1
|
Zhang H, Qu P, Liu J, Cheng P, Lei Q. Application of human cardiac organoids in cardiovascular disease research. Front Cell Dev Biol 2025; 13:1564889. [PMID: 40230411 PMCID: PMC11994664 DOI: 10.3389/fcell.2025.1564889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
With the progression of cardiovascular disease (CVD) treatment technologies, conventional animal models face limitations in clinical translation due to interspecies variations. Recently, human cardiac organoids (hCOs) have emerged as an innovative platform for CVD research. This review provides a comprehensive overview of the definition, characteristics, classifications, application and development of hCOs. Furthermore, this review examines the application of hCOs in models of myocardial infarction, heart failure, arrhythmias, and congenital heart diseases, highlighting their significance in replicating disease mechanisms and pathophysiological processes. It also explores their potential utility in drug screening and the development of therapeutic strategies. Although challenges persist regarding technical complexity and the standardization of models, the integration of multi-omics and artificial intelligence (AI) technologies offers a promising avenue for the clinical translation of hCOs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Anesthesiology, Chengdu Wenjiang District People’s Hospital, Chengdu, China
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Qu
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Chang D, Sun C, Tian X, Liu H, Jia Y, Guo Z. Regulation of cardiac fibroblasts reprogramming into cardiomyocyte-like cells with a cocktail of small molecule compounds. FEBS Open Bio 2024; 14:983-1000. [PMID: 38693086 PMCID: PMC11148126 DOI: 10.1002/2211-5463.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Myocardial infarction results in extensive cardiomyocyte apoptosis, leading to the formation of noncontractile scar tissue. Given the limited regenerative capacity of adult mammalian cardiomyocytes, direct reprogramming of cardiac fibroblasts (CFs) into cardiomyocytes represents a promising therapeutic strategy for myocardial repair, and small molecule drugs might offer a more attractive alternative to gene editing approaches in terms of safety and clinical feasibility. This study aimed to reprogram rat CFs into cardiomyocytes using a small molecular chemical mixture comprising CHIR99021, Valproic acid, Dorsomorphin, SB431542, and Forskolin. Immunofluorescence analysis revealed a significant increase in the expression of cardiomyocyte-specific markers, including cardiac troponin T (cTnT), Connexin 43 (Cx43), α-actinin, and Tbx5. Changes in intracellular calcium ion levels and Ca2+ signal transfer between adjacent cells were monitored using a calcium ion fluorescence probe. mRNA sequencing analysis demonstrated the upregulation of genes associated with cardiac morphogenesis, myocardial differentiation, and muscle fiber contraction during CF differentiation induced by the small-molecule compounds. Conversely, the expression of fibroblast-related genes was downregulated. These findings suggest that chemical-induced cell fate conversion of rat CFs into cardiomyocyte-like cells is feasible, offering a potential therapeutic solution for myocardial injury.
Collapse
Affiliation(s)
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Hongyin Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| |
Collapse
|
3
|
Tochinai R, Nagashima Y, Sekizawa SI, Kuwahara M. Anti-tumor and cardiotoxic effects of microtubule polymerization inhibitors: The mechanisms and management strategies. J Appl Toxicol 2024; 44:96-106. [PMID: 37496236 DOI: 10.1002/jat.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Microtubule polymerization inhibitors (MPIs) have long been used as anticancer agents because they inhibit mitosis. Microtubules are thought to play an important role in the migration of tumor cells and the formation of tumor blood vessels, and new MPIs are being developed. Many clinical trials of novel MPIs have been conducted in humans, while some clinical studies in dogs have also been reported. More attempts to apply MPIs not only in humans but also in the veterinary field are expected to be made in the future. Meanwhile, MPIs have a risk of cardiotoxicity. In this paper, we review findings on the pharmacological effects and cardiotoxicity of MPIs, as well as the mechanisms of their cardiotoxicity. Cardiotoxicity of MPIs involves not only the direct effects of MPIs on cardiomyocytes but also their effects on vascular function. For example, hypertension induced by impaired vascular function also contributes to the exacerbation of myocardial damage, and blood pressure control may be useful in reducing cardiotoxicity. By combined administration of MPIs and other anticancer agents, MPI efficacy may be enhanced, thereby potentially allowing to keep MPI dosage low. Measurement of myocardial injury markers in blood and echocardiography may be useful for monitoring cardiotoxicity. In particular, two-dimensional speckle tracking may have high sensitivity for the early detection of MPI-induced cardiac dysfunction. The exploration of the potential of new MPIs while understanding their toxicity and how to deal with them will lead to the further development of cancer chemotherapy.
Collapse
Affiliation(s)
- Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiyasu Nagashima
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Sekizawa
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Mehdi RR, Kumar M, Mendiola EA, Sadayappan S, Avazmohammadi R. Machine learning-based classification of cardiac relaxation impairment using sarcomere length and intracellular calcium transients. Comput Biol Med 2023; 163:107134. [PMID: 37379617 PMCID: PMC10525035 DOI: 10.1016/j.compbiomed.2023.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Impaired relaxation of cardiomyocytes leads to diastolic dysfunction in the left ventricle. Relaxation velocity is regulated in part by intracellular calcium (Ca2+) cycling, and slower outflux of Ca2+ during diastole translates to reduced relaxation velocity of sarcomeres. Sarcomere length transient and intracellular calcium kinetics are integral parts of characterizing the relaxation behavior of the myocardium. However, a classifier tool that can separate normal cells from cells with impaired relaxation using sarcomere length transient and/or calcium kinetics remains to be developed. In this work, we employed nine different classifiers to classify normal and impaired cells, using ex-vivo measurements of sarcomere kinematics and intracellular calcium kinetics data. The cells were isolated from wild-type mice (referred to as normal) and transgenic mice expressing impaired left ventricular relaxation (referred to as impaired). We utilized sarcomere length transient data with a total of n = 126 cells (n = 60 normal cells and n = 66 impaired cells) and intracellular calcium cycling measurements with a total of n = 116 cells (n = 57 normal cells and n = 59 impaired cells) from normal and impaired cardiomyocytes as inputs to machine learning (ML) models for classification. We trained all ML classifiers with cross-validation method separately using both sets of input features, and compared their performance metrics. The performance of classifiers on test data showed that our soft voting classifier outperformed all other individual classifiers on both sets of input features, with 0.94 and 0.95 area under the receiver operating characteristic curves for sarcomere length transient and calcium transient, respectively, while multilayer perceptron achieved comparable scores of 0.93 and 0.95, respectively. However, the performance of decision tree, and extreme gradient boosting was found to be dependent on the set of input features used for training. Our findings highlight the importance of selecting appropriate input features and classifiers for the accurate classification of normal and impaired cells. Layer-wise relevance propagation (LRP) analysis demonstrated that the time to 50% contraction of the sarcomere had the highest relevance score for sarcomere length transient, whereas time to 50% decay of calcium had the highest relevance score for calcium transient input features. Despite the limited dataset, our study demonstrated satisfactory accuracy, suggesting that the algorithm can be used to classify relaxation behavior in cardiomyocytes when the potential relaxation impairment of the cells is unknown.
Collapse
Affiliation(s)
- Rana Raza Mehdi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mohit Kumar
- Heart, Lung, and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, Cincinnati, OH, USA; Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Emilio A Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sakthivel Sadayappan
- Heart, Lung, and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, Cincinnati, OH, USA; Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA; J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Logun M, Colonna MB, Mueller KP, Ventarapragada D, Rodier R, Tondepu C, Piscopo NJ, Das A, Chvatal S, Hayes HB, Capitini CM, Brat DJ, Kotanchek T, Edison AS, Saha K, Karumbaiah L. Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products. Cytotherapy 2023; 25:670-682. [PMID: 36849306 PMCID: PMC10159906 DOI: 10.1016/j.jcyt.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells. METHODS We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency. RESULTS Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells. CONCLUSIONS These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Maxwell B Colonna
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA
| | | | - Riley Rodier
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Chaitanya Tondepu
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA; Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Amritava Das
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | | | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA; Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Soepriatna AH, Navarrete-Welton A, Kim TY, Daley MC, Bronk P, Kofron CM, Mende U, Coulombe KLK, Choi BR. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. PLoS One 2023; 18:e0280406. [PMID: 36745602 PMCID: PMC9901774 DOI: 10.1371/journal.pone.0280406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/28/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr (maximum rate change of repolarization), and AP triangulation (APDtri = APDmxr-APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellent in vitro cardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds.
