1
|
Sindeeva OA, Kozyreva ZV, Abdurashitov AS, Sukhorukov GB. Engineering colloidal systems for cell manipulation, delivery, and tracking. Adv Colloid Interface Sci 2025; 340:103462. [PMID: 40037017 DOI: 10.1016/j.cis.2025.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Men-made colloidal systems are widely presented across various aspects of biomedical science. There is a strong demand for engineering colloids to tailor their functions and properties to meet the requirements of biological and medical tasks. These requirements are not only related to size, shape, capacity to carry bioactive compounds as drug delivery systems, and the ability to navigate via chemical and physical targeting. Today, the more challenging aspects of colloid design are how the colloidal particles interact with biological cells, undergo internalization by cells, how they reside in the cell interior, and whether we can explore cells with colloids, intervene with biochemical processes, and alter cell functionality. Cell tracking, exploitation of cells as natural transporters of internalized colloidal carriers loaded with drugs, and exploring physical methods as external triggers of cell functions are ongoing topics in the research agenda. In this review, we summarize recent advances in these areas, focusing on how colloidal particles interact and are taken up by mesenchymal stem cells, dendritic cells, neurons, macrophages, neutrophils and lymphocytes, red blood cells, and platelets. The engineering of colloidal vesicles with cell membrane fragments and exosomes facilitates their application. The perspectives of different approaches in colloid design, their limitations, and obstacles on the biological side are discussed.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| | - Zhanna V Kozyreva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia; Life Improvement by Future Technologies (LIFT) Center, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| |
Collapse
|
2
|
Peserico A, Canciello A, Prencipe G, Gramignoli R, Melai V, Scortichini G, Bellocci M, Capacchietti G, Turriani M, Di Pancrazio C, Berardinelli P, Russo V, Mattioli M, Barboni B. Optimization of a nanoparticle uptake protocol applied to amniotic-derived cells: unlocking the therapeutic potential. J Mater Chem B 2024; 12:8977-8992. [PMID: 39140678 DOI: 10.1039/d4tb00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Prencipe
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Maura Turriani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Mauro Mattioli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
3
|
dos Santos GA, Magdaleno GDV, de Magalhães JP. Evidence of a pan-tissue decline in stemness during human aging. Aging (Albany NY) 2024; 16:5796-5810. [PMID: 38604248 PMCID: PMC11042951 DOI: 10.18632/aging.205717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 04/13/2024]
Abstract
Despite their biological importance, the role of stem cells in human aging remains to be elucidated. In this work, we applied a machine learning methodology to GTEx transcriptome data and assigned stemness scores to 17,382 healthy samples from 30 human tissues aged between 20 and 79 years. We found that ~60% of the studied tissues exhibit a significant negative correlation between the subject's age and stemness score. The only significant exception was the uterus, where we observed an increased stemness with age. Moreover, we observed that stemness is positively correlated with cell proliferation and negatively correlated with cellular senescence. Finally, we also observed a trend that hematopoietic stem cells derived from older individuals might have higher stemness scores. In conclusion, we assigned stemness scores to human samples and show evidence of a pan-tissue loss of stemness during human aging, which adds weight to the idea that stem cell deterioration may contribute to human aging.
Collapse
Affiliation(s)
- Gabriel Arantes dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246 903, Brazil
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | | | - João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, United Kingdom
| |
Collapse
|
4
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
5
|
Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol 2023; 19:78-95. [PMID: 36624263 DOI: 10.1038/s41584-022-00887-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However - despite much progress - a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.
Collapse
Affiliation(s)
- Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Anwar I, Ashfaq UA. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Crit Rev Ther Drug Carrier Syst 2023; 40:89-116. [PMID: 37585310 DOI: 10.1615/critrevtherdrugcarriersyst.2023042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The liver is one of the crucial organs of the body that performs hundreds of chemical reactions needed by the body to survive. It is also the largest gland of the body. The liver has multiple functions, including the synthesis of chemicals, metabolism of nutrients, and removal of toxins. It also acts as a storage unit. The liver has a unique ability to regenerate itself, but it can lead to permanent damage if the injury is beyond recovery. The only possible treatment of severe liver damage is liver transplant which is a costly procedure and has several other drawbacks. Therefore, attention has been shifted towards the use of stem cells that have shown the ability to differentiate into hepatocytes. Among the numerous kinds of stem cells (SCs), the mesenchymal stem cells (MSCs) are the most famous. Various studies suggest that an MSC transplant can repair liver function, improve the signs and symptoms, and increase the chances of survival. This review discusses the impact of combining stem cell therapy with nanotechnology. By integrating stem cell science and nanotechnology, the information about stem cell differentiation and regulation will increase, resulting in a better comprehension of stem cell-based treatment strategies. The augmentation of SCs with nanoparticles has been shown to boost the effect of stem cell-based therapy. Also, the function of green nanoparticles in liver therapies is discussed.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Saffari TM, Saffari S, Vyas KS, Mardini S, Shin AY. Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery. Neural Regen Res 2022; 17:2179-2184. [PMID: 35259826 PMCID: PMC9083182 DOI: 10.4103/1673-5374.336870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form. This review aims to provide an overview of the scientific evidence on the biology of adipose tissue, the role of adipose-derived stem cells, and the indications of adipose tissue grafting in peripheral nerve surgery. Adipose tissue is easily accessible through the lower abdomen and inner thighs. Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress, resulting in variable survival of adipocytes within the first 24 hours. Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts. Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization, and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue. In clinical studies, the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results. Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new, more studies are needed to explore safety and long-term effects on peripheral nerve regeneration. The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated, enzyme-free, and used in the same surgical procedure, e.g. adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction. Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival. Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Sara Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Krishna S Vyas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Samir Mardini
