1
|
Tayal R, Mannan A, Singh S, Dhiman S, Singh TG. Unveiling the Complexities: Exploring Mechanisms of Anthracyclineinduced Cardiotoxicity. Curr Cardiol Rev 2025; 21:42-77. [PMID: 39484769 PMCID: PMC12060933 DOI: 10.2174/011573403x322928241021100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
The coexistence of cancer and heart disease, both prominent causes of illness and death, is further exacerbated by the detrimental impact of chemotherapy. Anthracycline-induced cardiotoxicity is an unfortunate side effect of highly effective therapy in treating different types of cancer; it presents a significant challenge for both clinicians and patients due to the considerable risk of cardiotoxicity. Despite significant progress in understanding these mechanisms, challenges persist in identifying effective preventive and therapeutic strategies, rendering it a subject of continued research even after three decades of intensive global investigation. The molecular targets and signaling pathways explored provide insights for developing targeted therapies, emphasizing the need for continued research to bridge the gap between preclinical understanding and clinical applications. This review provides a comprehensive exploration of the intricate mechanisms underlying anthracycline-induced cardiotoxicity, elucidating the interplay of various signaling pathways leading to adverse cellular events, including cardiotoxicity and death. It highlights the extensive involvement of pathways associated with oxidative stress, inflammation, apoptosis, and cellular stress responses, offering insights into potential and unexplored targets for therapeutic intervention in mitigating anthracycline-induced cardiac complications. A comprehensive understanding of the interplay between anthracyclines and these complexes signaling pathways is crucial for developing strategies to prevent or mitigate the associated cardiotoxicity. Further research is needed to outline the specific contributions of these pathways and identify potential therapeutic targets to improve the safety and efficacy of anthracycline-based cancer treatment. Ultimately, advancements in understanding anthracycline-induced cardiotoxicity mechanisms will facilitate the development of more efficacious preventive and treatment approaches, thereby improving outcomes for cancer patients undergoing anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Rohit Tayal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
2
|
Lee YC, Jou YC, Chou WC, Tsai KL, Shen CH, Lee SD. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3253-3263. [PMID: 38356441 DOI: 10.1002/tox.24170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The early myocardial response of hypertension is an elevation of angiotensin-II (Ang-II) concentration, leading to heart failure and cardiac hypertrophy. This hypertrophic event of the heart is mediated by the interaction of Ang type 1 receptors (AT-R1), thereby modulating NADPH oxidase activity in cardiomyocytes, which alters redox status in cardiomyocytes. Ellagic acid (EA) has anti-inflammatory and anti-oxidative capacities. Thus, EA has potential preventive effects on cardiovascular diseases and diabetes. In the last decades, because the protective effect of EA on Ang-II-induced hypertrophic responses is unclear, this study aims to investigate the protective effect of EA in cardiomyocytes. H9c2 cells were treated to Ang-II 1 μM for 24 h to induce cellular damage. We found that EA protected against Ang-II-increased cell surface area and pro-hypertrophic gene expression in H9c2. EA reduced Ang-II-caused AT-R1 upregulation, thereby inhibiting oxidative stress NADPH oxidase activation. EA mitigated Ang-II-enhanced p38 and extracellular-signal-regulated kinase (ERK) phosphorylation. Moreover, EA treatment under Ang-II stimulation also reversed NF-κB activity and iNOS expression. This study shows that EA protects against Ang-II-induced myocardial hypertrophy and attenuates oxidative stress through reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways in H9c2 cells. Thus, EA may be an effective compound for preventing Ang-II-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Ya-Che Lee
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, St. Martin De Porres Hospital, Chia-Yi City, Taiwan
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Science, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Min Hsiung, Chia-Yi, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Wang M, Liu M, Tang L, Shen L, Xiao J, Li R. RETRACTED ARTICLE: Liquiritin reduces ferroptosis in doxorubicin-induced cardiotoxicity through targeting SLC7A11/GPX4 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:627. [PMID: 37160483 DOI: 10.1007/s00210-023-02515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Mei Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Meng Liu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Lijing Tang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lixian Shen
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Junhui Xiao
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Rong Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Peng K, Zeng C, Gao Y, Liu B, Li L, Xu K, Yin Y, Qiu Y, Zhang M, Ma F, Wang Z. Overexpressed SIRT6 ameliorates doxorubicin-induced cardiotoxicity and potentiates the therapeutic efficacy through metabolic remodeling. Acta Pharm Sin B 2023; 13:2680-2700. [PMID: 37425037 PMCID: PMC10326298 DOI: 10.1016/j.apsb.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 07/11/2023] Open
Abstract
Since the utilization of anthracyclines in cancer therapy, severe cardiotoxicity has become a major obstacle. The major challenge in treating cancer patients with anthracyclines is minimizing cardiotoxicity without compromising antitumor efficacy. Herein, histone deacetylase SIRT6 expression was reduced in plasma of patients treated with anthracyclines-based chemotherapy regimens. Furthermore, overexpression of SIRT6 alleviated doxorubicin-induced cytotoxicity in cardiomyocytes, and potentiated cytotoxicity of doxorubicin in multiple cancer cell lines. Moreover, SIRT6 overexpression ameliorated doxorubicin-induced cardiotoxicity and potentiated antitumor efficacy of doxorubicin in mice, suggesting that SIRT6 overexpression could be an adjunctive therapeutic strategy during doxorubicin treatment. Mechanistically, doxorubicin-impaired mitochondria led to decreased mitochondrial respiration and ATP production. And SIRT6 enhanced mitochondrial biogenesis and mitophagy by deacetylating and inhibiting Sgk1. Thus, SIRT6 overexpression coordinated metabolic remodeling from glycolysis to mitochondrial respiration during doxorubicin treatment, which was more conducive to cardiomyocyte metabolism, thus protecting cardiomyocytes but not cancer cells against doxorubicin-induced energy deficiency. In addition, ellagic acid, a natural compound that activates SIRT6, alleviated doxorubicin-induced cardiotoxicity and enhanced doxorubicin-mediated tumor regression in tumor-bearing mice. These findings provide a preclinical rationale for preventing cardiotoxicity by activating SIRT6 in cancer patients undergoing chemotherapy, but also advancing the understanding of the crucial role of SIRT6 in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kezheng Peng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chenye Zeng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqi Gao
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Binliang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyuan Li
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuemiao Yin
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingkui Zhang
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhao Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Niewiadomska J, Kasztura M, Janus I, Chełmecka E, Stygar DM, Frydrychowski P, Wojdyło A, Noszczyk-Nowak A. Punica granatum L. Extract Shows Cardioprotective Effects Measured by Oxidative Stress Markers and Biomarkers of Heart Failure in an Animal Model of Metabolic Syndrome. Antioxidants (Basel) 2023; 12:1152. [PMID: 37371882 PMCID: PMC10295190 DOI: 10.3390/antiox12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic syndrome (MetS) significantly increases the risk of cardiovascular diseases (CVD), a leading cause of death globally. The presented study investigated the cardioprotective role of dietary polyphenols found in pomegranate peels in an animal model of metabolic syndrome. Zucker diabetic fatty rats (ZDF, MetS rats, fa/fa) were supplemented with polyphenol-rich pomegranate peel extract (EPP) at two dosages: 100 mg/kg BW and 200 mg/kg BW. The extract was administered for 8 weeks. The effect of ethanolic peel extract on the concentration of oxidative stress markers (CAT, SOD, MnSOD, GR, GST, GPx, TOS, SH, and MDA), biomarkers of heart failure (cTnI, GAL-3), and alternations in tissue architecture was assessed. The results showed a significant increase in SH concentration mediated via EPP supplementation (p < 0.001). Treatment with a 100 mg/kg BW dosage reduced the TOS level more efficiently than the higher dose. Interestingly, the CAT and GST activities were relevantly higher in the MetS 100 group (p < 0.001) compared to the MetS control. The rats administered EPP at a dose of 200 mg/kg BW did not follow a similar trend. No differences in the GR (p = 0.063), SOD (p = 0.455), MnSOD (p = 0.155), and MDA (p = 0.790) concentration were observed after exposure to the pomegranate peel extract. The administration of EPP did not influence the cTnI and GAL-3 levels. Histology analysis of the heart and aorta sections revealed no toxic changes in phenolic-treated rats. The findings of this study prove that the extract from pomegranate peels possesses free radical scavenging properties in the myocardium. The effect on alleviating ventricular remodeling and cardiomyocyte necrosis was not confirmed and requires further investigation.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, 40-751 Katowice, Poland;
| | - Dominika Marta Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-751 Katowice, Poland;
| | - Piotr Frydrychowski
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
7
|
Jin L, Dang H, Wu J, Yuan L, Chen X, Yao J. Supplementation of Weizmannia coagulans BC2000 and Ellagic Acid Inhibits High-Fat-Induced Hypercholesterolemia by Promoting Liver Primary Bile Acid Biosynthesis and Intestinal Cholesterol Excretion in Mice. Microorganisms 2023; 11:microorganisms11020264. [PMID: 36838229 PMCID: PMC9964488 DOI: 10.3390/microorganisms11020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The probiotic Weizmannia coagulans (W. coagulans) BC2000 can increase the abundance of intestinal transforming ellagic acid (EA) bacteria and inhibit metabolic disorders caused by hyperlipidemia by activating liver autophagy. This study aimed to investigate the inhibitory effects of W. coagulans BC2000 and EA on hyperlipidemia-induced cholesterol metabolism disorders. C57BL/6J mice (n = 10 in each group) were fed a low-fat diet, high-fat diet (HFD), HFD supplemented with EA, HFD supplemented with EA and W. coagulans BC77, HFD supplemented with EA, and W. coagulans BC2000. EA and W. coagulans BC2000 supplementation prevented HFD-induced hypercholesterolemia and promoted fecal cholesterol excretion. Transcriptome analysis showed that primary bile acid biosynthesis in the liver was significantly activated by EA and W. coagulans BC2000 treatments. EA and W. coagulans BC2000 treatment also significantly increased the intestinal Eggerthellaceae abundance and the liver EA metabolites, iso-urolithin A, Urolithin A, and Urolithin B. Therefore, W. coagulans BC2000 supplementation promoted the intestinal transformation of EA, which led to the upregulation of liver bile synthesis, thus preventing hypercholesterolemia.
