tetracycline labeling. These results were verified in human trabecular bone (iliac crest for the tetracycline label, and vertebral bone for the double labeling). Results obtained in human bone samples were identical to those in ewes, so this combination of fluorochromes is now used in our laboratory.
Collapse
|
31
|
Follet H, Viguet-Carrin S, Burt-Pichat B, Dépalle B, Bala Y, Gineyts E, Munoz F, Arlot M, Boivin G, Chapurlat RD, Delmas PD, Bouxsein ML. Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res 2011; 29:481-8. [PMID: 20957742 DOI: 10.1002/jor.21275] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/02/2010] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 vertebrae (n = 49) from recently deceased donors 54-95 years of age (21 men and 27 women). Two trabecular cores were obtained from each vertebra, one for preexisting microdamage and mineralization measurements, and one for BV/TV and quasi-static compression tests. Collagen cross-link content (PYD, DPD, and PEN) was measured on surrounding trabecular bone. Advancing age was associated with impaired mechanical properties, and with increased microdamage, even after adjustment by BV/TV. BV/TV was the strongest determinant of elastic modulus and ultimate strength (r² = 0.44 and 0.55, respectively). Microdamage, mineralization parameters, and collagen cross-link content were not associated with mechanical properties. These data indicate that the compressive strength of human vertebral trabecular bone is primarily determined by the amount of trabecular bone, and notably unaffected by normal variation in other factors, such as cross-link profile, microdamage and mineralization.
Collapse
Affiliation(s)
- Helene Follet
- INSERM U831, University of Lyon, Lyon F-69008, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin Z, Rios HF, Volk SL, Sugai JV, Jin Q, Giannobile WV. Gene expression dynamics during bone healing and osseointegration. J Periodontol 2010; 82:1007-17. [PMID: 21142982 DOI: 10.1902/jop.2010.100577] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Understanding the molecular features of bone repair and osseointegration may aid in the development of therapeutics to improve implant outcomes. The purpose of this investigation is to determine the gene expression dynamics during alveolar bone repair and implant osseointegration. METHODS An implant osseointegration preclinical animal model was used whereby maxillary defects were created at the time of oral implant placement, while a tooth extraction socket healing model was established on the contralateral side of each animal. The surrounding tissues in the zone of the healing defects were harvested during regeneration for temporal evaluation using histology, immunohistochemistry, laser capture microdissection, and quantitative reverse transcription-polymerase chain reaction for the identification of a panel of 17 putative genes associated with wound repair. RESULTS In both models, three distinct expression patterns were displayed: 1) genes that are slowly increased during the healing process, such as bone morphogenetic protein 4, runt-related transcription factor 2, and osteocalcin; 2) genes that are upregulated at the early stage of healing and then downregulated at later stages, such as interleukin and chemokine (C-X-C motif) ligands 2 and 5; and 3) genes that are constitutively expressed over time, such as scleraxis. Although some similarities between osseointegration and tooth extraction socket were seen, distinct features developed and triggered a characteristic coordinated expression and orchestration of transcription factors, growth factors, extracellular matrix molecules, and chemokines. CONCLUSIONS Characterization of these events contributes to a better understanding of cooperative molecular dynamics in alveolar bone healing, and highlights potential pathways that could be further explored for the enhancement of osseous regenerative strategies.
Collapse
Affiliation(s)
- Zhao Lin
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes.
Collapse
Affiliation(s)
- A L Boskey
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
34
|
Abstract
The human skeleton optimizes its microarchitecture by elaborate adaptations to mechanical loading during development and growth. The mechanisms for adaptation involve a multistep process of cellular mechanotransduction stimulating bone modelling, and remodeling resulting in either bone formation or resorption. This process causes appropriate microarchitectural changes tending to adjust and improve the bone structure to its prevailing mechanical environment. Normal individual reaches peak bone mass at age between 25 and 30 years, and thereafter bone mass declines with age in both genders. The bone loss is accompanied by microarchitectural deterioration resulting in reduced mechanical strength likely leading to fragility fractures. With aging, inevitable bone loss occurs, which is frequently the cause of osteoporosis; and inevitable bone and joint degeneration happens, which often results in osteoarthrosis. These diseases are among the major health care problems in terms of socio-economic costs. The overall goals of the current series of studies were to investigate the age-related and osteoarthrosis (OA) related changes in the 3-D microarchitectural properties, mechanical properties, collagen and mineral quality of subchondral cancellous and cortical bone tissues. The studies included mainly two parts. For human subjects: aging- (I–IV) and early OArelated (V–VI) changes in cancellous bone properties were assessed. For OA guinea pig models (VII–IX), three topics were studied: firstly, the spontaneous, age-related development of guinea pig OA; secondly, the potential effects of hyaluronan on OA subchondral bone tissues; and thirdly, the effects on OA progression of an increase in subchondral bone density by inhibition of bone remodeling with a bisphosphonate. These investigations aimed to obtain more insight into the age-related and OA-related subchondral bone adaptations.