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Fehér A, Schnúr A, Muenthaisong S, Bellák T, Ayaydin F, Várady G, Kemter E, Wolf E, Dinnyés A. Establishment and characterization of a novel human induced pluripotent stem cell line stably expressing the iRFP720 reporter. Sci Rep 2022; 12:9874. [PMID: 35701501 PMCID: PMC9198085 DOI: 10.1038/s41598-022-12956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Stem cell therapy has great potential for replacing beta-cell loss in diabetic patients. However, a key obstacle to cell therapy’s success is to preserve viability and function of the engrafted cells. While several strategies have been developed to improve engrafted beta-cell survival, tools to evaluate the efficacy within the body by imaging are limited. Traditional labeling tools, such as GFP-like fluorescent proteins, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent this limitation, a near-infrared fluorescent mutant version of the DrBphP bacteriophytochrome, iRFP720, has been developed for in vivo imaging and stem/progenitor cell tracking. Here, we present the generation and characterization of an iRFP720 expressing human induced pluripotent stem cell (iPSC) line, which can be used for real-time imaging in various biological applications. To generate the transgenic cells, the CRISPR/Cas9 technology was applied. A puromycin resistance gene was inserted into the AAVS1 locus, driven by the endogenous PPP1R12C promoter, along with the CAG-iRFP720 reporter cassette, which was flanked by insulator elements. Proper integration of the transgene into the targeted genomic region was assessed by comprehensive genetic analysis, verifying precise genome editing. Stable expression of iRFP720 in the cells was confirmed and imaged by their near-infrared fluorescence. We demonstrated that the reporter iPSCs exhibit normal stem cell characteristics and can be efficiently differentiated towards the pancreatic lineage. As the genetically modified reporter cells show retained pluripotency and multilineage differentiation potential, they hold great potential as a cellular model in a variety of biological and pharmacological applications.
Collapse
Affiliation(s)
- Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Andrea Schnúr
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.,Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Ferhan Ayaydin
- Functional Cell Biology and Immunology Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged (HCEMM-USZ), Szeged, 6720, Hungary.,Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, 1117, Hungary
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary. .,HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, 6723, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
9
|
Li X, Yu C, Bao H, Chen Z, Liu X, Huang J, Zhang Z. CT/bioluminescence dual-modal imaging tracking of stem cells labeled with Au@PEI@PEG nanotracers and RfLuc in nintedanib-assisted pulmonary fibrosis therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102517. [PMID: 35032629 DOI: 10.1016/j.nano.2022.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising in idiopathic pulmonary fibrosis (IPF) therapy. However, low survival rate and ambiguous behavior of MSCs after transplantation impede their clinical translation. To this end, we have developed a new strategy to improve the survival rate and monitor the behavior of the transplanted MSCs simultaneously. In our strategy, nintedanib, a tyrosine kinase inhibitor, is employed to protect the human MSCs (hMSCs) from excessive oxidative stress responses and inflammatory environment in the damaged lung. Moreover, by labeling of the transplanted hMSCs with a computed tomography (CT) nanotracer, Au nanoparticles functionalized with polyethylenimine (PEI) and polyethylene glycol (PEG) (Au@PEI@PEG), in combination with red-emitting firefly luciferase (RfLuc), in vivo CT/bioluminescence (BL) dual-modal imaging tracking of the location, distribution, and survival of the transplanted hMSCs in presence of nintedanib were achieved, which facilitates the profound understanding of the role the stem cells play in IPF therapy.
Collapse
Affiliation(s)
- Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
10
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
11
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
12
|
D’Hollander A, Van Roosbroeck R, Trekker J, Stakenborg T, Dresselaers T, Vande Velde G, Struys T, Lambrichts I, Lammertyn J, Lagae L, Himmelreich U. Synthetic Antiferromagnetic Gold Nanoparticles as Bimodal Contrast Agents in MRI and CT-An Experimental In Vitro and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13091494. [PMID: 34575570 PMCID: PMC8472775 DOI: 10.3390/pharmaceutics13091494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/16/2023] Open
Abstract
The use of multimodal contrast agents can potentially overcome the intrinsic limitations of individual imaging methods. We have validated synthetic antiferromagnetic nanoparticles (SAF-NPs) as bimodal contrast agents for in vitro cell labeling and in vivo cell tracking using magnetic resonance imaging (MRI) and computed tomography (CT). SAF-NP-labeled cells showed high contrast in MRI phantom studies (r2* = 712 s−1 mM−1), while pelleted cells showed clear contrast enhancement in CT. After intravenous SAF-NP injection, nanoparticles accumulated in the liver and spleen, as visualized in vivo by significant MRI contrast enhancement. Intravenous injection of SAF-NP-labeled cells resulted in cell accumulation in the lungs, which was clearly detectable by using CT but not by using MRI. SAF-NPs proved to be very efficient cell labeling agents for complementary MRI- and CT-based cell tracking. Bimodal monitoring of SAF-NP labeled cells is in particular of interest for applications where the applied imaging methods are not able to visualize the particles and/or cells in all organs.