Collapse
Affiliation(s)
- Long Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- Probiotics Institute, Hefei 230031, China
| | - Hongyang Dang
- College Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (X.C.); (J.Y.)
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- Correspondence: (X.C.); (J.Y.)
| |
Collapse
|
8
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Liu X, Tian R, Tao H, Wu J, Yang L, Zhang Y, Meng X. The cardioprotective potentials and the involved mechanisms of phenolic acids in drug-induced cardiotoxicity. Eur J Pharmacol 2022; 936:175362. [DOI: 10.1016/j.ejphar.2022.175362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
10
|
Li X, Wang Y, Zhou J, Wang Z, Wang Y, Zheng J, Sun M, Jin L, Qi C, Sun J. Mixed nuts with high nutrient density improve insulin resistance in mice by gut microbiota remodeling. Food Funct 2022; 13:9904-9917. [PMID: 36053223 DOI: 10.1039/d2fo01479c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The consumption of mixed nuts is a healthy dietary strategy to reduce the risk of cardiovascular disease and has a prebiotic effect on the gut microbiota. However, there is a lack of basic research based on mixed nut formulation. This study established a new method for optimizing mixed nut formulations using the Nutrient Rich Food (NRF) index model. Nutrient indices were adjusted by combining 10 and 8 encouraging nutrients and 3 limiting nutrients of nuts and dried fruits, respectively. The optimized mixed nut formulation had the highest total NRF and the lowest energy, which was achieved by applying linear programming. The effect of an optimized mixed nut formulation on insulin resistance and gut microbiota was investigated in an animal model of metabolic disorders caused by a high-fat diet. Male C57BL/6J mice (n = 12 per group) were fed a low-fat diet, a high-fat diet (HFD), HFD with a supplemented classical randomized controlled trial mixed nut formula (MN1), a commercially available mixed nut formula (MN2), a high-nutrient density mixed nut formula (MN3), or ellagic acid (positive control). MN3 treatment decreased total plasma cholesterol, homeostasis model assessment-insulin resistance index, high sensitivity C-reactive protein, and zonulin levels, strengthened the intestinal barrier, and significantly altered the β-diversity of the intestinal microbiota as compared to the HFD group. These effects of MN3 were superior to MN1 and MN2. In conclusion, MN3 had the highest nutrient density and improved insulin resistance in low-grade inflammation via gut microbiota remodeling.
Collapse
Affiliation(s)
- Xinyue Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Youjiao Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Zhongya Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yiying Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jie Zheng
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd, Hefei, 230601, Anhui, China
| | - Mei Sun
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd, Hefei, 230601, Anhui, China
| | - Long Jin
- National R&D Center for Nuts Processing Technology, Qiaqia Food Co., Ltd, Hefei, 230601, Anhui, China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
11
|
Xue P, Zhang G, Zhang J, Ren L. Synergism of ellagic acid in combination with radiotherapy and chemotherapy for cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153998. [PMID: 35217437 DOI: 10.1016/j.phymed.2022.153998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ellagic acid (EA) is a polyphenol compound abundant in berries, walnuts, pecans, pomegranate, cranberries, and other plant foods and exerts a wide array of biological properties. In particular, EA has received considerable research attention in anti-cancer therapy. EA administered alone has been shown to exert effects against human cancers through multiple pathways. In addition, EA may increase tumor sensitivity to chemotherapy and radiotherapy. Namely, EA combination with a relatively low dosage of therapeutic drugs or optimized radiation dose could improve the treatment outcome. More importantly, EA could counteract chemotherapy-related adverse reactions. PURPOSE This review aims to summarize the in vitro and in vivo experimental evidence of synergism of EA in radiotherapy/chemotherapy for the treatment of cancers. In addition, the preventive effect of EA to counteract chemotherapy-induced toxicity is also discussed. METHODS The searches were performed in the PubMed, Web of Science and Google scholar and introduced the information about the role of EA in cancer treatment. RESULTS EA exhibits synergistic effects in radiotherapy/chemotherapy for the treatment of cancers and exerts a great potential in reducing the side effects of chemotherapy and radiotherapy due to its biological activities, such as antioxidant and anti-inflammatory activities. CONCLUSION EA could be a promising drug adjuvant for cancer treatment. In the near future, novel strategies for EA delivery systems that overcome the low EA solubility and bioavailability should be studied further to fully exploit the therapeutic potential of EA.
Collapse
Affiliation(s)
- Peiyu Xue
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Guangjie Zhang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Du XY, Xiang DC, Gao P, Peng H, Liu YL. Inhibition of (Pro)renin Receptor-Mediated Oxidative Stress Alleviates Doxorubicin-Induced Heart Failure. Front Oncol 2022; 12:874852. [PMID: 35574363 PMCID: PMC9106363 DOI: 10.3389/fonc.2022.874852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
AIM Clinical utility of doxorubicin (DOX) is limited by its cardiotoxic side effect, and the underlying mechanism still needs to be fully elucidated. This research aimed to examine the role of (pro)renin receptor (PRR) in DOX-induced heart failure (HF) and its underlying mechanism. MAIN METHODS Sprague Dawley (SD) rats were injected with an accumulative dosage of DOX (15 mg/kg) to induce HF. Cardiac functions were detected by transthoracic echocardiography examination. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in serum were detected, and oxidative stress related injuries were evaluated. Furthermore, the mRNA expression of PRR gene and its related genes were detected by real-time PCR (RT-PCR), and protein levels of PRR, RAC1, NOX4 and NOX2 were determined by Western blot. Reactive oxygen species (ROS) were determined in DOX-treated rats or cells. Additionally, PRR and RAC1 were silenced with their respective siRNAs to validate the in vitro impacts of PRR/RAC1 on DOX-induced cardiotoxicity. Moreover, inhibitors of PRR and RAC1 were used to validate their effects in vivo. KEY FINDINGS PRR and RAC1 expressions increased in DOX-induced HF. The levels of CK and LDH as well as oxidative stress indicators increased significantly after DOX treatment. Oxidative injury and apoptosis of cardiomyocytes were attenuated both in vivo and in vitro upon suppression of PRR or RAC1. Furthermore, the inhibition of PRR could significantly down-regulate the expressions of RAC1 and NOX4 but not that of NOX2, while the inhibition of RAC1 did not affect PRR. SIGNIFICANCE Our findings showed that PRR inhibition could weaken RAC1-NOX4 pathway and alleviate DOX-induced HF via decreasing ROS production, thereby suggesting a promising target for the treatment of DOX-induced HF.