Collapse
Affiliation(s)
- Arvin H. Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Allison Navarrete-Welton
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Mark C. Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Peter Bronk
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Celinda M. Kofron
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lee SG, Kim YJ, Son MY, Oh MS, Kim J, Ryu B, Kang KR, Baek J, Chung G, Woo DH, Kim CY, Chung HM. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials 2022; 290:121860. [DOI: 10.1016/j.biomaterials.2022.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/02/2022]
|
8
|
Kabanov D, Klimovic S, Rotrekl V, Pesl M, Pribyl J. Atomic Force Spectroscopy is a promising tool to study contractile properties of cardiac cells. Micron 2021; 155:103199. [DOI: 10.1016/j.micron.2021.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
9
|
Teles D, Kim Y, Ronaldson-Bouchard K, Vunjak-Novakovic G. Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile. ACS Biomater Sci Eng 2021; 7:3043-3052. [PMID: 34152732 DOI: 10.1021/acsbiomaterials.1c00418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiomyocytes derived from human induced pluripotent stem (iPS) cells enable the study of cardiac physiology and the developmental testing of new therapeutic drugs in a human setting. In parallel, machine learning methods are being applied to biomedical science in unprecedented ways. Machine learning has been used to distinguish healthy from diseased cardiomyocytes using calcium (Ca2+) transient signals. Most Ca2+ transient signals are obtained via terminal assays that do not permit longitudinal studies, although some recently developed options can circumvent these concerns. Here, we describe the use of machine learning to identify healthy and diseased cardiomyocytes according to their contractility profiles, which are derived from brightfield videos. This noncontact, label-free approach allows for the continued cultivation of cells after they have been evaluated for use in other assays and can be readily extended to organs-on-chip. To demonstrate utility, we assessed contractility profiles of cardiomyocytes obtained from patients with Timothy Syndrome (TS), a long QT disease which can lead to fatal arrhythmias, and from healthy individuals. The videos were processed and classified using machine learning methods and their performance was evaluated according to several parameters. The trained algorithms were able to distinguish the TS cardiomyocytes from healthy controls and classify two different healthy controls. The proposed computational machine learning evaluation of human iPS cell-derived cardiomyocytes' contractility profiles has the potential to identify other genetic proarrhythmic events, screen therapeutic agents for inducing or suppressing long QT events, and predict drug-target interactions. The same approach could be readily extended to the evaluation of engineered cardiac tissues within single-tissue and multi-tissue organs-on-chip.
Collapse
Affiliation(s)
- Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimara̅es, Braga, Portugal
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States.,Department of Medicine, Columbia University, New York, New York 10032, United States
| |
Collapse
|
10
|
Ziegler R, Häusermann F, Kirchner S, Polonchuk L. Cardiac Safety of Kinase Inhibitors - Improving Understanding and Prediction of Liabilities in Drug Discovery Using Human Stem Cell-Derived Models. Front Cardiovasc Med 2021; 8:639824. [PMID: 34222360 PMCID: PMC8242589 DOI: 10.3389/fcvm.2021.639824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Many small molecule kinase inhibitors (SMKIs) used to fight cancer have been associated with cardiotoxicity in the clinic. Therefore, preventing their failure in clinical development is a priority for preclinical discovery. Our study focused on the integration and concurrent measurement of ATP, apoptosis dynamics and functional cardiac indexes in human stem cell-derived cardiomyocytes (hSC-CMs) to provide further insights into molecular determinants of compromised cardiac function. Ten out of the fourteen tested SMKIs resulted in a biologically relevant decrease in either beating rate or base impedance (cell number index), illustrating cardiotoxicity as one of the major safety liabilities of SMKIs, in particular of those involved in the PI3K–AKT pathway. Pearson's correlation analysis indicated a good correlation between the different read-outs of functional importance. Therefore, measurement of ATP concentrations and apoptosis in vitro could provide important insight into mechanisms of cardiotoxicity. Detailed investigation of the cellular signals facilitated multi-parameter evaluation allowing integrative assessment of cardiomyocyte behavior. The resulting correlation can be used as a tool to highlight changes in cardiac function and potentially to categorize drugs based on their mechanisms of action.
Collapse
Affiliation(s)
- Ricarda Ziegler
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabian Häusermann
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Kirchner
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Liudmila Polonchuk
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
11
|
Alyu F, Olgar Y, Degirmenci S, Turan B, Ozturk Y. Interrelated In Vitro Mechanisms of Sibutramine-Induced Cardiotoxicity. Cardiovasc Toxicol 2021; 21:322-335. [PMID: 33389602 DOI: 10.1007/s12012-020-09622-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Consumption of illicit pharmaceutical products containing sibutramine has been reported to cause cardiovascular toxicity problems. This study aimed to demonstrate the toxicity profile of sibutramine, and thereby provide important implications for the development of more effective strategies in both clinical approaches and drug design studies. Action potentials (APs) were determined from freshly isolated ventricular cardiomyocytes with whole-cell configuration of current clamp as online. The maximum amplitude of APs (MAPs), the resting membrane potential (RMP), and AP duration from the repolarization phases were calculated from original records. The voltage-dependent K+-channel currents (IK) were recorded in the presence of external Cd2+ and both inward and outward parts of the current were calculated, while their expression levels were determined with qPCR. The levels of intracellular free Ca2+ and H+ (pHi) as well as reactive oxygen species (ROS) were measured using either a ratiometric micro-spectrofluorometer or confocal microscope. The mechanical activity of isolated hearts was observed with Langendorff-perfusion system. Acute sibutramine applications (10-8-10-5 M) induced significant alterations in both MAPs and RMP as well as the repolarization phases of APs and IK in a concentration-dependent manner. Sibutramine (10 μM) induced Ca2+-release from the sarcoplasmic reticulum under either electrical or caffeine stimulation, whereas it depressed left ventricular developed pressure with a marked decrease in the end-diastolic pressure. pHi inhibition by sibutramine supports the observed negative alterations in contractility. Changes in mRNA levels of different IK subunits are consistent with the acute inhibition of the repolarizing IK, affecting AP parameters, and provoke the cardiotoxicity.
Collapse
Affiliation(s)
- Feyza Alyu
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, 06230, Ankara, Turkey
| | - Sinan Degirmenci
- Department of Biophysics, Faculty of Medicine, Ankara University, 06230, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, 06230, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, 06230, Ankara, Turkey
| | - Yusuf Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey.
| |
Collapse
|
12
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
13
|
Monitoring Contractile Cardiomyocytes via Impedance Using Multipurpose Thin Film Ruthenium Oxide Electrodes. SENSORS 2021; 21:s21041433. [PMID: 33670743 PMCID: PMC7923073 DOI: 10.3390/s21041433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
A ruthenium oxide (RuOx) electrode was used to monitor contractile events of human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) through electrical impedance spectroscopy (EIS). Using RuOx electrodes presents an advantage over standard thin film Pt electrodes because the RuOx electrodes can also be used as electrochemical sensor for pH, O2, and nitric oxide, providing multisensory functionality with the same electrode. First, the EIS signal was validated in an optically transparent well-plate setup using Pt wire electrodes. This way, visual data could be recorded simultaneously. Frequency analyses of both EIS and the visual data revealed almost identical frequency components. This suggests both the EIS and visual data captured the similar events of the beating of (an area of) hPSC-CMs. Similar EIS measurement was then performed using the RuOx electrode, which yielded comparable signal and periodicity. This mode of operation adds to the versatility of the RuOx electrode's use in in vitro studies.
Collapse
|
14
|
Rashed MZ, Kopechek JA, Priddy MC, Hamorsky KT, Palmer KE, Mittal N, Valdez J, Flynn J, Williams SJ. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector. Biosens Bioelectron 2021; 171:112709. [PMID: 33075724 PMCID: PMC7539830 DOI: 10.1016/j.bios.2020.112709] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was classified as a pandemic by the World Health Organization and has caused over 550,000 deaths worldwide as of July 2020. Accurate and scalable point-of-care devices would increase screening, diagnosis, and monitoring of COVID-19 patients. Here, we demonstrate rapid label-free electrochemical detection of SARS-CoV-2 antibodies using a commercially available impedance sensing platform. A 16-well plate containing sensing electrodes was pre-coated with receptor binding domain (RBD) of SARS-CoV-2 spike protein, and subsequently tested with samples of anti-SARS-CoV-2 monoclonal antibody CR3022 (0.1 μg/ml, 1.0 μg/ml, 10 μg/ml). Subsequent blinded testing was performed on six serum specimens taken from COVID-19 and non-COVID-19 patients (1:100 dilution factor). The platform was able to differentiate spikes in impedance measurements from a negative control (1% milk solution) for all CR3022 samples. Further, successful differentiation and detection of all positive clinical samples from negative control was achieved. Measured impedance values were consistent when compared to standard ELISA test results showing a strong correlation between them (R2=0.9). Detection occurs in less than five minutes and the well-based platform provides a simplified and familiar testing interface that can be readily adaptable for use in clinical settings.