Collapse
Affiliation(s)
- Antoine D’Hollander
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Ruben Van Roosbroeck
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Division of Mechatronics, Department of Biosystems, Biostatistics and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Jesse Trekker
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Tim Stakenborg
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Tom Dresselaers
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
| | - Greetje Vande Velde
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium; (T.S.); (I.L.)
| | - Ivo Lambrichts
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium; (T.S.); (I.L.)
| | - Jeroen Lammertyn
- Division of Mechatronics, Department of Biosystems, Biostatistics and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Liesbet Lagae
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Department of Physics, Faculty of Sciences, Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Correspondence: ; Tel.: +32-16-330-925
| |
Collapse
|
13
|
Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F. In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2021; 22:1469-1488. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Collapse
Affiliation(s)
- Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| | - Markus Aswendt
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Jean-Luc Boulland
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia
| | - Stefan Stamenković
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Fabrizio Fiori
- Department of Applied Physics, Università Politecnica delle Marche - Di.S.C.O., Via Brecce Bianche, 60131, Ancona, Italy
| | - Mathias Hoehn
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
14
|
Qadri Z, Righi V, Li S, Tzika AA. Tracking of Labelled Stem Cells Using Molecular MR Imaging in a Mouse Burn Model in Vivo as an Approach to Regenerative Medicine. ACTA ACUST UNITED AC 2021; 11:1-15. [PMID: 33996249 PMCID: PMC8118598 DOI: 10.4236/ami.2021.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapies based on stem cell transplants offer significant potential in the field of regenerative medicine. Monitoring the fate of the transplanted stem cells in a timely manner is considered one of the main limitations for long-standing success of stem cell transplants. Imaging methods that visualize and track stem cells in vivo non-invasively in real time are helpful towards the development of successful cell transplantation techniques. Novel molecular imaging methods which are non-invasive particularly such as MRI have been of great recent interest. Hence, mouse models which are of clinical relevance have been studied by injecting contrast agents used for labelling cells such as super-paramagnetic iron-oxide (SPIO) nanoparticles for cellular imaging. The MR techniques which can be used to generate positive contrast images have been of much relevance recently for tracking of the labelled cells. Particularly when the off-resonance region in the vicinity of the labeled cells is selectively excited while suppressing the signals from the non-labeled regions by the method of spectral dephasing. Thus, tracking of magnetically labelled cells employing positive contrast in vivo MR imaging methods in a burn mouse model in a non-invasive way has been the scope of this study. The consequences have direct implications for monitoring labeled stem cells at some stage in wound healing. We suggest that our approach can be used in clinical trials in molecular and regenerative medicine.
Collapse
Affiliation(s)
- Zeba Qadri
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| | - Valeria Righi
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| | - Shasha Li
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| | - A Aria Tzika
- MGH NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burn Hospitals, Harvard Medical School, Boston, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Charlestown, USA
| |
Collapse
|
15
|
Madsen SD, Giler MK, Bunnell BA, O'Connor KC. Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnol J 2020; 16:e2000248. [PMID: 33089922 DOI: 10.1002/biot.202000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Preclinical animal studies are essential to the development of safe and effective stem cell therapies. Bioluminescence imaging (BLI) is a powerful tool in animal studies that enables the real-time longitudinal monitoring of stem cells in vivo to elucidate their regenerative properties. This review describes the application of BLI in preclinical stem cell research to address critical challenges in producing successful stem cell therapeutics. These challenges include stem cell survival, proliferation, homing, stress response, and differentiation. The applications presented here utilize bioluminescence to investigate a variety of stem and progenitor cells in several different in vivo models of disease and implantation. An overview of luciferase reporters is provided, along with the advantages and disadvantages of BLI. Additionally, BLI is compared to other preclinical imaging modalities and potential future applications of this technology are discussed in emerging areas of stem cell research.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
16
|
Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2020; 26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
Collapse
Affiliation(s)
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Rajendran Jc Bose
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea; Masonic Medical Research Institute, Utica, NY, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Yang X, Tian DC, He W, Lv W, Fan J, Li H, Jin WN, Meng X. Cellular and molecular imaging for stem cell tracking in neurological diseases. Stroke Vasc Neurol 2020; 6:121-127. [PMID: 33122254 PMCID: PMC8005893 DOI: 10.1136/svn-2020-000408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells (SCs) are cells with strong proliferation ability, multilineage differentiation potential and self-renewal capacity. SC transplantation represents an important therapeutic advancement for the treatment strategy of neurological diseases, both in the preclinical experimental and clinical settings. Innovative and breakthrough SC labelling and tracking technologies are widely used to monitor the distribution and viability of transplanted cells non-invasively and longitudinally. Here we summarised the research progress of the main tracers, labelling methods and imaging technologies involved in current SC tracking technologies for various neurological diseases. Finally, the applications, challenges and unresolved problems of current SC tracing technologies were discussed.