Collapse
Affiliation(s)
- Xiao-yi Du
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao-chun Xiang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Gao
- Department of Clinical Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-li Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Costa BM, Mengal V, Brasil GA, Peluso AA, Treebak JT, Endlich PW, de Almeida SA, de Abreu GR. Ellagic Acid Prevents Myocardial Infarction-induced Left Ventricular Diastolic Dysfunction in Ovariectomized Rats. J Nutr Biochem 2022; 105:108990. [PMID: 35331902 DOI: 10.1016/j.jnutbio.2022.108990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 12/07/2022]
Abstract
Estrogen deficiency is associated with increased oxidative stress, which can contribute to left ventricular diastolic dysfunction (LVDD). We hypothesized that oral treatment with ellagic acid (EA), a potent and natural antioxidant compound, can improve MI-induced LVDD in ovariectomized rats, by reducing the formation of reactive oxygen species (ROS). Ovariectomized rats MI-induced LVDD followed by treatment with vehicle (DD) or EA (DD+EA) for 4 weeks. Non-LVDD-induced rats treated with vehicle (S) or EA (S+EA) were used as controls. Left ventricular systolic pressure: LVSP; left ventricular end-diastolic pressure: LVEDP; maximum rate of pressure rise: +dP/dt and fall: -dP/dt) were evaluated in all animals after treatment. Left ventricle superoxide anion formation was quantified in situ by fluorescence. Phospho-CAMKII, SOD2, catalase and gp91-phox abundances were evaluated by Western blot analyses. SOD and catalase activities were measured by spectrophotometry. The results showed that the LVEDP was significantly increased in both DD and DD+EA groups compared to S and S+EA. However, LVEDP in the DD+EA group was significantly decreased compared to DD, indicating an EA-mediated effect. In the DD group, superoxide production and gp91-phox protein abundance were increased while SOD2 abundance was decreased when compared to the S and S+EA groups. An increase in SOD activity was also observed in the DD+EA group. EA treatment reduced CaMKII phosphorylation in the DD+EA group compared to the DD. We concluded that EA treatment attenuated diastolic dysfunction in our experimental model, via reduction of ROS and CaMKII activity, indicating EA as a promising natural therapeutic option for cardiac dysfunction.
Collapse
Affiliation(s)
- Bruno Maia Costa
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vinícius Mengal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Antônio Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Patrick Wander Endlich
- Faculdade de Medicina do Mucuri, Multicentric Post-Graduate Program in Physiological Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, Brazil
| | - Simone Alves de Almeida
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil.
| | - Gláucia Rodrigues de Abreu
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
14
|
Ellagic Acid prevents vascular dysfunction in small mesenteric arteries of ovariectomized hypertensive rats. J Nutr Biochem 2022; 105:108995. [DOI: 10.1016/j.jnutbio.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
|
15
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
16
|
Physicochemical Characterization of In Vitro LDL Glycation and Its Inhibition by Ellagic Acid (EA): An In Vivo Approach to Inhibit Diabetes in Experimental Animals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5583298. [PMID: 35097119 PMCID: PMC8791751 DOI: 10.1155/2022/5583298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Hundreds of millions of people around the globe are afflicted by diabetes mellitus. The alteration in glucose fixation process might result into hyperglycaemia and could affect the circulating plasma proteins to undergo nonenzymatic glycation reaction. If it is unchecked, it may lead to diabetes with increase in advanced glycation end products (AGEs). Therefore, the present study was designed to inhibit the diabetes and glycation by using natural antioxidant “ellagic acid” (EA). In this study, we explored the antidiabetes and antiglycation potential of EA in both in vitro (EA at micromolar concentration) and in vivo systems. The EA concentrations of 10 and 20 mg kg−1B.W./day were administered orally for 25 days to alloxan-induced diabetic rats, a week after confirmation of stable diabetes in animals. Intriguingly, EA supplementation in diabetic rats reversed the increase in fasting blood sugar (FBS) and hemoglobin A1c (HbA1c) level. EA also showed an inhibitory role against glycation intermediates including dicarbonyls, as well as AGEs, investigated in a glycation mixture with in vitro and in vivo animal plasma samples. Additionally, EA treatment resulted in inhibition of lipid peroxidation-mediated malondialdehyde (MDA) and conjugated dienes (CD). Furthermore, EA exhibited an antioxidant property, increased the level of plasma glutathione (GSH), and also helped to decrease histological changes evaluated by histoimmunostaining of animal kidney tissues. The results from our investigation clearly indicates the antiglycative property of EA, suggesting EA as an adequate inhibitor of glycation and diabetes, which can be investigated further in preclinical settings for the treatment and management of diabetes-associated complications.
Collapse
|
17
|
Ouyang Y, Meng F, Du M, Ma Q, Liu H, Zhuang Y, Pang M, Cai T, Cai Y. Protective effects of psoralen polymer lipid nanoparticles on doxorubicin - induced myocardial toxicity. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yong Ouyang
- Guangzhou hospital of integrated traditional Chinese and western medicine, P. R. China
| | - Fansu Meng
- Guangzhou University of TCM, P. R. China
| | | | | | - Hui Liu
- Jinan University, P. R. China
| | | | | | | | - Yu Cai
- Jinan University, P. R. China
| |
Collapse
|
18
|
Chen Y, Wang L, Liu T, Qiu Z, Qiu Y, Liu D. Inhibitory effects of Panax ginseng glycoproteins in models of doxorubicin-induced cardiac toxicity in vivo and in vitro. Food Funct 2021; 12:10862-10874. [PMID: 34617939 DOI: 10.1039/d1fo01307f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective antineoplastic drug; however, its clinical application is limited owing to the side effect of fatal heart dysfunction on its use. Panax ginseng glycoproteins have antioxidant, antiapoptotic, and anti-inflammatory properties. Thus, the aim of this study was to investigate the effects and possible action mechanisms of P. ginseng glycoproteins against DOX-induced cardiotoxicity. To this end, we used an in vitro model of DOX-treated H9C2 cells and an in vivo model of DOX-treated rats. We found that P. ginseng glycoproteins markedly increased H9C2 cell viability, decreased creatine kinase and lactate dehydrogenase levels, and improved histopathological and electrocardiogram changes in rats, protecting them from DOX-induced cardiotoxicity. Furthermore, P. ginseng glycoproteins significantly inhibited myocardial oxidative insult through adjusting the intracellular ROS, MDA, SOD, and GSH levels in vitro and in vivo. In conclusion, our data suggest that P. ginseng glycoproteins alleviated DOX-induced myocardial oxidative stress-related cardiotoxicity. This natural product could be developed as a new candidate for alleviating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yajun Chen
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Lei Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tianjia Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
19
|
Xu N, Lu Y, Yao X, Zhao R, Li Z, Li J, Zhang Y, Li B, Zhou Y, Shen H, Wang L, Chen K, Yang L, Lu S. NMCP-2 polysaccharide purified from Morchella conica effectively prevents doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Food Sci Nutr 2021; 9:6262-6273. [PMID: 34760256 PMCID: PMC8565241 DOI: 10.1002/fsn3.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used in the clinical treatment of cancer, but its use is limited due to its cardiotoxic effects. Therefore, it is necessary to explore natural compounds that are effective in protecting against the cardiotoxicity caused by DOX. Neutral Morchella conica polysaccharides-2 (NMCP-2) is a natural polysaccharide with antioxidant activity that was isolated and purified from Morchella conica in our laboratory's previous study. This study aimed to investigate the possible protective effect of NMCP-2 on DOX-induced cardiotoxicity and the potential underlying mechanisms. The model of DOX-induced H9C2 cells and the model of DOX-induced mice were used in this study. In in vitro studies of H9C2 myocardial cells, NMCP-2 effectively increased the activity of H9C2 cells, reducing the levels of lactate dehydrogenase (LDH). In the mouse model of DOX-induced chronic cardiotoxicity, NMCP-2 significantly reduced the cardiac index, reduced the release of serum cardiac enzymes, and improved the pathology of murine myocardial tissues, thereby alleviating DOX-induced cardiotoxicity. Further mechanism studies showed that pretreatment with NMCP-2 counteracted the oxidative stress induced by DOX, as indicated by increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) production decreased. In addition, we observed NMCP-2 inhibited the activation of the mitochondrial apoptosis pathway and regulated the disordered expression of Bcl-2 and Bax in the myocardial tissues of DOX-treated mice. These findings indicated that NMCP-2, a natural bioactive compound, could potentially be used as a food supplement to reduce the cardiotoxicity caused by DOX.