Collapse
Affiliation(s)
- Mohamed Z Rashed
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, KY 40208, USA.
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, KY 40208, USA
| | - Mariah C Priddy
- Department of Bioengineering, University of Louisville, Louisville, KY 40208, USA
| | - Krystal T Hamorsky
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40208, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40208, USA
| | - Nikhil Mittal
- ACEA Biosciences, Agilent Technologies Inc., San Diego, CA 92121, USA
| | - Joseph Valdez
- ACEA Biosciences, Agilent Technologies Inc., San Diego, CA 92121, USA
| | - Joseph Flynn
- Norton Healthcare, Inc, Louisville, KY 40202, USA
| | - Stuart J Williams
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, KY 40208, USA.
| |
Collapse
|
15
|
Gintant G, Kaushik EP, Feaster T, Stoelzle-Feix S, Kanda Y, Osada T, Smith G, Czysz K, Kettenhofen R, Lu HR, Cai B, Shi H, Herron TJ, Dang Q, Burton F, Pang L, Traebert M, Abassi Y, Pierson JB, Blinova K. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 2020; 117:104756. [PMID: 32822771 DOI: 10.1016/j.yrtph.2020.104756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, 60064, USA.
| | | | - Tromondae Feaster
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan.
| | | | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | | | - Ralf Kettenhofen
- Fraunhofer-Institute for Biomed Engineering IBMT, Sulzbach, Germany.
| | - Hua Rong Lu
- Nonclinical Safety, Johnson & Johnson R&D, Beerse, Belgium.
| | - Beibei Cai
- Takeda California, Inc., San Diego, CA, 92121, USA.
| | - Hong Shi
- Bristol-Myers Squibb, New York, NY, 10016, USA.
| | - Todd Joseph Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Qianyu Dang
- Office of Biostatistics, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Francis Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| | | | - Yama Abassi
- Agilent Technologies, San Diego, CA, 92121, USA.
| | | | - Ksenia Blinova
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
16
|
Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clin Ther 2020; 42:1892-1910. [PMID: 32938533 DOI: 10.1016/j.clinthera.2020.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Adverse cardiovascular drug effects pose a substantial medical risk and represent a common cause of drug withdrawal from the market. Thus, current in vitro assays and in vivo animal models still have shortcomings in assessing cardiotoxicity. A human model for more accurate preclinical cardiotoxicity assessment is highly desirable. Current differentiation protocols allow for the generation of human pluripotent stem cell-derived cardiomyocytes in basically unlimited numbers and offer the opportunity to study drug effects on human cardiomyocytes. The purpose of this review is to provide a brief overview of the current approaches to translate studies with pluripotent stem cell-derived cardiomyocytes from basic science to preclinical risk assessment. METHODS A review of the literature was performed to gather data on the pathophysiology of cardiotoxicity, the current cardiotoxicity screening assays, stem cell-derived cardiomyocytes, and their application in cardiotoxicity screening. FINDINGS There is increasing evidence that stem cell-derived cardiomyocytes predict arrhythmogenicity with high accuracy. Cardiomyocyte immaturity represents the major limitation so far. However, strategies are being developed to overcome this hurdle, such as tissue engineering. In addition, stem cell-based strategies offer the possibility to assess structural drug toxicity (eg, by anticancer drugs) on complex models that more closely mirror the structure of the heart and contain endothelial cells and fibroblasts. IMPLICATIONS Pluripotent stem cell-derived cardiomyocytes have the potential to substantially change how preclinical cardiotoxicity screening is performed. To which extent they will replace or complement current approaches is being evaluated.
Collapse
|
17
|
Drug response analysis for scaffold-free cardiac constructs fabricated using bio-3D printer. Sci Rep 2020; 10:8972. [PMID: 32487993 PMCID: PMC7265390 DOI: 10.1038/s41598-020-65681-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/05/2020] [Indexed: 12/04/2022] Open
Abstract
Cardiac constructs fabricated using human induced pluripotent stem cells-derived cardiomyocytes (iPSCs-CMs) are useful for evaluating the cardiotoxicity of and cardiac response to new drugs. Previously, we fabricated scaffold-free three-dimensional (3D) tubular cardiac constructs using a bio-3D printer, which can load cardiac spheroids onto a needle array. In this study, we developed a method to measure the contractile force and to evaluate the drug response in cardiac constructs. Specifically, we measured the movement of the needle tip upon contraction of the cardiac constructs on the needle array. The contractile force and beating rate of the cardiac constructs were evaluated by analysing changes in the movement of the needle tip. To evaluate the drug response, contractile properties were measured following treatment with isoproterenol, propranolol, or blebbistatin, in which the movement of the needle tip was increased following isoproterenol treatment, but was decreased following propranolol or blebbistain, treatments. To evaluate cardiotoxicity, contraction and cell viability of the cardiac constructs were measured following doxorubicin treatment. Cell viability was found to decrease with decreasing movement of the needle tip following doxorubicin treatment. Collectively, our results show that this method can aid in evaluating the contractile force of cardiac constructs.
Collapse
|
18
|
Fletcher S, Maddock H, James RS, Wallis R, Gharanei M. The cardiac work-loop technique: An in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles. Sci Rep 2020; 10:5258. [PMID: 32210283 PMCID: PMC7093439 DOI: 10.1038/s41598-020-58935-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022] Open
Abstract
The cardiac work-loop technique closely mimics the intrinsic in vivo movement and characteristics of cardiac muscle function. In this study, six known inotropes were profiled using the work-loop technique to evaluate the potential of this method to predict inotropy. Papillary muscles from male Sprague-Dawley rats were mounted onto an organ bath perfused with Krebs-Henseleit buffer. Following optimisation, work-loop contractions were performed that included an initial stabilisation period followed by vehicle control or drug administration. Six known inotropes were tested: digoxin, dobutamine, isoprenaline, flecainide, verapamil and atenolol. Muscle performance was evaluated by calculating power output during work-loop contraction. Digoxin, dobutamine and isoprenaline caused a significant increase in power output of muscles when compared to vehicle control. Flecainide, verapamil and atenolol significantly reduced power output of muscles. These changes in power output were reflected in alterations in work loop shapes. This is the first study in which changes in work-loop shape detailing for example the activation, shortening or passive re-lengthening have been linked to the mechanism of action of a compound. This study has demonstrated that the work-loop technique can provide an important novel method with which to assess detailed mechanisms of drug-induced effects on cardiac muscle contractility.
Collapse
Affiliation(s)
- Sophie Fletcher
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom.,InoCardia Ltd, Technocentre, Puma Way, Coventry, CV1 2TT, UK
| | - Helen Maddock
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom. .,InoCardia Ltd, Technocentre, Puma Way, Coventry, CV1 2TT, UK.