Collapse
Affiliation(s)
- Ming Ding
- Department of Orthopaedics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark.
| |
Collapse
|
35
|
Leeming DJ, Henriksen K, Byrjalsen I, Qvist P, Madsen SH, Garnero P, Karsdal MA. Is bone quality associated with collagen age? Osteoporos Int 2009; 20:1461-70. [PMID: 19330423 DOI: 10.1007/s00198-009-0904-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/27/2009] [Indexed: 12/27/2022]
Abstract
The World Health Organization defines osteoporosis as a systemic disease characterized by decreased bone tissue mass and microarchitectural deterioration, resulting in increased fracture risk. Since this statement, a significant amount of data has been generated showing that these two factors do not cover all risks for fracture. Other independent clinical factors, such as age, as well as aspects related to qualitative changes in bone tissue, are believed to play an important role. The term "bone quality" encompasses a variety of parameters, including the extent of mineralization, the number and distribution of microfractures, the extent of osteocyte apoptosis, and changes in collagen properties. The major mechanism controlling these qualitative factors is bone remodeling, which is tightly regulated by the osteoclast/osteoblast activity. We focus on the relationship between bone remodeling and changes in collagen properties, especially the extent of one posttranslational modification. In vivo, measurements of the ratio between native and isomerized C-telopeptides of type I collagen provides an index of bone matrix age. Current preclinical and clinical studies suggests that this urinary ratio provides information about bone strength and fracture risk independent of bone mineral density and that it responds differently according to the type of therapy regulating bone turnover.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark.
| | | | | | | | | | | | | |
Collapse
|
36
|
Hoefert S, Schmitz I, Tannapfel A, Eufinger H. Importance of microcracks in etiology of bisphosphonate-related osteonecrosis of the jaw: a possible pathogenetic model of symptomatic and non-symptomatic osteonecrosis of the jaw based on scanning electron microscopy findings. Clin Oral Investig 2009; 14:271-84. [PMID: 19536569 DOI: 10.1007/s00784-009-0300-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 06/02/2009] [Indexed: 01/25/2023]
Abstract
The aim of this study was to evaluate a possible role of microcracks in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (ONJ) and to discuss an etiological model. Bone samples from 35 patients with ONJ were analyzed. Control samples were taken from five patients with osteomyelitis (OM), ten patients with osteoradionecrosis, seven patients with osteoporosis and bisphosphonate medication without signs of ONJ, and six osteoporotic elderly patients. Samples were examined using scanning electron microscopy. In 54% of the bone samples of patients with ONJ, microcracks were seen. Inflammatory and connective tissue reactions within the microcracks were evident in 82% of the cases, indicating that these cracks were not artificial. In contrast, only 29% of samples from patients with oral bisphosphonate medication without ONJ, no sample from patients with OM, none of the osteoradionecrosis group, and only 17% from patients with osteoporosis showed microcracks. Statistically significant differences could be found between the ONJ group and the group after irradiation and the group with OM, respectively. The evidence of microcracks could be a first step in the pathogenesis of bisphosphonate-related ONJ. The accumulation of these microcracks leads to a situation that could be named "non-symptomatic ONJ". Disruptions of the mucosal integrity may then allow bacterial invasion, leading to jawbone infection with exposed bone, fistulas, and pain. This state could be called "symptomatic ONJ". Furthermore, an assumed local immunosuppression as indicated by various studies could explain the severe courses of therapy-resistant ONJ as regularly observed.