Collapse
Affiliation(s)
- Na Xu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yi Lu
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinmiao Yao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Rui Zhao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Zhebin Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Jialei Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yinglei Zhang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Bo Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Ye Zhou
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Huifang Shen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Liqun Wang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Kaixin Chen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Li Yang
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Shuwen Lu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
20
|
Yamasan BE, Mercan T, Erkan O, Ozdemir S. Ellagic Acid Prevents Ca 2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy. Cardiovasc Toxicol 2021; 21:630-641. [PMID: 33909254 DOI: 10.1007/s12012-021-09654-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate whether ellagic acid (EA) treatment can prevent changes in contractile function and Ca2+ regulation of cardiomyocytes in pathologic cardiac hypertrophy. Groups were assigned as Con group; an ISO group in which the rats received isoproterenol alone (5 mg/kg/day); and an ISO + EA group in which the rats received isoproterenol and EA (20 mg/kg/day) for 4 weeks. Subsequently, fractional shortening, intracellular Ca2+ signals, and L-type Ca2+ currents of isolated ventricular myocytes were recorded. Protein expression levels were also determined by the Western blotting method. The survival rate was increased, and the upregulated cardiac hypertrophy markers were significantly attenuated with the EA treatment. The fractional shortening and relaxation rate of myocytes was decreased in the ISO group, whereas EA significantly improved these changes. Ventricular myocytes of the ISO + EA rats displayed lower diastolic Ca2+ levels, higher Ca2+ transients, shorter Ca2+ decay, and higher L-type Ca2+ currents than those of ISO rats. Protein expression analyses indicated that the upregulated p-PLB and p-CaMKII expressions were restored by EA treatment, suggesting improved calcium handling in the ISO + EA rat heart. Moreover, ISO rats displayed significantly increased expression of p-22phox and p47phox subunits of NOX2 protein. Expression of the p22phox subunit was reduced with EA administration, while the decrease in p47phox did not reach a significant level. The increased ROS impairs Ca2+ homeostasis and contractile activity of cardiac myocytes, whereas chronic EA administration prevents Ca2+ dysregulation and functional abnormalities associated with pathological cardiac hypertrophy via the diminution of oxidative stress.
Collapse
Affiliation(s)
- Bilge E Yamasan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Tanju Mercan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
21
|
Salinger-Martinovic S, Cosic V, Stojiljkovic N, Ilic S, Stojanovic N, Dencic T. Impact of ellagic acid application on doxorubicin-induced cardiovascular toxicity model. Can J Physiol Pharmacol 2021; 99:185-191. [PMID: 33509026 DOI: 10.1139/cjpp-2020-0404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin is an anticancer agent that is commonly used to treat a number of tumors and is associated with acute and chronic changes of the cardiovascular system. Ellagic acid has strong free radical scavenging capacity, neuroprotective and hepatoprotective effects, and is known to protect against changes occurring due to diabetes, cardiovascular diseases, and cancer. Twenty-four Wistar rats were divided in four groups: control group received saline, doxorubicin group received doxorubicin in a single dose of 20 mg/kg, ellagic acid group received ellagic acid in a dose of 4 mg/kg, and doxorubicin + ellagic acid group received doxorubicin and ellagic acid in same doses as in previous groups. The effect of ellagic acid treatment, alone or in combination with doxorubicin, was studied on isolated heart frequency and strength of the contraction, and on thoracic aorta contractile responses. Application of ellagic acid to rats pre-treated with doxorubicin significantly prevented functional changes occurring in the heart, but not in the thoracic aorta tissue. Ellagic acid statistically significantly (p < 0.001) prevented doxorubicin-induced increase in heart rate, while at the same time increased single contraction force (p < 0.001) and attenuated morphological changes on heart tissue induced by doxorubicin. We can conclude that ellagic acid has potential to prevent doxorubicin-induced changes of the cardiovascular system.
Collapse
Affiliation(s)
- Sonja Salinger-Martinovic
- Clinic for Cardiovascular Diseases, Clinical Center Niš, Blvd dr Zorana Djindjica 48, Niš, Serbia
- Department of Cardiology, University of Niš, Faculty of Medicine, Blvd dr Zorana Djindjica 81, Serbia
| | - Vladan Cosic
- Clinical Center Niš, Blvd dr Zorana Djindjica 48, Niš, Serbia
| | - Nenad Stojiljkovic
- Department of Physiology, University of Nis, Faculty of Medicine, Blvd dr Zorana Djindjica 81, Nis, Serbia
| | - Sonja Ilic
- Department of Physiology, University of Nis, Faculty of Medicine, Blvd dr Zorana Djindjica 81, Nis, Serbia
| | - Nikola Stojanovic
- Department of Physiology, University of Nis, Faculty of Medicine, Blvd dr Zorana Djindjica 81, Nis, Serbia
| | - Tijana Dencic
- Department of Pathology, University of Nis, Faculty of Medicine, Blvd dr Zorana Djindjica 81, Nis, Serbia
| |
Collapse
|
22
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
23
|
Atashbar S, Sabzalipour T, Salimi A. Stabilization of Mitochondrial Function by Ellagic Acid Prevents Celecoxib-induced Toxicity in Rat Cardiomyocytes and Isolated Mitochondria. Drug Res (Stuttg) 2020; 71:219-227. [DOI: 10.1055/a-1308-1585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe possible action of polyphenolic compounds in the reduction of reactive oxygen species (ROS) and mitochondrial toxicity may suggest them as putative agents for the treatment of drug-induced mitochondrial dysfunction and cardiotoxicity. This study was designed to explore protective effect of ellagic acid (EA) against celecoxib-induced cellular and mitochondrial toxicity in cardiomyocytes and their isolated mitochondria. In order to do this, isolated cardiomyocytes and mitochondria were pretreated with 3 different concentrations of EA (10, 50 and 100 µM), after which celecoxib (16 µg/ml) was added to promote deleterious effects on cells and mitochondria. Using flow cytometry and biochemical methods, the parameters of cellular and mitochondrial toxicity were investigated. Our results showed that celecoxib (16 µg/ml) caused a significant decrease in cell viability, mitochondrial membrane potential (MMP), glutathione (GSH) in intact cardiomyocytes and succinate dehydrogenase (SDH) activity, MMP collapse, and mitochondrial swelling, and a significant increase in reactive oxygen species (ROS) formation, lipid peroxidation (LP) and oxidative stress in isolated mitochondria. Also, our results revealed that co-administration of EA (50 and 100 µM) with celecoxib significantly attenuated the cellular and mitochondrial toxicity effects. In this study, we showed that simultaneous treatment with of EA ameliorated the cellular and mitochondrial toxicity induced by celecoxib, with cardiomyocytes presenting normal activity compared to the control group, and mitochondria retaining their normal activity.
Collapse
Affiliation(s)
- Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Towhid Sabzalipour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
24
|
Ahangari R, Khezri S, Jahedsani A, Bakhshii S, Salimi A. Ellagic acid alleviates clozapine‑induced oxidative stress and mitochondrial dysfunction in cardiomyocytes. Drug Chem Toxicol 2020; 45:1625-1633. [PMID: 33222529 DOI: 10.1080/01480545.2020.1850758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clozapine (CLZ) as an antipsychotic agent is very effective in treating of psychosis disorders and resistant schizophrenia, but the risk of severe cardiac toxicity effects restricts its clinical use. There are several interrelated hypotheses to explain clozapine-induced cardiotoxicity which all of them may be related to oxidative stress. Therefore, the current study investigated the harmful effects of clozapine on cardiomyocytes and assessed the cytoprotective effect of ellagic acid (EA). Freshly isolated adult rat ventricular cardiomyocytes were incubated for 4 h at 37 °C with 00.05% ethanol as control, CLZ (50 µM), CLZ (50 µM) + a series of EA concentrations (10, 20 and 50 µM) and EA (50 µM). To evaluate the protective effect of EA, the markers of cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lysosomal membrane integrity, malondialdehyde (MDA) and oxidized/reduced glutathione (GSH/GSSG) content were checked by biochemical and flowcytometry techniques. Our results demonstrated that EA (10, 20 and 50 µM) effectively inhibited CLZ-induced cytotoxicity which is associated with ROS overproduction and amelioration of mitochondrial and lysosomal damages. In addition, EA (10, 20 and 50 µM) in the presence of CLZ reduced the production of MDA as a specific marker lipid peroxidation and GSSG. Collectively, these findings suggested that EA protects cardiomyocytes from oxidative injury through inhibiting ROS formation, mitochondria dysfunction, and lysosomal damages, which suggest a potential therapeutic strategy of EA for CLZ-induced oxidative stress and cardiotoxicity.
