1
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Türkez H, Özdemir Tozlu Ö, Yıldız E, Saraçoğlu M, Baba C, Çınar B, Yıldırım S, Kılıçlıoğlu M, Topkara KÇ, Çadırcı K. Assessment of Subacute Toxicity of Ulexite in Rats: Behavioral, Hematological, and Biochemical Insights. Biol Trace Elem Res 2024:10.1007/s12011-024-04489-7. [PMID: 39666170 DOI: 10.1007/s12011-024-04489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Ulexite (UX), a naturally occurring borate mineral, has gained interest for its diverse industrial applications, yet its toxicological profile remains inadequately characterized. This study aimed to evaluate the subacute toxicity of UX in rats, focusing on behavioral, hematological, and biochemical parameters. Rats were administered UX via gavage at doses of 10, 30, and 300 mg/kg for 7 days. No mortality or significant signs of toxicity were observed, although body weight measurements indicated a notable reduction in the UX-treated groups compared to controls. Behavioral assessments demonstrated increased exploratory activity in the 10 and 300 mg/kg UX treated groups, suggesting low anxiety levels. Likewise, hematological analysis revealed that 30 and 300 mg/kg UX led a significant (P < 0.001) increase in hematocrit and a decrease in mean corpuscular hemoglobin concentration (P < 0.001), indicating potential changes in erythropoiesis. Additionally, serum biochemistry showed elevated aspartate aminotransferase (P < 0.05), lactate dehydrogenase (P < 0.001), and uric acid levels (P < 0.01), suggesting liver stress. Histopathological examinations indicated dose-dependent alterations, with mild hepatocellular degeneration and neuronal changes observed at the highest dose. Also, MN levels in the blood of rats exposed to 10 and 30 mg/kg UX showed no significant differences. These results suggest that UX is relatively safe at lower doses, though higher exposures may pose health risks. Further research is warranted to elucidate the mechanisms underlying UX-induced effects and to evaluate its safety for therapeutic and occupational applications.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Melik Saraçoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Burak Çınar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Metin Kılıçlıoğlu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Kübra Çelik Topkara
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| |
Collapse
|
3
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024; 37:1325-1378. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
4
|
Celik C, Cetinkaya N. Effects of Boron Supplementation in Dairy Cow Close-Up Rations on Colostrum Quality and Certain Blood Metabolites in Calves. Biol Trace Elem Res 2024:10.1007/s12011-024-04419-7. [PMID: 39422828 DOI: 10.1007/s12011-024-04419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
In this study, we aimed to investigate the effects of different levels of boron supplementation to the diet during the close-up period and the first postpartum day on postpartum colostrum quality, immunoglobulin levels in colostrum, and certain calf blood parameters in dairy cattle (n = 21). Two experimental groups and one control (C) group were formed. Boron at 300 ppm (T-300) and 600 ppm (T-600) was added to the experimental rations. The daily dry matter intake (DMI), body condition score (BCS) of dairy cattle, and body weight (BW) of calves were recorded. Colostrum samples were collected during the first 2 postpartum milkings, and their components were determined. Blood samples were collected from calves at 24 and 48 hours after colostrum feeding. The addition of boron to rations during the close-up dry period increased the DMI of cows and the BW of calves born to the T-600 group (p < 0.05). The addition of boron to the rations changed the total protein (TP) and nonesterified fatty acid (NEFA) values in the calf blood samples taken 48 hours after birth from those of the control group (p < 0.05). The differences between the blood boron values of the experimental and control groups at 24 and 48 hours after colostrum and colostrum feeding were significant (p < 0.05). At the first milking after birth, the colostrum DM value and density were highest in the T-600 group (p < 0.05). In conclusion, due to the high density value of colostrum according to the quality classification of colostrum in the first postpartum milking and the increase in calf blood IgG levels at 48 hours compared to the control group, it may be considered to add up to 600 ppm boron to the rations of cows close-up period in order to improve calf health and prevent calf losses due to colostrum quality.
Collapse
Affiliation(s)
- Cansu Celik
- Department of Veterinary Medicine, Vocational School of Araban, Gaziantep University, Araban, 27650, Turkey.
| | - Nurcan Cetinkaya
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55100, Turkey
| |
Collapse
|
5
|
Nava V, Licata P, Biondi V, Catone G, Gugliandolo E, Pugliese M, Passantino A, Crupi R, Aragona F. Horse Whole Blood Trace Elements from Different Sicily Areas: Biomonitoring of Environmental Risk. Biol Trace Elem Res 2024; 202:3086-3096. [PMID: 37817046 DOI: 10.1007/s12011-023-03889-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
Horses are excellent bioindicators for the assessment of environmental pollution. The aim of this study was to evaluate the levels and potential bioaccumulation of 28 mineral elements in 75 horse whole blood samples collected from five pollution-prone areas of Sicily, Italy. A direct mercury analyzer (DMA-80) was used for Hg determination, and an inductively coupled plasma mass spectrometer (ICP-MS) for all other elements. A one-way ANOVA test, followed by Bonferroni's multiple comparison for post hoc comparison, was applied to assess statistically significant differences between mineral elements and the five experimental groups. The levels of mineral elements in hay and concentrate were below the limits set by Regulation No. 744/2012. The mineral content of whole blood samples was slightly influenced by the region of origin of the horse. p values < 0.05 were statistically meaningful. However, the concentrations of mineral elements in horses' whole blood remained within reference ranges. In conclusion, the present study shows that the mineral content does not represent a toxicological risk for the analyzed horses. In addition, the study areas did not appear to show a high mineral element contamination.
Collapse
Affiliation(s)
- Vincenzo Nava
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy.
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Vito Biondi
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Giuseppe Catone
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Michela Pugliese
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Annamaria Passantino
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| | - Francesca Aragona
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168, Messina, Italy
| |
Collapse
|
6
|
Chen S, Fan H, Pei Y, Zhang K, Zhang F, Hu Q, Jin E, Li S. MAPK Signaling Pathway Plays Different Regulatory Roles in the Effects of Boric Acid on Proliferation, Apoptosis, and Immune Function of Splenic Lymphocytes in Rats. Biol Trace Elem Res 2024; 202:2688-2701. [PMID: 37737440 DOI: 10.1007/s12011-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Boron is one of the essential trace elements in animals. Although boron supplementation can enhance immune function and promote cell proliferation, high-dose boron supplementation can negatively affect immune function and inhibit cell proliferation. Furthermore, its action pathway is unknown. In this study, ERK1/2, JNK, and p38MAPK signaling pathways were blocked using specific blockers to investigate the impact of low-dose and high-dose boron on proliferation, apoptosis, and immune function of lymphocytes, and the expression of genes related to cell proliferation and apoptosis in rats. The addition of 0.4 mmol/L boron did not affect the ratio of CD4+/CD8+ T cells (P>0.05), IgG and IFN-γ contents (P>0.05), the proliferation rate of lymphocytes (P>0.05), and mRNA and protein expressions of PCNA (P>0.05) in the spleen after ERK1/2 signal pathway was selectively inhibited. Moreover, the addition of 40 mmol/L boron did not affect the proportion of CD4+ T cells, contents of IgG and cytokines (IL-2 and IL-4), proliferation and apoptosis rates of lymphocytes, and expression of proliferation- and apoptosis-related genes in the spleen. Meanwhile, the addition of 0.4 mmol/l boron increased the ratio of CD4+/CD8+ T cells (P<0.05 or P<0.01), IFN-γ or IgG contents (P<0.05), and the proliferation rate of lymphocytes (P<0.05) in spleen after selective inhibition of JNK or p38MAPK signaling pathways, while the protein expression of Caspase-3 decreased (P<0.05 or P<0.01). Furthermore, 40 mmol/L boron decreased the proportion of lymphocyte subsets, cytokine contents, proliferation rate of lymphocytes, and mRNA and protein expressions of PCNA. In contrast, the mRNA and protein expressions of Caspase-3 and protein expression of Bax were increased. These results indicate that ERK1/2 signaling pathway mainly regulates the effects of low-dose and high-dose boron on proliferation, apoptosis, and immune function of splenic lymphocytes.