Collapse
Affiliation(s)
- Sebastian Hoefert
- Department of Oral and Maxillofacial Surgery, Knappschaftskrankenhaus, Academic Teaching Hospital of the Ruhr-Universität Bochum, Dorstener Str 151, 45657 Recklinghausen, Germany.
| | | | | | | |
Collapse
|
37
|
Abstract
Treatment of primary osteoporosis has advanced dramatically during the past decade, with more therapeutic options being available now than at any other time. Anti-resorptive (anti-catabolic) drugs have been prominent in the treatment of osteoporosis for decades. However, over time, several clinical observations made during use of these agents have challenged the prevailing dogma about mechanisms of drug action, changes in bone density and fracture reduction during treatment. It has become clear that changes in bone density are only a small part of the explanation for the dramatic reduction of fractures with treatment. From this paradox developed the notion of 'bone quality'- an operational term describing a number of characteristics that enable bone to resist fracturing. This article reviews this concept from a clinical perspective. It discusses the historical paradoxes found in clinical practice that have led to this notion, identifies the major areas of bone physiology circumscribed by the concept and focuses on present therapies and their effects on bone quality.
Collapse
Affiliation(s)
- Angelo A Licata
- Department of Endocrinology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| |
Collapse
|
38
|
Lee P, van der Wall H, Seibel MJ. Looking beyond low bone mineral density: multiple insufficiency fractures in a woman with post-menopausal osteoporosis on alendronate therapy. J Endocrinol Invest 2007; 30:590-7. [PMID: 17848842 DOI: 10.1007/bf03346353] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Insufficiency fractures occur most commonly in the pelvic girdle and in the sacrum, followed by the tibia and the femoral neck. Insufficiency fractures of the femoral diaphyses are rare, with only few reported cases in the literature. The strongest associations exist with untreated osteoporosis. We describe an unusual case of multiple insufficiency fractures in a 73-yr-old Chinese woman who presented with a 10-month history of bilateral groin pain and difficulty with walking in the absence of trauma, diagnosed 18 months following the commencement of anti-resorptive therapy with alendronate. The pathogenesis of such insufficiency fractures is poorly understood, but next to low bone mineral density and micro-architectural damage likely involves other components such as changes in bone turnover and patient-related factors (e.g. non-compliance). This case report and review of the literature draws attention to some of the challenges in the diagnosis and management of such rare insufficiency fractures.
Collapse
Affiliation(s)
- P Lee
- Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, The University of Sydney, Sydney Concord, NSW 2139, Australia.
| | | | | |
Collapse
|
39
|
Martin RB. Targeted bone remodeling involves BMU steering as well as activation. Bone 2007; 40:1574-80. [PMID: 17398173 DOI: 10.1016/j.bone.2007.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 12/26/2006] [Accepted: 02/22/2007] [Indexed: 01/15/2023]
Abstract
Microdamage removal is an important function of bone remodeling. Experiments have repeatedly shown that remodeling of cortical bone by Basic Multicellular Units (BMUs) is initiated in response to microdamage, and this has become known as "targeted remodeling". This paper considers the possibility that microdamage is not only able to activate new BMUs, but may also attract or "steer" existing BMUs as they continue to tunnel through the bone matrix. An initial analysis of the relationship of between mean microcrack length and BMU resorption space density in cortical bone indicates that BMUs have an effective area about 40 times greater than their actual cross-section. Interpreting this as evidence that the osteoclasts in a tunneling BMU are able to sense and steer toward microdamage, a model is developed for "BMU steering" based on the hypothesis that osteoclasts are guided not only in the principal stress direction, as proposed by Burger et al. (Burger, E.H., Klein-Nulend, J., Smit, T.H. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon-a proposal. J. Biomech 36 (2003) 1453-1459), but also toward microdamage, depending on its proximity.
Collapse
Affiliation(s)
- R B Martin
- Ellison Musculoskeletal Research Center, U.C. Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
40
|
McKee MD, Addison WN, Kaartinen MT. Hierarchies of Extracellular Matrix and Mineral Organization in Bone of the Craniofacial Complex and Skeleton. Cells Tissues Organs 2006; 181:176-88. [PMID: 16612083 DOI: 10.1159/000091379] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Structural hierarchies are common in biologic systems and are particularly evident in biomineralized structures. In the craniofacial complex and skeleton of vertebrates, extracellular matrix and mineral of bone are structurally ordered at many dimensional scales from the macro level to the nano level. Indeed, the nanocomposite texture of bone, with nanocrystals of apatitic mineral embedded within a crosslinked matrix of fibrillar and nonfibrillar proteins, imparts to bone the very mechanical properties and toughness it needs to function in vital organ protection, musculoskeletal movement and mastication. This article focuses on how hierarchies of extracellular matrix protein organization influence bone cell behavior, tissue architecture and mineralization. Additional attention is given to recent work on the molecular determinants of mineral induction in bone, and how the mineralization process is subsequently regulated by inhibitory proteins.
Collapse
Affiliation(s)
- M D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|