| | - Rob S James
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Rob Wallis
- InoCardia Ltd, Technocentre, Puma Way, Coventry, CV1 2TT, UK
| | - Mayel Gharanei
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom.,InoCardia Ltd, Technocentre, Puma Way, Coventry, CV1 2TT, UK
| |
Collapse
|
19
|
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev 2020; 72:320-342. [PMID: 31871214 PMCID: PMC6934989 DOI: 10.1124/pr.116.013003] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| |
Collapse
|
20
|
Lamore SD, Kohnken RA, Peters MF, Kolaja KL. Cardiovascular Toxicity Induced by Kinase Inhibitors: Mechanisms and Preclinical Approaches. Chem Res Toxicol 2019; 33:125-136. [DOI: 10.1021/acs.chemrestox.9b00387] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah D. Lamore
- Preclinical Development, Wave Life Sciences, Lexington, Massachusetts 02421, United States
| | - Rebecca A. Kohnken
- Preclinical Safety, Abbvie, North Chicago, Illinois 60064, United States
| | - Matthew F. Peters
- Oncology Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451, United States
| | - Kyle L. Kolaja
- Investigative Toxicology and Cell Therapy Safety, Nonclinical Development, Celgene Corporation, Summit, New Jersey 07901, United States
| |
Collapse
|
21
|
Takasuna K, Kazusa K, Hayakawa T. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi). Curr Pharm Biotechnol 2019; 21:829-841. [PMID: 31749424 DOI: 10.2174/1389201020666191024172425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Heart Team, Japan
| | - Katsuyuki Kazusa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| | - Tomohiro Hayakawa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| |
Collapse
|
22
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
23
|
TONELLO SARAH, BORGHETTI MICHELA, LOPOMO NICOLAF, SERPELLONI MAURO, SARDINI EMILIO, MARZIANO MARIAGRAZIA, SERZANTI MARIALAURA, UBERTI DANIELA, DELL’ERA PATRIZIA, INVERARDI NICOLETTA, GUALANDI CHIARA, FOCARETE MARIALETIZIA. INK-JET PRINTED STRETCHABLE SENSORS FOR CELL MONITORING UNDER MECHANICAL STIMULI: A FEASIBILITY STUDY. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impedance-based sensors represent a promising tool for cell monitoring to improve current invasive biological assays. A novel research field is represented by measurements performed in dynamic conditions, monitoring cells (e.g., myocytes) for which the mechanical stimulus plays an important role for promoting maturation. In this picture, we applied printed and stretchable electronics principles, developing a system able to evaluate cells adhesion during substrate cyclic strain. Cytocompatible and stretchable sensors were ink-jet printed using carbon-based ink on crosslinked poly([Formula: see text]-caprolactone) electrospun mats. Moreover, a customized stretching device was produced, with a complete user interface to control testing condition, validated in order to correlate impedance changes with myoblasts — i.e., myocytes precursors — adhesion. Overall system sensitivity was evaluated using three different cell concentrations and DAPI imaging assay was performed to confirm myoblast adhesion. Preliminary results showed the possibility to correlate an average increase of impedance magnitude of 1[Formula: see text]k[Formula: see text] every 15,000 cells/cm2 seeded, suggesting the possibility to discriminate between different cell concentrations, with a sensitivity of 80[Formula: see text]m[Formula: see text]/(cells/cm2). In conclusion, the present system might be generalized in the development of future applications, including the differentiation process of cardiac myocytes with the aid of mechanical stimuli.
Collapse
Affiliation(s)
- SARAH TONELLO
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MICHELA BORGHETTI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - NICOLA F. LOPOMO
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MAURO SERPELLONI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - EMILIO SARDINI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MARIAGRAZIA MARZIANO
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - MARIALAURA SERZANTI
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - DANIELA UBERTI
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - PATRIZIA DELL’ERA
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - NICOLETTA INVERARDI
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - CHIARA GUALANDI
- Department of Chemistry “G. Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
| | - MARIA LETIZIA FOCARETE
- Department of Chemistry “G. Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Miccoli B, Lopez CM, Goikoetxea E, Putzeys J, Sekeri M, Krylychkina O, Chang SW, Firrincieli A, Andrei A, Reumers V, Braeken D. High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip. Front Neurosci 2019; 13:641. [PMID: 31293372 PMCID: PMC6603149 DOI: 10.3389/fnins.2019.00641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Multi-electrode arrays, both active or passive, emerged as ideal technologies to unveil intricated electrophysiological dynamics of cells and tissues. Active MEAs, designed using complementary metal oxide semiconductor technology (CMOS), stand over passive devices thanks to the possibility of achieving single-cell resolution, the reduced electrode size, the reduced crosstalk and the higher functionality and portability. Nevertheless, most of the reported CMOS MEA systems mainly rely on a single operational modality, which strongly hampers the applicability range of a single device. This can be a limiting factor considering that most biological and electrophysiological dynamics are often based on the synergy of multiple and complex mechanisms acting from different angles on the same phenomena. Here, we designed a CMOS MEA chip with 16,384 titanium nitride electrodes, 6 independent operational modalities and 1,024 parallel recording channels for neuro-electrophysiological studies. Sixteen independent active areas are patterned on the chip surface forming a 4 × 4 matrix, each one including 1,024 electrodes. Electrodes of four different sizes are present on the chip surface, ranging from 2.5 × 3.5 μm2 up to 11 × 11.0 μm2, with 15 μm pitch. In this paper, we exploited the impedance monitoring and voltage recording modalities not only to monitor the growth and development of primary rat hippocampal neurons, but also to assess their electrophysiological activity over time showing a mean spike amplitude of 144.8 ± 84.6 μV. Fixed frequency (1 kHz) and high sampling rate (30 kHz) impedance measurements were used to evaluate the cellular adhesion and growth on the chip surface. Thanks to the high-density configuration of the electrodes, as well as their dimension and pitch, the chip can appreciate the evolutions of the cell culture morphology starting from the moment of the seeding up to mature culture conditions. The measurements were confirmed by fluorescent staining. The effect of the different electrode sizes on the spike amplitudes and noise were also discussed. The multi-modality of the presented CMOS MEA allows for the simultaneous assessment of different physiological properties of the cultured neurons. Therefore, it can pave the way both to answer complex fundamental neuroscience questions as well as to aid the current drug-development paradigm.
Collapse
|
25
|
Abad Tan S, Zoidl G, Ghafar-Zadeh E. A Multidisciplinary Approach Toward High Throughput Label-Free Cytotoxicity Monitoring of Superparamagnetic Iron Oxide Nanoparticles. Bioengineering (Basel) 2019; 6:E52. [PMID: 31185664 PMCID: PMC6631604 DOI: 10.3390/bioengineering6020052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract: This paper focuses on cytotoxicity examination of superparamagnetic iron oxide nanoparticles (SPIONs) using different methods, including impedance spectroscopy. Recent advances of SPIONs for clinical and research applications have triggered the need to understand their effects in cells. Despite the great advances in adapting various biological and chemical methods to assess in-vitro toxicity of SPIONs, less attention has been paid on the development of a high throughput label-free screening platform to study the interaction between the cells and nanoparticles including SPIONs. In this paper, we have taken the first step toward this goal by proposing a label-free impedimetric method for monitoring living cells treated with SPIONs. We demonstrate the effect of SPIONs on the adhesion, growth, proliferation, and viability of neuroblastoma 2A (N2a) cells using impedance spectroscopy as a label-free method, along with other standard microscopic and cell viability testing methods as control methods. Our results have shown a decreased viability of the cells as the concentration of SPIONs increases with percentages of 59%, 47%, and 40% for 100 µg/mL (C4), 200 µg/mL (C5), 300 µg/mL (C6), respectively. Although all SPIONs concentrations have allowed the growth of cells within 72 hours, C4, C5, and C6 showed slower growth compared to the control (C1). The growth and proliferation of N2a cells are faster in the absence or low concentration of SPIONS. The percent coefficient of variation (% CV) was used to compare cell concentrations obtained by TBDE assay and a Scepter cell counter. Results also showed that the lower the SPIONs concentration, the lower the impedance is expected to be in the sensing electrodes without the cells. Meanwhile, the variation of surface area (∆S) was affected by the concentration of SPIONs. It was observed that the double layer capacitance was almost constant because of the higher attachment of cells, the lower surface area coated by SPIONs. In conclusion, impedance changes of electrodes exposed to the mixture of cells and SPIONs offer a wide dynamic range (>1 MΩ using Electric Cell-substrate Impedance electrodes) suitable for cytotoxicity studies. Based on impedance based, viability testing and microscopic methods' results, SPIONs concentrations higher than 100 ug/mL and 300 ug/mL cause minor and major effects, respectively. We propose that a high throughput impedance-based label-free platform provides great advantages for studying SPIONs in a cell-based context, opening a window of opportunity to design and test the next generation of SPIONs with reduced toxicity for biomedical or medical applications.
Collapse
Affiliation(s)
- Sonia Abad Tan
- Biologically Inspired Sensors and Actuators Laboratory, Lassonde School of Engineering, York University, Ontario, Toronto M3J 1P3, Canada.
- Department of Biology, York University, Ontario, Toronto M3J 1P3, Canada.
| | - Georg Zoidl
- Department of Biology, York University, Ontario, Toronto M3J 1P3, Canada.
- Department of Psychology, York University, Ontario, Toronto M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Lassonde School of Engineering, York University, Ontario, Toronto M3J 1P3, Canada.
- Department of Biology, York University, Ontario, Toronto M3J 1P3, Canada.