Collapse
Affiliation(s)
- Shuqin Chen
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Yaqiong Pei
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Kaihuan Zhang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China.
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| |
Collapse
|
7
|
Deng J, Zhang F, Fan H, Zheng Y, Zhao C, Ren M, Jin E, Gu Y. Effects of Plant Polysaccharides Combined with Boric Acid on Digestive Function, Immune Function, Harmful Gas and Heavy Metal Contents in Faeces of Fatteners. Animals (Basel) 2024; 14:1515. [PMID: 38891562 PMCID: PMC11171036 DOI: 10.3390/ani14111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Yuxuan Zheng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
8
|
Chen S, Huang J, Liu T, Zhang F, Zhao C, Jin E, Li S. PI3K/Akt signaling pathway mediates the effect of low-dose boron on barrier function, proliferation and apoptosis in rat intestinal epithelial cells. Sci Rep 2024; 14:393. [PMID: 38172276 PMCID: PMC10764725 DOI: 10.1038/s41598-023-50800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Boron is an essential trace element with roles in growth, development, and physiological functions; however, its mechanism of action is still unclear. In this study, the regulatory roles of the PI3K/Akt signaling pathway on boron-induced changes in barrier function, proliferation, and apoptosis in rat intestinal epithelial cells were evaluated. Occludin levels, the proportion of cells in the G2/M phase, cell proliferation rate, and mRNA and protein expression levels of PCNA were higher, while the proportions of cells in the G0/G1 and S phases, apoptosis rate, and caspase-3 mRNA and protein expression levels were lower in cells treated with 0.8 mmol/L boron than in control IEC-6 cells (P < 0.01 or P < 0.05). However, 40 mmol/L boron decreased ZO-1 and Occludin levels, the proportion of cells in the G2/M phase, cell proliferation rate, and mRNA and protein levels of PCNA and increased the apoptosis rate and caspase-3 mRNA expression (P < 0.01 or P < 0.05). After specifically blocking PI3K and Akt signals (using LY294002 and MK-2206 2HCL), 0.8 mmol/L boron had no effects on Occludin, PCNA level, apoptosis rates, and caspase-3 levels (P < 0.05); however, the proliferation rate and PCNA levels decreased significantly (P < 0.01 or P < 0.05). The addition of 40 mmol/L boron did not affect ZO-1 and Occludin levels and did not affect the apoptosis rate or PCNA and caspase-3 levels. These results suggested that the PI3K/Akt signaling pathway mediates the effects of low-dose boron on IEC-6 cells.
Collapse
Affiliation(s)
- Shuqin Chen
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Jialiang Huang
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Ting Liu
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou City, Anhui Province, China.
| |
Collapse
|
9
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
10
|
Calabrese E, Pressman P, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Boron enhances adaptive responses and biological performance via hormetic mechanisms. Chem Biol Interact 2023; 376:110432. [PMID: 36878460 DOI: 10.1016/j.cbi.2023.110432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Boron is shown in the present review to induce hormetic dose responses in a broad range of biological models, organ systems and endpoints. Of particular importance is that numerous hormetic findings have been reported with whole animal studies, with extensive dose response evaluations with the optimal dosing being similar across multiple organ systems. These findings appear to be underappreciated and suggest that boron may have clinically significant systemic effects beyond that of its putative and more subtle essentiality functions. The re-exploration of boron's bioactivity as seen through hormetic mechanisms may also underscore the value of this approach to the assessment of micronutrient effects in human health and disease.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall-Room 201, Orono, ME, 04469, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
11
|
Khaliq H, Ke X, Keli Y, Lei Z, Jing W, Pengpeng S, Zhong J, Peng K. Morphological and Transcriptomic Analysis of the Supplemental Boron in the Liver of Ostrich Chicks. Biol Trace Elem Res 2023:10.1007/s12011-022-03489-9. [PMID: 36600166 DOI: 10.1007/s12011-022-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/13/2022] [Indexed: 01/06/2023]
Abstract
African ostrich chicks (Struthio camelus) were divided into six groups, and each received different levels of boric acid (source of boron) in the drinking water (0, 40, 80, 160, 320, and 640 mg/L respectively) to examine the histological, apoptotic, biochemical, and transcriptomic parameters. Morphological analysis in different groups was assessed by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and terminal deoxynucleotide transferase dUTP Nick-End Labeling (TUNEL) assay. The biochemical profile was evaluated spectrophotometrically. Detailed RNA-Seq of the data was performed using the transcriptomic method. H&E staining showed well-developed liver structure up to the 160 mg/L boric acid (BA) supplement groups, while BA doses (320 mg/L and 640 mg/L) caused changes in hepatocytes and portal triads. PAS staining showed that glycogen levels were optimal in the 80 mg/L BA dose group, but a reduction in glycogen levels was observed after this group, particularly in the 640 mg/L BA supplement group. Cellular apoptosis showed a biphasic pattern, and the BA dose above 160 mg/L enhanced cell death. In addition, serum analysis showed that doses of 80-160 mg BA were beneficial for ostrich liver. Then, the transcriptome analysis of the 80 mg dose also showed mainly positive effects on the liver. These results demonstrated that chronic BA exposure (320-640 mg) can cause significant histological, apoptotic, and biochemical changes in African ostrich liver, while the adequate dose of supplementation (particularly 80 mg BA) promotes liver growth.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Anatomy & Histology, CUVAS, Bahawalpur, 63100, Pakistan.
