1
|
Wang Y, Duan Y, Liu M, Ren M, Gao Y, Liu Z, Zhang P, He L, Fan R, Zhou X, Yang J. Target gene selection for sprayable dsRNA-based biopesticide against Tetranychus urticae Koch (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2025; 81:3055-3065. [PMID: 39887845 PMCID: PMC12074632 DOI: 10.1002/ps.8675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Because of the excessive use of synthetic chemicals, the two-spotted spider mite, Tetranychus urticae Koch, a highly polyphagous pest, has developed comprehensive resistance to a broad spectrum of pesticides with diverse modes of action, raising severe concerns over agroecosystems and human health. To resolve this emerging issue, we initiated a project to develop double-stranded RNA (dsRNA)-based biopesticides against T. urticae, aiming for a species-specific and sustainable pest management alternative. RESULTS To examine the uptake of dsRNAs using the egg-soaking delivery method, we fluorescently labeled extraneous dsRNAs, and later showed that T. urticae dsRNAs can permeate through eggshell in a time-dependent manner within the first 24 h. For target gene screening, silencing of Prosbeta-1 and -5 resulted in the highest mortality (>90%) and a dark body phenotype in T. urticae. Notably, each target gene was effective in both avermectin laboratory susceptible and field resistant populations. As such, Prosbeta-5 was selected as the candidate target gene for subsequent spray-induced gene silencing (SIGS). After two rounds of spray at day 5 and day 12, SIGS led to a substantial suppression of T. urticae populations (>90%). CONCLUSION Our combined results suggest viable molecular targets, confirm the feasibility of SIGS against T. urticae, and lay the foundation for the development of dsRNA-based biopesticides to control this devastating pest. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifei Wang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Yuanpeng Duan
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Meibin Liu
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Meifeng Ren
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Yue Gao
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Zhongfang Liu
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Pengjiu Zhang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Lifei He
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Renjun Fan
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Jing Yang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
2
|
Centurión A, Omokungbe B, Stiehler S, Vilcinskas A, Hardes K. Inhibition of Semliki Forest virus replication with long double-stranded RNA in Aedes albopictus cells. Virus Res 2025:199584. [PMID: 40389163 DOI: 10.1016/j.virusres.2025.199584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Arthropod-borne viruses represent an increasing threat to the global health system, requiring the development of novel and sustainable control strategies to reduce the risk of arboviral infections. RNA interference (RNAi) offers a potential approach to directly prevent viral replication within vectors due to its specificity in gene silencing. In this study, we evaluated the efficacy of long double-stranded RNAs (dsRNAs) targeting six regions of the Semliki Forest virus (SFV) genome in Aedes albopictus U4.4 cells. The antiviral efficiency of dsRNA alone is low, therefore we evaluated its use after complexing with the K4 Transfection System (K4). A cytotoxicity assay based on ATP quantification showed that both uncomplexed and complexed dsRNA had no cytotoxic effects on U4.4 cells at a concentration up to 2 ng/µL. Complexed dsRNA achieved higher antiviral efficacy, significantly reducing viral replication compared to uncomplexed dsRNA. We found that complexed dsRNA retained its antiviral activity when challenged with SFV up to 72 h post-transfection. Among our synthesized dsRNA constructs, nsP4-dsRNA in complex with K4 led to an 80% reduction in viral replication at 72 hours post-infection at 0.5 ng/µL. Using RT-qPCR, we confirmed a significant 32.2% reduction of nsP4 mRNA after transfection of complexed nsP4-dsRNA. Dose response assays showed that complexed dsRNAs with a concentration of 0.5 ng/µL are effective for viral reduction. Our results highlight the importance of efficient dsRNA delivery and selection of critical viral targets, such as nsP4, for successful RNAi-mediated viral suppression. This work elucidates the potential of dsRNAs to target Semliki Forest virus replication, highlighting viral gene targeting as a viable strategy for RNAi-based suppression of arboviral replication.
Collapse
Affiliation(s)
- Alejandra Centurión
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Bodunrin Omokungbe
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kornelia Hardes
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research, ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
3
|
Chen X, Wang G, Zang LS, Ali A, Krishnan N, Paredes-Montero JR, Zhang W, Keyhani NO, Mohamed A. Transcriptomic insights on impaired survival and enhanced pesticide susceptibility following knockdown of Syntaxin5 in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106227. [PMID: 40015836 DOI: 10.1016/j.pestbp.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 03/01/2025]
Abstract
Membrane fusion, essential for a variety of biological processes, is ubiquitous and critical in all living organisms. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) comprise the core machinery that mediates membrane fusion. Syntaxin5 (Stx5) in mammals and its ortholog Sed5p in yeast are SNARE proteins that have been reported to mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. In this study, a syntaxin5 gene (Lmsyx5) was cloned from the migratory locust, Locusta migratoria, and its tissue expression pattern showed widespread expression in different tissues. Knockdown of this gene using RNA interference (RNAi) revealed that both 5th instars and adult locusts have reduced survival, and almost all of the 5th instar locusts died before molting. Transcriptomic analysis revealed that drug or xenobiotic metabolism-related pathways are the most significantly downregulated in the central nervous system (CNS) of the RNAi 5th instar locusts, whereas amino acid metabolism-related pathways are significantly downregulated in the muscle. In addition, receptor interaction-related pathways are downregulated in both the CNS and muscle. The mortality rate was significantly higher when dsLmsyx5 and beta-cypermethrin were combined together than when RNAi and chemical pesticides were used alone. Taken together, the Lmsyx5 gene is essential for locust survival, affects locust molting, is involved in the metabolism of both xenobiotics and endogenous chemicals in various tissues, and regulates locust susceptibility to chemical pesticides. It can thus be a potential target for locust control, and its knockdown using RNAi has great potential when combined with chemical pesticides.
Collapse
Affiliation(s)
- Xuanyu Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District, China
| | - Guangmin Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District, China
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District, China
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Natraj Krishnan
- Laboratory of Insect Physiology and Biochemistry, Department of Agricultural Sciences and Plant Protection, Mississippi State University, Mississippi State, MS, USA
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, USA; Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District, China.
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Li K, Chen T, Li Y, Sun K, Pang K, Yu X, Hao P. Risk Assessment of RNAi-Based Potential Pesticide ds NlAtg3 and Its Homologues for Nilaparvata lugens and Non-Target Organisms. INSECTS 2025; 16:225. [PMID: 40003854 PMCID: PMC11855984 DOI: 10.3390/insects16020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The brown planthopper (Nilaparvata lugens) is an insect pest of rice, which mainly feeds on the phloem sap of the leaf sheath. RNA interference (RNAi) has application prospects in pest control, but it is necessary to select target genes and design suitable dsRNA fragments for RNAi so that it can achieve effective pest control and avoid risks to non-target organisms. NlAtg3 is a key protein in the autophagy pathway of N. lugens. Three kinds of dsRNA fragments of the NlAtg3 gene (dsNlAtg3-474×1, dsNlAtg3-138×3 and dsNlAtg3-47×10) were designed to compare the RNAi efficiency and specificity against the target insect N. lugens and non-target organisms through microinjection. The results showed that the fragment dsNlAtg3-474×1 showed strong inhibitory effects on the survival of N. lugens, which resulted in the survival rate decreasing to zero on the fifth day, while the survival rate of a closely related species, Sogatella furcifera, dropped to 2.22%. In contrast, dsNlAtg3-47×10 specifically designed against N. lugens only showed slight or no inhibitory effects on S. furcifera and other non-target organisms such as Drosophila melanogaster, but still showed good lethal effects against N. lugens, with the survival rate dropping to 18.89% on the ninth day. In addition, after being fed N. lugens injected with dsNlAtg3-47×10 fragments, the survival rate of the natural enemies Dolomedes sulfureus and Tytthus chinensis did not show significant change, compared with those treated with the dsGFP control. Our results suggest that the NlAtg3 gene can serve as a potential target for controlling N. lugens. Moreover, by designing suitable RNAi fragments, it is possible to avoid harm to non-target organisms while effectively inhibiting the target insect N. lugens.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoping Yu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China; (K.L.); (T.C.); (Y.L.); (K.S.); (K.P.)
| | - Peiying Hao
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China; (K.L.); (T.C.); (Y.L.); (K.S.); (K.P.)
| |
Collapse
|
5
|
Li SP, Chen ZX, Gao G, Bao YQ, Fang WY, Zhang YN, Liu WX, Lorenzen M, Wiegmann BM, Xuan JL. Development of an agroinfiltration-based transient hairpin RNA expression system in pak choi leaves (Brassica rapa ssp. chinensis) for RNA interference against Liriomyza sativae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106091. [PMID: 39277418 DOI: 10.1016/j.pestbp.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The vegetable leafminer (Liriomyza sativae) is a devastating invasive pest of many vegetable crops and horticultural plants worldwide, causing serious economic loss. Conventional control strategy against this pest mainly relies on the synthetic chemical pesticides, but widespread use of insecticides easily causes insecticide resistance development and is harmful to beneficial organisms and environment. In this context, a more environmentally friendly pest management strategy based on RNA interference (RNAi) has emerged as a powerful tool to control of insect pests. Here we report a successful oral RNAi in L. sativae after feeding on pak choi (Brassica rapa ssp. chinensis) that transiently express hairpin RNAs targeting vital genes in this pest. First, potentially lethal genes are identified by searching an L. sativae transcriptome for orthologs of the widely used V-ATPase A and actin genes, then expression levels are assessed during different life stages and in different adult tissues. Interestingly, the highest expression levels for V-ATPase A are observed in the adult heads (males and females) and for actin in the abdomens of adult females. We also assessed expression patterns of the target hairpin RNAs in pak choi leaves and found that they reach peak levels 72 h post agroinfiltration. RNAi-mediated knockdown of each target was then assessed by letting adult L. sativae feed on agroinfiltrated pak choi leaves. Relative transcript levels of each target gene exhibit significant reductions over the feeding time, and adversely affect survival of adult L. sativae at 24 h post infestation in genetically unmodified pak choi plants. These results demonstrate that the agroinfiltration-mediated RNAi system has potential for advancing innovative environmentally safe pest management strategies for the control of leaf-mining species.