Collapse
Affiliation(s)
- Xiaoxia Yang
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - De-Cai Tian
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Wei Lv
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Wei-Na Jin
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
18
|
Belderbos S, González-Gómez MA, Cleeren F, Wouters J, Piñeiro Y, Deroose CM, Coosemans A, Gsell W, Bormans G, Rivas J, Himmelreich U. Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe 3O 4@Al(OH) 3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res 2020; 10:73. [PMID: 32607918 PMCID: PMC7326875 DOI: 10.1186/s13550-020-00655-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential for treatment of different diseases. However, their working mechanism is still unknown. To elucidate this, the non-invasive and longitudinal tracking of MSCs would be beneficial. Both iron oxide-based nanoparticles (Fe3O4 NPs) for magnetic resonance imaging (MRI) and radiotracers for positron emission tomography (PET) have shown potential as in vivo cell imaging agents. However, they are limited by their negative contrast and lack of spatial information as well as short half-life, respectively. In this proof-of-principle study, we evaluated the potential of Fe3O4@Al(OH)3 NPs as dual PET/MRI contrast agents, as they allow stable binding of [18F]F- ions to the NPs and thus, NP visualization and quantification with both imaging modalities. RESULTS 18F-labeled Fe3O4@Al(OH)3 NPs (radiolabeled NPs) or mouse MSCs (mMSCs) labeled with these radiolabeled NPs were intravenously injected in healthy C57Bl/6 mice, and their biodistribution was studied using simultaneous PET/MRI acquisition. While liver uptake of radiolabeled NPs was seen with both PET and MRI, mMSCs uptake in the lungs could only be observed with PET. Even some initial loss of fluoride label did not impair NPs/mMSCs visualization. Furthermore, no negative effects on blood cell populations were seen after injection of either the NPs or mMSCs, indicating good biocompatibility. CONCLUSION We present the application of novel 18F-labeled Fe3O4@Al(OH)3 NPs as safe cell tracking agents for simultaneous PET/MRI. Combining both modalities allows fast and easy NP and mMSC localization and quantification using PET at early time points, while MRI provides high-resolution, anatomic background information and long-term NP follow-up, hereby overcoming limitations of the individual imaging modalities.
Collapse
Affiliation(s)
- Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Manuel Antonio González-Gómez
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jens Wouters
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, 3000, Leuven, Belgium
| | - Yolanda Piñeiro
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven/UZ Leuven, 3000, Leuven, Belgium
| | - An Coosemans
- Laboratory for Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium.,Department of Gynaecology and Obstetrics, UZ Leuven, 3000, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jose Rivas
- NANOMAG Group, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
19
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
20
|
Bouché M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug Chem 2020; 31:303-314. [PMID: 31682405 PMCID: PMC7032998 DOI: 10.1021/acs.bioconjchem.9b00669] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C. Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kimberly Taing
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
ZeOncoTest: Refining and Automating the Zebrafish Xenograft Model for Drug Discovery in Cancer. Pharmaceuticals (Basel) 2019; 13:ph13010001. [PMID: 31878274 PMCID: PMC7169390 DOI: 10.3390/ph13010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The xenograft of human cancer cells in model animals is a powerful tool for understanding tumor progression and metastatic potential. Mice represent a validated host, but their use is limited by the elevated experimental costs and low throughput. To overcome these restrictions, zebrafish larvae might represent a valuable alternative. Their small size and transparency allow the tracking of transplanted cells. Therefore, tumor growth and early steps of metastasis, which are difficult to evaluate in mice, can be addressed. In spite of its advantages, the use of this model has been hindered by lack of experimental homogeneity and validation. Considering these facts, the aim of our work was to standardize, automate, and validate a zebrafish larvae xenograft assay with increased translatability and higher drug screening throughput. The ZeOncoTest reliability is based on the optimization of different experimental parameters, such as cell labeling, injection site, automated individual sample image acquisition, and analysis. This workflow implementation finally allows a higher precision and experimental throughput increase, when compared to previous reports. The approach was validated with the breast cancer cell line MDA-MB-231, the colorectal cancer cells HCT116, and the prostate cancer cells PC3; and known drugs, respectively RKI-1447, Docetaxel, and Mitoxantrone. The results recapitulate growth and invasion for all tested tumor cells, along with expected efficacy of the compounds. Finally, the methodology has proven useful for understanding specific drugs mode of action. The insights gained bring a step further for zebrafish larvae xenografts to enter the regulated preclinical drug discovery path.
