1
|
Kuo A, Raboczyj A, Nicholson JR, Corradini L, Smith MT. Significant hindlimb static weight-bearing asymmetry persists for 40-weeks in a longitudinal study in two widely used rat models of surgically induced osteoarthritis knee pain. Front Pharmacol 2025; 16:1560265. [PMID: 40308761 PMCID: PMC12040840 DOI: 10.3389/fphar.2025.1560265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Unrelenting osteoarthritis (OA) knee pain is the primary reason patients seek treatment that may ultimately result in knee replacement surgery. Although the anterior cruciate ligament transection (ACLT) and the ACLT plus medial meniscectomy (MMx) induced rat models of OA knee pain are well-characterized histologically, reports on changes in pain-like behaviors that persist longterm, are scant and so this is a knowledge gap. Methods We conducted a 40-week longitudinal study using these models in male Sprague-Dawley rats. Hindlimb static weight-bearing asymmetry was assessed using the incapacitance test. Von Frey filaments and an Analgesy-Meter were used to measure paw withdrawal thresholds (PWTs) and paw pressure thresholds (PPTs) respectively in the hindpaws. Results and discussion Our findings show significant, reproducible and long-lasting static weight-bearing asymmetry in the hindlimbs of both models (but not the sham-control group) for the 40-week study duration. Significant mechanical hypersensitivity developed in the ipsilateral hindpaws of the ACLT + MMx model (PWTs ≤8 g) which reversed spontaneously by ∼8-12-weeks. In the ACLT and the sham-groups, significant mechanical hypersensitivity did not develop in the ipsilateral hindpaws. In conclusion, hindlimb static weight-bearing asymmetry is a long-lasting, significant pain behavioral endpoint in these models suitable for assessing novel disease-modifying OA therapeutics and/or analgesic drug candidates aimed at alleviating unrelenting chronic OA knee pain in patients.
Collapse
Affiliation(s)
- A. Kuo
- School of Biomedical Sciences, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - A. Raboczyj
- School of Biomedical Sciences, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - J. R. Nicholson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - L. Corradini
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - M. T. Smith
- School of Biomedical Sciences, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Chihab S, Khan NM, Eng T, Doan T, Kaiser JM, Drissi H. Kartogenin Enhances Chondrogenic Differentiation of iPSC Derived MSCs (iMSCs) and Improves Outcomes in an Osteochondral Defect Model in Male Rats. J Orthop Res 2025; 43:870-880. [PMID: 39800942 DOI: 10.1002/jor.26040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025]
Abstract
Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair. We hypothesized that treatment of iMSCs with TGFβ3 and KGN would enhance chondrogenic differentiation and that implanting these pellets into a rat OCD model would promote de novo cartilage regeneration and reduce pain behavior. We pellet cultured iMSCs derived from articular chondrocytes and treated with various conditions of TGFβ3 and KGN. We then assessed the in vivo performance of the pellets using a trochlear osteochondral defect in male Lewis rats. Co-treatment of iMSC pellets with TGFβ3 and KGN showed more pronounced chondrogenic differentiation than sequential treatment and exhibited stronger expression of chondrogenic genes. Implantation of the TGFβ3/KGN-treated iMSC pellets into OCD resulted in modest repair, as observed via gross morphology, effectively prevented the onset of joint hyperalgesia, and helped to maintain normal gait out to 12 weeks post-implantation compared to untreated OCD rats. Our study highlights the potential of KGN to enhance iMSC pellet chondrogenesis, offering a scaffold-free, cell-based therapy that could simplify clinical translation and improve outcomes for patients with cartilage injuries.
Collapse
Affiliation(s)
- Samir Chihab
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nazir M Khan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Tracy Eng
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Thanh Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Rajalekshmi R, Agrawal DK. Advancing Osteoarthritis Research: Insights from Rodent Models and Emerging Trends. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2025; 7:110-128. [PMID: 40264810 PMCID: PMC12014194 DOI: 10.26502/josm.511500187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions of individuals worldwide, causing pain, disability, and a significant burden on public health. Preclinical research using animal models is essential to our understanding of the underlying pathogenesis of OA and developing therapeutic strategies. Rodent models, in particular, have become indispensable in studying OA due to their ability to mimic various features of human disease. This review provides an overview of commonly used rodent models of OA, including surgical induction (e.g., destabilization of the medial meniscus and anterior cruciate ligament transection), chemical induction (e.g., monoiodoacetate-induced cartilage degeneration), and genetically modified models. Additionally, age-related OA models that naturally develop OA-like symptoms in aged rodents are also discussed. Despite their utility, rodent models face limitations in fully recapitulating the complexity of human OA. Emerging trends in OA research, including the use of 3D imaging for joint analysis, molecular profiling for deeper insights into disease mechanisms, and advancements in biomarkers for early detection and treatment, are highlighted. These innovations provide new opportunities to refine existing models and enhance the translation of findings to clinical therapies. This critical review provides comprehensive information for researchers working in OA and related fields, promoting a better understanding of the available rodent models and their applications in OA research.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
4
|
Gilmer G, Iijima H, Hettinger ZR, Jackson N, Bergmann J, Bean AC, Shahshahan N, Creed E, Kopchak R, Wang K, Houston H, Franks JM, Calderon MJ, St Croix C, Thurston RC, Evans CH, Ambrosio F. Menopause-induced 17β-estradiol and progesterone loss increases senescence markers, matrix disassembly and degeneration in mouse cartilage. NATURE AGING 2025; 5:65-86. [PMID: 39820791 DOI: 10.1038/s43587-024-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Female individuals who are post-menopausal present with higher incidence of knee osteoarthritis (KOA) than male counterparts; however, the mechanisms underlying this disparity are unknown. The most commonly used preclinical models lack human-relevant menopausal phenotypes, which may contribute to our incomplete understanding of sex-specific differences in KOA pathogenesis. Here we chemically induced menopause in middle-aged (14-16 months) C57/BL6N female mice. When we mapped the trajectory of KOA over time, we found that menopause aggravated cartilage degeneration relative to non-menopause controls. Network medicine analyses revealed that loss of 17β-estradiol and progesterone with menopause enhanced susceptibility to senescence and extracellular matrix disassembly. In vivo, restoration of 17β-estradiol and progesterone in menopausal mice protected against cartilage degeneration compared to untreated menopausal controls. Accordingly, post-menopausal human chondrocytes displayed decreased markers of senescence and increased markers of chondrogenicity when cultured with 17β-estradiol and progesterone. These findings implicate menopause-associated senescence and extracellular matrix disassembly in the sex-specific pathogenesis of KOA.
Collapse
Affiliation(s)
- Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natalie Jackson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana Bergmann
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Biological Sciences in the Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nafiseh Shahshahan
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Ekaterina Creed
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Rylee Kopchak
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Hannah Houston
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Calderon
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette St Croix
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher H Evans
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA.
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA.
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Co CM, Vaish B, Hoang LQ, Nguyen T, Borrelli J, Millett PJ, Tang L. Mast Cells Mediate Acute Inflammatory Responses After Glenoid Labral Tears and Can Be Inhibited With Cromolyn in a Rat Model. Am J Sports Med 2024; 52:3357-3369. [PMID: 39370677 PMCID: PMC11542330 DOI: 10.1177/03635465241278671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/22/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Injuries to the glenoid labrum have been recognized as a source of joint pain and discomfort, which may be associated with the inflammatory responses that lead to the deterioration of labral tissue. However, it is unclear whether the torn labrum prompts mast cell (MC) activation, resulting in synovial inflammatory responses that lead to labral tissue degeneration. PURPOSE To determine the potential influence of activated MC on synovial inflammatory responses and subsequent labral tissue degeneration and shoulder function deterioration in a rat model by monitoring MC behavior and sequential inflammatory responses within the synovial tissue and labral tissue after injury, suture repair, and MC stabilizer administration. STUDY DESIGN Controlled laboratory study. METHODS Anteroinferior glenoid labral tears were generated in the right shoulder of rats (n = 20) and repaired using a tunneled suture technique. Synovial tissue inflammatory responses were modulated in some rats with intraperitoneal administration of an MC stabilizer-cromolyn (n = 10). At weeks 1 and 3, MC activation, synovial inflammatory responses, and labral degeneration were histologically evaluated. Simultaneously, gait analysis was performed before and after surgical repair to assess the worsening of the shoulder function after the injury and treatment. RESULTS Resident MC degranulation after labral injury (50.48% ± 8.23% activated at week 1) contributed to the initiation of synovial tissue inflammatory cell recruitment, inflammatory product release, matrix metalloproteinase-13, and subsequent labral tissue extracellular matrix degeneration. The administration of cromolyn, an MC stabilizer, was found to significantly diminish injury-mediated inflammatory responses (inflammatory cell infiltration and subsequent proinflammatory product secretion) and improve shoulder functional recovery. CONCLUSION MC activation is responsible for labral tear-associated synovial inflammation and labral degeneration. The administration of cromolyn can significantly diminish the cascade of inflammatory reactions after labral injury. CLINICAL RELEVANCE Our findings support the concept that MC stabilizers may be used as a complementary therapeutic option in the treatment and repair of labral tears.
Collapse
Affiliation(s)
- Cynthia M. Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- These authors contributed equally to this article
| | - Bhavya Vaish
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- These authors contributed equally to this article
| | - Le Q. Hoang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Peter J. Millett
- Department of Orthopedic Surgery, The Steadman Clinic, Vail, Colorado, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
6
|
Chihab S, Eng T, Kaiser JM, Khan NM, Doan TN, Drissi H. Early signs of osteoarthritis in differing rat osteochondral defects. J Orthop Res 2024; 42:2461-2472. [PMID: 38965674 DOI: 10.1002/jor.25930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Preclinical models of osteochondral defects (OCDs) are fundamental test beds to evaluate treatment modalities before clinical translation. To increase the rigor and reproducibility of translational science for a robust "go or no-go," we evaluated disease progression and pain phenotypes within the whole joint for two OCD rat models with same defect size (1.5 x 0.8 mm) placed either in the trochlea or medial condyle of femur. Remarkably, we only found subtle transitory changes to gaits of rats with trochlear defect without any discernible effect to allodynia. At 8-weeks post-surgery, anatomical evaluations of joint showed early signs of osteoarthritis with EPIC-microCT. For the trochlear defect, cartilage attenuation was increased in trochlear, medial, and lateral compartments of the femur. For condylar defect, increased cartilage attenuation was isolated to the medial condyle of the femur. Further, the medial ossicle showed signs of deterioration as indicated with decreased bone mineral density and increased bone surface area to volume ratio. Thus, OCD in a weight-bearing region of the femur gave rise to more advanced osteoarthritis phenotype within a unilateral joint compartment. Subchondral bone remodeling was evident in both models without any indication of closure of the articular cartilage surface. We conclude that rat OCD, placed in the trochlear or condylar region of the femur, leads to differing severity of osteoarthritis progression. As found herein, repair of the defect with fibrous tissue and subchondral bone is insufficient to alleviate onset of osteoarthritis. Future therapies using rat OCD model should address joint osteoarthritis in addition to repair itself.