| | - Xiao Ke
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Keli
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Wang Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sun Pengpeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juming Zhong
- College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Kemei Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
12
|
Inan Yuksel E, Demir B, Cicek D, Sahin K, Tuzcu M, Orhan C, Calik I, Sahin F. Sodium pentaborate pentahydrate promotes hair growth through the Wnt/β-catenin pathway and growth factors. J Trace Elem Med Biol 2022; 73:127007. [PMID: 35623224 DOI: 10.1016/j.jtemb.2022.127007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Boron (B) is an element involved in many physiological processes in humans and accelerates wound healing and increases angiogenesis. This study aimed to evaluate the possible effects of sodium pentaborate pentahydrate (NaB) on hair growth and reveal its effects on Wnt-1, β-catenin, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and transforming growth factor-β1 (TGF-β1) signaling pathways, which are important molecular mechanisms involved in hair growth. METHODS Thirty-five Sprague-Dawley/Wistar albino rats were randomly divided into five groups: non-shaved control, shaved control, NaB 1 mg (shaved + NaB 1 mg elemental B/kg CA), NaB 2 mg (shaved + NaB 2 mg elemental B/kg CA), and NaB 4 mg (shaved + NaB 4 mg elemental B/kg CA). Hair density was measured using the trichoscopy method. Dorsal skin samples were examined histopathologically at the end of the 42nd day, and follicle count, follicle diameter, and subcutaneous tissue thickness were recorded. Wnt-1, β-catenin, PDGF, VEGF, TGF-β1, and collagen I levels were analyzed with the Western blot method. RESULTS In trichoscopy measurements, hair density increased in the NaB 4 mg group (90.9%). In histopathological examination, anagen follicles were observed to increase in the NaB 1 mg and 2 mg groups (p < 0.05). Follicle diameter increased in all NaB groups (p < 0.05). The Wnt-1, β-catenin, PDGF, VEGF, TGF-β1, and collagen I level increased in the NaB 1 mg and 2 mg groups (p < 0.05), but they were similar in the NaB 4 mg group compared to the control groups (p > 0.05). CONCLUSION NaB 1 and 2 mg B/kg supplementation induces the anagen phase in rats via Wnt-1, β-catenin, VEGF, PDGF, and TGF-β1 signaling pathways. NaB 4 mg B/kg suppresses these pathways and adversely affects hair growth.
Collapse
Affiliation(s)
- Esma Inan Yuksel
- Department of Dermatology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Betul Demir
- Department of Dermatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Demet Cicek
- Department of Dermatology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ilknur Calik
- Department of Pathology, Firat University Faculty of Medicine, Elazig, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
13
|
Kumar V, Pandita S, Kaur R, Kumar A, Bhardwaj R. Biogeochemical cycling, tolerance mechanism and phytoremediation strategies of boron in plants: A critical review. CHEMOSPHERE 2022; 300:134505. [PMID: 35395266 DOI: 10.1016/j.chemosphere.2022.134505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Boron (B) is an inimitable plant micronutrient, predominantly distinguished by super-narrow range between its deficiency and toxicity concentrations, which depends upon boron speciation in the growth media and form of living organisms. Moreover, the significant variations in its mobility amid different species, and distinctive inter and intra-species responses to extreme concentrations. Therefore, it is necessary to screen the bioavailability, speciation, biogeochemical cycling and exposure pathways of boron in the environment. The genes involved in the tolerance mechanism of boron in different plants were discussed in the current review paper. The functions related to scarcity and excess of boron concentration are assessed. The diverse plants implicated in phytoremediation of boron contaminated sites that restrict boron accumulation in food crops and health risks associated with soils containing deficit or surplus boron concentration were appraised. Ultimately, a summary of numerous strategies involved in the recovery and repair of boron-contaminated soils have been reviewed.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, India.
| | | | - Ravdeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ashok Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
14
|
Zhao C, Han Y, Wang C, Ren M, Hu Q, Gu Y, Ye P, Li S, Jin E. Transcriptome Profiling of Duodenum Reveals the Importance of Boron Supplementation in Modulating Immune Activities in Rats. Biol Trace Elem Res 2022; 200:3762-3773. [PMID: 34773147 DOI: 10.1007/s12011-021-02983-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
As an essential trace element, appropriate boron supplementation can promote immune function of animals. To illustrate the effects of boron in a rat model, RNA-Seq was conducted for the RNA from duodenum after treatment with different concentration of boron in which boron was given in the form of boric acid. More than 47 million reads were obtained in 0, 10, and 320 mg/L boron (0, 57.21, and 1830.66 mg/L boric acid) treatment groups that produced 58 965 402, 48 607 328, and 46 760 660 clean reads, respectively. More than 95% of the clean reads were successfully matched to the rat reference genome and assembled to generate 32 662 transcripts. A total of 624 and 391 differentially expressed candidate genes (DEGs) were found between 0 vs.10 and 0 vs. 320 mg/L boron comparison groups. We also identified transcription start site, transcription terminal site, and skipped exons as the main alternative splicing events. GO annotations revealed most of DEGs were involved in the regulation of immune activity. The DEGs were enriched in influenza A, herpes simplex infection, cytosolic DNA-sensing pathway, and antigen processing and presentation signaling pathways. The expression levels of genes enriched in these signaling pathways indicate that lower doses of boron could achieve better effects on promoting immune response in the duodenum. These effects on the immune system appear to be mediated via altering the expression patterns of genes involved in the related signaling pathways in a dose-dependent pattern. These data provide more insights into the molecular mechanisms of immune regulation in rats in response to dietary boron treatment.
Collapse
Affiliation(s)
- Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Yujiao Han
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Chenfang Wang
- College of Life and Health Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| |
Collapse
|
15
|
Zhang G, Wang A, Zhuang L, Wang X, Song Z, Liang R, Ren M, Long M, Jia X, Li Z, Su S, Wang J, Zhang N, Shen G, Wang B. Enrichment of boron element in follicular fluid and its potential effect on the immune function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119147. [PMID: 35314206 DOI: 10.1016/j.envpol.2022.119147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The blood-follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.
Collapse
Affiliation(s)
- Guohuan Zhang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Xikai Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziyi Song
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Manman Long
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Shu Su
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahao Wang
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, 100191, China
| | - Nan Zhang
- Gynecology Department, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bin Wang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Effect of Parecoxib Sodium Preemptive Analgesia on the Recovery Period of General Anesthesia in Patients Undergoing Glioma Resection. JOURNAL OF ONCOLOGY 2022; 2022:4934343. [PMID: 35734224 PMCID: PMC9208977 DOI: 10.1155/2022/4934343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Objective To investigate the effect of parecoxib sodium preemptive analgesia on postoperative complications and postoperative recovery of patients undergoing glioma resection. Methods A total of 200 eligible patients with low-grade gliomas in the functional brain area scheduled for an awake craniotomy between January 2017 and December 2020 were reviewed. The subjects were divided into two groups: the study group (n = 100) given dexmedetomidine plus parecoxib sodium for pre-emptive analgesia 30 minutes preoperatively, and the control group (n = 100) receiving dexmedetomidine alone. Venous blood was collected before surgery, at the time of postoperative recovery, and 24 hours after operation, mean artery pressure (MAP) and heart rate (HR) were recorded during surgery. Sedation satisfaction, agitation rate, numerical pain score (NRS), postoperative complications, minimental state examination (MMSE) scores, quality of life (QoL) scores, and incidence of adverse events were also investigated after the surgery. Results There were no significant differences in operation time, awakening time, intraoperative awakening time, and extubation time between the two groups (P > 0.05). Compared with the control group, the ΔMAP (7.26 ± 2.21 versus 5.78 ± 2.36 mmHg) and the ΔHR (11.35 ± 3.66 versus 8.84 ± 2.47 beats/min) were significantly lower in the study group (P < 0.05). Compared with the control group, the satisfaction was higher and agitation rate was lower in the study group (P < 0.05). The incidence of intracranial infection and pulmonary infection decreased after operation (P < 0.05). The NRS of the study group was remarkably lower than the control group at 12 hours postoperatively Preoperative MMSE score and QoL score showed no statistical difference (P > 0.05), while postoperative MMSE and QoL scores showed statistical difference (P < 0.05). Conclusion This study suggests that parecoxib sodium can significantly improve the level of sedation and analgesia in patients undergoing glioma resection, reduce the incidence of intracranial infection and pulmonary infection.