Collapse
|
22
|
Ning X, Bao H, Liu X, Fu H, Wang W, Huang J, Zhang Z. Long-term in vivo CT tracking of mesenchymal stem cells labeled with Au@BSA@PLL nanotracers. NANOSCALE 2019; 11:20932-20941. [PMID: 31660568 DOI: 10.1039/c9nr05637h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human mesenchymal stem cells (hMSCs) transplantation has attracted considerable interest for the treatment of pulmonary injury. Noninvasive and long-term tracking of hMSCs after transplantation in vivo, which is important for our understanding of the stem cell therapy, still remains a big challenge. Herein, we report on the development of a novel gold nanoparticle-based nanotracer to track by CT imaging the transplantation of hMSCs in vivo. Gold nanoparticles (AuNPs) were synthesized on bovine serum albumin (BSA) via an in situ growth method and modified with a poly-l-lysine (PLL) layer, yielding Au@BSA@PLL nanotracers with enhanced biocompatibility and intracellular uptake. Au@BSA@PLL nanotracers were explored for in vitro and in vivo tracking of hMSCs with computer tomography (CT). Our results showed that the endocytosis of Au@BSA@PLL by hMSCs was as high as ∼293 pg per cell. Meanwhile, the nanotracers had a negligible influence on the viability, proliferation, and osteogenic and adipogenic differentiation of the labeled hMSCs. Using a pulmonary fibrosis injury mouse model induced by bleomycin, the labeled hMSCs could be tracked by CT imaging up to 23 d after transplanted in vivo, suggesting the feasibility of Au@BSA@PLL as a potential cellular nanotracer for noninvasive and long-term CT tracking of hMSCs in lung tissue repair.
Collapse
Affiliation(s)
- Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Weizhi Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
23
|
Dou L, Matz EL, Gu X, Shu F, Paxton J, Song J, Yoo J, Atala A, Jackson J, Zhang Y. Non-Invasive Cell Tracking with Brighter and Red-Transferred Luciferase for Potential Application in Stem Cell Therapy. Cell Transplant 2019; 28:1542-1551. [PMID: 31684762 PMCID: PMC6923553 DOI: 10.1177/0963689719885078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study investigated the safety of a novel cell-labeling technology with mKATE and
Renilla reniformis luciferase (mKATE-renLUC) and assessed the efficacy
on tracking implanted human placental stromal cells (PSC) in an erectile dysfunction (ED)
animal model. Human PSC were labeled with mKATE-renLUC using a lentivirus. Cell viability,
apoptosis, proliferation, migration, surface marker expression and differentiation
potential of the labeled PSC were evaluated and compared with non-labeled PSC. The
paracrine profile of labeled cells was examined using an angiogenesis protein array. The
brightness and duration of labeled cells with different densities were evaluated. An ED
rat model was established and labeled PSC were injected into cavernosal tissue of the
penis. The migration and distribution of transplanted PSC were monitored using an IVIS
imaging system in real time. Implanted PSC were identified in isolated tissues via
detection of mKATE fluorescence. The cell viability, morphology, proliferation, migration,
surface marker expression and differentiation potential of mKATE-renLUC-labeled PSC were
similar to those of non-labeled cells in vitro (no statistical difference
p>0.05). Similar expressions of trophic factors were found between
labeled and non-labeled PSC. The migration and distribution of PSC expressing renLUC were
tracked in vivo using IVIS imaging system. mKATE-positive PSC were detected in penile,
kidney, prostate and hepatic tissues using histological methods. This labeling technology
provides a safe and effective cell-tracking approach with a brighter fluorophore and
codon-optimized luciferase.
Collapse
Affiliation(s)
- Lei Dou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Ethan L Matz
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Xin Gu
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Fangpeng Shu
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Jennifer Paxton
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - James Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| |
Collapse
|
24
|
Zhang L, Zhuang X, Chen Y, Xia H. Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model. Cell Transplant 2019; 28:1585-1602. [PMID: 31665910 PMCID: PMC6923555 DOI: 10.1177/0963689719883842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular transplantation strategies utilizing intraspinal or intrathecal olfactory
ensheathing cells (OECs) have been reported as beneficial for spinal cord injury (SCI).
However, there are many disadvantages of these methods, including additional trauma to the
spinal cord parenchyma and technical challenges. Therefore, we investigated the
feasibility and potential benefits of intravenous transplantation of OECs in a rat
hemisection SCI model. OECs derived from olfactory bulb tissue were labeled with quantum
dots (QDs), and their biodistribution after intravenous transplantation was tracked using
a fluorescence imaging system. Accumulation of the transplanted OECs was observed in the
injured spinal cord within 10 min, peaked at seven days after cell transplantation, and
decreased gradually thereafter. This time window corresponded to the blood–spinal cord
barrier (BSCB) opening time, which was quantitated with the Evans blue leakage assay.
Using immunohistochemistry, we examined neuronal growth (GAP-43), remyelination (MBP), and
microglia (Iba-1) reactions at the lesion site. Motor function recovery was also measured
using a classic open field test (Basso, Beattie and Bresnahan score). Compared with the
group injected only with QDs, the rats that received OEC transplantation exhibited a
prominent reduction in inflammatory responses, increased neurogenesis and remyelination,
and significant improvement in motor function. We suggest that intravenous injection could
also be an effective method for delivering OECs and improving functional outcomes after
SCI. Moreover, the time course of BSCB disruption provides a clinically relevant
therapeutic window for cell-based intervention.