Collapse
Affiliation(s)
- Samir Chihab
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Tracy Eng
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nazir M Khan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Thanh N Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Lee FS, Cruz CJ, Allen KD, Wachs RA. Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain. Connect Tissue Res 2024; 65:407-420. [PMID: 39287332 PMCID: PMC11533987 DOI: 10.1080/03008207.2024.2395287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Gait disturbances are common in human low back pain (LBP) patients, suggesting potential applicability to rodent LBP models. This study aims to assess the influence of disc-associated LBP on gait in female Sprague Dawley rats and explore the utility of the open-source Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) suite as a potential alternative tool for spontaneous pain assessment in a previously established LBP model. MATERIALS AND METHODS Disc degeneration was surgically induced using a one-level disc scrape injury method, and microcomputed tomography was used to assess disc volume loss. After disc injury, axial hypersensitivity was evaluated using the grip strength assay, and an open field test was used to detect spontaneous pain-like behavior. RESULTS Results demonstrated that injured animals exhibit a significant loss in disc volume and reduced grip strength. Open field test did not detect significant differences in distance traveled between sham and injured animals. Concurrently, animals with injured discs did not display significant gait abnormalities in stance time imbalance, temporal symmetry, spatial symmetry, step width, stride length, and duty factor compared to sham. However, comparisons with reference values of normal gait reported in prior literature reveal that injured animals exhibit mild deviations in forelimb and hindlimb stance time imbalance, forelimb temporal symmetry, and hindlimb spatial symmetry at some time points. CONCLUSIONS This study concludes that the disc injury may have very mild effects on gait in female rats within 9 weeks post-injury and recommends future in depth dynamic gait analysis and longer studies beyond 9 weeks to potentially detect gait.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
8
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Kaiser JM, Bernard FC, Pucha K, Raval SK, Eng T, Fulton T, Anderson SE, Allen KD, Dixon JB, Willett NJ. Mild exercise expedites joint clearance and slows joint degradation in a joint instability model of osteoarthritis in male rats. Osteoarthritis Cartilage 2024; 32:912-921. [PMID: 38642879 DOI: 10.1016/j.joca.2024.03.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Exercise remains a hallmark treatment for post-traumatic osteoarthritis (PTOA) and may maintain joint homeostasis in part by clearing inflammatory cytokines, cells, and particles. It remains largely unknown whether exercise-induced joint clearance can provide therapeutic relief of PTOA. In this study, we hypothesized that exercise could slow the progression of preclinical PTOA in part by enhancing knee joint clearance. DESIGN Surgical medial meniscal transection was used to induce PTOA in 3-month-old male Lewis rats. A sham surgery was used as a control. Mild treadmill walking was introduced 3 weeks post-surgery and maintained to 6 weeks post-surgery. Gait and isometric muscle torque were measured at the study endpoint. Near-infrared imaging tracked how exercise altered lymphatic and venous knee joint clearance during discrete time points of PTOA progression. RESULTS Exercise mitigated joint degradation associated with PTOA by preserving glycosaminoglycan content and reducing osteophyte volume (effect size (95% Confidence Interval (CI)); 1.74 (0.71-2.26)). PTOA increased hind step widths (0.57 (0.18-0.95) cm), but exercise corrected this gait dysfunction (0.54 (0.16-0.93) cm), potentially indicating pain relief. Venous, but not lymphatic, clearance was quicker 1-, 3-, and 6-weeks post-surgery compared to baseline. The mild treadmill walking protocol expedited lymphatic clearance rate in moderate PTOA (3.39 (0.20-6.59) hrs), suggesting exercise may play a critical role in restoring joint homeostasis. CONCLUSIONS We conclude that mild exercise has the potential to slow disease progression in part by expediting joint clearance in moderate PTOA.
Collapse
Affiliation(s)
- Jarred M Kaiser
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA.
| | - Fabrice C Bernard
- Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| | - Krishna Pucha
- Emory University School of Medicine, Decatur, GA, USA.
| | | | - Tracy Eng
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA.
| | - Travis Fulton
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA.
| | - Shannon E Anderson
- Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| | | | - J Brandon Dixon
- Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nick J Willett
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
10
|
Cruz CJ, Yeater TD, Griffith JL, Allen KD. Vagotomy accelerates the onset of symptoms during early disease progression and worsens joint-level pathogenesis in a male rat model of chronic knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100467. [PMID: 38655014 PMCID: PMC11035058 DOI: 10.1016/j.ocarto.2024.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Low vagal tone is common in osteoarthritis (OA) comorbidities and results in greater peripheral inflammation. Characterizing vagal tone's role in OA pathogenesis may offer insights into OA's influences beyond the articular joint. We hypothesized that low vagal tone would accelerate onset of OA-related gait changes and worsen joint damage in a rat knee OA model. Methods Knee OA was induced in male Sprague Dawley rats by transecting the medial collateral ligament and medial meniscus. Then, left cervical vagus nerve transection (VGX, n = 9) or sham VGX (non-VGX, n = 6) was performed. Gait and tactile sensitivity were assessed at baseline and across 12 weeks, with histology and systemic inflammation evaluated at endpoint. Results At week 4, VGX animals showed limping gait characteristics through shifted stance times from their OA to non-OA limb (p = 0.055; stance time imbalance = 1.6 ± 1.6%) and shifted foot strike locations (p < 0.001; spatial symmetry = 48.4 ± 0.835%), while non-VGX animals walked with a balanced and symmetric gait. Also at week 4, while VGX animals had a mechanical sensitivity (50% withdrawal threshold) of 13.97 ± 7.70 compared to the non-VGX animal sensitivity of 29.74 ± 9.43, this difference was not statistically significant. Histologically, VGX animals showed thinner tibial cartilage and greater subchondral bone area than non-VGX animals (p = 0.076; VGX: 0.80 ± 0.036 mm2; non-VGX: 0.736 ± 0.066 mm2). No group differences in systemic inflammation were observed at endpoint. Conclusions VGX resulted in quicker onset of OA-related symptoms but remained unchanged at later timepoints. VGX also had thinner cartilage and abnormal bone remodeling than non-VGX. Overall, low vagal tone had mild effects on OA symptoms and joint remodeling, and not at the level seen in common OA comorbidities.
Collapse
Affiliation(s)
- Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Jacob L. Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Modi AD, Parekh A, Patel ZH. Methods for evaluating gait associated dynamic balance and coordination in rodents. Behav Brain Res 2024; 456:114695. [PMID: 37783346 DOI: 10.1016/j.bbr.2023.114695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Balance is the dynamic and unconscious control of the body's centre of mass to maintain postural equilibrium. Regulated by the vestibular system, head movement and acceleration are processed by the brain to adjust joints. Several conditions result in a loss of balance, including Alzheimer's Disease, Parkinson's Disease, Menière's Disease and cervical spondylosis, all of which are caused by damage to certain parts of the vestibular pathways. Studies about the impairment of the vestibular system are challenging to carry out in human trials due to smaller study sizes limiting applications of the results and a lacking understanding of the human balance control mechanism. In contrast, more controlled research can be performed in animal studies which have fewer confounding factors than human models and allow specific conditions that affect balance to be replicated. Balance control can be studied using rodent balance-related behavioural tests after spinal or brain lesions, such as the Basso, Beattie and Bresnahan (BBB) Locomotor Scale, Foot Fault Scoring System, Ledged Beam Test, Beam Walking Test, and Ladder Beam Test, which are discussed in this review article along with their advantages and disadvantages. These tests can be performed in preclinical rodent models of femoral nerve injury, stroke, spinal cord injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Anavi Parekh
- Department of Neuroscience, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Zeenal H Patel
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
12
|
Timkovich AE, Holling GA, Afzali MF, Kisiday J, Santangelo KS. TLR4 antagonism provides short-term but not long-term clinical benefit in a full-depth cartilage defect mouse model. Connect Tissue Res 2024; 65:26-40. [PMID: 37898909 PMCID: PMC11271750 DOI: 10.1080/03008207.2023.2269257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE/AIM Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.
Collapse
Affiliation(s)
- Ariel E. Timkovich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - G. Aaron Holling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Lee W, Georgas E, Komatsu DE, Qin YX. Daily low-intensity pulsed ultrasound stimulation mitigates joint degradation and pain in a post-traumatic osteoarthritis rat model. J Orthop Translat 2024; 44:9-18. [PMID: 38161708 PMCID: PMC10753057 DOI: 10.1016/j.jot.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives The aim of this study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) in a post-traumatic osteoarthritis (OA) rat model and in vitro. Methods Thirty-eight male, four-month-old Sprague Dawley rats were randomly assigned to Sham, Sham + US, OA, and OA + US. Sham surgery was performed to serve as a negative control, and anterior cruciate ligament transection was used to induce OA. Three days after the surgical procedures, Sham + US and OA + US animals received daily LIPUS treatment, while the rest of the groups received sham ultrasound (US) signals. Behavioral pain tests were performed at baseline and every week thereafter. After 31 days, the tissues were collected, and histological analyses were performed on knees and innervated dorsal root ganglia (DRG) neurons traced by retrograde labeling. Furthermore, to assess the activation of osteoclasts by LIPUS treatment, RAW264.7 cells were differentiated into osteoclasts and treated with LIPUS. Results Joint degradation in cartilage and bone microarchitecture were mitigated in OA + US compared to OA. OA + US showed improvements in behavioral pain tests. A significant increase of large soma-sized DRG neurons was located in OA compared to Sham. In addition, a greater percentage of large soma-sized innervated neurons were calcitonin gene-related peptide-positive. Daily LIPUS treatment suppressed osteoclastogenesis in vitro, which was confirmed via histological analyses and mRNA expression. Finally, lower expression of netrin-1, a sensory innervation-related protein, was found in the LIPUS treated cells. Conclusion Our findings demonstrate that early intervention using LIPUS treatment has protective effects from the progression of knee OA, including reduced tissue degradation, mitigated pain characteristics, improved subchondral bone microarchitecture, and less sensory innervation. Furthermore, daily LIPUS treatment has a suppressive effect on osteoclastogenesis, which may be linked to the suppression of sensory innervation in OA. The translational potential of this article This study presents a new potential for early intervention in treating OA symptoms through the use of LIPUS, which involves the suppression of osteoclastogenesis and the alteration of DRG profiles. This intervention aims to delay joint degradation and reduce pain.
Collapse
Affiliation(s)
- Wonsae Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Elias Georgas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
14
|
Guo L, Yang Q, Wei R, Zhang W, Yin N, Chen Y, Xu C, Li C, Carney RP, Li Y, Feng M. Enhanced pericyte-endothelial interactions through NO-boosted extracellular vesicles drive revascularization in a mouse model of ischemic injury. Nat Commun 2023; 14:7334. [PMID: 37957174 PMCID: PMC10643472 DOI: 10.1038/s41467-023-43153-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Despite improvements in medical and surgical therapies, a significant portion of patients with critical limb ischemia (CLI) are considered as "no option" for revascularization. In this work, a nitric oxide (NO)-boosted and activated nanovesicle regeneration kit (n-BANK) is constructed by decorating stem cell-derived nanoscale extracellular vesicles with NO nanocages. Our results demonstrate that n-BANKs could store NO in endothelial cells for subsequent release upon pericyte recruitment for CLI revascularization. Notably, n-BANKs enable endothelial cells to trigger eNOS activation and form tube-like structures. Subsequently, eNOS-derived NO robustly recruits pericytes to invest nascent endothelial cell tubes, giving rise to mature blood vessels. Consequently, n-BANKs confer complete revascularization in female mice following CLI, and thereby achieve limb preservation and restore the motor function. In light of n-BANK evoking pericyte-endothelial interactions to create functional vascular networks, it features promising therapeutic potential in revascularization to reduce CLI-related amputations, which potentially impact regeneration medicine.