Collapse
Affiliation(s)
- Shu-Peng Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Anhui Watermelon and Melon Biological Breeding Engineering Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zi-Xu Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ge Gao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Qi Bao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Ying Fang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jing-Li Xuan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Sun H, Li X, Yuan X, Tian Z, Li Y, Zhang Y, Liu J. Elucidating the detoxification efficacy of Periplaneta americana delta glutathione S-transferase 1 (PaGSTd1) against organophosphates. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106013. [PMID: 39084777 DOI: 10.1016/j.pestbp.2024.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
As an important class of detoxifying enzymes, glutathione S-transferases (GSTs) are pivotal in decreasing insecticide toxicity to insects. Periplaneta americana GSTd1 (PaGSTd1) has been verified as a key enzyme in detoxifying pyrethroid insecticides, but its detoxification capability against a broader spectrum of insecticides has never been investigated. It is revealed that PaGSTd1 expression showed a rapid and significant increase upon exposure to various insecticides (organophosphates, neonicotinoids, and fipronil). Subsequent in vitro metabolic assays indicated that organophosphates, particularly chlorpyrifos-methyl, can be effectively metabolized by PaGSTd1. Further knockdown of PaGSTd1 via RNA interference significantly heightened the susceptibility of P. americana to chlorpyrifos-methyl, underscoring the enzyme's key role in detoxifying chlorpyrifos-methyl. Additionally, this study confirmed that PaGSTd1 cannot mitigate insecticide toxicity through countering oxidative stress. Collectively, these findings elucidate the involvement of PaGSTd1 in the detoxification processes for organophosphates, offering a comprehensive insight into the metabolic mechanisms mediated by GSTs in P. americana. This research provides a foundational understanding for managing GSTs-mediated metabolic resistance in this species, which is crucial for effective pest control strategies.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyue Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Nobre ICDS, Coelho RR, de Souza FMC, Reis MA, Torres JB, Antonino JD. Insights from different reproductive gene knockdowns via RNA interference in the lady beetle Eriopis connexa: Establishing a new model for molecular studies on natural enemies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22125. [PMID: 38973236 DOI: 10.1002/arch.22125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Insect pest control can be achieved by the application of RNA interference (RNAi), a key molecular tool in functional genomics. Whereas most RNAi research has focused on insect pests, few studies have been performed on natural enemies. Validating the efficacy of RNAi in natural enemies is crucial for assessing its safety and enabling molecular research on these organisms. Here, we assessed the efficacy of RNAi in the ladybird beetle Eriopis connexa Germar (Coleoptera: Coccinellidae), focusing on genes related to reproduction, such as vitellogenin (Vg) and its receptor (VgR). In the transcriptome of E. connexa, we found one VgR (EcVgR) and two Vg genes (EcVg1 and EcVg2). These genes have been validated by in silico analyses of functional domains and evolutionary relationships. Five-day-old females were injected with 500 ng/µL of a specific double-stranded RNA (dsRNA) (dsEcVg1, dsEcVg2, or dsEcVgR) for RNAi tests, while nonspecific dsRNA (dsGFP or dsAgCE8.1) was used as a control. Interestingly, dsEcVg2 was able to knockdown both Vg genes, while dsEcVg1 could silence only EcVg1. Additionally, the viability of the eggs was significantly reduced when both Vg genes were knocked down at the same time (after treatment with dsEcVg2 or "dsEcVg1+dsEcVg2"). Ultimately, malformed, nonviable eggs were produced when EcVgR was silenced. Interestingly, no dsRNA treatment had an impact on the quantity of eggs laid. Therefore, the feasibility of RNAi in E. connexa has been confirmed, suggesting that this coccinellid is an excellent Neotropical model for molecular research on natural enemies and for studying RNAi nontarget effects.
Collapse
Affiliation(s)
| | - Roberta Ramos Coelho
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | | | - Manoely Abreu Reis
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | - Jorge Braz Torres
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| | - José Dijair Antonino
- Departamento de Agronomia-Entomologia, Universidade Federal Rural Pernambuco, Recife, Brazil
| |
Collapse
|
8
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Vengatharajuloo V, Goh HH, Hassan M, Govender N, Sulaiman S, Afiqah-Aleng N, Harun S, Mohamed-Hussein ZA. Gene Co-Expression Network Analysis Reveals Key Regulatory Genes in Metisa plana Hormone Pathways. INSECTS 2023; 14:503. [PMID: 37367319 DOI: 10.3390/insects14060503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Metisa plana Walker (Lepidoptera: Psychidae) is a major oil palm pest species distributed across Southeast Asia. M. plana outbreaks are regarded as serious ongoing threats to the oil palm industry due to their ability to significantly reduce fruit yield and subsequent productivity. Currently, conventional pesticide overuses may harm non-target organisms and severely pollute the environment. This study aims to identify key regulatory genes involved in hormone pathways during the third instar larvae stage of M. plana gene co-expression network analysis. A weighted gene co-expression network analysis (WGCNA) was conducted on the M. plana transcriptomes to construct a gene co-expression network. The transcriptome datasets were obtained from different development stages of M. plana, i.e., egg, third instar larvae, pupa, and adult. The network was clustered using the DPClusO algorithm and validated using Fisher's exact test and receiver operating characteristic (ROC) analysis. The clustering analysis was performed on the network and 20 potential regulatory genes (such as MTA1-like, Nub, Grn, and Usp) were identified from ten top-most significant clusters. Pathway enrichment analysis was performed to identify hormone signalling pathways and these pathways were identified, i.e., hormone-mediated signalling, steroid hormone-mediated signalling, and intracellular steroid hormone receptor signalling as well as six regulatory genes Hnf4, Hr4, MED14, Usp, Tai, and Trr. These key regulatory genes have a potential as important targets in future upstream applications and validation studies in the development of biorational pesticides against M. plana and the RNA interference (RNAi) gene silencing method.
Collapse
Affiliation(s)
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nisha Govender
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Suhaila Sulaiman
- FGV R&D Sdn Bhd, FGV Innovation Center, PT23417 Lengkuk Teknologi, Bandar Baru Enstek, Nilai 71760, Negeri Sembilan, Malaysia
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
10
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
11
|
Nie W, Chen X, Tang Y, Xu N, Zhang H. Potential dsRNAs can be delivered to aquatic for defense pathogens. Front Bioeng Biotechnol 2022; 10:1066799. [PMID: 36466329 PMCID: PMC9712207 DOI: 10.3389/fbioe.2022.1066799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2023] Open
Abstract
The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.
Collapse
Affiliation(s)
| | | | | | | | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
13
|
Kebede M, Fite T. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front Mol Biosci 2022; 9:944774. [PMID: 36158573 PMCID: PMC9490220 DOI: 10.3389/fmolb.2022.944774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is among the invasive insect pests that damages maize and sorghum, the high-priority crops in newly colonized agro-ecologies, including African contexts. Owing to the increasing infestation of the pest and the limitations of current conventional methods for its management, there is a call for discovering advanced pest management approaches. RNA interference (RNAi) is an emerging molecular tool showing flexible potential for the management of S. frugiperda. We conducted a search of the recent application of RNAi literature using Google Scholar and Mendeley to find advanced papers on S. frugiperda management using RNAi molecular tools that led to growth inhibition, developmental aberrations, reduced fecundity, and mortality, mainly by disruption of normal biological processes of the pest. Although efforts have been made to accelerate the utility of RNAi, many factors limit the efficiency of RNAi to achieve successful control over S. frugiperda. Owing to RNAi’s potential bioactivity and economic and ecological acceptability, continued research efforts should focus on improving its broad applicability, including field conditions. Screening and identification of key target genes should be a priority task to achieve effective and sustainable management of this insect via RNAi. In addition, a clear understanding of the present status of RNAi utilization in S. frugiperda management is of paramount importance to improve its efficiency. Therefore, in this review, we highlight the biology of S. frugiperda and the RNAi mechanism as a foundation for the molecular management of the pest. Then, we discuss the current knowledge of the RNAi approach in S. frugiperda management and the factors affecting the efficiency of RNAi application. Finally, the prospects for RNAi-based insect pest management are highlighted for future research to achieve effective management of S. frugiperda.