- Department of Electrical Engineering and Computer Science, York University, Ontario, Toronto M3J 1P3, Canada.
| |
Collapse
|
26
|
Bogunovic N, Meekel JP, Micha D, Blankensteijn JD, Hordijk PL, Yeung KK. Impaired smooth muscle cell contractility as a novel concept of abdominal aortic aneurysm pathophysiology. Sci Rep 2019; 9:6837. [PMID: 31048749 PMCID: PMC6497672 DOI: 10.1038/s41598-019-43322-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Ruptured abdominal aortic aneurysms (AAA) are associated with overall mortality rates up to 90%. Despite extensive research, mechanisms leading to AAA formation and advancement are still poorly understood. Smooth muscle cells (SMC) are predominant in the aortic medial layer and maintain the wall structure. Apoptosis of SMC is a well-known phenomenon in the pathophysiology of AAA. However, remaining SMC function is less extensively studied. The aim of this study is to assess the in vitro contractility of human AAA and non-pathologic aortic SMC. Biopsies were perioperatively harvested from AAA patients (n = 21) and controls (n = 6) and clinical data were collected. Contractility was measured using Electric Cell-substrate Impedance Sensing (ECIS) upon ionomycin stimulation. Additionally, SMC of 23% (5 out of 21) of AAA patients showed impaired maximum contraction compared to controls. Also, SMC from patients who underwent open repair after earlier endovascular repair and SMC from current smokers showed decreased maximum contraction vs. controls (p = 0.050 and p = 0.030, respectively). Our application of ECIS can be used to study contractility in other vascular diseases. Finally, our study provides with first proof that impaired SMC contractility might play a role in AAA pathophysiology.
Collapse
MESH Headings
- Actins/genetics
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/physiopathology
- Apoptosis/genetics
- Apoptosis/physiology
- Calcium-Binding Proteins/genetics
- Cells, Cultured
- Cytoskeletal Proteins/genetics
- Humans
- In Vitro Techniques
- Microfilament Proteins/genetics
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Polymerase Chain Reaction
- Vimentin/genetics
- Calponins
Collapse
Affiliation(s)
- Natalija Bogunovic
- Departments of Vascular Surgery, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
- Departments of Physiology, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
- Departments of Clinical Genetics, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
| | - Jorn P Meekel
- Departments of Vascular Surgery, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
- Departments of Physiology, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
| | - Dimitra Micha
- Departments of Clinical Genetics, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
| | - Jan D Blankensteijn
- Departments of Vascular Surgery, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Departments of Physiology, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands
| | - Kak K Yeung
- Departments of Vascular Surgery, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands.
- Departments of Physiology, Amsterdam University Medical Centers, location VU University Medical center, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Gamal W, Wu H, Underwood I, Jia J, Smith S, Bagnaninchi PO. Impedance-based cellular assays for regenerative medicine. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0226. [PMID: 29786561 DOI: 10.1098/rstb.2017.0226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- W Gamal
- School of Electronic Engineering, Bangor University, Bangor LL57 1UT, UK
| | - H Wu
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - I Underwood
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - J Jia
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - S Smith
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - P O Bagnaninchi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
28
|
Okumura S, Hirano Y, Maki Y, Komatsu Y. Analysis of time-course drug response in rat cardiomyocytes cultured on a pattern of islands. Analyst 2019; 143:4083-4089. [PMID: 30083681 DOI: 10.1039/c8an01033a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported the kinetics analysis of cardiomyocyte beating using scanning electrochemical microscopy (SECM). In this study, a stage-top incubator and a capillary micropipette (MP) for delivering drugs were assembled with an SECM instrument, and the responses of rat cardiomyocytes were analyzed under a culture environment after drug stimulation. When adenosine triphosphate (ATP) was delivered to synchronously beating cardiomyocytes, the beating acceleration effect of ATP was counteracted by the synchronously beating network in the culture dish. In contrast, cardiomyocytes cultured on a pattern of islands in a culture dish showed fluctuations in the duration of beating upon the addition of ATP. We also examined the effect of the cardiotoxic agent astemizole on cardiomyocytes and successfully detected motion fluctuations. Therefore, drug stimulation via MPs and beating measurement by SECM are effective routes for the evaluation of drug candidates through the analysis of time-course beating motion fluctuations of the cardiomyocytes.
Collapse
|
29
|
Sewanan LR, Campbell SG. Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. J Physiol 2019; 598:2909-2922. [PMID: 30624779 DOI: 10.1113/jp276753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) provide a unique opportunity to understand the pathophysiological effects of genetic cardiomyopathy mutations. In particular, these cells hold the potential to unmask the effects of mutations on contractile behaviour in vitro, providing new insights into genotype-phenotype relationships. With this goal in mind, several groups have established iPSC lines that contain sarcomeric gene mutations linked to cardiomyopathy in patient populations. Their studies have employed diverse systems and methods for performing mechanical measurements of contractility, ranging from single cell techniques to multicellular tissue-like constructs. Here, we review published results to date within the growing field of iPSC-based sarcomeric cardiomyopathy disease models. We devote special attention to the methods of mechanical characterization selected in each case, and how these relate to the paradigms of classical muscle mechanics. An appreciation of these somewhat subtle paradigms can inform efforts to compare the results of different studies and possibly reconcile discrepancies. Although more work remains to be done to improve and possibly standardize methods for producing, maturing, and mechanically interrogating iPSC-derived cardiomyocytes, the initial results indicate that this approach to modelling cardiomyopathies will continue to provide critical insights into these devastating diseases.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Zhou W, Graham K, Lucendo-Villarin B, Flint O, Hay DC, Bagnaninchi P. Combining stem cell-derived hepatocytes with impedance sensing to better predict human drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:77-83. [PMID: 30572740 DOI: 10.1080/17425255.2019.1558208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The liver plays a central role in human drug metabolism. To model drug metabolism, the major cell type of the liver, the hepatocyte, is commonly used. Hepatocytes can be derived from human and animal sources, including pluripotent stem cells. Cell-based models have shown promise in modeling human drug exposure. The assays used in those studies are normally 'snap-shot' in nature, and do not provide the complete picture of human drug exposure. Research design and methods: In this study, we employ stem cell-derived hepatocytes and impedance sensing to model human drug toxicity. This impedance-based stem cell assay reports hepatotoxicity in real time after treatment with compounds provided by industry. Results: Using electric cell-substrate impedance Sensing (ECIS), we were able to accurately measure drug toxicity post-drug exposure in real time and more quickly than gold standard biochemical assays. Conclusions: ECIS is robust and non-destructive methodology capable of monitoring human drug exposure with superior performance to current gold standard 'snapshot' assays. We believe that the methodology presented within this article could prove valuable in the quest to better predict off-target effects of drugs in humans.
Collapse
Affiliation(s)
- Wenli Zhou
- a Department of Medical Oncology , Changzheng Hospital, Navy medical University , Shanghai , China
| | - Karen Graham
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Baltasar Lucendo-Villarin
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Oliver Flint
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - David C Hay
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Pierre Bagnaninchi
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
31
|
Zeng H, Wang J, Clouse H, Lagrutta A, Sannajust F. Resolving the Reversed Rate Effect of Calcium Channel Blockers on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and the Impact on In Vitro Cardiac Safety Evaluation. Toxicol Sci 2018; 167:573-580. [PMID: 30365015 DOI: 10.1093/toxsci/kfy264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Haoyu Zeng
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Jixin Wang
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Holly Clouse
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Frederick Sannajust
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| |
Collapse
|
32
|
Bot CT, Juhasz K, Haeusermann F, Polonchuk L, Traebert M, Stoelzle-Feix S. Cross - site comparison of excitation-contraction coupling using impedance and field potential recordings in hiPSC cardiomyocytes. J Pharmacol Toxicol Methods 2018; 93:46-58. [PMID: 29940218 PMCID: PMC6146285 DOI: 10.1016/j.vascn.2018.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines. METHODS Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed. RESULTS Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values. DISCUSSION With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.