Collapse
Affiliation(s)
- Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China.
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Runxiu Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Wenjun Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Na Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Yuling Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China
| | - Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Changrui Li
- Guangzhou Zhixin High School, Zhixin South Road, Guangzhou, 510080, P.R. China
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA.
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, P.R. China.
| |
Collapse
|
15
|
Amorim D, Fonseca-Rodrigues D, David-Pereira A, Costa O, Lima AP, Nogueira R, Cruz R, Martins AS, Sousa L, Oliveira F, Pereira H, Pirraco R, Pertovaara A, Almeida A, Pinto-Ribeiro F. Injection of kaolin/carrageenan in the rat knee joint induces progressive experimental knee osteoarthritis. Pain 2023; 164:2477-2490. [PMID: 37390363 DOI: 10.1097/j.pain.0000000000002954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/25/2023] [Indexed: 07/02/2023]
Abstract
ABSTRACT Osteoarthritis (OA), the most common joint disorder worldwide, is characterized by progressive degeneration of articular and periarticular structures, leading to physical and emotional impairments that greatly affect the quality of life of patients. Unfortunately, no therapy has been able to halt the progression of the disease. Owing to the complexity of OA, most animal models are only able to mimic a specific stage or feature of the human disorder. In this work, we demonstrate the intraarticular injection of kaolin or carrageenan leads to the progressive degeneration of the rat's knee joint, accompanied by mechanical hyperalgesia and allodynia, gait impairments (reduced contact area of the affected limb), and radiological and histopathological findings concomitant with the development of human grade 4 OA. In addition, animals also display emotional impairments 4 weeks after induction, namely, anxious and depressive-like behaviour, important and common comorbidities of human OA patients. Overall, prolonging kaolin or carrageenan-induced monoarthritis mimics several important physical and psychological features of human OA in both male and female rodents and could be further applied in long-term studies of OA-associated chronic pain.
Collapse
Affiliation(s)
- Diana Amorim
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana David-Pereira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
| | - Octávia Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antónia Palhares Lima
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rosete Nogueira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute Cruz
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Sofia Martins
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Liliana Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Hélder Pereira
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Minho University, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - Rogério Pirraco
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Minho University, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
16
|
Ritter J, Menger M, Herath SC, Histing T, Kolbenschlag J, Daigeler A, Heinzel JC, Prahm C. Translational evaluation of gait behavior in rodent models of arthritic disorders with the CatWalk device - a narrative review. Front Med (Lausanne) 2023; 10:1255215. [PMID: 37869169 PMCID: PMC10587608 DOI: 10.3389/fmed.2023.1255215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Arthritic disorders have become one of the main contributors to the global burden of disease. Today, they are one of the leading causes of chronic pain and disability worldwide. Current therapies are incapable of treating pain sufficiently and preventing disease progression. The lack of understanding basic mechanisms underlying the initiation, maintenance and progression of arthritic disorders and related symptoms represent the major obstacle in the search for adequate treatments. For a long time, histological evaluation of joint pathology was the predominant outcome parameter in preclinical arthritis models. Nevertheless, quantification of pain and functional limitations analogs to arthritis related symptoms in humans is essential to enable bench to bedside translation and to evaluate the effectiveness of new treatment strategies. As the experience of pain and functional deficits are often associated with altered gait behavior, in the last decades, automated gait analysis has become a well-established tool for the quantitative evaluation of the sequalae of arthritic disorders in animal models. The purpose of this review is to provide a detailed overview on the current literature on the use of the CatWalk gait analysis system in rodent models of arthritic disorders, e.g., Osteoarthritis, Monoarthritis and Rheumatoid Arthritis. Special focus is put on the assessment and monitoring of pain-related behavior during the course of the disease. The capability of evaluating the effect of distinct treatment strategies and the future potential for the application of the CatWalk in rodent models of arthritic disorders is also addressed in this review. Finally, we discuss important consideration and provide recommendations on the use of the CatWalk in preclinical models of arthritic diseases.
Collapse
Affiliation(s)
- Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Maximilian Menger
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Johannes C Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Chan KM, Griffith JL, Pacheco YC, Allen KD. Wheel Running Exacerbates Joint Damage after Meniscal Injury in Mice, but Does Not Alter Gait or Physical Activity Levels. Med Sci Sports Exerc 2023; 55:1564-1576. [PMID: 37144624 PMCID: PMC10524358 DOI: 10.1249/mss.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE Exercise and physical activity are recommended to reduce pain and improve joint function in patients with knee osteoarthritis (OA). However, exercise has dose effects, with excessive exercise accelerating OA development and sedentary behaviors also promoting OA development. Prior work evaluating exercise in preclinical models has typically used prescribed exercise regimens; however, in-cage voluntary wheel running creates opportunities to evaluate how OA progression affects self-selected physical activity levels. This study aimed to evaluate how voluntary wheel running after a surgically induced meniscal injury affects gait characteristics and joint remodeling in C57Bl/6 mice. We hypothesize that injured mice will reduce physical activity levels as OA develops after meniscal injury and will engage in wheel running to a lesser extent than the uninjured animals. METHODS Seventy-two C57Bl/6 mice were divided into experimental groups based on sex, lifestyle (physically active vs sedentary), and surgery (meniscal injury or sham control). Voluntary wheel running data were continuously collected throughout the study, and gait data were collected at 3, 7, 11, and 15 wk after surgery. At end point, joints were processed for histology to assess cartilage damage. RESULTS After meniscal injury, physically active mice showed more severe joint damage relative to sedentary mice. Nevertheless, injured mice engaged in voluntary wheel running at the same rates and distances as mice with sham surgery. In addition, physically active mice and sedentary mice both developed a limp as meniscal injury progressed, yet exercise did not further exacerbate gait changes in the physically active mice, despite worsened joint damage. CONCLUSIONS Taken together, these data indicate a discordance between structural joint damage and joint function. Although wheel running after meniscal injury did worsen OA-related joint damage, physical activity did not necessarily inhibit or worsen OA-related joint dysfunction or pain in mice.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Kinesiology, Indiana University, Bloomington, IN
| | - Jacob L. Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Yan Carlos Pacheco
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
18
|
Partain BD, Bracho-Sanchez E, Farhadi SA, Yarmola EG, Keselowsky BG, Hudalla GA, Allen KD. Intra-Articular Delivery of an Indoleamine 2,3-Dioxygenase Galectin-3 Fusion Protein for Osteoarthritis Treatment in Male Lewis Rats. RESEARCH SQUARE 2023:rs.3.rs-2753443. [PMID: 37131836 PMCID: PMC10153358 DOI: 10.21203/rs.3.rs-2753443/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective : Controlling joint inflammation can improve osteoarthritis (OA) symptoms; however, current treatments often fail to provide long-term effects. We have developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3). IDO converts tryptophan to kynurenines, directing the local environment toward an anti-inflammatory state; Gal3 binds carbohydrates and extends IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA. Methods : Joint residence was first evaluated with an analog Gal3 fusion protein (NanoLuc™ and Gal3, NL-Gal3) that produces luminescence from furimazine. OA was induced in male Lewis rats via a medial collateral ligament and medial meniscus transection (MCLT+MMT). At 8 weeks, NL or NL-Gal3 were injected intra-articularly (n=8 per group), and bioluminescence was tracked for 4 weeks. Next, IDO-Gal3's ability to modulate OA pain and inflammation was assessed. Again, OA was induced via MCLT+MMT in male Lewis rats, with IDO-Gal3 or saline injected into OA-affected knees at 8 weeks post-surgery (n=7 per group). Gait and tactile sensitivity were then assessed weekly. At 12 weeks, intra-articular levels of IL6, CCL2, and CTXII were assessed. Results : The Gal3 fusion increased joint residence in OA and contralateral knees (p<0.0001). In OA-affected animals, IDO-Gal3 improved tactile sensitivity (p=0.002), increased walking velocities (p≤0.033), and improved vertical ground reaction forces (p≤0.04). Finally, IDO-Gal3 decreased intra-articular IL6 levels within the OA-affected joint (p=0.0025). Conclusion : Intra-articular IDO-Gal3 delivery provided long-term modulation of joint inflammation and pain-related behaviors in rats with established OA.
Collapse
|
19
|
Thurlow NA, Chan KM, Yeater TD, Allen KD. Effects of Repeat Test Exposure on Gait Parameters in Naïve Lewis Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537488. [PMID: 37131645 PMCID: PMC10153156 DOI: 10.1101/2023.04.19.537488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rodent gait analysis has emerged as a powerful, quantitative behavioral assay to characterize the pain and disability associated with movement-related disorders. In other behavioral assays, the importance of acclimation and the effect of repeated testing have been evaluated. However, for rodent gait analysis, the effects of repeated gait testing and other environmental factors have not been thoroughly characterized. In this study, fifty-two naïve male Lewis rats ages 8 to 42 weeks completed gait testing at semi-random intervals for 31 weeks. Gait videos and force plate data were collected and processed using a custom MATLAB suite to calculate velocity, stride length, step width, percentage stance time (duty factor), and peak vertical force data. Exposure was quantified as the number of gait testing sessions. Linear mixed effects models were used to evaluate the effects of velocity, exposure, age, and weight on animal gait patterns. Relative to age and weight, repeated exposure was the dominant parameter affecting gait variables with significant effects on walking velocity, stride length, fore and hind limb step width, fore limb duty factor, and peak vertical force. From exposure 1 to 7, average velocity increased by approximately 15 cm/s. Together, these data indicate arena exposure had large effects on gait parameters and should be considered in acclimation protocols, experimental design, and subsequent data analysis of rodent gait data.
Collapse
Affiliation(s)
- Nat A. Thurlow
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Kinesiology, Indiana University, Bloomington, IN, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Gonçalves FB, Garcia-Gomes MSA, Silva-Sampaio AC, Kirsten TB, Bondan EF, Sandini TM, Flório JC, Lebrun I, Coque ADC, Alexandre-Ribeiro SR, Massironi SMG, Mori CMC, Bernardi MM. Progressive tremor and motor impairment in seizure-prone mutant tremor mice are associated with neurotransmitter dysfunction. Behav Brain Res 2023; 443:114329. [PMID: 36746310 DOI: 10.1016/j.bbr.2023.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The tremor mutant mice present motor impairments comprised of whole-body tremors, ataxia, decreased exploratory behavior, and audiogenic seizures. OBJECTIVES This study aims to investigate the development of motor dysfunction in this mutant mouse and the relationships with cortical, striatal, and cerebellar levels of GABA, glutamate, glycine, dopamine (DA), serotonin (5-HT), noradrenaline (NOR), and its metabolites. The serum cytokines levels, myelin content, and the astrocytic expression of the glial fibrillary acidic protein (GFAP) investigated the possible influence of inflammation in motor dysfunction. RESULTS Relative to wild-type (WT) mice, the tremor mice presented: increased tremors and bradykinesia associated with postural instability, decreased range of motion, and difficulty in initiating voluntary movements directly proportional to age; reduced step length for right and left hindlimbs; reduced cortical GABA, glutamate and, aspartate levels, the DOPAC/DA and ratio and increased the NOR levels; in the striatum, the levels of glycine and aspartate were reduced while the HVA levels, the HVA/DA and 5HIAA/5-HT ratios increased; in the cerebellum the glycine, NOR and 5-HIAA levels increased. CONCLUSIONS We suggest that the motor disturbances resulted mainly from the activation of the indirect striatal inhibitory pathway to the frontal cortex mediated by GABA, glutamate, and aspartate, reducing the dopaminergic activity at the prefrontal cortex, which was associated with the progressive tremor. The reduced striatal and increased cerebellar glycine levels could be partially responsible for the mutant tremor motor disturbances.