Collapse
|
17
|
Akbari N, Ostadrahimi A, Tutunchi H, Pourmoradian S, Farrin N, Najafipour F, Soleimanzadeh H, Kafil B, Mobasseri M. Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial. J Trace Elem Med Biol 2022; 71:126945. [PMID: 35183882 PMCID: PMC8837486 DOI: 10.1016/j.jtemb.2022.126945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The present study aimed to assess the therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19. METHODS Forty adult patients with a diagnosis of COVID-19 were recruited in the present study. Patients were randomized in a 1:1:1:1 allocation ratio to 1of 4 treatment groups: (A) 5 mg of boron citrate twice a day, (B) 200 mg of oleoylethanolamide twice a day, (C) both therapies, or (D) routine treatments without any study medications. At pre-and post-intervention phase, some clinical and biochemical parameters were assessed. RESULTS Supplementation with boron citrate alone or in combination with oleoylethanolamide significantly improved O2 saturation and respiratory rate (p < 0.01). At the end of the study, significant increases in white blood cell and lymphocyte count were observed in the boron citrate and combined groups (p < 0.001). Boron citrate supplementation led to a significant decrease in serum lactate dehydrogenase (p = 0.026) and erythrocyte sedimentation rate (p = 0.014), compared with other groups. Furthermore, boron citrate in combination with oleoylethanolamide resulted in a significant reduction in the high-sensitivity C-reactive protein and interleukin-1β concentrations (p = 0.031 and p = 0.027, respectively). No significant differences were found among four groups post-intervention, in terms of hemoglobin concentrations, platelet count, and serum interleukin-6 levels. At the end of the study, common symptoms of COVID-19 including cough, fatigue, shortness of breath, and myalgia significantly improved in the supplemented groups, compared to the placebo (p < 0.05). CONCLUSION Supplementation with boron citrate alone or in combination with oleoylethanolamide could improve some clinical and biochemical parameters in COVID-19 patients.
Collapse
Affiliation(s)
- Neda Akbari
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Pourmoradian
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Farrin
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soleimanzadeh
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Iran
| | - Behnam Kafil
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Arciniega-Martínez IM, Romero-Aguilar KS, Farfán-García ED, García-Machorro J, Reséndiz-Albor AA, Soriano-Ursúa MA. Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J Trace Elem Med Biol 2022; 69:126901. [PMID: 34801850 DOI: 10.1016/j.jtemb.2021.126901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been reported that boron induces changes in the immune response, including in inflammatory processes. Recently, the effect of boric acid has been documented on the differentiation of lymphocyte clusters in mice and rats. However, the differences among boron-containing compounds (BCC) have been poorly explored. METHODS In this study, we analyzed the effects after oral administration of boric acid (BOR), methylboronic (MET), 3-thyenylboronic (3TB), 4-hydroxymethyl-phenylboronic (4MP) and 4-methanesulfonyl-phenylboronic (4SP) acids on the populations of lymphocytes from spleen and Peyer's patch (PP) as well as on antibodies. Groups of six male BALB/c were orally treated with 4.6 mg/kg of body weight with BOR, MET, 3TB, 4MP, and 4SP/daily for 10 days or vehicle (VEH) as a control group. After euthanasia, the spleen and small intestine were dissected. We conducted flow cytometry assays to assess B, CD3+ T, CD4+ T, and CD8+ T cells. Levels of IgG and IgM in serum, and IgA in intestinal fluid samples were analyzed by enzyme immunoassay. RESULTS In particular, we observed the effects of the administration of boronic acids on the number of lymphocytes; these changes were more notable in spleen than in PP. We found different profiles for each boron-containing compound, that is BOR induced an increase in the percentage of CD8+ T and CD19+/IgA+ cells in spleen, but a decrease in CD8+ T and B220+/CD19+ cells in PP. Meanwhile MET induced a decrease of CD4+ T in spleen, but induced an increase of CD4+ T cells and a decrease in the number of CD8+ T cells in PP. Boronic acids with an aromatic ring moiety induced changes in serum immunoglobulins levels, while 3TB acid induced a notable increase in S-IgA. CONCLUSIONS Effects in lymphocyte populations and antibodies are different for each tested compound. These results highlight the establishment of the necessary structure-activity relationship for BCC as immunomodulatory drugs. This is relevant in the biomedical field due to their attractiveness for selecting compounds to develop therapeutic tools.
Collapse
Affiliation(s)
- Ivonne M Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM) del Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Karla S Romero-Aguilar
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, ESM del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Aldo A Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM) del Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico.
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación del IPN, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico.
| |
Collapse
|
19
|
Giannetto C, Fazio F, Nava V, Arfuso F, Piccione G, Coelho C, Gugliandolo E, Licata P. Data on multiple regression analysis between boron, nickel, arsenic, antimony, and biological substrates in horses: The role of hematological biomarkers. J Biochem Mol Toxicol 2021; 36:e22955. [PMID: 34755932 DOI: 10.1002/jbt.22955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
The objective of this study was to evaluate the biomarkers of exposure to boron, nickel, arsenic, and antimony in an industrial region, evaluating the bioaccumulation in biological substrates and the correlation with biomarkers such as hematological parameters. Through indication of the accumulation of some minerals in the horse's biological substrates reflects environmental pollution. Moreover, an additional aim of the study was to show whether these contaminants have an influence on the hematological parameters in horses. Blood, serum, mane, and tail samples from 20 horses from an industrial area were analyzed to determine boron (B), nickel (Ni), arsenic (As), antimony (Sb) concentration. Hematological parameters (red blood cell [RBC], white blood cells [WBC], hemoglobin [Hb], hematocrit [Hct], mean corpuscular volume [MCV], mean corpuscular hemoglobin [MCH], mean corpuscular hemoglobin concentration [MCHC], platelet [PLT]) as a biomarker of blood in relation to the bioaccumulation of these elements were analyzed also. Descriptive statistical analysis was performed and single regression analysis (Pearson) and multiple regression analysis (p < 0.05) between blood factors, As, B, Ni, and Sb concentrations, and for each mineral in different substrate, respectively. Results showed a significant correlation between tail and mane concentrations with serum and blood for boron concentration (r = -1 p < 0.05). No significant correlation between sample (feed, hay, mane, tail, and water) concentrations and As, Ni, and Sb were found. A significantly negative correlation with blood parameters (r = -1 p < 0.05) was observed in Boron concentration for mane and tail. This suggests that the mane and tail may be a potential means to investigate suspected exposure to excessive levels of trace minerals.