Collapse
Affiliation(s)
- Corina T Bot
- Nanion Technologies, Inc., 1 Naylon Place, Livingston, NJ 07039, USA
| | - Krisztina Juhasz
- Nanion Technologies GmbH, Ganghoferstrasse 70A, 80339 Munich, Germany; Institute for Nanoelectronics, Technische Universität München, Munich, Germany
| | - Fabian Haeusermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Bldg. 73/R. 103b, Grenzacherstr. 124, CH-4070 Basel, Switzerland
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Bldg. 73/R. 103b, Grenzacherstr. 124, CH-4070 Basel, Switzerland
| | - Martin Traebert
- Safety Pharmacology, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | |
Collapse
|
33
|
Modena MM, Chawla K, Misun PM, Hierlemann A. Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chem Biol 2018; 13:1767-1784. [PMID: 29381325 PMCID: PMC5959007 DOI: 10.1021/acschembio.7b01029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technological advances in microfabrication techniques in combination with organotypic cell and tissue models have enabled the realization of microphysiological systems capable of recapitulating aspects of human physiology in vitro with great fidelity. Concurrently, a number of analysis techniques has been developed to probe and characterize these model systems. However, many assays are still performed off-line, which severely compromises the possibility of obtaining real-time information from the samples under examination, and which also limits the use of these platforms in high-throughput analysis. In this review, we focus on sensing and actuation schemes that have already been established or offer great potential to provide in situ detection or manipulation of relevant cell or tissue samples in microphysiological platforms. We will first describe methods that can be integrated in a straightforward way and that offer potential multiplexing and/or parallelization of sensing and actuation functions. These methods include electrical impedance spectroscopy, electrochemical biosensors, and the use of surface acoustic waves for manipulation and analysis of cells, tissue, and multicellular organisms. In the second part, we will describe two sensor approaches based on surface-plasmon resonance and mechanical resonators that have recently provided new characterization features for biological samples, although technological limitations for use in high-throughput applications still exist.
Collapse
Affiliation(s)
- Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Ketki Chawla
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Patrick M. Misun
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| |
Collapse
|
34
|
Lamore SD, Ahlberg E, Boyer S, Lamb ML, Hortigon-Vinagre MP, Rodriguez V, Smith GL, Sagemark J, Carlsson L, Bates SM, Choy AL, Stålring J, Scott CW, Peters MF. Deconvoluting Kinase Inhibitor Induced Cardiotoxicity. Toxicol Sci 2018; 158:213-226. [PMID: 28453775 PMCID: PMC5837613 DOI: 10.1093/toxsci/kfx082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many drugs designed to inhibit kinases have their clinical utility limited by cardiotoxicity-related label warnings or prescribing restrictions. While this liability is widely recognized, designing safer kinase inhibitors (KI) requires knowledge of the causative kinase(s). Efforts to unravel the kinases have encountered pharmacology with nearly prohibitive complexity. At therapeutically relevant concentrations, KIs show promiscuity distributed across the kinome. Here, to overcome this complexity, 65 KIs with known kinome-scale polypharmacology profiles were assessed for effects on cardiomyocyte (CM) beating. Changes in human iPSC-CM beat rate and amplitude were measured using label-free cellular impedance. Correlations between beat effects and kinase inhibition profiles were mined by computation analysis (Matthews Correlation Coefficient) to identify associated kinases. Thirty kinases met criteria of having (1) pharmacological inhibition correlated with CM beat changes, (2) expression in both human-induced pluripotent stem cell-derived cardiomyocytes and adult heart tissue, and (3) effects on CM beating following single gene knockdown. A subset of these 30 kinases were selected for mechanistic follow up. Examples of kinases regulating processes spanning the excitation–contraction cascade were identified, including calcium flux (RPS6KA3, IKBKE) and action potential duration (MAP4K2). Finally, a simple model was created to predict functional cardiotoxicity whereby inactivity at three sentinel kinases (RPS6KB1, FAK, STK35) showed exceptional accuracy in vitro and translated to clinical KI safety data. For drug discovery, identifying causative kinases and introducing a predictive model should transform the ability to design safer KI medicines. For cardiovascular biology, discovering kinases previously unrecognized as influencing cardiovascular biology should stimulate investigation of underappreciated signaling pathways.
Collapse
Affiliation(s)
- Sarah D Lamore
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451
| | - Ernst Ahlberg
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, 43153 Mölndal, Sweden
| | - Scott Boyer
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, 43153 Mölndal, Sweden
| | - Michelle L Lamb
- IMED Oncology, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451
| | | | - Victor Rodriguez
- Clyde Bioscience Limited BioCity Scotland, Lanarkshire ML1 5UH, United Kingdom
| | - Godfrey L Smith
- Clyde Bioscience Limited BioCity Scotland, Lanarkshire ML1 5UH, United Kingdom
| | - Johanna Sagemark
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, 43153 Mölndal, Sweden
| | - Lars Carlsson
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, 43153 Mölndal, Sweden
| | - Stephanie M Bates
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Cambridge Science Park, Cambridge, United Kingdom
| | - Allison L Choy
- Research & Development Information, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451
| | - Jonna Stålring
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, 43153 Mölndal, Sweden
| | - Clay W Scott
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451
| | - Matthew F Peters
- Department of Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Waltham, Massachusetts 02451
| |
Collapse
|
35
|
Juhola M, Joutsijoki H, Penttinen K, Aalto-Setälä K. Detection of genetic cardiac diseases by Ca 2+ transient profiles using machine learning methods. Sci Rep 2018; 8:9355. [PMID: 29921843 PMCID: PMC6008430 DOI: 10.1038/s41598-018-27695-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have revolutionized cardiovascular research. Abnormalities in Ca2+ transients have been evident in many cardiac disease models. We have shown earlier that, by exploiting computational machine learning methods, normal Ca2+ transients corresponding to healthy CMs can be distinguished from diseased CMs with abnormal transients. Here our aim was to study whether it is possible to separate different genetic cardiac diseases (CPVT, LQT, HCM) on the basis of Ca2+ transients using machine learning methods. Classification accuracies of up to 87% were obtained for these three diseases, indicating that Ca2+ transients are disease-specific. By including healthy controls in the classifications, the best classification accuracy obtained was still high: approximately 79%. In conclusion, we demonstrate as the proof of principle that the computational machine learning methodology appears to be a powerful means to accurately categorize iPSC-CMs and could provide effective methods for diagnostic purposes in the future.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Natural Sciences, University of Tampere, Tampere, Finland.
| | - Henry Joutsijoki
- Faculty of Natural Sciences, University of Tampere, Tampere, Finland
| | - Kirsi Penttinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Heart Center, Tampere University Hospital, 33520, Tampere, Finland
| |
Collapse
|
36
|
Ye L, Ni X, Zhao ZA, Lei W, Hu S. The Application of Induced Pluripotent Stem Cells in Cardiac Disease Modeling and Drug Testing. J Cardiovasc Transl Res 2018; 11:366-374. [PMID: 29845439 DOI: 10.1007/s12265-018-9811-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022]
Abstract
In recent decades, cardiovascular diseases have become the greatest health threat to human beings, and thus it is particularly important to explore the subtle underlying pathogenesis of cardiovascular diseases. Although many molecular pathways have been explored to be essential in the development of cardiovascular diseases, their clinical significances are still uncertain. With the emergence of induced pluripotent stem cells (iPSCs), a unique platform for cardiovascular diseases has been established to model cardiovascular diseases on specific genetic background in vitro. This review summarizes current progresses of iPSCs in cardiovascular disease modeling and drug testing. This review highlighted iPSC-based cardiovascular disease modeling and drug testing. The technical advances in iPSC-based researches and various clinically relevant applications are discussed. With further intensive research, iPSC technology will shape the future of clinical translational research in cardiovascular diseases.
Collapse
Affiliation(s)
- Lingqun Ye
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China
| | - Xuan Ni
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 215000, Suzhou, China
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 215000, Suzhou, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 215000, Suzhou, China.
| |
Collapse
|
37
|
Misner DL, Kauss MA, Singh J, Uppal H, Bruening-Wright A, Liederer BM, Lin T, McCray B, La N, Nguyen T, Sampath D, Dragovich PS, O'Brien T, Zabka TS. Cardiotoxicity Associated with Nicotinamide Phosphoribosyltransferase Inhibitors in Rodents and in Rat and Human-Derived Cells Lines. Cardiovasc Toxicol 2018; 17:307-318. [PMID: 27783203 DOI: 10.1007/s12012-016-9387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein that functions as an enzyme, cytokine, growth factor and hormone. As a target for oncology, NAMPT is particularly attractive, because it catalyzes the rate-limiting step in the salvage pathway to generate nicotinamide adenine dinucleotide (NAD), a universal energy- and signal-carrying molecule involved in cellular energy metabolism and many homeostatic functions. Inhibition of NAMPT generally results in NAD depletion, followed by ATP reduction and loss of cell viability. Herein, we describe NAMPT inhibitor (NAMPTi)-induced cardiac toxicity in rodents following short-term administration (2-7 days) of NAMPTi's. The cardiac toxicity was interpreted as a functional effect leading to congestive heart failure, characterized by sudden death, thoracic and abdominal effusion, and myocardial degeneration. Based on exposures in the initial in vivo safety rodent studies and cardiotoxicity observed, we conducted studies in rat and human in vitro cardiomyocyte cell systems. Based on those results, combined with human cell line potency data, we demonstrated the toxicity is both on-target and likely human relevant. This toxicity was mitigated in vitro by co-administration of nicotinic acid (NA), which can enable NAD production through the NAMPT-independent pathway; however, this resulted in only partial mitigation in in vivo studies. This work also highlights the usefulness and predictivity of in vitro cardiomyocyte assays using human cells to rank-order compounds against potency in cell-based pharmacology assays. Lastly, this work strengthens the correlation between cardiomyocyte cell viability and functionality, suggesting that these assays together may enable early assessment of cardiotoxicity in vitro prior to conduct of in vivo studies and potentially reduce subsequent attrition due to cardiotoxicity.