Collapse
|
14
|
Analysis and purification of ssRNA and dsRNA molecules using asymmetrical flow field flow fractionation. J Chromatogr A 2022; 1683:463525. [DOI: 10.1016/j.chroma.2022.463525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
15
|
Hoang T, Foquet B, Rana S, Little DW, Woller DA, Sword GA, Song H. Development of RNAi Methods for the Mormon Cricket, Anabrus simplex (Orthoptera: Tettigoniidae). INSECTS 2022; 13:739. [PMID: 36005364 PMCID: PMC9409436 DOI: 10.3390/insects13080739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Mormon crickets are a major rangeland pest in the western United States and are currently managed by targeted applications of non-specific chemical insecticides, which can potentially have negative effects on the environment. In this study, we took the first steps toward developing RNAi methods for Mormon crickets as a potential alternative to traditional broad-spectrum insecticides. To design an effective RNAi-based insecticide, we first generated a de novo transcriptome for the Mormon cricket and developed dsRNAs that could silence the expression of seven housekeeping genes. We then characterized the RNAi efficiencies and time-course of knockdown using these dsRNAs, and assessed their ability to induce mortality. We have demonstrated that it is possible to elicit RNAi responses in the Mormon cricket by injection, but knockdown efficiencies and the time course of RNAi response varied according to target genes and tissue types. We also show that one of the reasons for the poor knockdown efficiencies could be the presence of dsRNA-degrading enzymes in the hemolymph. RNAi silencing is possible in Mormon cricket, but more work needs to be done before it can be effectively used as a population management method.
Collapse
Affiliation(s)
- Toan Hoang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Seema Rana
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Drew W. Little
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Derek A. Woller
- USDA-APHIS-PPQ-Science & Technology-Insect Management and Molecular Diagnostics Laboratory (Phoenix Station), Phoenix, AZ 85040, USA
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Kumari P, Jasrotia P, Kumar D, Kashyap PL, Kumar S, Mishra CN, Kumar S, Singh GP. Biotechnological Approaches for Host Plant Resistance to Insect Pests. Front Genet 2022; 13:914029. [PMID: 35719377 PMCID: PMC9201757 DOI: 10.3389/fgene.2022.914029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Annually, the cost of insect pest control in agriculture crosses billions of dollars around the world. Until recently, broad-spectrum synthetic pesticides were considered as the most effective means of pest control in agriculture. However, over the years, the overreliance on pesticides has caused adverse effects on beneficial insects, human health and the environment, and has led to the development of pesticide resistant insects. There is a critical need for the development of alternative pest management strategies aiming for minimum use of pesticides and conservation of natural enemies for maintaining the ecological balance of the environment. Host plant resistance plays a vital role in integrated pest management but the development of insect-resistant varieties through conventional ways of host plant resistance takes time, and is challenging as it involves many quantitative traits positioned at various loci. Biotechnological approaches such as gene editing, gene transformation, marker-assisted selection etc. in this direction have recently opened up a new era of insect control options. These could contribute towards about exploring a much wider array of novel insecticidal genes that would otherwise be beyond the scope of conventional breeding. Biotechnological interventions can alter the gene expression level and pattern as well as the development of transgenic varieties with insecticidal genes and can improve pest management by providing access to novel molecules. This review will discuss the emerging biotechnological tools available to develop insect-resistant engineered crop genotypes with a better ability to resist the attack of insect pests.
Collapse
Affiliation(s)
- Pritam Kumari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
- CCS Haryana Agricultural University, Hisar, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Deepak Kumar
- CCS Haryana Agricultural University, Hisar, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
17
|
Zhang YH, Ma ZZ, Zhou H, Chao ZJ, Yan S, Shen J. Nanocarrier-delivered dsRNA suppresses wing development of green peach aphids. INSECT SCIENCE 2022; 29:669-682. [PMID: 34288425 DOI: 10.1111/1744-7917.12953] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) has developed rapidly as a potential "green" pest management strategy. At present, most studies have focused on the screening of aphid lethal genes, whereas only a few studies have been conducted on wing development, which is crucial for aphid migration and plant-virus dissemination. Here, the Myzus persicae genes vestigial (vg) and Ultrabithorax (Ubx) related to wing development, were cloned. These two genes were expressed in various tissues of 3rd-instar winged aphids. The mRNA level of vg was high in 3rd-instar nymphs, whereas the expression level of Ubx was high in adults. The nanocarrier-mediated delivery system delivered double-stranded RNAs for aphid RNAi using topical and root applications. The expression levels of vg and Ubx were downregulated by 44.0% and 36.5%, respectively, using the topical application. The simultaneous RNAi of the two target genes caused 63.3% and 32.2% wing aberration rates using topical and root applications, respectively. The current study provided a promising method for controlling aphid migration to alleviate the spread of insect transmitted plant diseases.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhong-Zheng Ma
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Jian Chao
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Chang M, Cheng H, Cai Z, Qian Y, Zhang K, Yang L, Ma N, Li D. miR-92a-1-p5 Modulated Expression of the flightin Gene Regulates Flight Muscle Formation and Wing Extension in the Pea Aphid, Acyrthosiphon pisum (Hemiptera: Aphidoidea). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:14. [PMID: 35738260 PMCID: PMC9225819 DOI: 10.1093/jisesa/ieac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 06/15/2023]
Abstract
Aphids exhibit wing polyphenism. Winged and wingless aphid morphs are produced by parthenogenesis depending on population density and host plant quality. Recent studies showed that microRNAs in alate and apterous individuals have differential expression and are involved in wing dimorphism of Acyrthosiphon pisum. From which miR-92a-1-p5 can target the mRNA of flight muscle gene flightin in vitro, but what effect they have on wing development of aphid is unclear. Here with the nanocarrier-delivered RNA interference (RNAi) method, flightin gene was knocked down in winged nymphs of A. pisum. Results showed that the majority (63.33%) of adults had malformed wings, the shape of dorsal longitudinal muscle (DLM) was deformed severely, the dorsoventral flight muscle (DVM) became wider and looser in aphids with flightin reduction compared with the negative control. Overexpression of miR-92a-1-p5 caused decreased expression of flightin and malformed wings of aphids, with a mutant ratio of 62.50%. Morphological analysis of flight musculature showed the consistent result as that with flightin knockdown. These results suggest that flightin is essential for flight musculature formation and wing extension in A. pisum, which can be modulated by miR-92a-1-p5.
Collapse
Affiliation(s)
- Meiling Chang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Hao Cheng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Zhiyan Cai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Yuxin Qian
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Kun Zhang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Linlin Yang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Na Ma
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| |
Collapse
|
19
|
Laisney J, Loczenski Rose V, Watters K, Donohue KV, Unrine JM. Delivery of short hairpin RNA in the neotropical brown stink bug, Euschistus heros, using a composite nanomaterial. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104906. [PMID: 34301367 DOI: 10.1016/j.pestbp.2021.104906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The response of insects to orally delivered double-stranded RNA ranges widely among taxa studied to date. Long dsRNA does elicit a response in stink bugs but the dose required to achieve an effect is relatively high compared to other insects such Colorado potato beetle or western corn rootworm. Improving the delivery of dsRNA to stink bugs will improve the likelihood of using RNA-based biocontrols for the management of these economically important pests. Short hairpin RNA (shRNA) is a useful molecule with which to test improvements in the delivery of double stranded RNA in the neotropical brown stink bug, Euschistus heros, since shRNA alone does not elicit a clear effect like that for long dsRNA. Here, we show for the first time the oral delivery of shRNA triggering RNA interference (RNAi) in E. heros using 4 nm cerium oxide nanoparticles (CeO2 NPs) coated with diethylamioethyl dextran (Dextran-DEAE) as a carrier. We identified particle properties (coating composition and degree of substitution, hydrodynamic diameter, and zeta potential) and shRNA loading rates (Ce:shRNA mass ratio) that resulted in successful transcript reduction or RNAi. When the Z-average diameter of CeO2 Dextran-DEAE-shRNA NP complex was less than 250 nm and the zeta potential was in the 15-25 mV range (Ce:shRNA mass ratio of 0.7:1), significant mortality attributed to RNAi was observed with a shRNA concentration in feeding solution of 250 ng/μl. The degradation of the targeted troponin transcript by NP-delivered shRNA was equivalent to that observed with long dsRNA, while naked shRNA transcript reduction was not statistically significant. Elemental mapping by synchrotron X-ray fluorescence microprobe confirmed uptake and distribution of Ce throughout the body with the highest concentrations found in gut tissue. Taken together, our results suggest that a nanoparticle delivery system can improve the delivery of RNA-based biocontrols to E. heros, and therefore its attractiveness as an application in the management of this important pest in soybean production.