Collapse
Affiliation(s)
- Claudia Giannetto
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Vincenzo Nava
- BioMorf Department, University of Messina, Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Clarisse Coelho
- Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal
| | | | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Wang C, Kong Z, Duan L, Deng F, Chen Y, Quan S, Liu X, Cha Y, Gong Y, Wang C, Shi Y, Gu W, Fu Y, Liang D, Giesy JP, Zhang H, Tang S. Reproductive toxicity and metabolic perturbations in male rats exposed to boron. SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147370. [DOI: 10.1016/j.scitotenv.2021.147370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Zhang X, Xiao K, Qiu W, Wang J, Li P, Peng K. The Immune Regulatory Effect of Boron on Ostrich Chick Splenic Lymphocytes. Biol Trace Elem Res 2021; 199:2695-2706. [PMID: 32984939 DOI: 10.1007/s12011-020-02392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
Boron is a trace element which plays important roles in immune response. The relationship between boron and splenic lymphocyte proliferation, apoptosis, secretion of cytokines, and genes potentially related to immune response in ostrich chicks were investigated in the present study. Different concentrations of boron (0, 0.01, 0.1, 0.5, 1, 5, 10, 25, 50, and 100 mmol/L) were applied to splenic lymphocytes of African ostrich, respectively. The effect of boron on lymphocyte proliferation was checked by the CCK-8 method. Flow cytometry was used to detect the effect of boron on apoptosis. The secretion levels of IL-6 and IFN-α were determined by ELISA. Splenic lymphocyte gene expression profiles of ostrich chicks treated with boron (0, 0.1, 100 mmol/L) were studied using RNA-seq technology. The results showed that cell proliferation increased with 0.01-10 mmol/L boron, when it was 25-100 mmol/L, the cell proliferation gradually decreased as the boron concentration increased. Apoptosis ratio in ostrich splenic lymphocytes was closely related to boron concentrations. 0.01- and 0.1-mmol/L boron inhibited apoptosis in splenic lymphocytes, whereas 1, 10, 50, and 100-mmol/L boron promoted apoptosis. As the concentration of boron increased, the secretion of IL-6 gradually decreased; IFN-α was initially increased and then decreased with boron concentrations increased, reaching the maximum level with 1 mmol/L boron. In terms of the RNA-Seq data, there was no differentially expressed gene between the 0- and 0.1-mmol/L boron-treated samples; 21 differentially expressed genes were found between the 0- and 100-mmol/L boron-treated samples; 43 differentially expressed genes were found between the 0.1- and 100-mmol/L boron-treated samples. Functional analysis of the differentially expressed genes by Gene Ontology verified multiple functions associated with immune response. Pathway analysis showed that systemic lupus erythematosus, alcoholism, viral carcinogenesis, and necroptosis pathway were the major enriched pathways, and BIRC2-3, FTH1, and IL-1β genes showed differential expression in necroptosis pathway. These results demonstrated that low concentrations (0.01-0.1 mmol/L) of boron may promote the proliferation and the secretion of cytokines, inhibit cell apoptosis of ostrich splenic lymphocytes by enhancing the function of the cell membrane and the activity of intracellular catalytic enzymes, whereas high-concentration (25-100 mmol/L) boron had opposite effects on cells. The necroptosis pathway might play a pivotal role in regulating the immune response of boron-treated splenic lymphocytes in ostrich chicks.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- College of Animal Science, Yangtze University, Jingzhou, 434103, China
| | - Ke Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaxiang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434103, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, 434103, China
| | - Kemei Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Liu T, Wang C, Wu X, Ren M, Hu Q, Jin E, Gu Y. Effect of Boron on Microstructure, Immune Function, Expression of Tight Junction Protein, Cell Proliferation and Apoptosis of Duodenum in Rats. Biol Trace Elem Res 2021; 199:205-215. [PMID: 32319072 DOI: 10.1007/s12011-020-02123-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Boron is an essential trace element for animals. Appropriate boron supplementation can produce beneficial effects on the animal body, while a high dose of boron has adverse and even toxic effects. Our aim was to investigate the impact of different doses of boron on the microstructure of duodenum in rats, expression of secretory immunoglobulin A (SIgA) and tight junction protein, cell proliferation and apoptosis. Eighty newly weaned clean Sprague-Dawley (SD) rats were given distilled water supplemented with 0, 10, 20, 40, 80, 160, 320, and 640 mg/L of boron for 60 days. We found that supplementation of 40 and 80 mg/L boron could increase the height of duodenal villi and the crypt depth, the number of intraepithelial lymphocytes (IELs) and goblet cells, the expression of SIgA, Zonula occludens-1 (ZO-1) and occludin, and proliferating cell nuclear antigen (PCNA) in duodenum of rats; decrease expression of Caspase-3 mRNA and the number of Caspase-3-positive cells, but supplementation of 320 and 640 mg/L boron could have the opposite effect in these indexes. The results showed that supplemented with 40 and 80 mg/L of boron could improve the structure and function of duodenum, while supplemented with 320-640 mg/L had a significant inhibitory effect.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Chenfang Wang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Xiaoshuang Wu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| |
Collapse
|
23
|
Hernández-Gutiérrez S, Roque-Jorge J, López-Torres A, Díaz-Rosas G, García-Chequer AJ, Contreras-Ramos A. Role of sodium tetraborate as a cardioprotective or competitive agent: Modulation of hypertrophic intracellular signals. J Trace Elem Med Biol 2020; 62:126569. [PMID: 32563862 DOI: 10.1016/j.jtemb.2020.126569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
Abstract
Boron is an essential trace element in cellular metabolism; however, the molecular mechanism of boron in the heart is unclear. In this study, we examined the effect of sodium tetraborate (as boron source) as a possible protective agent or competitive inhibitor of cardiac hypertrophy in an in vitro murine model. We evaluated different previously reported sodium tetraborate concentrations and it was found that 13 μM improves viability without affecting the cellular structure. We demonstrated that cardiomyocytes pretreated with sodium tetraborate prevents cellular damage induced by isoproterenol (cardioprotective effect) by increasing proliferation rate and inhibiting apoptosis. In addition, the reduction of the expression of the α1AR and β1AR adrenergic receptors as well as Erk1/2 was notable. Consequently, the expression of the early response genes c-myc, c-fos and c-jun was delayed. Also, the expression of GATA-4, NFAT, NKx2.5 and myogenin transcription factors involved in sarcomere synthesis declined. In contrast, cardiomyocytes, when treated simultaneously with sodium tetraborate and isoproterenol, did not increase their size (cytoplasmic gain), but an increase in apoptosis levels was observed; therefore, the proliferation rate was reduced. Although the mRNA levels of α1AR and β1AR as well as Erk1/2 and Akt1 were low at 24 h, their expression increased to 48 h. Notably, the mRNA of expression levels of c-myc, c-fos and c-jun were lower than those determined in the control, while the transcription factors GATA-4, MEF2c, Nkx2.5, NFAT and CDk9 were determined in most cells. These results suggest that pretreatment with sodium tetraborate in cardiomyocytes inhibits the hypertrophic effect. However, sodium tetraborate attenuates isoproterenol induced hypertrophy damage in cardiomyocytes when these two compounds are added simultaneously.