Collapse
Affiliation(s)
- D L Misner
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA.
| | - M A Kauss
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - J Singh
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - H Uppal
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | | | - B M Liederer
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Lin
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - B McCray
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - N La
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Nguyen
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - D Sampath
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - P S Dragovich
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T O'Brien
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T S Zabka
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| |
Collapse
|
38
|
Kirby RJ, Divlianska DB, Whig K, Bryan N, Morfa CJ, Koo A, Nguyen KH, Maloney P, Peddibhotla S, Sessions EH, Hershberger PM, Smith LH, Malany S. Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress. J Pharmacol Exp Ther 2018; 364:87-96. [PMID: 29101218 DOI: 10.1124/jpet.117.243717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of "hit" compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network that has been strongly correlated with protection of cardiomyocytes from oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies.
Collapse
Affiliation(s)
- R Jason Kirby
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Daniela B Divlianska
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kanupriya Whig
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Nadezda Bryan
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Camilo J Morfa
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Ada Koo
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kevin H Nguyen
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Patrick Maloney
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Satayamaheshwar Peddibhotla
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - E Hampton Sessions
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Paul M Hershberger
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Layton H Smith
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Siobhan Malany
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| |
Collapse
|
39
|
Takeda M, Miyagawa S, Fukushima S, Saito A, Ito E, Harada A, Matsuura R, Iseoka H, Sougawa N, Mochizuki-Oda N, Matsusaki M, Akashi M, Sawa Y. Development of In Vitro Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells. Tissue Eng Part C Methods 2017; 24:56-67. [PMID: 28967302 PMCID: PMC5757089 DOI: 10.1089/ten.tec.2017.0247] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An in vitro drug-induced cardiotoxicity assay is a critical step in drug discovery for clinical use. The use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is promising for this purpose. However, single hiPSC-CMs are limited in their ability to mimic native cardiac tissue structurally and functionally, and the generation of artificial cardiac tissue using hiPSC-CMs is an ongoing challenging. We therefore developed a new method of constructing three-dimensional (3D) artificial tissues in a short time by coating extracellular matrix (ECM) components on cell surfaces. We hypothesized that 3D cardiac tissues derived from hiPSC-CMs (3D-hiPSC-CT) could be used for an in vitro drug-induced cardiotoxicity assay. 3D-hiPSC-CT were generated by fibronectin and gelatin nanofilm coated single hiPSC-CMs. Histologically, 3D-hiPSC-CT exhibited a sarcomere structure in the myocytes and ECM proteins, such as fibronectin, collagen type I/III, and laminin. The administration of cytotoxic doxorubicin at 5.0 μM induced the release of lactate dehydrogenase, while that at 2.0 μM reduced the cell viability. E-4031, human ether-a-go-go related gene (hERG)-type potassium channel blocker, and isoproterenol induced significant changes both in the Ca transient parameters and contractile parameters in a dose-dependent manner. The 3D-hiPSC-CT exhibited doxorubicin-sensitive cytotoxicity and hERG channel blocker/isoproterenol-sensitive electrical activity in vitro, indicating its usefulness for drug-induced cardiotoxicity assays or drug screening systems for drug discovery.
Collapse
Affiliation(s)
- Maki Takeda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Shigeru Miyagawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Satsuki Fukushima
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Atsuhiro Saito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Emiko Ito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Akima Harada
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Ryohei Matsuura
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Hiroko Iseoka
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Nagako Sougawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Noriko Mochizuki-Oda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Michiya Matsusaki
- 2 Department of Applied Chemistry, Osaka University Graduate School of Engineering , Osaka, Japan
| | - Mitsuru Akashi
- 3 Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University , Suita, Japan
| | - Yoshiki Sawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| |
Collapse
|
40
|
Bravo DD, Chernov-Rogan T, Chen J, Wang J. An impedance-based cell contraction assay using human primary smooth muscle cells and fibroblasts. J Pharmacol Toxicol Methods 2017; 89:47-53. [PMID: 29056519 DOI: 10.1016/j.vascn.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy and asthma. The conventional gel contraction assay is commonly used to monitor the cellular contractility. It is a manual assay and the experiment usually takes hours even days to complete. As its readout is not always accurate and reliable, the gel contraction assay is often used to qualitatively (but not quantitatively) characterize cellular contractility under various conditions. METHOD To overcome the limits of the gel contraction assay, we developed an impedance-based contraction assay using the xCELLigence RTCA MP system. This technology utilizes special 96-well E-plates with gold microelectrode arrays printed in individual wells to monitor cellular adhesion by recording the electrical impedance in real time. The impedance change (percentage vs. control) can be used as the readout for cellular contraction. RESULTS We demonstrated that the impedance-based contraction assay can be performed within 2h. Using this new method, we quantitatively characterized the effects of several contractile stimulators and inhibitors on human primary bronchial smooth muscle cells and primary lung fibroblasts. DISCUSSION The impedance-based contraction assay can be applied to both basic research and drug discovery for characterizing cellular contraction quantitatively. Because it has high throughput capacity and high reproducibility, the impedance-based contraction assay is useful for high throughput functional screening in drug industry.
Collapse
Affiliation(s)
- Daniel D Bravo
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Tania Chernov-Rogan
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Jun Chen
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080-4990, United States.
| |
Collapse
|
41
|
Koci B, Luerman G, Duenbostell A, Kettenhofen R, Bohlen H, Coyle L, Knight B, Ku W, Volberg W, Woska JR, Brown MP. An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities. Toxicol Appl Pharmacol 2017; 329:121-127. [DOI: 10.1016/j.taap.2017.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/08/2017] [Accepted: 05/20/2017] [Indexed: 01/01/2023]
|
42
|
Qian F, Huang C, Lin YD, Ivanovskaya AN, O'Hara TJ, Booth RH, Creek CJ, Enright HA, Soscia DA, Belle AM, Liao R, Lightstone FC, Kulp KS, Wheeler EK. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. LAB ON A CHIP 2017; 17:1732-1739. [PMID: 28448074 DOI: 10.1039/c7lc00210f] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. Here we report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions and under drug stimuli. Human induced pluripotent stem cell-derived cardiomyocytes were cultured as a model system, and used to validate the platform with an excitation-contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. This platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.
Collapse
Affiliation(s)
- Fang Qian
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Chao Huang
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Yi-Dong Lin
- Department of Medicine, Harvard Medical School/Brigham Women's Hospital, Boston, Massachusetts 02115, USA
| | - Anna N Ivanovskaya
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Thomas J O'Hara
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Ross H Booth
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Cameron J Creek
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Heather A Enright
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - David A Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Anna M Belle
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Ronglih Liao
- Department of Medicine, Harvard Medical School/Brigham Women's Hospital, Boston, Massachusetts 02115, USA
| | - Felice C Lightstone
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Kristen S Kulp
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| |
Collapse
|
43
|
Screening, verification, and analysis of biomarkers for drug-induced cardiac toxicity in vitro based on RTCA coupled with PCR Array technology. Toxicol Lett 2017; 268:17-25. [PMID: 28099878 DOI: 10.1016/j.toxlet.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/23/2022]
Abstract
Cardiotoxicity is one of the most serious side effects of new drugs. Early detection of the drug induced cardiotoxicity based on the biomarkers provides an important preventative strategy for detecting potential cardiotoxicity of candidate drugs. In this study, we aim to identify the predictive genomics biomarkers for drug-induced cardiac toxicity based on the RTCA coupled with PCR Array technology in primary cells. Three prototypical cardiotoxic compounds (doxorubicin, isoproterenol, ouabain) with different mechanisms were firstly real-time monitored to diagnose the cytotoxicity by using the RTCA, while the functional alterations of cardiomyocytes were also monitored by analyzing the beating frequency of cardiomyocytes. Then cardiac specific toxicity gene expression changes were studied by using the technology of PCR Array, which can detect the changes of 84 cardiac functions related genes. Rps6kb1 was identified to be the common cardiac biomarkers by using multivariate statistical and integration analyses. The biomarker was further verified by selecting other drugs with or without cardiotoxicity, and the results showed that the gene exhibited specific changes in cardiac toxicity. Moreover, IPA was applied to combine relevant pathways of Rps6kb1, and identify the main types of cardiac toxicity. These results would further enrich the evaluating strategy of drug-induced cardiotoxicity in vitro, and Rps6kb1 could be used as the specific biomarker of cardiotoxcity during safety assessment of the novel drug candidates.