Collapse
Affiliation(s)
- Jérôme Laisney
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA
| | - Vanessa Loczenski Rose
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Kayla Watters
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Kevin V Donohue
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Jason M Unrine
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
20
|
Rahmani S, Bandani AR. Caspase gene silencing affects the growth and development of Tuta absoluta. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Jain RG, Robinson KE, Asgari S, Mitter N. Current scenario of RNAi-based hemipteran control. PEST MANAGEMENT SCIENCE 2021; 77:2188-2196. [PMID: 33099867 DOI: 10.1002/ps.6153] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is an homology-dependent gene silencing mechanism that is a feasible and sustainable avenue for the management of hemipteran pests. Commercial implementation of RNAi-based control strategies is impeded by limited knowledge about the mechanism of double-stranded RNA (dsRNA) uptake, the function of core RNAi genes and systemic RNAi mechanisms in hemipteran insects. This review briefly summarizes recent progress in RNAi-based studies aimed to reduce insect populations, viral transmission and insecticide resistance focusing on hemipteran pests. This review explores RNAi-mediated management of hemipteran insects and offers potential solutions, including in silico approaches coupled with laboratory-based toxicity assays to circumvent potential off-target effects against beneficial organisms. We further explore ways to mitigate degradation of dsRNA in the environment and the insect such as stacking and formulation of dsRNA effectors. Finally, we conclude by considering nontransformative RNAi approaches, concatomerization of RNAi sequences and pyramiding RNAi with active constituents to reduce dsRNA production and application cost, and to improve broad-spectrum hemipteran pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
Exogenous administration of dsRNA for the demonstration of RNAi in Maruca vitrata (lepidoptera: crambidae). 3 Biotech 2021; 11:197. [PMID: 33927988 DOI: 10.1007/s13205-021-02741-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022] Open
Abstract
The polyphagous spotted pod borer, Maruca vitrata is an important agricultural pest that causes extensive damage on various food crops. Though the pest is managed by synthetic chemicals, exploration of biotechnological approaches for its control is important. RNAi-based gene silencing is one such tool that has been extensively used for functional genomics and is highly variable in insects. In view of this, we have attempted to demonstrate RNAi in M. vitrata through exogenous double-stranded RNA (dsRNA) administration targeting seven genes associated with midgut, chemosensory, cell signalling and development. Two modes of exogenous dsRNA delivery by either haemolymph injection and/or ingestion into third and late third instar larval stages respectively exhibited efficient silencing of specific transcripts. Furthermore, dsRNA injection into the haemolymph showed significant reduction of target gene expression compared to negative controls establishing this mode of delivery to be more efficient. Interestingly, haemolymph injection required lesser dsRNA and led to higher reduction of transcript level vis-à-vis ingestion as demonstrated in dsRNA Serine Protease 33 (ds-SP33)-fed larvae. Over-expression of key RNAi component DICER and detection of siRNA authenticated the presence of RNAi in M. vitrata. Additionally, we have identified inhibitor molecules like morpholine, piperidine, carboxamide and piperidine-carboxamide through in silico analysis for blocking the function of SP33 to demonstrate the utility of functional genomics. Thus, the present study establishes the usefulness of injection and ingestion approaches for exogenous dsRNA delivery into M. vitrata larvae for effective RNAi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02741-8.
Collapse
|
23
|
Lü J, Liu ZQ, Guo W, Guo MJ, Chen SM, Yang CX, Zhang YJ, Pan HP. Oral delivery of dsHvlwr is a feasible method for managing the pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECT SCIENCE 2021; 28:509-520. [PMID: 32240577 DOI: 10.1111/1744-7917.12784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools that facilitate development of novel management strategies for insect pests, such as Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae), which is a major pest of solanaceous plants in Asia. In this study, the potential of oral delivery of in vitro-synthesized and bacterially expressed double-stranded H. vigintioctopunctata lesswright (lwr) gene (dsHvlwr) to manage of H. vigintioctopunctata was investigated. Our results showed that the gene Hvlwr had a 480-bp open reading frame and encoded a 160-amino acid protein. Hvlwr expression levels were greater in the fat body than other tissue types. Hvlwr silencing led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent, likely as a result of the number of hemocytes increasing with dsRNA concentration, but decreasing with time. Bacterially expressed dsHvlwr that was applied to leaf discs caused 88%, 66%, and 36% mortality in 1st instars, 3rd instars, and adults after 10, 10, and 14 d, respectively; when applied to living plants, there was greater mortality in 1st and 3rd instars, but there was no effect on adults. Furthermore, dsHvlwr led to improved plant protection against H. vigintioctopunctata. Our study shows an effective dietary RNAi response in H. vigintioctopunctata and that Hvlwr is a promising RNAi target gene for control of this pest species.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhuo-Qi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mu-Juan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shi-Min Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Chun-Xiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Peng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
25
|
Chen X, Koo J, Gurusamy D, Mogilicherla K, Reddy Palli S. Caenorhabditis elegans systemic RNA interference defective protein 1 enhances RNAi efficiency in a lepidopteran insect, the fall armyworm, in a tissue-specific manner. RNA Biol 2020; 18:1291-1299. [PMID: 33111632 DOI: 10.1080/15476286.2020.1842632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA interference (RNAi) is an important tool for gene function studies in insects, especially in non-model insects. This technology is also being developed for pest control. However, variable RNAi efficiency among insects is limiting its use in insects. Systemic RNAi in Caenorhabditis elegans requires systemic RNA interference defective protein 1 (CeSid1). The expression of CeSid1 in insect cell lines was shown to improve RNAi. However, the mechanisms through which this double-stranded RNA (dsRNA) transporter improves RNAi efficiency in insects is not known. We stably expressed CeSid1 in two Spodoptera frugiperda cell lines, Sf9 and Sf17 cells derived from ovary and midgut, respectively. Expression of CeSid1 enhanced RNAi efficiency in ovarian Sf9 cells, but not in midgut Sf17 cells. Reduced accumulation of dsRNA in late endosomes and successful processing dsRNA to siRNA contribute to enhanced RNAi efficiency in Sf9 cells. Transgenic S. frugiperda expressing CeSid1 were produced and tested for RNAi efficiency. RNAi efficiency enhancement due to CeSid1 expression showed tissue specificity. Compared to RNAi efficiency in wild-type S. frugiperda, CeSid1 expressing transgenic S. frugiperda showed a significant improvement of RNAi in tissues such as Verson's glands. In contrast, no improvement in RNAi was observed in tissues such as midgut. The in vitro cell-type specific and in vivo tissue-specific enhancement of RNAi efficiency by CeSid1 in S. frugiperda provides valuable information for improving RNAi in insects such as those belonging to order Lepidoptera where RNAi is variable and inefficient.
Collapse
Affiliation(s)
- Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA
| | - Dhandapani Gurusamy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA.,Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| | - Kanakachari Mogilicherla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA.,Division of Molecular Genetics, ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - Subba Reddy Palli
- Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| |
Collapse
|
26
|
Pan H, Yang X, Romeis J, Siegfried BD, Zhou X. Dietary RNAi toxicity assay exhibits differential responses to ingested dsRNAs among lady beetles. PEST MANAGEMENT SCIENCE 2020; 76:3606-3614. [PMID: 32400940 DOI: 10.1002/ps.5894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Most recently, major federal regulatory agencies deregulated an in planta RNA interference (RNAi) trait against a devastating corn pest, the western corn rootworm Diabrotica virgifera virgifera, in the United States and Canada. The impact of double-stranded RNA (dsRNA) plant-incorporated protectants (PIPs) and dietary RNAi to non-target organisms, however, still needs further investigation. In this study, we assessed the potential risks of a Diabrotica virgifera virgifera active dsRNA to a group of predatory biological control agents, including Hippodamia convergens, Harmonia axyridis, Coleomegilla maculata, and Coccinella septempunctata. The overarching hypothesis is that the insecticidal dsRNA targeting Diabrotica virgifera virgifera has no or negligible adverse effect on lady beetles. RESULTS A 400-bp fragment with the highest sequence similarity between target and tested species was selected as the template for dsRNA synthesis. For the dietary RNAi toxicity assay, newly hatched first instar larvae were administered with v-ATPase A dsRNAs designed from Diabrotica virgifera virgifera and the four lady beetles, respectively. A dsRNA from β-glucuronidase (GUS), a plant gene, and H2 O were served as the negative controls. The endpoint included both sub-organismal (gene expression), and organismal (survival rate, development time, pupa and adult weight) measurements. The results from dietary RNAi toxicity assay demonstrate significantly impacts of Diabrotica virgifera virgifera-active dsRNAs on lady beetles under the worst-case scenario at both transcriptional and phenotypic level. Interestingly, substantial differences among the four lady beetle species were observed toward the ingested exogenous dsRNAs. CONCLUSION Such differential response to dietary RNAi may shed light on the mechanisms underlying the mode-of-action of RNAi-based biopesticides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Xiaowei Yang
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland
| | - Blair D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Yogindran S, Rajam MV. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics 2020; 113:736-747. [PMID: 33058987 DOI: 10.1016/j.ygeno.2020.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Helicoverpa armigera causes huge crop losses due to its polyphagous nature. The present study demonstrates the use of artificial microRNA (amiRNA) mediated gene silencing approach to generate insect resistant tomato plants. Ecdysone receptor (HaEcR) gene of the target pest, H. armigera, which is involved in the regulation of all developmental stages of the insect life cycle, was silenced by sequence-specific amiRNA (amiRNA-HaEcR). Continuous feeding on detached tomato leaves expressing the amiRNA-319a-HaEcR resulted in reduced target gene transcripts and affected the overall growth and survival of H. armigera. Not only the target gene was down-regulated but, the feeding also affected the expression of down-stream genes involved in the ecdysone signaling pathway. The resistant trait was also observed in T1 generation of tomato transgenic lines. These results further established the role of EcR as a master regulator in insect development and effectiveness of amiRNA technology for efficient control of H. armigera.