Collapse
Affiliation(s)
| | | | | | - G Díaz-Rosas
- Laboratory of Developmental Biology Research and Experimental Teratogenicity. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - A J García-Chequer
- Laboratory of Developmental Biology Research and Experimental Teratogenicity. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - A Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico.
| |
Collapse
|
24
|
Wang C, Jin E, Deng J, Pei Y, Ren M, Hu Q, Gu Y, Li S. GPR30 mediated effects of boron on rat spleen lymphocyte proliferation, apoptosis, and immune function. Food Chem Toxicol 2020; 146:111838. [PMID: 33137424 DOI: 10.1016/j.fct.2020.111838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Supplementing different quantities of boron can significantly affect immune function in rat spleen, but the mechanism of action behind this effect remains unclear. Our purpose was to study the involvement of the estrogen membrane receptor GPR30 in the effect of boron on the proliferation, apoptosis, and immune function of rat spleen lymphocytes. Results showed that the addition of 0.4 mmol/L boron had a beneficial effect on the immune function and proliferation of spleen lymphocytes, but the addition of 40 mmol/L boron had opposite effect. After using G-15 to selectively inhibit GPR30, the proportions of CD4+ and CD8+ T cells, the content of IL-2 and IFN-γ, and the expression of PCNA protein were significantly decreased, while lymphocyte apoptosis rate increased significantly (p < 0.05 or p < 0.01). After G-15 treatment, the addition of 0.4 mmol/L boron had no effects on T cell subsets, lymphocyte proliferation, PCNA protein expression, and IgG and cytokine content (P > 0.05), while the addition of 40 mmol/L boron did not change the effects on lymphocyte subsets, proliferation and apoptosis. The results suggested that GPR30 mediates the effects of 0.4 mmol/L boron boron on the proliferation, apoptosis and immune function of spleen lymphocytes.
Collapse
Affiliation(s)
- Chenfang Wang
- College of Life and Health Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Juan Deng
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Yaqiong Pei
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Youfang Gu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| | - Shenghe Li
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang, Chuzhou, Anhui, 233100, People's Republic of China.
| |
Collapse
|
25
|
Lu L, Zhang Q, Ren M, Jin E, Hu Q, Zhao C, Li S. Effects of Boron on Cytotoxicity, Apoptosis, and Cell Cycle of Cultured Rat Sertoli Cells In vitro. Biol Trace Elem Res 2020; 196:223-230. [PMID: 31656015 DOI: 10.1007/s12011-019-01911-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022]
Abstract
The present study aimed to investigate the effects of the administration of boron on viability, apoptosis, and cell cycle of primary rat Sertoli cells (SCs) in vitro. SCs were aseptically isolated from 18-22-day-old male Sprague-Dawley (SD) rats. SCs were identified with immunofluorescence using anti-vimentin antibody. Further, to investigate the effects of boron on Sertoli cells, SCs of the boron treatment group were exposed to different concentrations (0.25, 0.5, 1, 5, 10, 40, and 80 mmol/L) of boric acid. Using MTT and Cell Counting Kit-8 assays, the impact of boron on SCs viability was analyzed. Cell apoptosis and cycle of SCs were analyzed using flow cytometry. A concentration of 0.5 mmol/L boric acid resulted in the highest viability and lowest necrosis and apoptosis. Above this concentration (even 1.0 mmol/L) showed lower viability and higher levels of necrosis and apoptosis. Administration of < 0.5 mmol/L boron significantly promoted the viability of Sertoli cells (P < 0.01); however, the exposure to high dose (> 10 mmol/L) of boron exhibited significant adverse effects on Sertoli cells (P < 0.01) and even toxic effects, inhibiting cell viability compared to the control group. Flow cytometry analysis showed that treatment with 0.5 mmol/L of boron significantly inhibited the apoptosis of Sertoli cells and the proportion of cells in S and G2/M phases was markedly increased; however, a higher concentration of 40 and 80 mmol/L of boron promoted Sertoli cell apoptosis and cells were completely arrested at G0/G1 phase. Boron at doses below 0.5 mmol/L could significantly improve the viable capacity of testicular Sertoli cells in vitro and inhibit their apoptosis. However, high dose of boron (at a concentration higher than 5.0 mmol/L) exhibited noticeable toxic effects, inhibiting cell viability, accelerating apoptosis of Sertoli cells, and arresting cell cycle at G0/G1 phase.
Collapse
Affiliation(s)
- Liangyue Lu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China
| | - Qian Zhang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang County, Anhui Province, People's Republic of China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang County, Anhui Province, People's Republic of China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang County, Anhui Province, People's Republic of China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang County, Anhui Province, People's Republic of China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, 233100, Anhui Province, People's Republic of China.
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang County, Anhui Province, People's Republic of China.