Collapse
Affiliation(s)
- Roya Ahangari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asal Jahedsani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saba Bakhshii
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
25
|
Navarro-Hortal MD, Varela-López A, Romero-Márquez JM, Rivas-García L, Speranza L, Battino M, Quiles JL. Role of flavonoids against adriamycin toxicity. Food Chem Toxicol 2020; 146:111820. [PMID: 33080329 DOI: 10.1016/j.fct.2020.111820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Doxorubicin (DOX), or adriamycin, is an anthracycline antineoplastic drug widely used in the chemotherapy of a large variety of cancers due to its potency and action spectrum. However, its use is limited by the toxicity on healthy cells and its acute and chronic side effects. One of the developed strategies to attenuate DOX toxicity is the combined therapy with bioactive compounds such as flavonoids. This review embraces the role of flavonoids on DOX treatment side effects. Protective properties of some flavonoidss against DOX toxicity have been investigated and observed mainly in heart but also in liver, kidney, brain, testis or bone marrow. Protective mechanisms involve reduction of oxidative stress by decrease of ROS levels and/or increase antioxidant defenses and interferences with autophagy, apoptosis and inflammation. Studies in cancer cells have reported that the anticancer activity of DOX was not compromised by the flavonoids. Moreover, some of them increased DOX efficiency as anti-cancer drug even in multidrug resistant cells.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Alfonso Varela-López
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Lorenzo Rivas-García
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain.
| | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100, CH, Italy.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - José L Quiles
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| |
Collapse
|
26
|
Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103353] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ellagic acid, a polyphenolic compound present in fruit and berries, has recently been the object of extensive research for its antioxidant activity, which might be useful for the prevention and treatment of cancer, cardiovascular pathologies, and neurodegenerative disorders. Its protective role justifies numerous attempts to include it in functional food preparations and in dietary supplements, and not only to limit the unpleasant collateral effects of chemotherapy. However, ellagic acid use as a chemopreventive agent has been debated because of its poor bioavailability associated with low solubility, limited permeability, first pass effect, and interindividual variability in gut microbial transformations. To overcome these drawbacks, various strategies for oral administration including solid dispersions, micro and nanoparticles, inclusion complexes, self-emulsifying systems, and polymorphs were proposed. Here, we listed an updated description of pursued micro and nanotechnological approaches focusing on the fabrication processes and the features of the obtained products, as well as on the positive results yielded by in vitro and in vivo studies in comparison to the raw material. The micro and nanosized formulations here described might be exploited for pharmaceutical delivery of this active, as well as for the production of nutritional supplements or for the enrichment of novel foods.
Collapse
|
27
|
Shi C, Wu H, Xu K, Cai T, Qin K, Wu L, Cai B. Liquiritigenin-Loaded Submicron Emulsion Protects Against Doxorubicin-Induced Cardiotoxicity via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activity. Int J Nanomedicine 2020; 15:1101-1115. [PMID: 32110010 PMCID: PMC7034974 DOI: 10.2147/ijn.s235832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background The clinical use of doxorubicin (DOX) is severely limited due to its cardiotoxicity. Thus, there is a need for prophylactic and treatment strategies against DOX-induced cardiotoxicity. Purpose The purpose of this study was to develop a liquiritigenin-loaded submicron emulsion (Lq-SE) with enhanced oral bioavailability and to explore its efficacy against DOX-induced cardiotoxicity. Methods Lq-SE was prepared using high-pressure homogenization and characterized using several analytical techniques. The formulation was optimized by central composite design response surface methodology (CCD-RSM). In vivo pharmacokinetic studies, biochemical analyses, reactive oxygen species (ROS) assays, histopathologic assays, and Western blot analyses were performed. Results Each Lq-SE droplet had a mean particle size of 221.7 ± 5.80 nm, a polydispersity index (PDI) of 0.106 ± 0.068 and a zeta potential of -28.23 ± 0.42 mV. The area under the curve (AUC) of Lq-SE was 595% higher than that of liquiritigenin (Lq). Lq-SE decreased the release of serum cardiac enzymes and ameliorated histopathological changes in the hearts of DOX-challenged mice. Lq-SE significantly reduced oxidative stress by adjusting the levels of ROS, increasing the activity of antioxidative enzymes and inhibiting the protein expression of NOX4 and NOX2. Furthermore, Lq-SE significantly improved the inflammatory response through the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signalling pathway and induced cardiomyocyte apoptosis. Conclusion Lq-SE could be used as an effective cardioprotective agent against DOX in chemotherapy to enable better treatment outcomes.
Collapse
Affiliation(s)
- Changcan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, People's Republic of China
| | - Hongjuan Wu
- Nanjing Jiangning District Hospital of Traditional Chinese Medicine, Nanjing 211100, People's Republic of China
| | - Ke Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ting Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Kunming Qin
- Nanjing Haichang Chinese Medicine Group Corporation, Nanjing 210061, People's Republic of China
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, People's Republic of China
| | - Baochang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, People's Republic of China.,Nanjing Haichang Chinese Medicine Group Corporation, Nanjing 210061, People's Republic of China
| |
Collapse
|
28
|
Zheng D, Liu Z, Zhou Y, Hou N, Yan W, Qin Y, Ye Q, Cheng X, Xiao Q, Bao Y, Luo J, Wu X. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway. Pharmacol Res 2020; 153:104655. [PMID: 31996327 DOI: 10.1016/j.phrs.2020.104655] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion (IR) induces additional damage during the restoration of blood flow to ischemic myocardium. Urolithin B (UB) is one of the gut metabolites of ellagitannins, a class of antioxidant polyphenols, which was found to be protective against oxidative stress in multiple organs. However, the role of UB in cardiovascular disease remains elusive. Adult Sprague Dawley rats were subjected to left anterior descending artery ligation for 30 min followed by 120 min of reperfusion, with or without UB treatment. In vitro, the H9c2 cardiomyocytes were subjected to hypoxia (94 %N2/5 %CO2/1 %O2) for 3 h, followed by reoxygenation (74 %N2/5 %CO2/21 %O2) for 3 h (HR). UB was found to decrease myocardial infarct size and attenuate the cardiac dysfunction in the rats after IR, and protect against HR injury in H9c2 cardiomyocytes. Mechanistically, UB inhibited autophagy by activating Akt/mTOR/ULK1 pathway and protected against oxidative stress and caspase 3-dependent cell apoptosis. In particular, UB induced accumulation of p62 and its interaction with Keap1, which promoted Nrf2 nuclear translocation during HR insult. Of note, the protection of UB against superoxide production and apoptotic cell death was compromised with Nrf2 gene silencing. Taken together, our findings suggested that UB protected against myocardial IR injury at least partially via the p62/Keap1/Nrf2 signaling pathway, which highlights the potential of UB as a novel therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Dechong Zheng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Zumei Liu
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, PR China
| | - You Zhou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Ning Hou
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Wei Yan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Yuan Qin
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Qianfang Ye
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - XinYi Cheng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Qing Xiao
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Yonglin Bao
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Jiandong Luo
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| | - Xiaoqian Wu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| |
Collapse
|
29
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
30
|
Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307:41-48. [DOI: 10.1016/j.toxlet.2019.02.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/10/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022]
|
31
|
Ye M, Zhang L, Yan Y, Lin H. Punicalagin protects H9c2 cardiomyocytes from doxorubicin-induced toxicity through activation of Nrf2/HO-1 signaling. Biosci Rep 2019; 39:BSR20190229. [PMID: 31015369 PMCID: PMC6522706 DOI: 10.1042/bsr20190229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (DOX) is a wide-spectrum antitumor agent, but its clinical application is largely limited by its cardiotoxicity. Therefore, identification of effective agents against DOX-induced cardiotoxicity is of critical importance. The present study aimed to determine the beneficial role of punicalagin (PUN), a polyphenol isolated from pomegranate, in DOX-induced cardiotoxicity in vitro and explored the underlying mechanisms. H9c2 cardiomyocytes were pretreated with different concentrations (50, 100 and 200 μM) of PUN prior to DOX exposure. The results showed that PUN pretreatment significantly increased cell viability, inhibited lactate dehydrogenase (LDH) release and suppressed cell apoptosis induced by DOX. Additionally, PUN pretreatment attenuated the loss of mitochondrial membrane potential and cytochrome c release. Besides, PUN further enhanced the expression of nuclear Nrf2 and HO-1 in DOX-treated H9c2 cells, and the aforementioned beneficial effects of PUN were partially abolished by small interfering RNA (siRNA)-mediated Nrf2 knockdown. Hence, our findings clearly revealed that PUN might be a promising agent for alleviating the cardiotoxicity of DOX, and Nrf2/HO-1 signaling might serve a critical role during this process.