Collapse
Affiliation(s)
- Flávio B Gonçalves
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Mariana S A Garcia-Gomes
- Department of Psychiatric, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ana Claudia Silva-Sampaio
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thaísa M Sandini
- Department of Psychiatric, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jorge C Flório
- Program in Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Program in Toxinology, Butantan Institute, Brazil
| | - Alex de C Coque
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | | | - Silvia M G Massironi
- Program in Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Claudia M C Mori
- Program in Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
21
|
Chan KM, Bowe MT, Allen KD. Recommendations for the analysis of rodent gait data to evaluate osteoarthritis treatments. Osteoarthritis Cartilage 2023; 31:425-434. [PMID: 36435413 PMCID: PMC11474404 DOI: 10.1016/j.joca.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
Behavioral assays of animal pain and disability can increase the clinical relevance of a preclinical study. However, pain and symptoms are difficult to measure in preclinical models. Because animals often alter their movement patterns to reduce or avoid joint pain, gait analysis can be an important tool for quantifying OA-related symptoms in rodents. Technologies to measure rodent gait continue to advance and have been the focus of prior reviews. Regardless of the techniques used, the analysis of rodent gait data can be complex due to multiple confounding variables. The goal of this review is to discuss recent advances in the understanding of OA-related gait changes and provide recommendations on the analysis of gait data. Recent studies suggest OA-affected animals reduce vertical loading through their injured limb while walking, indicating dynamic ground reaction forces are important data to collect when possible. Moreover, gait data analysis depends on accurately measuring and accounting for the confounding effects of velocity and other covariates (such as animal size) when interpreting shifts in various gait parameters. Herein, we discuss different statistical techniques to account for covariates and interpret gait shifts. In particular, this review will discuss residualization and linear mixed effects models, including how both techniques can account for inter- and intra-animal variability and the effects of velocity. Furthermore, this review discusses future considerations for using rodent gait analysis, while highlighting the intricacies of gait analysis as a tool to measure joint function and behavioral outcomes.
Collapse
Affiliation(s)
- Kiara M Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Markia T Bowe
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Wolter A, Bucher CH, Kurmies S, Schreiner V, Konietschke F, Hohlbaum K, Klopfleisch R, Löhning M, Thöne-Reineke C, Buttgereit F, Huwyler J, Jirkof P, Rapp AE, Lang A. A buprenorphine depot formulation provides effective sustained post-surgical analgesia for 72 h in mouse femoral fracture models. Sci Rep 2023; 13:3824. [PMID: 36882427 PMCID: PMC9992384 DOI: 10.1038/s41598-023-30641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Adequate pain management is essential for ethical and scientific reasons in animal experiments and should completely cover the period of expected pain without the need for frequent re-application. However, current depot formulations of Buprenorphine are only available in the USA and have limited duration of action. Recently, a new microparticulate Buprenorphine formulation (BUP-Depot) for sustained release has been developed as a potential future alternative to standard formulations available in Europe. Pharmacokinetics indicate a possible effectiveness for about 72 h. Here, we investigated whether the administration of the BUP-Depot ensures continuous and sufficient analgesia in two mouse fracture models (femoral osteotomy) and could, therefore, serve as a potent alternative to the application of Tramadol via the drinking water. Both protocols were examined for analgesic effectiveness, side effects on experimental readout, and effects on fracture healing outcomes in male and female C57BL/6N mice. The BUP-Depot provided effective analgesia for 72 h, comparable to the effectiveness of Tramadol in the drinking water. Fracture healing outcome was not different between analgesic regimes. The availability of a Buprenorphine depot formulation for rodents in Europe would be a beneficial addition for extended pain relief in mice, thereby increasing animal welfare.
Collapse
Affiliation(s)
- Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Christian H Bucher
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kurmies
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Viktoria Schreiner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Frank Konietschke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Anna E Rapp
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Chan KM, Thurlow NA, Maden M, Allen KD. African Spiny Mice ( Acomys) Exhibit Mild Osteoarthritis Following Meniscal Injury. Cartilage 2023; 14:94-105. [PMID: 36802989 PMCID: PMC10076895 DOI: 10.1177/19476035221149146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE Hyaline cartilage has limited innate healing abilities and hyaline cartilage loss is a hallmark of osteoarthritis (OA). Animal models can provide important insights into cartilage regeneration potential. One such animal model, the African spiny mouse (Acomys), is capable of regenerating skin, skeletal muscle, and elastic cartilage. This study aims to evaluate whether these regenerative abilities protect Acomys with meniscal injury from OA-related joint damage and behaviors indicative of joint pain and dysfunction. DESIGN Acomys received destabilization of the medial meniscus (DMM) surgery (n = 11) or a skin incision (n = 10). Gait testing occurred at 4, 6, 8, 10, and 12 weeks after surgery. At endpoint, joints were processed for histology to assess cartilage damage. RESULTS Following joint injury, Acomys with DMM surgery altered their walking patterns by increasing the percent stance time on the contralateral limb relative to the operated limb, thereby reducing the amount of time the injured limb must bear weight on its own throughout the gait cycle. Histological grading indicated evidence of OA-related joint damage in Acomys with DMM surgery; these changes were primarily driven by loss of structural integrity in the hyaline cartilage. CONCLUSIONS Acomys developed gait compensations, and the hyaline cartilage in Acomys is not fully protected from OA-related joint damage following meniscal injury, although this damage was less severe than that historically found in C57BL/6 mice with an identical injury. Thus, Acomys do not appear to be completely protected from OA-related changes, despite the ability to regenerate other wounded tissues.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nat A. Thurlow
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology & UF Genetics
Institute, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports
Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Timkovich AE, Sikes KJ, Andrie KM, Afzali MF, Sanford J, Fernandez K, Burnett DJ, Hurley E, Daniel T, Serkova NJ, Donahue TH, Santangelo KS. Full and Partial Mid-substance ACL Rupture Using Mechanical Tibial Displacement in Male and Female Mice. Ann Biomed Eng 2023; 51:579-593. [PMID: 36070048 DOI: 10.1007/s10439-022-03065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022]
Abstract
The anterior cruciate ligament (ACL) is the most commonly injured knee ligament. Surgical reconstruction is the gold standard treatment for ACL ruptures, but 20-50% of patients develop post-traumatic osteoarthritis (PTOA). ACL rupture is thus a well-recognized etiology of PTOA; however, little is known about the initial relationship between ligamentous injury and subsequent PTOA. The goals of this project were to: (1) develop both partial and full models of mid-substance ACL rupture in male and female mice using non-invasive mechanical methods by means of tibial displacement; and (2) to characterize early PTOA changes in the full ACL rupture model. A custom material testing system was utilized to induce either partial or full ACL rupture by means of tibial displacement at 1.6 or 2.0 mm, respectively. Mice were euthanized either (i) immediately post-injury to determine rupture success rates or (ii) 14 days post-injury to evaluate early PTOA progression following full ACL rupture. Our models demonstrated high efficacy in inciting either full or partial ACL rupture in male and female mice within the mid-substance of the ACL. These tools can be utilized for preclinical testing of potential therapeutics and to further our understanding of PTOA following ACL rupture.
Collapse
Affiliation(s)
- Ariel E Timkovich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523-1621, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kendra M Andrie
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523-1621, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523-1621, USA
| | - Joseph Sanford
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523-1621, USA
| | - Kimberli Fernandez
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - David Joseph Burnett
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Emma Hurley
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tyler Daniel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523-1621, USA
| | - Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Kelly S Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523-1621, USA.
| |
Collapse
|
25
|
Bernstein-Kurtycz LM, Dunham NT, Evenhuis J, Brown MB, Muneza AB, Fennessy J, Dennis PM, Lukas KE. Evaluating the effects of giraffe skin disease and wire snare wounds on the gaits of free-ranging Nubian giraffe. Sci Rep 2023; 13:1959. [PMID: 36737637 PMCID: PMC9898309 DOI: 10.1038/s41598-023-28677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Giraffe skin disease (GSD), a condition that results in superficial lesions in certain giraffe (Giraffa spp.) populations, has emerged as a potential conservation threat. Preliminary findings suggested that individuals with GSD lesions move with greater difficulty which may in turn reduce their foraging efficiency or make them more vulnerable to predation. A current known threat to some giraffe populations is their mortality associated with entrapment in wire snares, and the morbidity and potential locomotor deficiencies associated with wounds acquired from snares. The goal of our study was to quantify the locomotor kinematics of free-ranging Nubian giraffe (G. camelopardalis camelopardalis) in Murchison Falls National Park (MFNP), Uganda, and compare spatiotemporal limb and neck angle kinematics of healthy giraffe to those of giraffe with GSD lesions, snare wounds, and both GSD lesions and snare wounds. The presence of GSD lesions did not significantly affect spatiotemporal limb kinematic parameters. This finding is potentially because lesions were located primarily on the necks of Nubian giraffe in MFNP. The kinematic parameters of individuals with snare wounds differed from those of healthy individuals, resulting in significantly shorter stride lengths, reduced speed, lower limb phase values, and increased gait asymmetry. Neck angle kinematic parameters did not differ among giraffe categories, which suggests that GSD neck lesions do not impair normal neck movements and range of motion during walking. Overall, MFNP giraffe locomotor patterns are largely conservative between healthy individuals and those with GSD, while individuals with snare wounds showed more discernible kinematic adjustments consistent with unilateral limb injuries. Additional studies are recommended to assess spatiotemporal limb kinematics of giraffe at sites where lesions are found predominantly on the limbs to better assess the potential significance of GSD on their locomotion.