Collapse
Affiliation(s)
- Sneha Yogindran
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
28
|
Kadoić Balaško M, Mikac KM, Bažok R, Lemic D. Modern Techniques in Colorado Potato Beetle ( Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. INSECTS 2020; 11:insects11090581. [PMID: 32882790 PMCID: PMC7563253 DOI: 10.3390/insects11090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary The Colorado potato beetle (CPB) is one of the most important potato pest worldwide. It is native to U.S. but during the 20th century it has dispersed through Europe, Asia and western China. It continues to expand in an east and southeast direction. Damages are caused by larvae and adults. Their feeding on potato plant leaves can cause complete defoliation and lead to a large yield loss. After the long period of using only chemical control measures, the emergence of resistance increased and some new and different methods come to the fore. The main focus of this review is on new approaches to the old CPB control problem. We describe the use of Bacillus thuringiensis and RNA interference (RNAi) as possible solutions for the future in CPB management. RNAi has proven successful in controlling many pests and shows great potential for CPB control. Better understanding of the mechanisms that affect efficiency will enable the development of this technology and boost potential of RNAi to become part of integrated plant protection in the future. We described also the possibility of using single nucleotide polymorphisms (SNPs) as a way to go deeper into our understanding of resistance and how it influences genotypes. Abstract Colorado potato beetle, CPB (Leptinotarsa decemlineata Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of Bacillus thuringiensis (Bt) have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with Bt crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.
Collapse
Affiliation(s)
- Martina Kadoić Balaško
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
- Correspondence: ; Tel.: +385-1-239-3654
| | - Katarina M. Mikac
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, Australia;
| | - Renata Bažok
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| | - Darija Lemic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| |
Collapse
|
29
|
Jain RG, Robinson KE, Fletcher SJ, Mitter N. RNAi-Based Functional Genomics in Hemiptera. INSECTS 2020; 11:E557. [PMID: 32825516 PMCID: PMC7564473 DOI: 10.3390/insects11090557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is a powerful approach for sequence-specific gene silencing, displaying tremendous potential for functional genomics studies in hemipteran insects. Exploiting RNAi allows the biological roles of critical genes to be defined and aids the development of RNAi-based biopesticides. In this review, we provide context to the rapidly expanding field of RNAi-based functional genomics studies in hemipteran insects. We highlight the most widely used RNAi delivery strategies, including microinjection, oral ingestion and topical application. Additionally, we discuss the key variables affecting RNAi efficacy in hemipteran insects, including insect life-stage, gene selection, the presence of nucleases, and the role of core RNAi machinery. In conclusion, we summarise the application of RNAi in functional genomics studies in Hemiptera, focusing on genes involved in reproduction, behaviour, metabolism, immunity and chemical resistance across 33 species belonging to 14 families.
Collapse
Affiliation(s)
| | - Karl E. Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia; (R.G.J.); (S.J.F.); (N.M.)
| | | | | |
Collapse
|
30
|
Walton A, Sheehan MJ, Toth AL. Going wild for functional genomics: RNA interference as a tool to study gene-behavior associations in diverse species and ecological contexts. Horm Behav 2020; 124:104774. [PMID: 32422196 DOI: 10.1016/j.yhbeh.2020.104774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
Identifying the genetic basis of behavior has remained a challenge for biologists. A major obstacle to this goal is the difficulty of examining gene function in an ecologically relevant context. New tools such as CRISPR/Cas9, which alter the germline of an organism, have taken center stage in functional genomics in non-model organisms. However, germline modifications of this nature cannot be ethically implemented in the wild as a part of field experiments. This impediment is more than technical. Gene function is intimately tied to the environment in which the gene is expressed, especially for behavior. Most lab-based studies fail to recapitulate an organism's ecological niche, thus most published functional genomics studies of gene-behavior relationships may provide an incomplete or even inaccurate assessment of gene function. In this review, we highlight RNA interference as an especially effective experimental method to deepen our understanding of the interplay between genes, behavior, and the environment. We highlight the utility of RNAi for researchers investigating behavioral genetics, noting unique attributes of RNAi including transience of effect and the feasibility of releasing treated animals into the wild, that make it especially useful for studying the function of behavior-related genes. Furthermore, we provide guidelines for planning and executing an RNAi experiment to study behavior, including challenges to consider. We urge behavioral ecologists and functional genomicists to adopt a more fully integrated approach which we call "ethological genomics". We advocate this approach, utilizing tools such as RNAi, to study gene-behavior relationships in their natural context, arguing that such studies can provide a deeper understanding of how genes can influence behavior, as well as ecological aspects beyond the organism that houses them.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Entomology, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Gurusamy D, Mogilicherla K, Palli SR. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21677. [PMID: 32291818 DOI: 10.1002/arch.21677] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a promising technology for the development of next-generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda by conjugating double-stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell-conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi-dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi-dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan-conjugated 32 P-UTP-labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.
Collapse
Affiliation(s)
| | | | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
32
|
Lü J, Guo W, Chen S, Guo M, Qiu B, Yang C, Zhang Y, Pan H. Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata. PEST MANAGEMENT SCIENCE 2020; 76:2663-2673. [PMID: 32112472 DOI: 10.1002/ps.5809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/16/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) is a potential tool for plant protection against insect pests. The great challenge for effective pest control using RNAi in the field is the development of efficient and reliable methods for the production and delivery of double-stranded RNA (dsRNA). RESULTS In the present study, we investigated the potential of feeding in vitro synthesized or bacterially expressed dsRNA to populations of the 28-spotted ladybeetle Henosepilachna vigintioctopunctata as a method of biological pest control. Ingestion of in vitro synthesized dsHvRPS18 or dsHvRPL13 led to significant down-regulation of the ribosomal protein-encoding genes HvRPS18 and HvRPL13, respectively, and significantly decreased the survival of H. vigintioctopunctata. Such silencing of HvRPS18 or HvRPL13 expression appeared to be partially dose-dependent and also inhibited the growth of H. vigintioctopunctata and significantly suppressed the expression of digestive enzyme-related genes. Finally, ingestion of bacterially expressed dsHvRPS18 or dsHvRPL13 induced significant mortality in the first and third instars, and in adults. CONCLUSION The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that HvRPS18 and HvRPL13 represent candidate genes for RNAi-based biological control of H. vigintioctopunctata. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chunxiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
33
|
Laisney J, Gurusamy D, Baddar ZE, Palli SR, Unrine JM. RNAi in Spodoptera frugiperda Sf9 Cells via Nanomaterial Mediated Delivery of dsRNA: A Comparison of Poly-l-arginine Polyplexes and Poly-l-arginine-Functionalized Au Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25645-25657. [PMID: 32412742 PMCID: PMC9940120 DOI: 10.1021/acsami.0c06234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work focused on the delivery of dsRNA either complexed with poly-l-arginine (PLR-polyplex) or loaded onto poly-l-arginine functionalized 20 nm Au nanoparticles (PLR/Au NPs). RNA interference (RNAi) of a luciferase gene expressed in Spodopteria frugiperda Sf9 stable cell line (Sf9_LUC) was used as a model system. The binding affinity of dsRNA with two modes of functionalization of Au NPs was investigated: the electrostatic binding of PLR on citrate stabilized Au NPs (e-PLR/Au NPs) via the layer-by-layer method or the covalent-linking reaction of the polymer with NHS groups on the Au NPs surface (c-PLR/Au NPs) with excess groups quenched with either hydroxylamine (c-PLR/Au/Hyd NPs) or bovine serum albumin (c-PLR/Au/BSA NPs). The formation of PLR-polyplex particles resulting from the complexation of PLR and dsRNA were revealed by transmission electron microscope (TEM), scanning transmission electron microscope (STEM), and elemental mapping by energy dispersive X-ray spectroscopy (EDS). Luciferase gene knockdown was evaluated after exposure of Sf9 cells for 72 h to 600 ng of dsRNA. Gene knockdown (GK) was found to be more efficient by exposing Sf9 cells to nanoscaled (size <100 nm) PLR-polyplex (58% GK), in contrast to microscaled (size >1 μm) PLR-polyplex (20% GK) or covalent PLR/Au/Hyd (7% GK) particles. The replacement of hydroxylamine by bovine serum albumin as ligand has significantly enhanced the efficiency of GK (31% GK). Investigation of endosomal escape, a key physiological barrier for dsRNA delivery, with CypHer5E labeled dsRNA showed the good ability for the dsRNA conjugated to the different nanosystems to enter the cells compared to the unconjugated one. This study provides valuable information concerning the required properties of materials used for dsRNA delivery in lepidopteran cells such as nanoparticle size, stability in the cell culture media, the polymer molecular weight and binding strength to the nanoparticle, and the nature of ligands on the surface.