| |
Collapse
|
26
|
Wang RD, Zhu JY, Zhu Y, Ge YS, Xu GL, Jia WD. Perioperative analgesia with parecoxib sodium improves postoperative pain and immune function in patients undergoing hepatectomy for hepatocellular carcinoma. J Eval Clin Pract 2020; 26:992-1000. [PMID: 31407484 DOI: 10.1111/jep.13256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/13/2019] [Accepted: 07/27/2019] [Indexed: 11/29/2022]
Abstract
RATIONALE, AIMS, AND OBJECTIVES Acute postoperative pain can result in immune dysfunction, which can be partly mitigated by efficient pain management. Opioids that have been widely applied to analgesia have been shown to suppress immune function, which has a negative impact on the treatment of patients with cancer. This study investigated the effects of perioperative fentanyl analgesia alone or in combination with parecoxib sodium on postoperative pain, immune function, and prognosis in patients undergoing hepatectomy of hepatocellular carcinoma (HCC). METHODS A total of 80 patients scheduled for hepatectomy between October 2013 and August 2014 were included. Patients were randomly divided into two groups (n = 40) and allocated to receive parecoxibsodium 40 mg (group P) or placebo (group C) 30 minutes before induction of anaesthesia, followed by 40 mg every 12 hours for 48 hours after the operation. All patients had access to patient-controlled analgesia with intravenous fentanylpostoperatively. Venous blood samples were collected at the following time points: 30 minutes before induction of anaesthesia (T0), the end of the surgery (T1), 24 hours after surgery (T2), and 72 hours after surgery (T3). The percentages of CD3+, CD4+, CD8+, CD4+/CD8+ T cells, and CD3+CD16+CD56+ (NK) cells at these time points were quantified by flow cytometry (FCM).Visual analogue scale (VAS) scores, total fentanyl consumption, and adverse effects were recorded. The prognostic differences in overall survival (OS) and disease-free survival (DFS) between the two groups was also investigated. RESULTS For both groups, the percentages of CD3+, CD4+ T cells, and the ratio of CD4+/CD8+ significantly decreased at T1 and T2 (P < .05). The percentages of CD3+ T cells were significantly lower in group C than that in group P at T2 (P < .05). In group C, the amount of CD3+ T cells was lower at T3 compared with T0 (P < .05). The percentages of NK cells significantly decreased at T1 in both groups (P < .05). The percentages of NK in group P were recovered nearly to baseline (T0) at T2, which was higher than that of group C (P < .05). In group C, the percentages of NK cells have not recovered nearly to baseline at T3 compared with T0 (P < .05). VAS scores at rest and on cough in group P were significantly lower than those in group C at 2, 6, 12, and 24 hours after operation (P < .05), and there were no significant differences in VAS scores between the two groups at 48 hours after surgery (P > .05). There were no significant differences regarding the incidence of adverse effects between the two groups (P > .05). Kaplan-Meier analysis indicated that the DFS time in group P was significantly longer than in group C (19.0 months, 95% confidence interval [CI], 9.8-28.2 vs 14.0 months, 95% CI, 8.1-19.9; P < .05). There was no significant difference in OS time (36.0 months, 95% CI, 13.4-58.9 vs 14.0 months, 95% CI, 10.6-25.4; P > .05) between two groups. CONCLUSIONS The present study indicated that perioperative analgesia of parecoxib sodium combined with patient-controlled analgesic fentanyl resulted in better preserved immune function with enhancement of the analgesic efficacy to fentanyl alone of HCC patients undergoing hepatectomy and helped postpone postoperative tumour recurrence.
Collapse
Affiliation(s)
- Run-Dong Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Hefei, China
| | - Jian-Yu Zhu
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Hefei, China.,School of Medicine, Shandong University, Jinan, China.,Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Yong-Sheng Ge
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Hefei, China
| | - Ge-Liang Xu
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Hefei, China
| | - Wei-Dong Jia
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
27
|
Jin E, Pei Y, Liu T, Ren M, Hu Q, Gu Y, Li S. Effects of boron on the proliferation, apoptosis and immune function of splenic lymphocytes through ERα and ERβ. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1626809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Yaqiong Pei
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Ting Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| |
Collapse
|
28
|
Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA. Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 2019; 29:339-351. [PMID: 31064237 DOI: 10.1080/13543776.2019.1612368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Boron-containing compounds induce effects on immune responses. Such effects are interesting to the biomedical field for the development of therapeutic tools to modulate the immune system. AREAS COVERED The scope of BCC use to modify immune responses is expanding, mainly with regard to inflammatory diseases. The information was organized to demonstrate the breadth of reported effects. BCCs act as modulators of innate and adaptive immunity, with the former including regulation of cluster differentiation and cytokine production. In addition, BCCs exert effects on inflammation induced by infectious and noninfectious agents, and there are also reports regarding their effects on mechanisms involving hypersensitivity and transplants. Finally, the authors discuss the beneficial effects of BCCs on pathologies involving various targets and mechanisms. EXPERT OPINION Some BCCs are currently used as drugs in humans. The mechanisms by which these BCCs modulate immune responses, as well as the required structure-activity relationship for each observed mechanism of action, should be clarified. The former will allow for the development of improved immunomodulatory drugs with extensive applications in medicine. Patenting trends involve claims concerning the synthesis and actions of identified molecules with a defined profile regarding cytokines, cell differentiation, proliferation, and antibody production.
Collapse
Affiliation(s)
- Karla S Romero-Aguilar
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Ivonne M Arciniega-Martínez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Eunice D Farfán-García
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Rafael Campos-Rodríguez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Aldo A Reséndiz-Albor
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Marvin A Soriano-Ursúa
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| |
Collapse
|
29
|
Soriano-Ursúa MA, Farfán-García ED, Geninatti-Crich S. Turning Fear of Boron Toxicity into Boron-containing Drug Design. Curr Med Chem 2019; 26:5005-5018. [PMID: 30919770 DOI: 10.2174/0929867326666190327154954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the historical employment of boron-containing compounds (BCCs) with medicinal purposes, the reported cases of BCC toxicity in humans during the twentieth-century drived us towards a "boron-withdrawal" period. Fortunately, the use of boric acid for specific purposes remains, and the discovery of natural BCCs with biological action attractive for therapeutic purposes as well as the introduction of some new BCCs for clinical use has reactivated the interest in studying the properties of these BCCs. METHODS We carried out a structured search of bibliographic databases for scientific peerreviewed research literature regarding boron toxicity and linked that information to that of BCCs in drug design and development. A deductive qualitative content analysis methodology was applied to analyse the interventions and findings of the included studies using a theoretical outline. RESULTS This review recapitulates the following on a timeline: the boron uses in medicine, the data known about the toxicological profiles of some BCCs, the pharmacological properties of some BCCs that are employed in cancer and infectious disease therapies, and the known properties of BCCs recently introduced into clinical assays as well as the identification of their structure-activity relationships for toxicity and therapeutic use. Then, we discuss the use of new approaches taking advantage of some toxicological data to identify potent and efficient BCCs for prevention and therapy while limiting their toxic effects. CONCLUSION Data for boron toxicity can be strategically used for boron-containing drug design.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Departamentos de Fisiologia, Bioquimica y Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City,Mexico
| | - Eunice D Farfán-García
- Departamentos de Fisiologia, Bioquimica y Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City,Mexico
| | - Simonetta Geninatti-Crich
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Centro, Imaging Molecolare, Universita di Torino, via Nizza 52, Torino, 10126,Italy
| |
Collapse
|
30
|
López-Cabrera Y, Castillo-García EL, Altamirano-Espino JA, Pérez-Capistran T, Farfán-García ED, Trujillo-Ferrara JG, Soriano-Ursúa MA. Profile of three boron-containing compounds on the body weight, metabolism and inflammatory markers of diabetic rats. J Trace Elem Med Biol 2018; 50:424-429. [PMID: 30262315 DOI: 10.1016/j.jtemb.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
It has been reported that boron induces changes in carbohydrate and lipid metabolism, body weight and inflammatory processes. This is relevant to the biomedical field due to the requirement for developing therapeutic tools with potential application in metabolic disorders affecting humankind. However, most of the reported data from both humans and animals were obtained after boron was administered as borax or boric acid. In this work, we determined the effects of boric, cyclohexylboronic (CHB) and phenylboronic (PBA) acids (10 mg/kg of body weight/daily for two weeks) on the body weight, metabolism and inflammatory markers in the blood of control, fat-feeding and experimental diabetic rats. In particular, we observed the effects of the administration of these compounds on glycaemia and cholesterol, triglyceride, insulin, IL-6 and C-reactive protein levels, as well as visceral fat and body weight. We found different profiles for each boron-containing compound: boric acid induced decreasing body weight, insulin and IL-6 levels; CHB administration induced an increase in body weight and cholesterol but decreased IL-6 levels; and PBA administration induced a decrease in visceral fat and glucose and insulin levels. These results can improve the understanding of boron as a metabolic regulator and help develop new potential strategies to use compounds with this trace element for therapeutic purposes.