Collapse
Affiliation(s)
- L M Bernstein-Kurtycz
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, USA.,Little Rock Zoo, Little Rock, AR, USA
| | - N T Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA. .,Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| | - J Evenhuis
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.,College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - M B Brown
- Giraffe Conservation Foundation, P.O. Box 86099, Eros, Namibia.,Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA.,Department of Biological Sciences Program in Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, NH, USA
| | - A B Muneza
- Giraffe Conservation Foundation, P.O. Box 86099, Eros, Namibia
| | - J Fennessy
- Giraffe Conservation Foundation, P.O. Box 86099, Eros, Namibia
| | - P M Dennis
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, USA.,Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - K E Lukas
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Chan KM, Yeater TD, Allen KD. Age alters gait compensations following meniscal injury in male rats. J Orthop Res 2022; 40:2780-2791. [PMID: 35285977 PMCID: PMC9470788 DOI: 10.1002/jor.25306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
With age, susceptibility to osteoarthritis (OA) and OA-related pain and disability increases. Like in OA patients, gait patterns in rodent OA models shift to protect the injured limb during loading. However, unlike in OA patients, it is unknown how age affects gait changes in rodent OA models. In this study, gait compensations following meniscal injury in 3-, 6-, and 9-month-old rats were evaluated to examine age-effects of OA-related joint dysfunction. Rats 3, 6, and 9 months received medial collateral ligament transection plus medial meniscus transection (MCLT + MMT) surgery (n = 8/age group) or a skin incision (n = 8/age group). Postsurgery, rats underwent gait testing at 2, 4, 6, and 8 weeks. Postmortem, joints were processed for histology to assess cartilage damage. MCLT + MMT rats walked with reduced vertical loading in their injured limbs immediately after injury and throughout OA progression. Compared to sham-operated limbs, 6- and 9-month MCLT + MMT animals reduced loading in their injured limbs while 3-month MCLT + MMT animals did not. MCLT + MMT rats also increased stance time on the injured limb compared to the contralateral limb. Additionally, for the MCLT + MMT animals, 6- and 9-month animals had significantly worse cartilage damage compared to 3-month animals. These data indicated age at injury onset affects how animals load the OA-affected joint, with older animals developing gait compensations that more markedly reduce weight on the injured limb during walking.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Parola LR, Pinette MP, Proffen BL, Sant NJ, Karamchedu NP, Costa MQ, Molino J, Fleming BC, Murray MM. Hydrogel treatment for idiopathic osteoarthritis in a Dunkin Hartley Guinea pig model. PLoS One 2022; 17:e0278338. [PMID: 36449506 PMCID: PMC9710799 DOI: 10.1371/journal.pone.0278338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
The study objective was to determine if intraarticular injections of an extracellular matrix (ECM) powder and blood composite (ECM-B) would have a significant impact on post-operative gait parameters without eliciting adverse cartilage changes or severe lymphatic reactions in an idiopathic osteoarthritis (OA) model. Twenty-one Dunkin Hartley Guinea pigs received an intraarticular injection of ECM-B in each knee and were split into sub-groups for gait assessment and post-harvest knee evaluations at 1 week (n = 5), 2 weeks (n = 5), 4 weeks (n = 5), or 8 weeks (n = 6). The results were compared with a control group (n = 5), which underwent bilateral injections of phosphate-buffered saline (PBS), gait measurements at 1, 2, 4, and 8 weeks, and post-mortem knee evaluation at 8 weeks post-injection. Hind limbs and popliteal lymph nodes were collected at the Week 8 endpoint and underwent histological analysis by a veterinary pathologist. Significant improvement in hind limb base of support was observed in the ECM-B group compared to the control group at Week 4 but was no longer significant by Week 8. No significant differences were observed between control and ECM-B groups in hind limb cartilage, synovium, or popliteal lymph node histology at Week 8. In conclusion, administration of an ECM-B material may improve gait for a limited time without significant adverse effects on the cartilage, synovium, or local lymph nodes.
Collapse
Affiliation(s)
- Lauren R. Parola
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/ Rhode Island Hospital, Providence, RI, United States of America
| | - Megan P. Pinette
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/ Rhode Island Hospital, Providence, RI, United States of America
| | - Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Nicholas J. Sant
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - N. Padmini Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/ Rhode Island Hospital, Providence, RI, United States of America
| | - Meggin Q. Costa
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/ Rhode Island Hospital, Providence, RI, United States of America
| | - Janine Molino
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/ Rhode Island Hospital, Providence, RI, United States of America
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/ Rhode Island Hospital, Providence, RI, United States of America
- * E-mail:
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
28
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
29
|
A Preliminary Study on Grip-Induced Nerve Damage Caused by a Soft Pneumatic Elastomeric Gripper. Polymers (Basel) 2022; 14:polym14204272. [PMID: 36297851 PMCID: PMC9611661 DOI: 10.3390/polym14204272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Forceps, clamps, and haemostats are essential surgical tools required for all surgical interventions. While they are widely used to grasp, hold, and manipulate soft tissue, their metallic rigid structure may cause tissue damage due to the potential risk of applying excessive gripping forces. Soft pneumatic surgical grippers fabricated by silicone elastomeric materials with low Young’s modulus may offer a promising solution to minimize this unintentional damage due to their inherent excellent compliance and compressibility. The goal of this work is to evaluate and compare the grip-induced nerve damage caused by the soft pneumatic elastomeric gripper and conventional haemostats during surgical manipulation. Twenty-four Wistar rats (male, seven weeks) are subjected to sciatic nerve compression (right hind limb) using the soft pneumatic elastomer gripper and haemostats. A histopathological analysis is conducted at different time-points (Day 0, Day 3, Day 7 and Day 13) after the nerve compression to examine the morphological tissue changes between the rats in the ‘soft gripper’ group and the ‘haemostats’ group. A free walking analysis is also performed to examine the walking function of the rats after recovery from different time points. Comparing the rigid haemostats and soft gripper groups, there is a visible difference in the degree of axonal vacuolar degeneration between the groups, which could suggest the presence of substantial nerve damage in the ‘haemostats’ group. The rats in the haemostats group exhibited reduced right hind paw pressure and paw size after the nerve compression. It shows that the rats tend not to exert more force on the affected right hind limb in the haemostats group compared to the soft gripper group. In addition, the stance duration was reduced in the injured right hind limb compared to the normal left hind limb in the haemostats group. These observations show that the soft pneumatic surgical gripper made of silicone elastomeric materials might reduce the severity of grip-induced damage by providing a safe compliant grip compared to the conventional haemostats. The soft pneumatic elastomer gripper could complement the current surgical gripping tool in delicate tissue manipulation.
Collapse
|
30
|
Functional Gait Assessment Using Manual, Semi-Automated and Deep Learning Approaches Following Standardized Models of Peripheral Nerve Injury in Mice. Biomolecules 2022; 12:biom12101355. [PMID: 36291564 PMCID: PMC9599622 DOI: 10.3390/biom12101355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To develop a standardized model of stretch−crush sciatic nerve injury in mice, and to compare outcomes of crush and novel stretch−crush injuries using standard manual gait and sensory assays, and compare them to both semi-automated as well as deep-learning gait analysis methods. Methods: Initial studies in C57/Bl6 mice were used to develop crush and stretch−crush injury models followed by histologic analysis. In total, 12 eight-week-old 129S6/SvEvTac mice were used in a six-week behavioural study. Behavioral assessments using the von Frey monofilament test and gait analysis recorded on a DigiGait platform and analyzed through both Visual Gait Lab (VGL) deep learning and standardized sciatic functional index (SFI) measurements were evaluated weekly. At the termination of the study, neurophysiological nerve conduction velocities were recorded, calf muscle weight ratios measured and histological analyses performed. Results: Histological evidence confirmed more severe histomorphological injury in the stretch−crush injured group compared to the crush-only injured group at one week post-injury. Von Frey monofilament paw withdrawal was significant for both groups at week one compared to baseline (p < 0.05), but not between groups with return to baseline at week five. SFI showed hindered gait at week one and two for both groups, compared to baseline (p < 0.0001), with return to baseline at week five. Hind stance width (HSW) showed similar trends as von Frey monofilament test as well as SFI measurements, yet hind paw angle (HPA) peaked at week two. Nerve conduction velocity (NCV), measured six weeks post-injury, at the termination of the study, did not show any significant difference between the two groups; yet, calf muscle weight measurements were significantly different between the two, with the stretch−crush group demonstrating a lower (poorer) weight ratio relative to uninjured contralateral legs (p < 0.05). Conclusion: Stretch−crush injury achieved a more reproducible and constant injury compared to crush-only injuries, with at least a Sunderland grade 3 injury (perineurial interruption) in histological samples one week post-injury in the former. However, serial behavioral outcomes were comparable between the two crush groups, with similar kinetics of recovery by von Frey testing, SFI and certain VGL parameters, the latter reported for the first time in rodent peripheral nerve injury. Semi-automated and deep learning-based approaches for gait analysis are promising, but require further validation for evaluation in murine hind-limb nerve injuries.
Collapse
|
31
|
Wachs RA, Wellman SM, Porvasnik SL, Lakes EH, Cornelison RC, Song YH, Allen KD, Schmidt CE. Apoptosis-Decellularized Peripheral Nerve Scaffold Allows Regeneration across Nerve Gap. Cells Tissues Organs 2022; 212:512-522. [PMID: 36030771 DOI: 10.1159/000525704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2023] Open
Abstract
Peripheral nerve injury results in loss of motor and sensory function distal to the nerve injury and is often permanent in nerve gaps longer than 5 cm. Autologous nerve grafts (nerve autografts) utilize patients' own nerve tissue from another part of their body to repair the defect and are the gold standard in care. However, there is a limited autologous tissue supply, size mismatch between donor nerve and injured nerve, and morbidity at the site of nerve donation. Decellularized cadaveric nerve tissue alleviates some of these limitations and has demonstrated success clinically. We previously developed an alternative apoptosis-assisted decellularization process for nerve tissue. This new process may result in an ideal scaffold for peripheral nerve regeneration by gently removing cells and antigens while preserving delicate topographical cues. In addition, the apoptosis-assisted process requires less active processing time and is inexpensive. This study examines the utility of apoptosis-decellularized peripheral nerve scaffolds compared to detergent-decellularized peripheral nerve scaffolds and isograft controls in a rat nerve gap model. Results indicate that, at 8 weeks post-injury, apoptosis-decellularized peripheral nerve scaffolds perform similarly to detergent-decellularized and isograft controls in both functional (muscle weight recovery, gait analysis) and histological measures (neurofilament staining, macrophage infiltration). These new apoptosis-decellularized scaffolds hold great promise to provide a less expensive scaffold for nerve injury repair, with the potential to improve nerve regeneration and functional outcomes compared to current detergent-decellularized scaffolds.
Collapse
Affiliation(s)
- Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| | - Steven M Wellman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Stacy L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Emily H Lakes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - R Chase Cornelison
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
32
|
A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait. PLoS Comput Biol 2022; 18:e1009398. [PMID: 35657996 PMCID: PMC9166403 DOI: 10.1371/journal.pcbi.1009398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity. Osteoarthritis is a disease of the musculoskeletal system which is characterized by the degradation of articular cartilage. Changes in the knee loading after injuries or obesity contribute to the development of cartilage degeneration. Since injured cartilage cannot be reversed back to intact conditions, small animal models have been widely used for investigating osteoarthritis progression mechanisms. Moreover, experimental studies have been complemented with numerical models to overcome inherent limitations such as cost, difficulties to obtain accurate measures and replicate degenerative situations in the knee joint. However, computational models to study articular cartilage responses under dynamic loading in small animal models have not been developed. Thus, here we present a musculoskeletal finite element model (MSFE) of a rat knee joint to evaluate cartilage biomechanical responses during gait. Our computational model considers both the anatomical and locomotion characteristics of the rat knee joint for estimating mechanical responses in the articular cartilage. We suggest that our approach can be used to investigate tissue adaptations based on the mechanobiological responses of the cartilage to prevent the progression of osteoarthritis.