Collapse
|
34
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
35
|
Lü J, Guo M, Chen S, Noland JE, Guo W, Sang W, Qi Y, Qiu B, Zhang Y, Yang C, Pan H. Double-stranded RNA targeting vATPase B reveals a potential target for pest management of Henosepilachna vigintioctopunctata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104555. [PMID: 32359544 DOI: 10.1016/j.pestbp.2020.104555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
The development of genetic based techniques, specifically RNA interference (RNAi), has emerged as a powerful tool in novel pest management strategies for pestiferous coleoptera. The 28-spotted ladybird beetle, Henosepilachna vigintioctopunctata, is a dynamic foliar pest of solenaceous plants, primarily potato plants, and has quickly become one of the most important pests attacking many crops in Asian countries. In this study, we demonstrate the efficacy of dietary RNAi targeting vATPase B, which led to significant gene silencing. Downstream effects of vATPase B silencing appeared to be both time- and partial dose-dependent. Our results indicate that silencing of vATPase B caused a significant decrease in survival rate, as well as reduced the food stuffs consumption and inhibited the overall development of H. vigintioctopunctata. Furthermore, results demonstrate expression of insect melanism related genes, TH and DDC, was significantly up regulated under the dsvATPase B (RNAi molecule designed against vATPase B) treatment. The impact of oral dsvATPase B delivery on the survival of 1st, 3rd instars, and adults was investigated through bacterially expressed dsRNA. The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that vATPase B may represent a candidate gene for RNAi-based control of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Jeffrey Edward Noland
- The Andersons, Inc., Ethanol Group, The Andersons Marathon-Holdings, LLC. Logansport, Indiana 46947, USA
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Yixiang Qi
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China.
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
36
|
Liu Y, Yang J, Huo Z, Wang S, Wu Q, Zhou X, Xie W, Zhang Y. Characteristic and Functional Study of Intersex, a Gene Related to Female Fertility in Bemisia tabaci. Front Physiol 2020; 11:55. [PMID: 32158397 PMCID: PMC7052062 DOI: 10.3389/fphys.2020.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
The intersex (ix) gene acts in concert with doublesex (dsx) at the end of the sex determination hierarchy to control somatic sexual differentiation in Drosophila melanogaster. Here, we report the Drosophila ix homolog in Bemisia tabaci (Btix) with differential splicing events. Four isoforms were found in B. tabaci adults, including two sex-specific transcripts (BtixF and BtixM). Knockdown of Btix had no measurable effects on female morphological phenotypes but reduced the expression of the vitellogenin gene and resulted in the production of significantly fewer eggs, a lower eclosion rate, and a shorter body size of female progeny in comparison with control females. These results increase our understanding of the genes underlying sex determination in B. tabaci and reveal a potential target for RNA interference-based pest management.
Collapse
Affiliation(s)
- Yating Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjian Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijia Huo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Dias NP, Cagliari D, Dos Santos EA, Smagghe G, Jurat-Fuentes JL, Mishra S, Nava DE, Zotti MJ. Insecticidal Gene Silencing by RNAi in the Neotropical Region. NEOTROPICAL ENTOMOLOGY 2020; 49:1-11. [PMID: 31749122 DOI: 10.1007/s13744-019-00722-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal gene silencing by RNA interference (RNAi) involves a post-transcriptional mechanism with great potential for insect control. Here, we aim to summarize the progress on RNAi research toward control of insect pests in the Neotropical region and discuss factors determining its efficacy and prospects for pest management. We include an overview of the available RNAi information for Neotropical pests in the Lepidoptera, Coleoptera, Diptera, and Hemiptera orders. Emphasis is put on significant findings in the use of RNAi against relevant Neotropical pests, including diamondback moth (Plutella xylostella L.), Asian citrus psyllid (Diaphorina citri Kuwayama), and the cotton boll weevil (Anthonomus grandis Boheman). We also examine the main factors involved in insecticidal RNAi efficiency and major advances to improve screening of lethal genes, formulation, and delivery. Few studies detail resistance mechanisms to RNAi, demonstrating a need for more research. Advances in formulation, delivery, and resistance management tools for insecticidal RNAi in the Neotropics can provide a basis for efficient field application.
Collapse
Affiliation(s)
- N P Dias
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| | - D Cagliari
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - E A Dos Santos
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - G Smagghe
- Dept of Plants and Crops, Ghent Univ, Ghent, Belgium
| | - J L Jurat-Fuentes
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - S Mishra
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - D E Nava
- Entomology Lab, EmbrapaClima Temperado, Pelotas, Brasil
| | - M J Zotti
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| |
Collapse
|
38
|
Yang L, Tian Y, Peng YY, Niu J, Wang JJ. Expression Dynamics of Core RNAi Machinery Genes in Pea Aphids Upon Exposure to Artificially Synthesized dsRNA and miRNAs. INSECTS 2020; 11:insects11020070. [PMID: 31973072 PMCID: PMC7074054 DOI: 10.3390/insects11020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/01/2023]
Abstract
The pea aphid is an important pest of vegetables and causes serious losses worldwide. RNA interference (RNAi) is an effective pest control tool, and three sub-pathways have been described: The miRNA pathway, siRNA pathway, and piRNA pathway. A large number of genes in miRNA pathway and piRNA pathway are found to be expanded. To study the roles of these genes, the expression of 25 core RNAi genes was screened in spatiotemporal samples, artificially synthesized dsRNA and miRNA treated samples. The 25 genes were all expressed during different development stages and in different tissues. In dsRNA-treated samples and miRNA-treated samples, the expressions of genes in these three pathways were induced, especially the expanded genes. This suggests a complex network of RNAi core genes in the three sub-pathways. Treatment of miRNA seems to induce gene expression in a dosage-dependent manner. These results increase our knowledge of the siRNA pathway and related factors from RNAi pathway in aphids and promote the use of RNAi for the control of aphid pests.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yuan Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
39
|
Lü J, Liu Z, Guo W, Guo M, Chen S, Li H, Yang C, Zhang Y, Pan H. Feeding Delivery of dsHvSnf7 Is a Promising Method for Management of the Pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECTS 2019; 11:insects11010034. [PMID: 31906124 PMCID: PMC7022289 DOI: 10.3390/insects11010034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools in the development of novel management strategies for the control of insect pests, such as Henosepilachna vigintioctopunctata, which is a major solanaceous pest in Asia. Our results showed that levels of HvSnf7 expression were greater in larval midguts than in other tissues. Silencing of HvSnf7 led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent. Bacterially expressed dsHvSnf7 that was applied to detached plant leaves caused 98, 88, and 60% mortality in 1st and 3rd instars, and adults after 10, 12, and 14 d, respectively; when applied to living plants, bacterially expressed dsHvSnf7 led to mortality in 1st and 3rd instars, with no effect on adults. Bacterially expressed dsHvSnf7 led to improved plant protection against H. vigintioctopunctata. Ultrastructural changes caused by HvSnf7-RNAi in larval midguts showed extensive loss of cellular contents that indicate loss of membrane integrity. This study indicate that HvSnf7 potentially can be used as RNAi target gene for controlling of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Z.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- Correspondence: (Y.Z.); (H.P.)
| |
Collapse
|
40
|
Nwokeoji AO, Kumar S, Kilby PM, Portwood DE, Hobbs JK, Dickman MJ. Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase HPLC. Analyst 2019; 144:4985-4994. [PMID: 31328735 DOI: 10.1039/c9an00954j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long double-stranded (ds) RNA is emerging as a novel alternative to chemical and genetically-modified insect and fungal management strategies. The ability to produce large quantities of dsRNA in either bacterial systems, by in vitro transcription, in cell-free systems or in planta for RNA interference applications has generated significant demand for the development and application of analytical tools for analysis of dsRNA. We have utilised atomic force microscopy (AFM) in conjunction with ion-pair reverse-phase high performance liquid chromatography (IP-RP-HPLC) to provide novel insight into dsRNA for RNAi applications. The AFM analysis enabled direct structural characterisation of the A-form duplex dsRNA and accurate determination of the dsRNA duplex length. Moreover, further analysis under non-denaturing conditions revealed the presence of heterogeneous dsRNA species. IP-RP-HPLC fractionation and AFM analysis revealed that these alternative RNA species do not arise from different lengths of individual dsRNA molecules in the product, but represent misannealed RNA species that present as larger assemblies or multimeric forms of the RNA. These results for the first time provide direct structural insight into dsRNA produced both in vivo in bacterial systems and in vitro, highlighting the structural heterogeneity of RNA produced. These results are the first example of detailed characterisation of the different forms of dsRNA from two production systems and establish atomic force microscopy as an important tool for the characterisation of long dsRNA.