Collapse
|
44
|
Abstract
Impedance-based measurement is a useful tool for assessing the contractility of plated cardiomyocytes in the context of early preclinical cardiosafety assessment. Induced pluripotent stem cell-derived cardiomyocytes (iPSCs) can be used for this purpose as these cells display similar electrochemical properties to primary cardiomyocytes and beat reliably and in synchronicity in culture. Here we describe a method for measuring the contractility of iPSCs using the xCELLigence RTCA impedance measurement system.
Collapse
|
45
|
Lin ZC, McGuire AF, Burridge PW, Matsa E, Lou HY, Wu JC, Cui B. Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. MICROSYSTEMS & NANOENGINEERING 2017; 3:16080. [PMID: 31057850 PMCID: PMC6444980 DOI: 10.1038/micronano.2016.80] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 05/19/2023]
Abstract
The measurement of the electrophysiology of human pluripotent stem cell-derived cardiomyocytes is critical for their biomedical applications, from disease modeling to drug screening. Yet, a method that enables the high-throughput intracellular electrophysiology measurement of single cardiomyocytes in adherent culture is not available. To address this area, we have fabricated vertical nanopillar electrodes that can record intracellular action potentials from up to 60 single beating cardiomyocytes. Intracellular access is achieved by highly localized electroporation, which allows for low impedance electrical access to the intracellular voltage. Herein, we demonstrate that this method provides the accurate measurement of the shape and duration of intracellular action potentials, validated by patch clamp, and can facilitate cellular drug screening and disease modeling using human pluripotent stem cells. This study validates the use of nanopillar electrodes for myriad further applications of human pluripotent stem cell-derived cardiomyocytes such as cardiomyocyte maturation monitoring and electrophysiology-contractile force correlation.
Collapse
Affiliation(s)
- Ziliang Carter Lin
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Paul W. Burridge
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University, Chicago, IL 60611, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- ()
| |
Collapse
|
46
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
47
|
Selli C, Erac Y, Tosun M. Effects of cell seeding density on real-time monitoring of anti-proliferative effects of transient gene silencing. ACTA ACUST UNITED AC 2016; 23:20. [PMID: 27981039 PMCID: PMC5133759 DOI: 10.1186/s40709-016-0057-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/25/2016] [Indexed: 01/15/2023]
Abstract
Background Real-time cellular analysis systems enable impedance-based label-free and dynamic monitoring of various cellular events such as proliferation. In this study, we describe the effects of initial cell seeding density on the anti-proliferative effects of transient gene silencing monitored via real-time cellular analysis. We monitored the real-time changes in proliferation of Huh7 hepatocellular carcinoma and A7r5 vascular smooth muscle cells with different initial seeding densities following transient receptor potential canonical 1 (TRPC1) silencing using xCELLigence system. Huh7 and A7r5 cells were seeded on E-plate 96 at 10,000, 5000, 1250 and 5000, 2500 cells well−1, respectively, following silencing vector transfection. The inhibitory effects of transient silencing on cell proliferation monitored every 30 min for 72 h. Results TRPC1 silencing did not inhibit the proliferation rates of Huh7 cells at 10,000 cells well−1 seeding density. However, a significant anti-proliferative effect was observed at 1250 cells well−1 density at each time point throughout 72 h. Furthermore, significant inhibitory effects on A7r5 proliferation were observed at both 5000 and 2500 cells well−1 for 72 h. Conclusions Data suggest that the effects of transient silencing on cell proliferation differ depending on the initial cell seeding density. While high seeding densities mask the significant changes in proliferation, the inhibitory effects of silencing become apparent at lower seeding densities as the entry into log phase is delayed. Using the optimal initial seeding density is crucial when studying the effects of transient gene silencing. In addition, the results suggest that TRPC1 may contribute to proliferation and phenotypic switching of vascular smooth muscle cells.
Collapse
Affiliation(s)
- Cigdem Selli
- Applied Bioinformatics of Cancer, Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR UK ; Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Metiner Tosun
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey ; Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| |
Collapse
|
48
|
Takasuna K, Asakura K, Araki S, Ando H, Kazusa K, Kitaguchi T, Kunimatsu T, Suzuki S, Miyamoto N. Comprehensive in vitro cardiac safety assessment using human stem cell technology: Overview of CSAHi HEART initiative. J Pharmacol Toxicol Methods 2016; 83:42-54. [PMID: 27646297 DOI: 10.1016/j.vascn.2016.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023]
Abstract
Recent increasing evidence suggests that the currently-used platforms in vitro IKr and APD, and/or in vivo QT assays are not fully predictive for TdP, and do not address potential arrhythmia (VT and/or VF) induced by diverse mechanisms of action. In addition, other cardiac safety liabilities such as functional dysfunction of excitation-contraction coupling (contractility) and structural damage (morphological damage to cardiomyocytes) are also major causes of drug attrition, but current in vitro assays do not cover all these liabilities. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/), based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes in drug safety evaluation. The main goal of the CSAHi HEART team has been to propose comprehensive screening strategies to predict a diverse range of cardiotoxicities by using recently introduced platforms (multi-electrode array (MEA), patch clamp, cellular impedance, motion field imaging [MFI], and Ca transient systems) while identifying the strengths and weaknesses of each. Our study shows that hiPS-CMs used in these platforms have pharmacological responses more relevant to humans in comparison with existent hERG, APD or Langendorff (MAPD/contraction) assays, and not only MEA but also other methods such as impedance, MFI, and Ca transient systems would offer paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. Furthermore, we propose a potential multi-parametric platform in which field potential (MEA)-Ca transient-contraction (MFI) could be evaluated simultaneously as an ideal novel platform for predicting a diversity of cardiac toxicities, namely whole effects on the excitation-contraction cascade.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan; Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan.
| | - Keiichi Asakura
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Discovery Research Labs., Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Seiichi Araki
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Safety Research Department, ASKA Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroyuki Ando
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Safety Research Laboratories, Ono Pharmaceutical Co., Ltd., Fukui, Japan
| | - Katsuyuki Kazusa
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan
| | - Takashi Kitaguchi
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Discovery Research, Mochida Pharmaceutical Co., Ltd., Shizuoka, Japan
| | - Takeshi Kunimatsu
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Shinobu Suzuki
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Pharmacokinetics and Non-Clinical Safety Dept., Nippon Boehringer Ingelheim Co., Ltd., Hyogo, Japan
| | - Norimasa Miyamoto
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Biopharmaceutical Assessments Core Function Unit Medicine Development Center Eisai Co., Ltd., Eisai Co., Ltd., Ibaraki, Japan
| |
Collapse
|
49
|
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15:751-769. [PMID: 27616293 DOI: 10.1038/nrd.2016.175] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.
Collapse
Affiliation(s)
- Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; and at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Nathalie Aulner
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Marc Bickle
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.,European Cell-Based Assays Interest Group
| | - Anthony M Davies
- Translational Cell Imaging Queensland (TCIQ), Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane 4102 QLD, Australia; and The Irish National Centre for High Content Screening and Analysis, Trinity Translational Medicine Institute, Trinity College Dublin, Phase 3 Trinity Health Sciences 1.20, St James Hospital, Dublin D8, Republic of Ireland.,European Cell-Based Assays Interest Group
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France.,European Cell-Based Assays Interest Group
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,European Cell-Based Assays Interest Group
| | - Maria C Montoya
- Cellomics Unit, Cell Biology &Physiology Program, Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,European Cell-Based Assays Interest Group
| | - Päivi Östling
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17165, Sweden.,European Cell-Based Assays Interest Group
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Leo S Price
- Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Universiteit Leiden, The Netherlands; and at OcellO, J.H Oortweg 21, 2333 CH, Leiden, The Netherlands.,European Cell-Based Assays Interest Group
| | - Spencer L Shorte
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.,European Cell-Based Assays Interest Group
| | - Carina von Schantz
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.,European Cell-Based Assays Interest Group
| |
Collapse
|
50
|
|