Collapse
|
33
|
Ding YS, Wang J, Kumar V, Ciaccio J, Dakhel S, Tan C, Kim J, Lee S, Katz-Lichtenstein H, Gironda Z, Mishkit O, Mroz J, Jackson R, Yoon G, Gamallo-Lana B, Klores M, Mar A. Evidence For Cannabidiol Modulation of Serotonergic Transmission in a Model of Osteoarthritis via in vivo PET Imaging and Behavioral Assessment. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN MEDICAL SCIENCE 2022; 7:254-271. [PMID: 37841504 PMCID: PMC10576525 DOI: 10.23958/ijirms/vol07-i06/1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background Preclinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis, has a wide range of reported pharmacological effects such as analgesic and anxiolytic actions; however, the exact mechanisms of action for these effects have not been examined in chronic osteoarthritis (OA). Similar to other chronic pain syndromes, OA pain can have a significant affective component characterized by mood changes. Serotonin (5-HT) is a neurotransmitter implicated in pain, depression, and anxiety. Pain is often in comorbidity with mood and anxiety disorders in patients with OA. Since primary actions of CBD are analgesic and anxiolytic, in this first in vivo positron emission tomography (PET) imaging study, we investigate the interaction of CBD with serotonin 5-HT1A receptor via a combination of in vivo neuroimaging and behavioral studies in a well-validated OA animal model. Methods The first aim of this study was to evaluate the target involvement, including the evaluation of modulation by acute administration of CBD, or a specific target antagonist/agonist intervention, in control animals. The brain 5-HT1A activity/availability was assessed via in vivo dynamic PET imaging (up to 60 min) using a selective 5-HT1A radioligand ([18F]MeFWAY). Tracer bindings of 17 ROIs were evaluated based on averaged SUVR values over the last 10 min using CB as the reference region. We subsequently examined the neurochemical and behavioral alterations in OA animals (induction with monosodium iodoacetate (MIA) injection), as compared to control animals, via neuroimaging and behavioral assessment. Further, we examined the effects of repeated low-dose CBD treatment on mechanical allodynia (von Frey tests) and anxiety-like (light/dark box tests, L/D), depressive-like (forced swim tests, FST) behaviors in OA animals, as compared to after vehicle treatment. Results The tracer binding was significantly reduced in control animals after an acute dose of CBD administered intravenously (1.0 mg/kg, i.v.), as compared to that for baseline. This binding specificity to 5-HT1A was further confirmed by a similar reduction of tracer binding when a specific 5-HT1A antagonist WAY1006235 was used (0.3 mg/kg, i.v.). Mice subjected to the MIA-induced OA for 13-20 days showed a decreased 5-HT1A tracer binding (25% to 41%), consistent with the notion that 5-HT1A plays a role in the modulation of pain in OA. Repeated treatment with CBD administered subcutaneously (5 mg/kg/day, s.c., for 16 days after OA induction) increased 5-HT1A tracer binding, while no significant improvement was observed after vehicle. A trend of increased anxiety or depressive-like behavior in the light/dark box or forced swim tests after OA induction, and a decrease in those behaviors after repeated low-dose CBD treatment, are consistent with the anxiolytic action of CBD through 5HT1A receptor activation. There appeared to be a sex difference: females seem to be less responsive at the baseline towards pain stimuli, while being more sensitive to CBD treatment. Conclusion This first in vivo PET imaging study in an OA animal model has provided evidence for the interaction of CBD with the serotonin 5-HT1A receptor. Behavioral studies with more pharmacological interventions to support the target involvement are needed to further confirm these critical findings.
Collapse
Affiliation(s)
- Yu-Shin Ding
- Radiology, New York University School of Medicine, New
York, NY, USA
- Psychiatry, New York University School of Medicine, New
York, NY, USA
| | - Jiacheng Wang
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Vinay Kumar
- Radiology, New York University School of Medicine, New
York, NY, USA
| | | | - Sami Dakhel
- Chemistry, New York University, New York, NY, USA
| | - Cathy Tan
- Chemistry, New York University, New York, NY, USA
| | - Jonathan Kim
- Chemistry, New York University, New York, NY, USA
| | - Sabrina Lee
- Radiology, New York University School of Medicine, New
York, NY, USA
| | | | - Zakia Gironda
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Orin Mishkit
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Jakub Mroz
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Raul Jackson
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Grace Yoon
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Begona Gamallo-Lana
- Rodent Behavioral Core, New York University School of
Medicine, New York, NY, USA
| | - Molly Klores
- Rodent Behavioral Core, New York University School of
Medicine, New York, NY, USA
| | - Adam Mar
- Rodent Behavioral Core, New York University School of
Medicine, New York, NY, USA
| |
Collapse
|
34
|
Fouasson-Chailloux A, Menu P, Dauty M. Lower-Limb Arthropathies and Walking: The Use of 3D Gait Analysis as a Relevant Tool in Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116785. [PMID: 35682370 PMCID: PMC9179954 DOI: 10.3390/ijerph19116785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Alban Fouasson-Chailloux
- Service de Médecine Physique et Réadaptation Locomotrice et Respiratoire, CHU Nantes, Nantes Université, 44093 Nantes, France; (P.M.); (M.D.)
- Service de Médecine du Sport, CHU Nantes, Nantes Université, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, ONIRIS, Nantes Université, 44042 Nantes, France
- Correspondence:
| | - Pierre Menu
- Service de Médecine Physique et Réadaptation Locomotrice et Respiratoire, CHU Nantes, Nantes Université, 44093 Nantes, France; (P.M.); (M.D.)
- Service de Médecine du Sport, CHU Nantes, Nantes Université, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, ONIRIS, Nantes Université, 44042 Nantes, France
| | - Marc Dauty
- Service de Médecine Physique et Réadaptation Locomotrice et Respiratoire, CHU Nantes, Nantes Université, 44093 Nantes, France; (P.M.); (M.D.)
- Service de Médecine du Sport, CHU Nantes, Nantes Université, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, ONIRIS, Nantes Université, 44042 Nantes, France
| |
Collapse
|
35
|
Martins LA, Schiavo A, Xavier LL, Mestriner RG. The Foot Fault Scoring System to Assess Skilled Walking in Rodents: A Reliability Study. Front Behav Neurosci 2022; 16:892010. [PMID: 35571280 PMCID: PMC9100421 DOI: 10.3389/fnbeh.2022.892010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
The foot fault scoring system of the ladder rung walking test (LRWT) is used to assess skilled walking in rodents. However, the reliability of the LRWT foot fault score has not been properly addressed. This study was designed to address this issue. Two independent and blinded raters analyzed 20 rats and 20 mice videos. Each video was analyzed twice by the same rater (80 analyses per rater). The intraclass correlation coefficient (ICC) and the Kappa coefficient were employed to check the accuracy of agreement and reliability in the intra- and inter-rater analyses of the LRWT outcomes. Excellent intra- and inter-rater agreements were found for the forelimb, hindlimb, and both limbs combined in rats and mice. The agreement level was also excellent for total crossing time, total time stopped, and the number of stops during the walking path. Rating individual scores in the foot fault score system (0–6) ranged from satisfactory to excellent, in terms of the intraclass correlation indexes. Moreover, we showed that experienced and inexperienced raters can obtain reliable results if supervised training is provided. We concluded that the LRWT is a reliable and useful tool to study skilled walking in rodents and can help researchers address walking-related neurobiological questions.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Neurorehabilitation and Neural Repair Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Neurorehabilitation and Neural Repair Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Léder Leal Xavier
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Neurorehabilitation and Neural Repair Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Régis Gemerasca Mestriner, , orcid.org/0000-0001-9837-1691
| |
Collapse
|
36
|
Ding X, Gao J, Yu X, Shi J, Chen J, Yu L, Chen S, Ding J. 3D-Printed Porous Scaffolds of Hydrogels Modified with TGF-β1 Binding Peptides to Promote In Vivo Cartilage Regeneration and Animal Gait Restoration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15982-15995. [PMID: 35363484 DOI: 10.1021/acsami.2c00761] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The treatment of cartilage injury and osteoarthritis has been a classic problem for many years. The idea of in situ tissue regeneration paves a way for osteochondral repair in vivo. Herein, a hydrogel scaffold linked with bioactive peptides that can selectively adsorb transforming growth factor β1 (TGF-β1) was hypothesized to not only afford cell ingrowth space but also induce the endogenous TGF-β1 recruitment for chondrogenesis promotion. In this study, bilayered porous scaffolds with gelatin methacryloyl (GelMA) hydrogels as a matrix were constructed via three-dimensional (3D) printing, of which the upper layer was covalently bound with bioactive peptides that can adsorb TGF-β1 for cartilage repair and the lower layer was blended with hydroxyapatite for subchondral regeneration. The scaffolds showed promising therapeutic efficacy proved by cartilage and osteogenic induction in vitro and osteochondral repair of rats in vivo. In particular, the animal gait behavior was recovered after the in situ tissue regeneration, and the corresponding gait analysis demonstrated the promotion of tissue regeneration induced by the porous hydrogels with the binding peptides.
Collapse
Affiliation(s)
- Xiaoquan Ding
- Department of Sports Medicine, Huashan Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200040, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200040, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200040, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
37
|
Yang DS, Dickerson EE, Zhang LX, Richendrfer H, Karamchedu PN, Badger GJ, Schmidt TA, Fredericks AM, Elsaid KA, Jay GD. Quadruped Gait and Regulation of Apoptotic Factors in Tibiofemoral Joints following Intra-Articular rhPRG4 Injection in Prg4 Null Mice. Int J Mol Sci 2022; 23:ijms23084245. [PMID: 35457064 PMCID: PMC9025840 DOI: 10.3390/ijms23084245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome leads to diarthrodial joint arthropathy and is caused by the absence of lubricin (proteoglycan 4—PRG4), a surface-active mucinous glycoprotein responsible for lubricating articular cartilage. In this study, mice lacking the orthologous gene Prg4 served as a model that recapitulates the destructive arthrosis that involves biofouling of cartilage by serum proteins in lieu of Prg4. This study hypothesized that Prg4-deficient mice would demonstrate a quadruped gait change and decreased markers of mitochondrial dyscrasia, following intra-articular injection of both hindlimbs with recombinant human PRG4 (rhPRG4). Prg4−/− (N = 44) mice of both sexes were injected with rhPRG4 and gait alterations were studied at post-injection day 3 and 6, before joints were harvested for immunohistochemistry for caspase-3 activation. Increased stance and propulsion was shown at 3 days post-injection in male mice. There were significantly fewer caspase-3-positive chondrocytes in tibiofemoral cartilage from rhPRG4-injected mice. The mitochondrial gene Mt-tn, and myosin heavy (Myh7) and light chains (Myl2 and Myl3), known to play a cytoskeletal stabilizing role, were significantly upregulated in both sexes (RNA-Seq) following IA rhPRG4. Chondrocyte mitochondrial dyscrasias attributable to the arthrosis in CACP may be mitigated by IA rhPRG4. In a supporting in vitro crystal microbalance experiment, molecular fouling by albumin did not block the surface activity of rhPRG4.