Collapse
Affiliation(s)
- Yessica López-Cabrera
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Emily L Castillo-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José A Altamirano-Espino
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico; Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico.
| |
Collapse
|
31
|
Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C. The vital roles of boron in animal health and production: A comprehensive review. J Trace Elem Med Biol 2018; 50:296-304. [PMID: 30262295 DOI: 10.1016/j.jtemb.2018.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Boron (B) has many beneficial functions in biological, metabolic and physiological processes for plants and animals. It plays a vital role in maintaining animal health and preventing nutritional disorders. Boron deficiency has been correlated with low immune function and high incidence of osteoporosis which increases mortality risk. Extraordinary boron level causes cell damage and toxicity in human and different animal species. In the past few years, attention has been paid to clear the pleiotropic effects of boron including activating of immune response, antioxidant detoxification activities, affecting bone metabolism, enhancing animal performance and modulating various body systems. Furthermore, the role of boron as anti-heat stress agent has been identified in plants and suggested in animals. Liver metabolism also shows significant alterations in dairy cows in response to the dietary supplementation of boron. Likewise, adding boron to animal feed enhances bone density, wound healing and embryonic development. Additionally, boron has a potential impact on the metabolism of numerous minerals and enzymes. In view of the information about boron benefits, high or low level boron merits the concern. As well, researches are required to do more in-depth investigations on boron influences, and to adjust its requirements in different animal species.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Antonella Perillo
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', Valenzano BA, Italy
| | - Caterina Losacco
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', Valenzano BA, Italy
| |
Collapse
|
32
|
Khaliq H, Juming Z, Ke-Mei P. The Physiological Role of Boron on Health. Biol Trace Elem Res 2018; 186:31-51. [PMID: 29546541 DOI: 10.1007/s12011-018-1284-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhong Juming
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peng Ke-Mei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
33
|
Bello M, Guadarrama-García C, Velasco-Silveyra LM, Farfán-García ED, Soriano-Ursúa MA. Several effects of boron are induced by uncoupling steroid hormones from their transporters in blood. Med Hypotheses 2018; 118:78-83. [PMID: 30037620 DOI: 10.1016/j.mehy.2018.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Boron is increasingly added to food supplements due to multiple effects that have been reported in mammals after boric acid administration. Among these effects are inflammatory process control, bone and muscle strength enhancement, protein expression regulation, and a decreased risk of developing some pathologies in which these processes are key, such as osteoporosis, dermatological inflammatory non-infectious maladies and diseases affecting the central nervous system. Experimental data have suggested that steroid hormone levels in plasma change after boric acid administration, but a clear mechanism behind these variations has not been established. We analyzed possibilities for these changes and hypothesized that boric acid disrupts the interactions between steroid hormones and several carriers in plasma. In particular, we proposed that there is an uncoupling of the interactions between sex hormone binding globulin (SHBG) and estrogens and testosterone and that there are alterations in the binding of hydrophobic ligands by other carrier proteins in plasma. Further experimental and computational studies are required to support the hypothesis that boric acid and probably other boron-containing compounds can displace steroid hormones from their plasma carriers. If such phenomena are confirmed, boron administration with a clear mechanism could be employed as a therapeutic agent in several diseases or physiological events that require modulation of steroid hormone levels in plasma.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Concepción Guadarrama-García
- Laboratorio de Modelado Molecular y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico; Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Luz M Velasco-Silveyra
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico.
| |
Collapse
|
34
|
Luca E, Fici L, Ronchi A, Marandino F, Rossi ED, Caristo ME, Malandrino P, Russo M, Pontecorvi A, Vigneri R, Moretti F. Intake of Boron, Cadmium, and Molybdenum enhances rat thyroid cell transformation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:73. [PMID: 28577555 PMCID: PMC5455132 DOI: 10.1186/s13046-017-0543-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
Abstract
Background Epidemiologic data in volcanic areas suggest that environmental factors might be involved in the increase of thyroid cancer (TC) incidence. Recent reports indicate that several heavy metals and metalloids are increased in volcanic areas. This study aims to evaluate the combined effect of three of these elements Boron (B), Cadmium (Cd), and Molybdenum (Mo) - all increased in the volcanic area of Mt. Etna, in Italy - on thyroid tumorigenesis in the rat. Methods Female Wistar rats prone to develop thyroid tumors by low-iodine diet and methimazole treatment received ad libitum drinking water supplemented with B, Cd, and Mo at concentrations in the range found in the urine samples of residents of the volcanic area. At 5 and 10 months animals were euthanized, and their thyroid analysed. Statistical analysis was performed with a 2-way unpaired t-test. Results No toxic effect of the three elements on the growth of the animals was observed. A significant increase of histological features of transformation was observed in thyroid follicular cells of rats treated with B, Cd, and Mo compared with those of control group. These abnormalities were associated with decreased iodine content in the thyroid. Conclusions This study provides the evidence that slightly increased environmental concentrations of B, Cd, and Mo can accelerate the appearance of transformation marks in the thyroid gland of hypothyroid rats.
Collapse
Affiliation(s)
- Emilia Luca
- Institute of Pathology and Postgraduate School of Endocrinology, Catholic University of Roma, Rome, Italy
| | - Laura Fici
- Institute of Pathology and Postgraduate School of Endocrinology, Catholic University of Roma, Rome, Italy.,Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Anna Ronchi
- National Center of Tossicology, IRCCS Foundation Salvatore Maugeri, Pavia, Italy
| | - Ferdinando Marandino
- Department of Surgical Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Esther Diana Rossi
- Institute of Pathology and Postgraduate School of Endocrinology, Catholic University of Roma, Rome, Italy
| | - Maria Emiliana Caristo
- Institute of Pathology and Postgraduate School of Endocrinology, Catholic University of Roma, Rome, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Via Palermo, 636, 95122, Catania, Italy
| | - Marco Russo
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Via Palermo, 636, 95122, Catania, Italy
| | - Alfredo Pontecorvi
- Institute of Pathology and Postgraduate School of Endocrinology, Catholic University of Roma, Rome, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Via Palermo, 636, 95122, Catania, Italy. .,Institute of Biostructure and Bioimaging, (CNR), Catania, Italy.
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Via del Fosso di Fiorano, 64, 00143, Rome, Italy. .,"Regina Elena" National Cancer Institute, Rome, Italy.
| |
Collapse
|