Collapse
Affiliation(s)
- Mingfang Ye
- Department of Cardiology, Union Hospital, Fujian Medical University, No. 29 Xinquan Road, Fuzhou City, Fujian Province 350001, P. R. China
| | - Linlin Zhang
- Department of Cardiology, Union Hospital, Fujian Medical University, No. 29 Xinquan Road, Fuzhou City, Fujian Province 350001, P. R. China
| | - Yuanming Yan
- Department of Cardiology, Union Hospital, Fujian Medical University, No. 29 Xinquan Road, Fuzhou City, Fujian Province 350001, P. R. China
| | - Huizhong Lin
- Department of Cardiology, Union Hospital, Fujian Medical University, No. 29 Xinquan Road, Fuzhou City, Fujian Province 350001, P. R. China
| |
Collapse
|
32
|
Neshati V, Mollazadeh S, Fazly Bazzaz BS, Iranshahi M, Mojarrad M, Naderi-Meshkin H, Kerachian MA. Cardiogenic effects of characterized Geum urbanum extracts on adipose-derived human mesenchymal stem cells. Biochem Cell Biol 2018; 96:610-618. [DOI: 10.1139/bcb-2017-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stem cell therapy is considered as a promising treatment for cardiovascular diseases. Adipose-derived mesenchymal stem cells (ADMSCs) have the ability to undergo cardiomyogenesis. Medicinal plants are effective and safe candidates for cell differentiation. Therefore, the aim of our study was to investigate cardiogenic effects of characterized (HPLC–UV) extracts of Geum urbanum on ADMSCs of adipose tissue. The methanolic extracts of the root and aerial parts of G. urbanum were obtained and MTT assay was used for studying their cytotoxic effects. Then, cells were treated with 50 or 100 μg/mL of the extracts from root and aerial parts of G. urbanum. MTT assay showed that the extracts of G. urbanum did not have any toxic effects on ADMSCs. Immunostaining results showed increase in the expression of α-actinin and cardiac troponin I (cTnI), and quantitative real-time reverse-transcription PCR data confirmed the upregulation of ACTN, ACTC1, and TNNI3 genes in ADMSCs after treatment. According to HPLC fingerprinting, some cardiogenic effects of G. urbanum extracts are probably due to ellagic and gallic acid derivatives. Our findings indicated that G. urbanum extracts effectively upregulated some essential cardiogenic markers, which confirmed the therapeutic role of this plant as a traditional cardiac medicine.
Collapse
Affiliation(s)
- Vajiheh Neshati
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026 10.1016/j.redox.2019.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
34
|
Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018; 16:189-198. [PMID: 29524841 PMCID: PMC5953242 DOI: 10.1016/j.redox.2018.02.026] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. Thus, exploration of effective lead compounds against DOX-induced cardiotoxicity is necessary. The aim of the present study was to investigate the effects and possible mechanisms of dioscin against DOX-induced cardiotoxicity. The in vitro model of DOX- treated H9C2 cells and the in vivo models of DOX-treated rats and mice were used in this study. The results showed that discoin markedly increased H9C2 cell viability, decreased the levels of CK, LDH, and improved histopathological and electrocardio- gram changes in rats and mice to protect DOX-induced cardiotoxicity. Furthermore, dioscin significantly inhibited myocardial oxidative insult through adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px in vitro and in vivo. Our data also indicated that dioscin activated Nrf2 and Sirt2 signaling pathways, and thereby affected the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a through decreasing miR-140-5p expression level. In addition, the level of intracellular ROS was significantly increased in H9C2 cells treated by DOX after miR-140-5p mimic transfection, as well as the down-regulated expression levels of Nrf2 and Sirt2, which were markedly reversed by dioscin. In conclusion, our data suggested that dioscin alleviated DOX-induced cardiotoxicity through modulating miR-140-5p-mediated myocardial oxidative stress. This natural product should be developed as a new candidate to alleviate cardiotoxicity caused by DOX in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
35
|
Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol Cell Biochem 2018; 448:27-41. [PMID: 29388153 DOI: 10.1007/s11010-018-3310-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/27/2018] [Indexed: 01/20/2023]
Abstract
Oxidative stress is a biological condition produced by a variety of factors, causing several chronic diseases. Oxidative stress was, therefore, treated with natural antioxidants, such as ellagic acid (EA). EA has a major role in protecting against different diseases associated with oxidative stress. This review critically discussed the antioxidant role of EA in biological systems. The in vitro and in vivo studies have confirmed the protective role of EA in suppressing oxidative stress. The review also discussed the mechanism of EA in suppressing of oxidative stress, which showed that EA activates specific endogenous antioxidant enzymes and suppresses specific genes responsible for inflammation, diseases, or disturbance of biochemical systems. The amount of EA used and duration, which plays a significant role in the treatment of oxidative stress has been discussed. In conclusion, EA is a strong natural antioxidant, which possesses the suppressing power of oxidative stress in biological systems.
Collapse
Affiliation(s)
- Alam Zeb
- Laboratory of Biochemistry, Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
36
|
Rizk HA, Masoud MA, Maher OW. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28815802 DOI: 10.1002/jbt.21977] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use cause neurobiological side effects. The aim of the present study was to investigate the prophylactic effect exerted by daily administration of ellagic acid (EA) and rosmarinic acid (RA) on DOX-induced neurotoxicity in rats. Our data showed that DOX-induced significant elevation of brain malondialdehyde, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), caspase-3, and cholinesterase associated with significant reduction in reduced glutathione, monoamines namely serotonin, dopamine, as well as norepinephrine. Concomitant administration of EA (10 mg/kg/day, p.o. for 14 days) and/or RA (75 mg/kg/day, p.o. for 14 days) with DOX significantly mitigated the neural changes induced by DOX. Meanwhile, treatment ameliorated pro-inflammatory cytokines as TNF-α, iNOS, and attenuated oxidative stress biomarkers as well as brain monoamines. In conclusion, EA and RA can effectively protect against DOX-induced neurotoxicity, and the mechanisms underlying the neuroprotective effect are potentially associated with its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Hanan A Rizk
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa A Masoud
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar W Maher
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
37
|
Dhingra A, Jayas R, Afshar P, Guberman M, Maddaford G, Gerstein J, Lieberman B, Nepon H, Margulets V, Dhingra R, Kirshenbaum LA. Ellagic acid antagonizes Bnip3-mediated mitochondrial injury and necrotic cell death of cardiac myocytes. Free Radic Biol Med 2017; 112:411-422. [PMID: 28838842 DOI: 10.1016/j.freeradbiomed.2017.08.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/03/2017] [Accepted: 08/13/2017] [Indexed: 01/10/2023]
Abstract
The Bcl-2 protein Bnip3 is crucial for provoking oxidative injury to mitochondria following anthracycline treatment or ischemia-reperfusion injury. Herein, we investigate the effects of the polyphenolic compound ellagic acid (EA) on Bnip3 mediated mitochondrial injury and necrotic cell death in cardiac myocytes. In contrast to vehicle treated cardiomyocytes, Bnip3 was highly enriched in mitochondrial fractions of cardiac myocytes treated with the anthracycline doxorubicin or in cells subjected to hypoxia (HPX). Mitochondrial associated Bnip3 was accompanied by mPTP opening and loss of ∆Ψm. The dynamin related fission protein Drp-1 was phosphorylated (Drp1616) and coincided with excessive mitochondrial fragmentation, mitophagy and necrosis in cardiac myocytes treated with doxorubicin or subjected to hypoxia. Moreover, knock-down of Bnip3 was sufficient to prevent mitochondrial fission and doxorubicin-induced cell death supporting the involvement of Bnip3 in doxorubicin cardiotoxity. Interestingly, mitochondrial associated Bnip3 in cells treated with doxorubicin was markedly reduced by EA. This resulted in significantly less mitochondrial fission and cell death. Notably, EA similarly suppressed mitochondrial injury and cell death induced by hypoxia or Bnip3 over-expression. Herein, we identify a novel signaling axis that operationally links EA and Bnip3 for suppression of cardiac cell death. We provide compelling new evidence that EA suppresses mitochondrial injury and necrotic cell death of cardiac myocytes by functionally abrogating Bnip3 activity. Hence, by suppressing mitochondrial injury induced by Bnip3, EA may provide a therapeutic advantage in reducing oxidative injury and cardiac dysfunction in cancer patients undergoing anthracycline treatment or individuals with ischemic cardiac stress.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/drug effects
- Autophagy/drug effects
- Cell Hypoxia/drug effects
- Doxorubicin/antagonists & inhibitors
- Doxorubicin/toxicity
- Dynamins/genetics
- Dynamins/metabolism
- Ellagic Acid/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Dynamics/drug effects
- Mitochondrial Dynamics/genetics
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Mitochondrial Proteins/antagonists & inhibitors
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Necrosis/genetics
- Necrosis/metabolism
- Necrosis/pathology
- Phosphorylation/drug effects
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Abhinav Dhingra
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Rahul Jayas
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Pegah Afshar
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Matthew Guberman
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Graham Maddaford
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Johnathan Gerstein
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Brooke Lieberman
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Hilary Nepon
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Victoria Margulets
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Rimpy Dhingra
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Canada; College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2H6.