Collapse
Affiliation(s)
- Daniel S. Yang
- School of Engineering, Brown University, Providence, RI 02912, USA; (D.S.Y.); (G.D.J.)
- Department of Emergency Medicine, Alpert School of Medicine, Brown University, Providence, RI 02903, USA; (L.X.Z.); (H.R.)
| | - Edward E. Dickerson
- North Carolina Agricultural Technical State University, Greensboro, NC 27411, USA;
| | - Ling X. Zhang
- Department of Emergency Medicine, Alpert School of Medicine, Brown University, Providence, RI 02903, USA; (L.X.Z.); (H.R.)
| | - Holly Richendrfer
- Department of Emergency Medicine, Alpert School of Medicine, Brown University, Providence, RI 02903, USA; (L.X.Z.); (H.R.)
| | - Padmini N. Karamchedu
- Department of Orthopedics, Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Gary J. Badger
- Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Alger M. Fredericks
- Department of Surgery, Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Khaled A. Elsaid
- School of Pharmacy, Chapman University, Irvine, CA 92618, USA
- Correspondence:
| | - Gregory D. Jay
- School of Engineering, Brown University, Providence, RI 02912, USA; (D.S.Y.); (G.D.J.)
- Department of Emergency Medicine, Alpert School of Medicine, Brown University, Providence, RI 02903, USA; (L.X.Z.); (H.R.)
- Department of Orthopedics, Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
38
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
39
|
DeAngelo VM, Hilliard JD, McConnell GC. Dopaminergic but not cholinergic neurodegeneration is correlated with gait disturbances in PINK1 knockout rats. Behav Brain Res 2022; 417:113575. [PMID: 34534596 DOI: 10.1016/j.bbr.2021.113575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by gait dysfunction in later stages of the disease. PD hallmarks include a decrease in stride length, run speed, and swing time; an increase in stride time, stance time, and base of support; dopaminergic degeneration in the basal ganglia; and cholinergic degeneration in the pedunculopontine nucleus (PPN). A progressive animal model of PD is needed to identify treatments for gait dysfunction. The goal of this study was to quantify progressive gait degeneration in PTEN-induced putative kinase 1 knockout (P1KO) rats and investigate neurodegeneration as potential underlying mechanisms. Gait analysis was performed in male P1KO and wild-type rats at 5 and 8 months of age and immunohistochemical analysis at 8 months. Multiple parameters of volitional gait were measured using a runway system. P1KO rats exhibited significant gait deficits at 5 months, but not 8 months. Gait abnormalities improved over time suggesting compensation during behavioral testing. At 8 months a 15% loss of tyrosine hydroxylase (TH) in the striatum, a 27% loss of TH-positive cells in the substantia nigra pars compacta, and no significant loss of choline acetyltransferase-positive cells in the PPN was found. Dopaminergic cell loss may contribute to gait deficits in the P1KO model, but not cholinergic cell loss. The P1KO rat with the greatest dopamine loss exhibited the most pronounced PD-like gait deficits, highlighting variability within the model. Further analysis is required to determine the suitability of the P1KO rat as a progressive model of gait abnormalities in PD.
Collapse
Affiliation(s)
- V M DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - J D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - G C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
40
|
Sheppard K, Gardin J, Sabnis GS, Peer A, Darrell M, Deats S, Geuther B, Lutz CM, Kumar V. Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation. Cell Rep 2022; 38:110231. [PMID: 35021077 PMCID: PMC8796662 DOI: 10.1016/j.celrep.2021.110231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions. Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and posture extraction from the open field and one of the largest laboratory mouse gait and posture data resources for the research community.
Collapse
Affiliation(s)
- Keith Sheppard
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Justin Gardin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Gautam S Sabnis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Asaf Peer
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Megan Darrell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Sean Deats
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Brian Geuther
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
41
|
Trivedi J, Betensky D, Desai S, Jayasuriya CT. Post-Traumatic Osteoarthritis Assessment in Emerging and Advanced Pre-Clinical Meniscus Repair Strategies: A Review. Front Bioeng Biotechnol 2021; 9:787330. [PMID: 35004646 PMCID: PMC8733822 DOI: 10.3389/fbioe.2021.787330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical repair of meniscus injury is intended to help alleviate pain, prevent further exacerbation of the injury, restore normal knee function, and inhibit the accelerated development of post-traumatic osteoarthritis (PTOA). Meniscus injuries that are treated poorly or left untreated are reported to significantly increase the risk of PTOA in patients. Current surgical approaches for the treatment of meniscus injuries do not eliminate the risk of accelerated PTOA development. Through recent efforts by scientists to develop innovative and more effective meniscus repair strategies, the use of biologics, allografts, and scaffolds have come into the forefront in pre-clinical investigations. However, gauging the extent to which these (and other) approaches inhibit the development of PTOA in the knee joint is often overlooked, yet an important consideration for determining the overall efficacy of potential treatments. In this review, we catalog recent advancements in pre-clinical therapies for meniscus injuries and discuss the assessment methodologies that are used for gauging the success of these treatments based on their effect on PTOA severity. Methodologies include histopathological evaluation of cartilage, radiographic evaluation of the knee, analysis of knee function, and quantification of OA predictive biomarkers. Lastly, we analyze the prevalence of these methodologies using a systemic PubMed® search for original scientific journal articles published in the last 3-years. We indexed 37 meniscus repair/replacement studies conducted in live animal models. Overall, our findings show that approximately 75% of these studies have performed at least one assessment for PTOA following meniscus injury repair. Out of this, 84% studies have reported an improvement in PTOA resulting from treatment.
Collapse
Affiliation(s)
| | | | | | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
42
|
Fouasson-Chailloux A, Dauty M, Bodic B, Masson M, Maugars Y, Metayer B, Veziers J, Lesoeur J, Rannou F, Guicheux J, Vinatier C. Posttraumatic Osteoarthritis Damage in Mice: From Histological and Micro-Computed Tomodensitometric Changes to Gait Disturbance. Cartilage 2021; 13:1478S-1489S. [PMID: 34696628 PMCID: PMC8804860 DOI: 10.1177/19476035211053821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Osteoarthritis is a painful joint disease responsible for walking impairment. Its quantitative assessment by gait analysis in mice may be a relevant and noninvasive strategy to assess the disease severity. In this study, we aimed to determine the severity of osteoarthritis at the tissular and gait levels in unilateral and bilateral posttraumatic murine osteoarthritis. METHODS Twenty-four C57BL/6 male mice were randomly assigned to 3 groups (n = 8/group): controls, unilateral surgery, and bilateral surgery. Posttraumatic osteoarthritis was induced unilaterally or bilaterally by destabilization of the medial meniscus. Gait analysis was performed weekly with the CatWalkTM XT system until the 16th week after surgery. After animal sacrifices, histological and micro-computed tomographic assessment was performed. RESULTS Operated knees showed a significant increase in the histological score compared with controls (P < 0.001). Calcified anterior medial meniscal bone volume was higher on the ipsilateral side after unilateral destabilization of the medial meniscus (P < 0.001) and on both sides after bilateral intervention (P < 0.01). One week after surgery, the mice mean speed decreased significantly in both operated groups (P < 0.001 and P < 0.05). In the unilateral group, a significant increase in the contralateral hind print area appeared from week 4 to week 16. CONCLUSIONS While bilateral destabilization of the medial meniscus induced no detectable gait modification except 1 week after surgery, unilateral model was responsible for a gait disturbance on the contralateral side. Further studies are needed to better define the place of the CatWalkTM in the evaluation of mouse models of osteoarthritis.
Collapse
Affiliation(s)
- Alban Fouasson-Chailloux
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Service de Médecine Physique et
Réadaptation Locomotrice et Respiratoire, CHU Nantes, Nantes, France
- Service de Médecine du Sport, CHU
Nantes, Nantes, France
- UFR Odontologie, Université de Nantes,
Nantes, France
| | - Marc Dauty
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Service de Médecine Physique et
Réadaptation Locomotrice et Respiratoire, CHU Nantes, Nantes, France
- Service de Médecine du Sport, CHU
Nantes, Nantes, France
- UFR Odontologie, Université de Nantes,
Nantes, France
| | - Benoit Bodic
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes,
Nantes, France
| | - Martial Masson
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- CHU Nantes, Université de Nantes,
Nantes, France
| | - Yves Maugars
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes,
Nantes, France
- Service de Rhumatologie, CHU Nantes,
Nantes, France
| | - Benoit Metayer
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Service de Rhumatologie, CHU Nantes,
Nantes, France
| | - Joëlle Veziers
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- CHU Nantes, Université de Nantes,
Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes,
France
| | - Julie Lesoeur
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- CHU Nantes, Université de Nantes,
Nantes, France
| | - François Rannou
- Service de Rééducation et de
Réadaptation de l’Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux
Universitaires-Paris Centre, Groupe Hospitalier Cochin, Assistance Publique—Hôpitaux
de Paris, Paris, France
- INSERM UMRS 1124, Toxicité
Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs,
UFR Sciences Fondamentales et Biomédicales, Paris, France
- Université de Paris, Paris,
France
| | - Jérôme Guicheux
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes,
Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes,
France
| | - Claire Vinatier
- Inserm, UMR 1229, Regenerative Medicine
and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes,
Nantes, France
| |
Collapse
|
43
|
Cai L, Burton A, Gonzales DA, Kasper KA, Azami A, Peralta R, Johnson M, Bakall JA, Barron Villalobos E, Ross EC, Szivek JA, Margolis DS, Gutruf P. Osseosurface electronics-thin, wireless, battery-free and multimodal musculoskeletal biointerfaces. Nat Commun 2021; 12:6707. [PMID: 34795247 PMCID: PMC8602388 DOI: 10.1038/s41467-021-27003-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 10/27/2021] [Indexed: 01/23/2023] Open
Abstract
Bioelectronic interfaces have been extensively investigated in recent years and advances in technology derived from these tools, such as soft and ultrathin sensors, now offer the opportunity to interface with parts of the body that were largely unexplored due to the lack of suitable tools. The musculoskeletal system is an understudied area where these new technologies can result in advanced capabilities. Bones as a sensor and stimulation location offer tremendous advantages for chronic biointerfaces because devices can be permanently bonded and provide stable optical, electromagnetic, and mechanical impedance over the course of years. Here we introduce a new class of wireless battery-free devices, named osseosurface electronics, which feature soft mechanics, ultra-thin form factor and miniaturized multimodal biointerfaces comprised of sensors and optoelectronics directly adhered to the surface of the bone. Potential of this fully implanted device class is demonstrated via real-time recording of bone strain, millikelvin resolution thermography and delivery of optical stimulation in freely-moving small animal models. Battery-free device architecture, direct growth to the bone via surface engineered calcium phosphate ceramic particles, demonstration of operation in deep tissue in large animal models and readout with a smartphone highlight suitable characteristics for exploratory research and utility as a diagnostic and therapeutic platform.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - David A Gonzales
- Department of Orthopaedic Surgery and Arizona Arthritis Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Amirhossein Azami
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberto Peralta
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Megan Johnson
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jakob A Bakall
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Efren Barron Villalobos
- Department of Orthopaedic Surgery and Arizona Arthritis Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Ethan C Ross
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - John A Szivek
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Orthopaedic Surgery and Arizona Arthritis Center, University of Arizona, Tucson, AZ, 85721, USA
| | - David S Margolis
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Orthopaedic Surgery and Arizona Arthritis Center, University of Arizona, Tucson, AZ, 85721, USA.