Collapse
Affiliation(s)
- Lijian Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Surgery Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China.,Both the authors are co-authors and contributed equally to this article
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Both the authors are co-authors and contributed equally to this article
| | - Yao Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
25
|
Fath-Bayati L, Vasei M, Sharif-Paghaleh E. Optical fluorescence imaging with shortwave infrared light emitter nanomaterials for in vivo cell tracking in regenerative medicine. J Cell Mol Med 2019; 23:7905-7918. [PMID: 31559692 PMCID: PMC6850965 DOI: 10.1111/jcmm.14670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
In vivo tracking and monitoring of adoptive cell transfer has a distinct importance in cell‐based therapy. There are many imaging modalities for in vivo monitoring of biodistribution, viability and effectiveness of transferred cells. Some of these procedures are not applicable in the human body because of low sensitivity and high possibility of tissue damages. Shortwave infrared region (SWIR) imaging is a relatively new technique by which deep biological tissues can be potentially visualized with high resolution at cellular level. Indeed, scanning of the electromagnetic spectrum (beyond 1000 nm) of SWIR has a great potential to increase sensitivity and resolution of in vivo imaging for various human tissues. In this review, molecular imaging modalities used for monitoring of biodistribution and fate of administered cells with focusing on the application of non‐invasive optical imaging at shortwave infrared region are discussed in detail.
Collapse
Affiliation(s)
- Leyla Fath-Bayati
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Cell-based Therapies Research Institute, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Imaging Chemistry and Biology, Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. J Funct Biomater 2019; 10:E28. [PMID: 31269673 PMCID: PMC6787680 DOI: 10.3390/jfb10030028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200-600 μm diameter and 50-80 μm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs.
Collapse
Affiliation(s)
- Valeria Catanzaro
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy.
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center Via Nizza 52, 10126 Torino, Italy
| | - Juan C Cutrin
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Fabio Carniato
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy
| | - Stefano Porta
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Magdalena Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| |
Collapse
|
27
|
Filippi M, Garello F, Pasquino C, Arena F, Giustetto P, Antico F, Terreno E. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation. JOURNAL OF BIOPHOTONICS 2019; 12:e201800035. [PMID: 30471202 DOI: 10.1002/jbio.201800035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The transplantation of mesenchymal stem cells (MSCs) holds great promise for the treatment of a plethora of human diseases, but new noninvasive procedures are needed to monitor the cell fate in vivo. Already largely used in medical diagnostics, the fluorescent dye indocyanine green (ICG) is an established dye to track limited numbers of cells by optical imaging (OI), but it can also be visualized by photoacoustic imaging (PAI), which provides a higher spatial resolution than pure near infrared fluorescence imaging (NIRF). Because of its successful use in clinical and preclinical examinations, we chose ICG as PAI cell labeling agent. Optimal incubation conditions were defined for an efficient and clinically translatable MSC labeling protocol, such that no cytotoxicity or alterations of the phenotypic profile were observed, and a consistent intracellular uptake of the molecule was achieved. Suspensions of ICG-labeled cells were both optically and optoacoustically detected in vitro, revealing a certain variability in the photoacoustic spectra acquired by varying the excitation wavelength from 680 to 970 nm. Intramuscular engraftments of ICG-labeled MSCs were clearly visualized by both PAI and NIRF over few days after transplantation in the hindlimb of healthy mice, suggesting that the proposed technique retains a considerable potential in the field of transplantation-focused research and therapy. Stem cells were labeled with the Food and Drug Administration (FDA)-approved fluorescent dye ICG, and detected by both PAI and OI, enabling to monitor the cell fate safely, in dual modality, and with good sensitivity and improved spatial resolution.
Collapse
Affiliation(s)
- Miriam Filippi
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Chiara Pasquino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesca Arena
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Pierangela Giustetto
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Federica Antico
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | | |
Collapse
|
28
|
Li W, Song W, Chen B, Matcher SJ. Superparamagnetic graphene quantum dot as a dual-modality contrast agent for confocal fluorescence microscopy and magnetomotive optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800219. [PMID: 30191684 DOI: 10.1002/jbio.201800219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/04/2018] [Indexed: 05/03/2023]
Abstract
A magnetic graphene quantum dot (MGQD) nanoparticle, synthesized by hydrothermally reducing and cutting graphene oxide-iron oxide sheet, was demonstrated to possess the capabilities of simultaneous confocal fluorescence and magnetomotive optical coherence tomography (MMOCT) imaging. This MGQD shows low toxicity, significant tunable blue fluorescence and superparamagnetism, which can thus be used as a dual-modality contrast agent for confocal fluorescence microscopy (CFM) and MMOCT. The feasibility of applying MGQD as a tracer of cells is shown by imaging and visualizing MGQD labeled cells using CFM and our in-house MMOCT. Since MMOCT and CFM can offer anatomical structure and intracellular details, respectively, the MGQD for cell tracking could provide a more comprehensive diagnosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK
| | - Wenxing Song
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
| | - Stephen J Matcher
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Guo R, Li Q, Yang F, Hu X, Jiao J, Guo Y, Wang J, Zhang Y. In Vivo MR Imaging of Dual MRI Reporter Genes and Deltex-1 Gene-modified Human Mesenchymal Stem Cells in the Treatment of Closed Penile Fracture. Mol Imaging Biol 2019; 20:417-427. [PMID: 28971290 DOI: 10.1007/s11307-017-1128-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of this study was to investigate the feasibility of dual magnetic resonance imaging (MRI) reporter genes, including ferritin heavy subunit (Fth) and transferrin receptor (TfR), which provide sufficient MRI contrast for in vivo MRI tracking, and the Deltex-1 (DTX1) gene, which promotes human mesenchymal stem cell (hMSC) differentiation to smooth muscle cells (SMCs), to treat closed penile fracture (CPF). METHODS Multi-gene co-expressing hMSCs were generated. The expression of mRNA and proteins was assessed, and the original biological properties of hMSCs were determined and compared. The intracellular uptake of iron was evaluated, and the ability to differentiate into SMCs was detected. Fifty rabbits with CPF were randomly transplanted with PBS, hMSCs, Fth-TfR-hMSCs, DTX1-hMSCs, and Fth-TfR-DTX1-hMSCs. In vivo MRI was performed to detect the distribution and migration of the grafted cells and healing progress of CPF, and the results were correlated with histology. RESULTS The mRNA and proteins of the multi-gene were highly expressed. The transgenes could not influence the original biological properties of hMSCs. The dual MRI reporter genes increased the iron accumulation capacity, and the DTX1 gene promoted hMSC differentiation into SMCs. The distribution and migration of the dual MRI reporter gene-modified hMSCs, and the healing state of CPF could be obviously detected by MRI and confirmed by histology. CONCLUSION The dual MRI reporter genes could provide sufficient MRI contrast, and the distribution and migration of MSCs could be detected in vivo. The DTX1 gene can promote MSC differentiation into SMCs for the treatment of CPF and effectively inhibit granulation tissue formation.
Collapse
Affiliation(s)
- Ruomi Guo
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingling Li
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Hu
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ju Jiao
- Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Guo
- Department of VIP Medical Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin Wang
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
30
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
31
|
Brewer KD, Spitler R, Lee KR, Chan AC, Barrozo JC, Wakeel A, Foote CS, Machtaler S, Rioux J, Willmann JK, Chakraborty P, Rice BW, Contag CH, Bell CB, Rutt BK. Characterization of Magneto-Endosymbionts as MRI Cell Labeling and Tracking Agents. Mol Imaging Biol 2018; 20:65-73. [PMID: 28616842 DOI: 10.1007/s11307-017-1093-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Magneto-endosymbionts (MEs) show promise as living magnetic resonance imaging (MRI) contrast agents for in vivo cell tracking. Here we characterize the biomedical imaging properties of ME contrast agents, in vitro and in vivo. PROCEDURES By adapting and engineering magnetotactic bacteria to the intracellular niche, we are creating magneto-endosymbionts (MEs) that offer advantages relative to passive iron-based contrast agents (superparamagnetic iron oxides, SPIOs) for cell tracking. This work presents a biomedical imaging characterization of MEs including: MRI transverse relaxivity (r 2) for MEs and ME-labeled cells (compared to a commercially available iron oxide nanoparticle); microscopic validation of labeling efficiency and subcellular locations; and in vivo imaging of a MDA-MB-231BR (231BR) human breast cancer cells in a mouse brain. RESULTS At 7T, r 2 relaxivity of bare MEs was higher (250 s-1 mM-1) than that of conventional SPIO (178 s-1 mM-1). Optimized in vitro loading of MEs into 231BR cells yielded 1-4 pg iron/cell (compared to 5-10 pg iron/cell for conventional SPIO). r 2 relaxivity dropped by a factor of ~3 upon loading into cells, and was on the same order of magnitude for ME-loaded cells compared to SPIO-loaded cells. In vivo, ME-labeled cells exhibited strong MR contrast, allowing as few as 100 cells to be detected in mice using an optimized 3D SPGR gradient-echo sequence. CONCLUSIONS Our results demonstrate the potential of magneto-endosymbionts as living MR contrast agents. They have r 2 relaxivity values comparable to traditional iron oxide nanoparticle contrast agents, and provide strong MR contrast when loaded into cells and implanted in tissue.
Collapse
Affiliation(s)
- Kimberly D Brewer
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada.,Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - Ryan Spitler
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - Steven Machtaler
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - James Rioux
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada.,Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - Juergen K Willmann
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | | | - Christopher H Contag
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | - Brian K Rutt
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA. .,Richard M. Lucas Center for Imaging, Stanford University School of Medicine, The Lucas Expansion, Room PS-064, 1201 Welch Road, Stanford, CA, 94305-5488, USA.