| |
Collapse
|
38
|
Cardiopreventive effect of ethanolic extract of Date Palm Pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.etp.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Chen CT, Wang ZH, Hsu CC, Lin HH, Chen JH. Taiwanese and Japanese yam ( Dioscorea spp.) extracts attenuate doxorubicin-induced cardiotoxicity in mice. J Food Drug Anal 2017; 25:872-880. [PMID: 28987364 PMCID: PMC9328877 DOI: 10.1016/j.jfda.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
The present study was designed to explore whether yam could protect the heart from doxorubicin (DOX)-induced oxidative stress leading to cardiotoxicity in vivo. In this study, the protective effects of water and ethanol extracts of three varieties of yam, including water extracts of Dioscorea japonica Thunb., ethanol extracts of D. japonica Thunb., water extracts of Dioscorea alata, ethanol extracts of D. alata, water extracts of Dioscorea purpurea, and ethanol extracts of D. purpurea, against DOX-induced cardiotoxicity in experimental mice were evaluated. DOX treatment led to significant decreases in the ratio of heart weight to body weight and heart rate, and increases in blood pressure and the serum level of lactate dehydrogenase, a marker of cardiotoxicity, were recovered by yam extracts, especially in water extracts of D. alata. Yam extracts also decreased the cardiac levels of thiobarbituric acid relative substances, reactive oxygen species, and inflammatory factors, as well as the expression of nuclear factor kappa B, while ethanol extracts of D. japonica Thunb. and D. purpurea were shown to be more potent. Moreover, yam extracts had a role in increasing the activities of glutathione peroxidase and superoxide dismutase, thus improving the DOX-induced alterations in oxidative status in the heart tissue of DOX-treated mice. All ethanol extracts of yam exhibited their antiapoptotic abilities on caspase-3 activation and mitochondrial dysfunction, and ethanol extracts of D. alata still exerted a superior effect. Based on these findings, it can be concluded that yam has significant cardioprotective properties against DOX-induced damage via its multiple effects on antioxidant, anti-inflammatory, or antiapoptotic activities.
Collapse
Affiliation(s)
- Chih-Tai Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City,
Taiwan
| | - Zhi-Hong Wang
- Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung City,
Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City,
Taiwan
| | - Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City,
Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City,
Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City,
Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City,
Taiwan
- Corresponding author. Department of Nutrition, Chung Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung City 40201, Taiwan. E-mail address: (J.-H. Chen)
| |
Collapse
|
40
|
Ellagic acid promotes ventricular remodeling after acute myocardial infarction by up-regulating miR-140-3p. Biomed Pharmacother 2017; 95:983-989. [PMID: 28922712 DOI: 10.1016/j.biopha.2017.07.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022] Open
Abstract
In the paper, we observed the effect of ellagic acid (EA) on myocardial morphology and cardiac function and explored the mechanism of miR-140-3p-mediated EA in ventricular remodeling. The experimental animals were divided into 3 groups: control group, AMI group, AMI+EA group. Intragastric administration for 4 weeks was initiated on the first day after surgery in rats. Rodent echocardiography was used to measure heart size and cardiac function. The level of fibrosis was observed by Masson staining. The number of cell apoptosis was detected by TUNEL method. The expression of miR-140-3p and MKK6 was measured by qRT-PCR and Western blot, respectively. The results showed that EA could effectively improve the left ventricular function of AMI rats, reduce fibrosis area and infarct area. Moreover, EA significantly increased the expression of miR-140-3p and inhibited the expression of MKK6. However, miR-140-3p inhibitor up-regulated MKK6 expression, and miR-140-3p overexpression reversed the expression. In addition, EA could inhibit cell apoptosis, while miR-140-3p inhibitor increased cell apoptosis. After transfection with si-MKK6, the level of cell apoptosis was significantly decreased. These results indicated that EA improved ventricular remodeling after myocardial infarction by up-regulating miR-140-3p expression and inhibiting MKK6 expression.
Collapse
|
41
|
El-Sayed ESM, Mansour AM, El-Sawy WS. Protective effect of proanthocyanidins against doxorubicin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21965] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- El-Sayed M. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | - Ahmed M. Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | - Waleed S. El-Sawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Assiut Egypt
| |
Collapse
|
42
|
El-Sayed ESM, Mansour AM, El-Sawy WS. Alpha lipoic acid prevents doxorubicin-induced nephrotoxicity by mitigation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21940] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 02/05/2023]
Affiliation(s)
- El-Sayed M. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | - Ahmed M. Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | - Waleed S. El-Sawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Al-Azhar University; Assiut Egypt
| |
Collapse
|
43
|
Hemmati AA, Olapour S, Varzi HN, Khodayar MJ, Dianat M, Mohammadian B, Yaghooti H. Ellagic acid protects against arsenic trioxide-induced cardiotoxicity in rat. Hum Exp Toxicol 2017; 37:412-419. [PMID: 28474970 DOI: 10.1177/0960327117701986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arsenic trioxide (As2O3) is utilized for treating patients suffering from hematological malignancies particularly acute promyelocytic leukemia. Unfortunately, the extensive application of this chemotherapeutic agent has been limited due to its adverse effects such as cardiotoxicity. Ellagic acid, as a phenolic compound, has shown to exert antioxidant, anti-inflammatory, antifibrotic, and antiatherogenic properties. It is also capable of protecting against drug toxicity. In this study, we evaluated whether ellagic acid can protect against As2O3-induced heart injury in rats. Thirty-two male Wistar rats were randomly divided into four treatment groups, that is, control (0.2 mL of normal saline, intraperitoneally (ip)), As2O3 (5 mg/kg, ip), As2O3 plus ellagic acid, and ellagic acid (30 mg/kg, orally) groups. The drugs were administered daily for 10 days and pretreatment with ellagic acid was performed 1 h prior to As2O3 injection. Cardiotoxicity was characterized by electrocardiological, biochemical, and histopathological evaluations. Our results showed that ellagic acid pretreatment significantly ameliorated As2O3-induced increase in glutathione peroxidase activity and malondialdehyde concentration ( p < 0.05 and p < 0.001, respectively) and also diminished QTc prolongation ( p < 0.0001) and cardiac tissue damages. Pretreatment with ellagic acid also lowered the increased troponin I ( p < 0.0001) and creatine kinase isoenzyme MB ( p < 0.01) levels in response to As2O3. In conclusion, results of this study demonstrated that ellagic acid has beneficial cardioprotective effects against As2O3 toxicity. It is suggested that the protective effects were mediated by antioxidant properties of ellagic acid.
Collapse
Affiliation(s)
- A A Hemmati
- 1 Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Olapour
- 2 Department of Pharmacology, School of Pharmacy, Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - H Najafzadeh Varzi
- 3 Department of Pharmacology, School of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - M J Khodayar
- 4 Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Dianat
- 5 Physiology Research Center and Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - B Mohammadian
- 6 Department of Pathobiology, School of Veterinary Medicine, Shahid Chamram University, Ahvaz, Iran
| | - H Yaghooti
- 7 Hyperlipidemia Research Center, School of Allied Medical Sciences, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Rached I, Barros L, Fernandes IP, Santos-Buelga C, Rodrigues AE, Ferchichi A, Barreiro MF, Ferreira ICFR. Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms. Food Funct 2016; 7:1319-28. [PMID: 26887343 DOI: 10.1039/c6fo00100a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bioactive extracts were obtained from powdered carob pulp through an ultrasound extraction process and then evaluated in terms of antioxidant activity. Ten minutes of ultrasonication at 375 Hz were the optimal conditions leading to an extract with the highest antioxidant effects. After its chemical characterization, which revealed the preponderance of gallotannins, the extract (free and microencapsulated) was incorporated in yogurts. The microspheres were prepared using an extract/sodium alginate ratio of 100/400 (mg mg(-1)) selected after testing different ratios. The yogurts with the free extract exhibited higher antioxidant activity than the samples added with the encapsulated extracts, showing the preserving role of alginate as a coating material. None of the forms significantly altered the yogurt's nutritional value. This study confirmed the efficiency of microencapsulation to stabilize functional ingredients in food matrices maintaining almost the structural integrity of polyphenols extracted from carob pulp and furthermore improving the antioxidant potency of the final product.