Collapse
Affiliation(s)
- Alison O Nwokeoji
- Department of Chemical and Biological Engineering, Mappin Street, University of Sheffield, S1 3JD, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Shelomi M, Lin SS, Liu LY. Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics 2019; 20:957. [PMID: 31818246 PMCID: PMC6902462 DOI: 10.1186/s12864-019-6352-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The coconut rhinoceros beetle, Oryctes rhinoceros, is a major pest of palm crops in tropical Asia and the Pacific Islands. Little molecular data exists for this pest, impeding our ability to develop effective countermeasures and deal with the species' growing resistance to viral biocontrols. We present the first molecular biology analyses of this species, including a metagenomic assay to understand the microbiome of different sections of its digestive tract, and a transcriptomics assay to complement the microbiome data and to shed light on genes of interest like plant cell wall degrading enzymes and immunity and xenobiotic resistance genes. RESULTS The gut microbiota of Oryctes rhinoceros larvae is quite similar to that of the termite gut, as both species feed on decaying wood. We found the first evidence for endogenous beta-1,4-endoglucanase in the beetle, plus evidence for microbial cellobiase, suggesting the beetle can degrade cellulose together with its gut microfauna. A number of antimicrobial peptides are expressed, particularly by the fat body but also by the midgut and hindgut. CONCLUSIONS This transcriptome provides a wealth of data about the species' defense against chemical and biological threats, has uncovered several potentially new species of microbial symbionts, and significantly expands our knowledge about this pest.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, No 27 Lane 113 Sec 4 Roosevelt Rd, Taipei, 10617 Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Hooven LA, Chakrabarti P, Harper BJ, Sagili RR, Harper SL. Potential Risk to Pollinators from Nanotechnology-Based Pesticides. Molecules 2019; 24:E4458. [PMID: 31817417 PMCID: PMC6943562 DOI: 10.3390/molecules24244458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
The decline in populations of insect pollinators is a global concern. While multiple factors are implicated, there is uncertainty surrounding the contribution of certain groups of pesticides to losses in wild and managed bees. Nanotechnology-based pesticides (NBPs) are formulations based on multiple particle sizes and types. By packaging active ingredients in engineered particles, NBPs offer many benefits and novel functions, but may also exhibit different properties in the environment when compared with older pesticide formulations. These new properties raise questions about the environmental disposition and fate of NBPs and their exposure to pollinators. Pollinators such as honey bees have evolved structural adaptations to collect pollen, but also inadvertently gather other types of environmental particles which may accumulate in hive materials. Knowledge of the interaction between pollinators, NBPs, and other types of particles is needed to better understand their exposure to pesticides, and essential for characterizing risk from diverse environmental contaminants. The present review discusses the properties, benefits and types of nanotechnology-based pesticides, the propensity of bees to collect such particles and potential impacts on bee pollinators.
Collapse
Affiliation(s)
- Louisa A. Hooven
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Priyadarshini Chakrabarti
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Ramesh R. Sagili
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Stacey L. Harper
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| |
Collapse
|
43
|
Qiao J, Du Y, Yu J, Guo J. MicroRNAs as Potential Biomarkers of Insecticide Exposure: A Review. Chem Res Toxicol 2019; 32:2169-2181. [PMID: 31625722 DOI: 10.1021/acs.chemrestox.9b00236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Insecticides are key weapons for the control of pests. Large scale use of insecticides is harmful to the ecosystem, which is made up of a wide range of species and environments. MicroRNAs (miRNAs) are a class of endogenous single-stranded noncoding small RNAs in length of 20-24 nucleotides (nt), which extensively regulate expression of genes at transcriptional and post-transcriptional levels. The current research on miRNA-induced insecticide resistance reveals that dysregulated miRNAs cause significant changes in detoxification genes, particularly cytochrome P450s. Meanwhile, insecticide-induced changes in miRNAs are related to the decline of honeybees and threatened the development of zebrafish and other animals. Additionally, miRNAs are involved in insecticide-induced cytotoxicity, and dysregulated miRNAs are associated with human occupational and environmental exposure to insecticides. Therefore, miRNAs are valuable novel biomarkers of insecticide exposure, and they are potential factors to explain the toxicological effects of insecticides.
Collapse
Affiliation(s)
- Jiakai Qiao
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Yuting Du
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Junjie Yu
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine , Zhejiang Sci-Tech University , Hangzhou , Zhejiang 310018 , China
| |
Collapse
|
44
|
Hashiro S, Mitsuhashi M, Chikami Y, Kawaguchi H, Niimi T, Yasueda H. Construction of Corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control. Appl Microbiol Biotechnol 2019; 103:8485-8496. [PMID: 31486873 PMCID: PMC6800400 DOI: 10.1007/s00253-019-10113-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022]
Abstract
Double-stranded RNA (dsRNA) inducing RNA interference (RNAi) is expected to be applicable to management of agricultural pests. In this study, we selected a ladybird beetle, Henosepilachna vigintioctopunctata, as a model target pest that devours vegetable leaves, and examined the effects of feeding the pest sterilized microbes highly accumulating a target dsRNA for RNAi induction. We constructed an efficient production system for diap1*-dsRNA, which suppresses expression of the essential gene diap1 (encoding death-associated inhibitor of apoptosis protein 1) in H. vigintioctopunctata, using an industrial strain of Corynebacterium glutamicum as the host microbe. The diap1*-dsRNA was overproduced in C. glutamicum by convergent transcription using a strong promoter derived from corynephage BFK20, and the amount of dsRNA accumulated in fermented cells reached about 75 mg per liter of culture. In addition, we developed a convenient method for stabilizing the dsRNA within the microbes by simply sterilizing the diap1*-dsRNA-expressing C. glutamicum cells with ethanol. When the sterilized microbes containing diap1*-dsRNA were fed to larvae of H. vigintioctopunctata, diap1 expression in the pest was suppressed, and the leaf-feeding activity of the larvae declined. These results suggest that this system is capable of producing stabilized dsRNA for RNAi at low cost, and it will open a way to practical application of dsRNA as an environmentally-friendly agricultural insecticide.
Collapse
Affiliation(s)
- Shuhei Hashiro
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Mayu Mitsuhashi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Haruka Kawaguchi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hisashi Yasueda
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan. .,Research and Development Center for Precision Medicine, University of Tsukuba, 1-2, Kasuga, Tsukuba-shi, Ibaraki, 305-8550, Japan.
| |
Collapse
|
45
|
Guo W, Lü J, Guo M, Chen S, Qiu B, Sang W, Yang C, Zhang Y, Pan H. De Novo Transcriptome Analysis Reveals Abundant Gonad-specific Genes in the Ovary and Testis of Henosepilachna vigintioctopunctata. Int J Mol Sci 2019; 20:E4084. [PMID: 31438553 PMCID: PMC6747241 DOI: 10.3390/ijms20174084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) is a major pest affecting Solanaceae plants in Asian countries. In this study, we sequenced the ovary and testis transcriptomes of H. vigintioctopunctata to identify gonad-related genes. Comparison of the unigene sequences in ovary and testis libraries identified 1,421 and 5,315 ovary- and testis-specific genes, respectively. Among the ovary-specific genes, we selected the RC2-like and PSHS-like genes to investigate the effects of gene silencing on the mortality, percentage infertility, pre-oviposition period, fecundity, daily number of eggs laid, and hatching rate in female adults. Although the percentage mortality and infertility of females did not differ significantly among dsRNA treatments, fecundity was significantly reduced in the dsRC2-like and dsPSHS-like treatment groups. Moreover, the pre-oviposition period was markedly prolonged in response to dsPSHS-like treatment. This is the first reported RNA sequencing of H. vigintioctopunctata. The transcriptome sequences and gene expression profiles of the ovary and testis libraries will provide useful information for the identification of gonad-related genes in H. vigintioctopunctata and facilitate further research on the reproductive biology of this species. Moreover, the gonad-specific genes identified may represent candidate target genes for inhibiting the population growth of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Engineering Technology Research Center of Agricultural Pest Biocontrol of Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
46
|
Dias N, Cagliari D, Kremer FS, Rickes LN, Nava DE, Smagghe G, Zotti M. The South American Fruit Fly: An Important Pest Insect With RNAi-Sensitive Larval Stages. Front Physiol 2019; 10:794. [PMID: 31316391 PMCID: PMC6610499 DOI: 10.3389/fphys.2019.00794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
RNA interference (RNAi) technology has been used in the development of approaches for pest control. The presence of some essential genes, the so-called “core genes,” in the RNAi machinery is crucial for its efficiency and robust response in gene silencing. Thus, our study was designed to examine whether the RNAi machinery is functional in the South American (SA) fruit fly Anastrepha fraterculus (Diptera: Tephritidae) and whether the sensitivity to the uptake of double-stranded RNA (dsRNA) could generate an RNAi response in this fruit fly species. To prepare a transcriptome database of the SA fruit fly, total RNA was extracted from all the life stages for later cDNA synthesis and Illumina sequencing. After the de novo transcriptome assembly and gene annotation, the transcriptome was screened for RNAi pathway genes, as well as the duplication or loss of genes and novel target genes to dsRNA delivery bioassays. The dsRNA delivery assay by soaking was performed in larvae to evaluate the gene-silencing of V-ATPase, and the upregulation of Dicer-2 and Argonaute-2 after dsRNA delivery was analyzed to verify the activation of siRNAi machinery. We tested the stability of dsRNA using dsGFP with an in vitro incubation of larvae body fluid (hemolymph). We identified 55 genes related to the RNAi machinery with duplication and loss for some genes and selected 143 different target genes related to biological processes involved in post-embryonic growth/development and reproduction of A. fraterculus. Larvae soaked in dsRNA (dsV-ATPase) solution showed a strong knockdown of V-ATPase after 48 h, and the expression of Dicer-2 and Argonaute-2 responded with an increase upon the exposure to dsRNA. Our data demonstrated the existence of a functional RNAi machinery in the SA fruit fly, and we present an easy and robust physiological bioassay with the larval stages that can further be used for screening of target genes at in vivo organisms’ level for RNAi-based control of fruit fly pests. This is the first study that provides evidence of a functional siRNA machinery in the SA fruit fly.