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
- Departments of Electrical and Computer Engineering, BIO5 Institute, Neuroscience GIDP, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
44
|
Abstract
Infection with mosquito-borne arthritogenic alphaviruses, such as Ross River virus (RRV) and Barmah Forest virus (BFV), can lead to long-lasting rheumatic disease. Existing mouse models that recapitulate the disease signs and immunopathogenesis of acute RRV and BFV infection have consistently shown relevance to human disease. However, these mouse models, which chiefly model hindlimb dysfunction, may be prone to subjective interpretation when scoring disease. Assessment is therefore time-consuming and requires experienced users. The DigiGait system provides video-based measurements of movement, behavior, and gait dynamics in mice and small animals. Previous studies have shown DigiGait to be a reliable system to objectively quantify changes in gait in other models of pain and inflammation. Here, for the first time, we determine measurable differences in the gait of mice with infectious arthritis using the DigiGait system. Statistically significant differences in paw area and paw angle were detected during peak disease in RRV-infected mice. Significant differences in temporal gait parameters were also identified during the period of peak disease in RRV-infected mice. These trends were less obvious or absent in BFV-infected mice, which typically present with milder disease signs than RRV-infected mice. The DigiGait system therefore provides an objective model of variations in gait dynamics in mice acutely infected with RRV. DigiGait is likely to have further utility for murine models that develop severe forms of infectious arthritis resulting in hindlimb dysfunction like RRV. IMPORTANCE Mouse models that accurately replicate the immunopathogenesis and clinical disease of alphavirus infection are vital to the preclinical development of therapeutic strategies that target alphavirus infection and disease. Current models rely on subjective scoring made through experienced observation of infected mice. Here, we demonstrate how the DigiGait system, and interventions on mice to use this system, can make an efficient objective assessment of acute disease progression and changes in gait in alphavirus-infected mice. Our study highlights the importance of measuring gait parameters in the assessment of models of infectious arthritis.
Collapse
|
45
|
Castaño Barrios L, Da Silva Pinheiro AP, Gibaldi D, Silva AA, Machado Rodrigues e Silva P, Roffê E, da Costa Santiago H, Tostes Gazzinelli R, Mineo JR, Silva NM, Lannes-Vieira J. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. PLoS One 2021; 16:e0258199. [PMID: 34610039 PMCID: PMC8491889 DOI: 10.1371/journal.pone.0258199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.
Collapse
Affiliation(s)
- Leda Castaño Barrios
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Da Silva Pinheiro
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Federal University Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Ester Roffê
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Tostes Gazzinelli
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Croen BJ, Carballo CB, Wada S, Zhang X, Patel S, Deng XH, Rodeo SA. Chronic subacromial impingement leads to supraspinatus muscle functional and morphological changes: Evaluation in a murine model. J Orthop Res 2021; 39:2243-2251. [PMID: 33336819 DOI: 10.1002/jor.24964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Muscle atrophy and fatty infiltration have been directly correlated with higher rates of incomplete or failed healing following surgical repair of the rotator cuff. The purpose of this study was to evaluate clinically relevant functional and morphological changes in the supraspinatus muscle at various time points in this model of rotator cuff tendinopathy. Subacromial impingement was induced in 47, male C57BL/6 mice (total 94 limbs) by implantation of a metal clip in the subacromial space. Specimens were evaluated at 4, 6, and 12 weeks postoperatively. Gait analysis was used to measure various kinematic parameters. Supraspinatus muscle wet weight, histology, and quantitative reverse-transcription polymerase chain reaction analysis of genes related to muscle atrophy and adipogenesis were performed to characterize the structural, cellular, and molecular changes. Muscle atrophy and fatty infiltration was evident beginning at 6 weeks, with progression out to 12 weeks. Gait analysis identified significant functional changes in many aspects of gait and abnormal stance tracing as early as 4 weeks, verifying alterations in upper extremity function. We have demonstrated that clinically relevant changes to the supraspinatus muscle are seen starting 6 weeks after induction of subacromial impingement. Furthermore, the gait analysis provides key functional outcome measurements that may be useful for future evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
- Brett J Croen
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA.,Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Camila B Carballo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Susumu Wada
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Xueying Zhang
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Saral Patel
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Xiang-Hua Deng
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
47
|
Investigation of the effects of therapeutic ultrasound or photobiomodulation and the role of spinal glial cells in osteoarthritis-induced nociception in mice. Lasers Med Sci 2021; 37:1687-1698. [PMID: 34542770 DOI: 10.1007/s10103-021-03418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023]
Abstract
Pain is the most common symptom of osteoarthritis, and spinal glia is known to contribute to this symptom. Therapeutic ultrasound and laser therapy have been used to effectively treat osteoarthritis, with few adverse effects. Thus, this study aimed to investigate the effects of ultrasound and photobiomodulation on the symptoms and evaluate the participation of spinal glia in osteoarthritis-induced nociception in mice. Male Swiss mice were subjected to osteoarthritis induction with a 0.1-mg intra-articular injection of monosodium iodoacetate. Additionally, the mice received chronic ultrasound or photobiomodulation treatment for 21 days or a single treatment at day 14. Nociception was evaluated using von Frey filaments, and osteoarthritis symptoms were assessed by analysis of gait, joint temperature, and knee joint diameter. The role of spinal microglia and astrocytes on nociception was evaluated via an intrathecal injection of minocycline or fluorocitrate, and the spinal release of IL-1β and TNF-α was assessed by ELISA after chronic treatment with ultrasound or photobiomodulation. Our data showed that both single and chronic treatment with ultrasound or photobiomodulation attenuated the osteoarthritis-induced nociception. No differences in gait, knee joint temperature, or knee joint diameter were found. The intrathecal injection of minocycline and fluorocitrate decreased the osteoarthritis-induced nociception. There was an increase in the spinal levels of TNF-α, which was reverted by chronic ultrasound and laser treatments. These results suggest that osteoarthritis induces nociception and glial activation via spinal release of TNF-α and that the chronic treatment with ultrasound or photobiomodulation decreased nociception and TNF-α release.
Collapse
|
48
|
Reiter AJ, Schott HR, Castile RM, Cannon PC, Havlioglu N, Chamberlain AM, Lake SP. Females and males exhibit similar functional, mechanical, and morphological outcomes in a rat model of posttraumatic elbow contracture. J Orthop Res 2021; 39:2062-2072. [PMID: 33222267 PMCID: PMC8140065 DOI: 10.1002/jor.24918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/04/2023]
Abstract
Posttraumatic joint contracture (PTJC) is a debilitating condition characterized by loss of joint motion following injury. Previous work in a rat model of elbow PTJC investigated disease etiology, progression, and recovery in only male animals; this study explored sex-based differences. Rat elbows were subjected to a unilateral anterior capsulotomy and lateral collateral ligament transection followed by 42 days of immobilization and 42 days of free mobilization. Grip strength and gait were collected throughout the free mobilization period while joint mechanical testing, microcomputed tomography and histological analysis were performed postmortem. Overall, few differences were seen between sexes in functional, mechanical, and morphological outcomes with PTJC being similarly debilitating in male and female animals. Functional measures of grip strength and gait showed that, while some baseline differences existed between sexes, traumatic injury produced similar deficits that remained significantly different long-term when compared to control animals. Similarly, male and female animals both had significant reductions in joint range of motion due to injury. Ectopic calcification (EC), which had not been previously evaluated in this injury model, was present in all limbs on the lateral side. Injury caused increased EC volume but did not alter mineral density regardless of sex. Furthermore, histological analysis of the anterior capsule showed minor differences between sexes for inflammation and thickness but not for other histological parameters. A quantitative understanding of sex-based differences associated with this injury model will help inform future therapeutics aimed at reducing or preventing elbow PTJC.
Collapse
Affiliation(s)
- Alex J. Reiter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO
| | - Hayden R. Schott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Ryan M. Castile
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO
| | | | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - Spencer P. Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
49
|
Joint Degeneration in a Mouse Model of Pseudoachondroplasia: ER Stress, Inflammation, and Block of Autophagy. Int J Mol Sci 2021; 22:ijms22179239. [PMID: 34502142 PMCID: PMC8431545 DOI: 10.3390/ijms22179239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
Pseudoachondroplasia (PSACH), a short limb skeletal dysplasia associated with premature joint degeneration, is caused by misfolding mutations in cartilage oligomeric matrix protein (COMP). Here, we define mutant-COMP-induced stress mechanisms that occur in articular chondrocytes of MT-COMP mice, a murine model of PSACH. The accumulation of mutant-COMP in the ER occurred early in MT-COMP articular chondrocytes and stimulated inflammation (TNFα) at 4 weeks, and articular chondrocyte death increased at 8 weeks while ER stress through CHOP was elevated by 12 weeks. Importantly, blockage of autophagy (pS6), the major mechanism that clears the ER, sustained cellular stress in MT-COMP articular chondrocytes. Degeneration of MT-COMP articular cartilage was similar to that observed in PSACH and was associated with increased MMPs, a family of degradative enzymes. Moreover, chronic cellular stresses stimulated senescence. Senescence-associated secretory phenotype (SASP) may play a role in generating and propagating a pro-degradative environment in the MT-COMP murine joint. The loss of CHOP or resveratrol treatment from birth preserved joint health in MT-COMP mice. Taken together, these results indicate that ER stress/CHOP signaling and autophagy blockage are central to mutant-COMP joint degeneration, and MT-COMP mice joint health can be preserved by decreasing articular chondrocyte stress. Future joint sparing therapeutics for PSACH may include resveratrol.
Collapse
|
50
|
Isvoranu G, Manole E, Neagu M. Gait Analysis Using Animal Models of Peripheral Nerve and Spinal Cord Injuries. Biomedicines 2021; 9:1050. [PMID: 34440252 PMCID: PMC8392642 DOI: 10.3390/biomedicines9081050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The present review discusses recent data regarding rodent models of spinal cord and peripheral nerve injuries in terms of gait analysis using the CatWalk system (CW), an automated and exceptionally reliable system for assessing gait abnormalities and motor coordination. CW is a good tool for both studying improvements in the walking of animals after suffering a peripheral nerve and spinal cord lesion and to select the best therapies and procedures after tissue destruction, given that it provides objective and quantifiable data. Most studies using CW for gait analysis that were published in recent years focus on injuries inflicted in the peripheral nerve, spinal cord, and brain. CW has been used in the assessment of rodent motor function through high-resolution videos, whereby specialized software was used to measure several aspects of the animal's gait, and the main characteristics of the automated system are presented here. CW was developed to assess footfall and gait changes, and it can calculate many parameters based on footprints and time. However, given the multitude of parameters, it is necessary to evaluate which are the most important under the employed experimental circumstances. By selecting appropriate animal models and evaluating peripheral nerve and spinal cord lesion regeneration using standardized methods, suggestions for new therapies can be provided, which represents the translation of this methodology into clinical application.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Husbandry Unit, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Emilia Manole
- Laboratory of Cellular Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
| | - Monica Neagu
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|