Collapse
Affiliation(s)
- Irada Rached
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1172, 5301-855 Bragança, Portugal. and Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1134, 5301-857 Bragança, Portugal. and Rural Laboratory, National Institute of Agronomic of Tunisia, 43, Charles Nicolle, 1082, Tunis, Mahrajene, Tunisia
| | - Lillian Barros
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1172, 5301-855 Bragança, Portugal. and Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Isabel P Fernandes
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Celestino Santos-Buelga
- GIP-USAL, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ali Ferchichi
- Rural Laboratory, National Institute of Agronomic of Tunisia, 43, Charles Nicolle, 1082, Tunis, Mahrajene, Tunisia
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| |
Collapse
|
45
|
Venancio VP, Marques MC, Almeida MR, Mariutti LRB, Souza VCDO, Barbosa F, Pires Bianchi ML, Marzocchi-Machado CM, Mercadante AZ, Antunes LMG. Chrysobalanus icaco L. fruits inhibit NADPH oxidase complex and protect DNA against doxorubicin-induced damage in Wistar male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:885-893. [PMID: 27494754 DOI: 10.1080/15287394.2016.1193454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Chrysobalanus icaco L. is an underexplored plant found in tropical areas around the globe. Currently, there is no apparent information regarding the effects C. icaco fruits may exert in vivo or potential role in health promotion. This study aimed at providing evidence regarding the in vivo influence of this fruit on antigenotoxicity, antimutagenicity, and oxidative stress in rats. Male Wistar rats were treated with 100, 200, or 400 mg/kg body weight (bw)/d C. icaco fruit for 14 d. Doxorubicin (DXR, 15 mg/kg bw, ip) was used for DNA damaging and as an oxidant to generate reactive oxygen species (ROS). Genomic instability was assessed by the comet assay and micronucleus (MN) test, while antioxidant activity was determined by oxidative burst of neutrophils. Chrysobalanus icaco fruit polyphenols were quantified and characterized by high-performance liquid chromatography coupled to a diode array detector and tandem mass spectrometer (HPLC-DAD-MS/MS). The concentrations of 19 chemical elements were determined by inductively coupled plasma-mass spectroscopy (ICP-MS). Significant amounts of polyphenols, magnesium, and selenium were found in C. icaco fruit. This fruit displayed in vivo antioxidant activity against DXR-induced damage in rat peripheral blood neutrophils, antigenotoxicity in peripheral blood cells, and antimutagenicity in bone-marrow cells and peripheral blood cells. Correlation analyses between endpoints examined indicated that the mechanism underlying chemopreventive actions of C. icaco fruit was attributed to inhibition of NADPH oxidase complex manifested as low levels of DNA damage in animals exposed to DXR. Data indicate that phytochemicals and minerals in C. icaco fruit protect DNA against damage in vivo associated with their antioxidant properties.
Collapse
Affiliation(s)
- Vinicius Paula Venancio
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | - Mara Ribeiro Almeida
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | | | - Fernando Barbosa
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Maria Lourdes Pires Bianchi
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Cleni Mara Marzocchi-Machado
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | - Lusânia Maria Greggi Antunes
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
46
|
Burton-Freeman BM, Sandhu AK, Edirisinghe I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv Nutr 2016; 7:44-65. [PMID: 26773014 PMCID: PMC4717884 DOI: 10.3945/an.115.009639] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diet is an essential factor that affects the risk of modern-day metabolic diseases, including cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease. The potential ability of certain foods and their bioactive compounds to reverse or prevent the progression of the pathogenic processes that underlie these diseases has attracted research attention. Red raspberries (Rubus idaeus L.) are unique berries with a rich history and nutrient and bioactive composition. They possess several essential micronutrients, dietary fibers, and polyphenolic components, especially ellagitannins and anthocyanins, the latter of which give them their distinctive red coloring. In vitro and in vivo studies have revealed various mechanisms through which anthocyanins and ellagitannins (via ellagic acid or their urolithin metabolites) and red raspberry extracts (or the entire fruit) could reduce the risk of or reverse metabolically associated pathophysiologies. To our knowledge, few studies in humans are available for evaluation. We review and summarize the available literature that assesses the health-promoting potential of red raspberries and select components in modulating metabolic disease risk, especially cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease-all of which share critical metabolic, oxidative, and inflammatory links. The body of research is growing and supports a potential role for red raspberries in reducing the risk of metabolically based chronic diseases.
Collapse
Affiliation(s)
- Britt M Burton-Freeman
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL; and Department of Nutrition, University of California, Davis, CA
| | - Amandeep K Sandhu
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL; and
| | - Indika Edirisinghe
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL; and
| |
Collapse
|
47
|
Xiang S, Dauchy RT, Hauch A, Mao L, Yuan L, Wren MA, Belancio VP, Mondal D, Frasch T, Blask DE, Hill SM. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J Pineal Res 2015; 59:60-9. [PMID: 25857269 PMCID: PMC4490975 DOI: 10.1111/jpi.12239] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 01/17/2023]
Abstract
Chemotherapeutic resistance, particularly to doxorubicin (Dox), represents a major impediment to successfully treating breast cancer and is linked to elevated tumor metabolism and tumor over-expression and/or activation of various families of receptor- and non-receptor-associated tyrosine kinases. Disruption of circadian time structure and suppression of nocturnal melatonin production by dim light exposure at night (dLEN), as occurs with shift work, and/or disturbed sleep-wake cycles, is associated with a significantly increased risk of an array of diseases, including breast cancer. Melatonin inhibits human breast cancer growth via mechanisms that include the suppression of tumor metabolism and inhibition of expression or phospho-activation of the receptor kinases AKT and ERK1/2 and various other kinases and transcription factors. We demonstrate in tissue-isolated estrogen receptor alpha-positive (ERα+) MCF-7 human breast cancer xenografts, grown in nude rats maintained on a light/dark cycle of LD 12:12 in which dLEN is present during the dark phase (suppressed endogenous nocturnal melatonin), a significant shortening of tumor latency-to-onset, increased tumor metabolism and growth, and complete intrinsic resistance to Dox therapy. Conversely, a LD 12:12 dLEN environment incorporating nocturnal melatonin replacement resulted in significantly lengthened tumor latency-to-onset, tumor regression, suppression of nighttime tumor metabolism, and kinase and transcription factor phosphorylation, while Dox sensitivity was completely restored. Melatonin acts as both a tumor metabolic inhibitor and circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to Dox and drive tumor regression, indicating that dLEN-induced circadian disruption of nocturnal melatonin production contributes to a complete loss of tumor sensitivity to Dox chemotherapy.
Collapse
Affiliation(s)
- Shulin Xiang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Adam Hauch
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Melissa A. Wren
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Department of Comparative Medicine, Tulane University, New Orleans, Louisiana
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tripp Frasch
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E. Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Steven M. Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
- Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
- Tulane Center for Circadian Biology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
48
|
In Vivo Protective Effects of Diosgenin against Doxorubicin-Induced Cardiotoxicity. Nutrients 2015; 7:4938-54. [PMID: 26091236 PMCID: PMC4488824 DOI: 10.3390/nu7064938] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/30/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin (DOX) induces oxidative stress leading to cardiotoxicity. Diosgenin, a steroidal saponin of Dioscorea opposita, has been reported to have antioxidant activity. Our study was aimed to find out the protective effect of diosgenin against DOX-induced cardiotoxicity in mice. DOX treatment led to a significant decrease in the ratio of heart weight to body weight, and increases in the blood pressure and the serum levels of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and creatine kinase myocardial bound (CK-MB), markers of cardiotoxicity. In the heart tissue of the DOX-treated mice, DOX reduced activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GPx), were recovered by diosgenin. Diosgenin also decreased the serum levels of cardiotoxicity markers, cardiac levels of thiobarbituric acid relative substances (TBARS) and reactive oxygen species (ROS), caspase-3 activation, and mitochondrial dysfunction, as well as the expression of nuclear factor kappa B (NF-κB), an inflammatory factor. Moreover, diosgenin had the effects of increasing the cardiac levels of cGMP via modulation of phosphodiesterase-5 (PDE5) activity, and in improving myocardial fibrosis in the DOX-treated mice. Molecular data showed that the protective effects of diosgenin might be mediated via regulation of protein kinase A (PKA) and p38. Our data imply that diosgenin possesses antioxidant and anti-apoptotic activities, and cGMP modulation effect, which in turn protect the heart from the DOX-induced cardiotoxicity.
Collapse
|
49
|
Ding Y, Zhang B, Zhou K, Chen M, Wang M, Jia Y, Song Y, Li Y, Wen A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: Role of Nrf2 activation. Int J Cardiol 2014; 175:508-14. [DOI: 10.1016/j.ijcard.2014.06.045] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/05/2014] [Accepted: 06/24/2014] [Indexed: 12/01/2022]
|
50
|
Hassan MH, Ghobara M, Abd-Allah GM. Modulator Effects of Meloxicam against Doxorubicin-Induced Nephrotoxicity in Mice. J Biochem Mol Toxicol 2014; 28:337-46. [DOI: 10.1002/jbt.21570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Memy H. Hassan
- Department of Pharmacology and Toxicology; College of Pharmacy; Taibah University; El-Madinah El-Munaworah; P.O. Box 30001 Saudi Arabia
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Al-Azahr University; Cairo Egypt
| | - Mohamed Ghobara
- Department of Medical Laboratories Technology; Faculty of Applied Medical Sciences; Taibah University; El-Madinah El-Munaworah P.O. Box 30001 Saudi Arabia
- Department of Histology; Faculty of Medicine; Tanta University; Tanta Egypt
| | - Gamil M. Abd-Allah
- Department of Biochemistry; Faculty of Pharmacy; Al-Azahr University; Cairo Egypt
| |
Collapse
|