Collapse
Affiliation(s)
- Naymã Dias
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Deise Cagliari
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Frederico Schmitt Kremer
- Bioinformatics and Proteomics Laboratory, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Leticia Neutzling Rickes
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Dori Edson Nava
- Entomology Laboratory, Embrapa Clima Temperado, Pelotas, Brazil
| | - Guy Smagghe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Moisés Zotti
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
47
|
Hu X, Steimel JP, Kapka-Kitzman DM, Davis-Vogel C, Richtman NM, Mathis JP, Nelson ME, Lu AL, Wu G. Molecular characterization of the insecticidal activity of double-stranded RNA targeting the smooth septate junction of western corn rootworm (Diabrotica virgifera virgifera). PLoS One 2019; 14:e0210491. [PMID: 30629687 PMCID: PMC6328145 DOI: 10.1371/journal.pone.0210491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/24/2018] [Indexed: 01/14/2023] Open
Abstract
The western corn rootworm (WCR, Diabrotica virgifera virgifera) gene, dvssj1, is a putative homolog of the Drosophila melanogaster gene, snakeskin (ssk). This gene encodes a membrane protein associated with the smooth septate junction (SSJ) which is required for the proper barrier function of the epithelial lining of insect intestines. Disruption of DVSSJ integrity by RNAi technique has been shown previously to be an effective approach for corn rootworm control, by apparent suppression of production of DVSSJ1 protein leading to growth inhibition and mortality. To understand the mechanism that leads to the death of WCR larvae by dvssj1 double-stranded RNA, we examined the molecular characteristics associated with SSJ functions during larval development. Dvssj1 dsRNA diet feeding results in dose-dependent suppression of mRNA and protein; this impairs SSJ formation and barrier function of the midgut and results in larval mortality. These findings suggest that the malfunctioning of the SSJ complex in midgut triggered by dvssj1 silencing is the principal cause of WCR death. This study also illustrates that dvssj1 is a midgut-specific gene in WCR and its functions are consistent with biological functions described for ssk.
Collapse
Affiliation(s)
- Xu Hu
- DuPont Pioneer, Johnston, Iowa, United States of America
- * E-mail: (XH); (MEN)
| | | | | | | | | | - John P. Mathis
- DuPont Pioneer, Johnston, Iowa, United States of America
| | - Mark E. Nelson
- DuPont Pioneer, Johnston, Iowa, United States of America
- * E-mail: (XH); (MEN)
| | - Albert L. Lu
- DuPont Pioneer, Johnston, Iowa, United States of America
| | - Gusui Wu
- DuPont Pioneer, Hayward, California, United States of America
| |
Collapse
|
48
|
Ahn SJ, Donahue K, Koh Y, Martin RR, Choi MY. Microbial-Based Double-Stranded RNA Production to Develop Cost-Effective RNA Interference Application for Insect Pest Management. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2019; 11:1179543319840323. [PMID: 31040730 PMCID: PMC6482651 DOI: 10.1177/1179543319840323] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 05/10/2023]
Abstract
RNA interference (RNAi) is a convenient tool to identify and characterize biological functions in organisms. Recently, it has become an alternative to chemical insecticides as a biologically based control agent. This promising technology has the potential to avoid many problems associated with conventional chemical insecticides. In order for RNAi application to be practical for field use, a major hurdle is the development of a cost-effective system of double-stranded RNA (dsRNA) production for a large quantity of dsRNA. A handful of research reports has demonstrated microbial-based dsRNA production using L4440 vector and HT115 (DE3) Escherichia coli for application to vertebrate and invertebrate systems. However, the dsRNA yield, production efficiency, and biological purity from this in vitro system is still unclear. Thus, our study detailed biochemical and molecular tools for large-scale dsRNA production using the microbial system and investigated the production efficiency and yield of crude and purified dsRNAs. An unrelated insect gene, green fluorescent protein (GFP), and an insect neuropeptide gene, pyrokinin (PK) identified from Drosophila suzukii, were used to construct the recombinant L4440 to be expressed in the HT115 (DE3) cell. A considerable amount of dsRNA, 19.5 µg/mL of liquid culture, was isolated using ultrasonic disruption followed by phenol extraction. The sonication method was further evaluated to extract crude dsRNA without the additional phenol extraction and nuclease treatments and also to reduce potential bacterial viability. The results suggest that the ultrasonic method saved time and costs to isolate crude dsRNA directly from large volumes of cell culture without E coli contamination. We investigated whether the injection of PK dsRNA into flies resulted in increased adult mortality, but it was not statistically significant at 95% confidence level. In this study, the microbial-based dsRNA production has potential for applied RNAi technology to complement current insect pest management practices.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Kelly Donahue
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Youngho Koh
- Department of Bio-Medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Republic of Korea
| | | | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, USA
- Man-Yeon Choi, USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA.
| |
Collapse
|
49
|
Yang D, Xu X, Zhao H, Yang S, Wang X, Zhao D, Diao Q, Hou C. Diverse Factors Affecting Efficiency of RNAi in Honey Bee Viruses. Front Genet 2018; 9:384. [PMID: 30254665 PMCID: PMC6141667 DOI: 10.3389/fgene.2018.00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Infection and transmission of honey bee viruses pose a serious threat to the pollination services of crops and wild plants, which plays a vital role in agricultural economy and ecology. RNA interference (RNAi) is an effective defense mechanism against commonly occurring viral infections of animals and plants. However, recent studies indicate that the effects of RNAi on the honey bee can induce additional impacts and might not always be effective in suppressing the virus. Moreover, the RNAi responses differed in relation to the developmental stage of the insect and the target tissue used, even though the same method of delivery was used. These results indicate that further analysis and field experiments should be performed to characterize the varying effectiveness of RNAi-based methods for treating honey bee viral infections. In this review, we provide an overview of the current knowledge and the recent progress in RNAi-based anti-viral treatments for honey bees, focusing in particular highlight the role of the dsRNA-delivery method used and its effect on RNAi efficiency and demonstrate the potential practical value of this tool for controlling the virus. We conclude studying the gene function and disease control of honey bee by RNAi technology requires a complex consideration from physiology, genetics to environment.
Collapse
Affiliation(s)
- Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Di Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| |
Collapse
|
50
|
Wang J, Gu L, Knipple DC. Evaluation of some potential target genes and methods for RNAi-mediated pest control of the corn earworm Helicoverpa zea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:67-72. [PMID: 30033018 DOI: 10.1016/j.pestbp.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
In this study, we explored the efficacy of knockdown four genes required for proper nervous system function by RNAi, in the corn earworm Helicoverpa zea (Boddie). Three of these genes encode components of validated insecticide target sites. We synthesized cDNA sequences orthologous to the Drosophila melanogaster genes Para (paralyticts), TipE (temperature-induced paralysis locus E), GluCl (glutamate-gated chloride channel), and Notch, and used these fragments to synthesize double-stranded RNAs (dsRNAs). We then performed experiments in an attempt to induce RNAi-mediated effects on gene expression and viability using three modes of delivery of the dsRNAs: microinjection of eggs, soaking of eggs and feeding of larvae. Microinjection of dsRNAs into eggs induced reduced hatch rates and knockdown of target gene expression for GluCl, para and TipE, but not for Notch. However, neither feeding nor soaking eggs in dsRNA solutions resulted in discernable RNAi effects. These results demonstrated the susceptibility to RNAi effects of the expression of H. zea genes encoding insecticide target sites, which suggests future avenues of research toward practical applications.
Collapse
Affiliation(s)
- Jinda Wang
- National Engineering and Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, PR China; Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Liuqi Gu
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | - Douglas C Knipple
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|