| |
Collapse
|
32
|
Temme S, Baran P, Bouvain P, Grapentin C, Krämer W, Knebel B, Al-Hasani H, Moll JM, Floss D, Schrader J, Schubert R, Flögel U, Scheller J. Synthetic Cargo Internalization Receptor System for Nanoparticle Tracking of Individual Cell Populations by Fluorine Magnetic Resonance Imaging. ACS NANO 2018; 12:11178-11192. [PMID: 30372619 DOI: 10.1021/acsnano.8b05698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific detection of target structures or cells lacking particular surface epitopes still poses a serious problem for all imaging modalities. Here, we demonstrate the capability of synthetic "cargo internalization receptors" (CIRs) for tracking of individual cell populations by 1H/19F magnetic resonance imaging (MRI). To this end, a nanobody for green fluorescent protein (GFP) was used to engineer cell-surface-expressed CIRs which undergo rapid internalization after GFP binding. For 19F MR visibility, the GFP carrier was equipped with "contrast cargo", in that GFP was coupled to perfluorocarbon nanoemulsions (PFCs). To explore the suitability of different uptake mechanisms for this approach, CIRs were constructed by combination of the GFP nanobody and three different cytoplasmic tails that contained individual internalization motifs for endocytosis of the contrast cargo (CIR1-3). Exposure of CIR+ cells to GFP-PFCs resulted in highly specific binding and internalization as confirmed by fluorescence microscopy as well as flow cytometry and enabled visualization by 1H/19F MRI. In particular, expression of CIR2/3 resulted in substantial incorporation of 19F cargo and readily enabled in vivo visualization of GFP-PFC recruitment to transplanted CIR+ cells by 1H/19F MRI in mice. Competition experiments with blood immune cells revealed that CIR+ cells are predominantly loaded with GFP-PFCs even in the presence of cells with strong phagocytotic capacity. Importantly, binding and internalization of GFP-PFCs did not result in the activation of signaling cascades and therefore does not alter cell physiology. Overall, this approach represents a versatile in vivo imaging platform for tracking of individual cell populations by making use of cell-type-specific CIR+ mice.
Collapse
Affiliation(s)
- Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Paul Baran
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Christoph Grapentin
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Wolfgang Krämer
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center , Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center , Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jens Mark Moll
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Doreen Floss
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jürgen Scheller
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| |
Collapse
|
33
|
Yan J, Hou S, Yu Y, Qiao Y, Xiao T, Mei Y, Zhang Z, Wang B, Huang CC, Lin CH, Suo G. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 171:241-249. [DOI: 10.1016/j.colsurfb.2018.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 11/15/2022]
|
34
|
Hamilton AM, Foster PJ, Ronald JA. Evaluating Nonintegrating Lentiviruses as Safe Vectors for Noninvasive Reporter-Based Molecular Imaging of Multipotent Mesenchymal Stem Cells. Hum Gene Ther 2018; 29:1213-1225. [DOI: 10.1089/hum.2018.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amanda M. Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
| | - John A. Ronald
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
35
|
Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthc Mater 2018; 7:e1800477. [PMID: 29969201 DOI: 10.1002/adhm.201800477] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/06/2018] [Indexed: 12/13/2022]
Abstract
The rapid development of healthcare techniques encourages the emergence of new molecular imaging agents and modalities. Fluorescence imaging that enables precise monitoring and detection of biological processes/diseases is extensively investigated as this imaging technique has strengths in terms of high sensitivity, excellent temporal resolution, low cost, and good safety. Aggregation-induced emission luminogens (AIEgens) have recently emerged as a new class of emitters that possess several notable features, such as high brightness, large Stokes shift, marked photostability, good biocompatibility, and so on. So far, AIEgens are widely explored and exhibit superb performance in the area of biomedicine and life sciences. Herein, this review summarizes and discusses the recent investigations of AIEgens for in vivo diagnosis and therapy including long-term tracking, 3D angiography, multimodality imaging, disease theranostics, and activatable sensing. Collectively, these results reveal that AIEgens are of great promise for in vivo biomedical applications. It is hoped that this review will lead to new insights into the development of advanced healthcare materials.
Collapse
Affiliation(s)
- Ji Qi
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- NSFC Center for Luminescence from Molecular Aggregates; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
36
|
Mazza M, Lozano N, Vieira DB, Buggio M, Kielty C, Kostarelos K. Liposome-Indocyanine Green Nanoprobes for Optical Labeling and Tracking of Human Mesenchymal Stem Cells Post-Transplantation In Vivo. Adv Healthc Mater 2017; 6. [PMID: 28777501 DOI: 10.1002/adhm.201700374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/25/2017] [Indexed: 01/09/2023]
Abstract
Direct labeling of human mesenchymal stem cells (hMSC) prior to transplantation provides a means to track cells after administration and it is a powerful tool for the assessment of new cell-based therapies. Biocompatible nanoprobes consisting of liposome-indocyanine green hybrid vesicles (liposome-ICG) are used to safely label hMSC. Labeled hMSC recapitulating a 3D cellular environment is transplanted as spheroids subcutaneously and intracranially in athymic nude mice. Cells emit a strong NIR signal used for tracking post-transplantation with the IVIS imaging system up to 2 weeks (subcutaneous) and 1 week (intracranial). The transplanted stem cells are imaged in situ after engraftment deep in the brain up to 1 week in living animals using optical imaging techniques and without the need to genetically modify the cells. This method is proposed for efficient, nontoxic direct cell labeling for the preclinical assessment of cell-based therapies and the design of clinical trials, and potentially for localization of the cell engraftment after transplantation into patients.
Collapse
Affiliation(s)
- Mariarosa Mazza
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Neus Lozano
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Debora Braga Vieira
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Maurizio Buggio
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Cay Kielty
- Wellcome Trust Centre for Cell-Matrix Research; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Kostas Kostarelos
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
37
|
Zhang F, Duan X, Lu L, Zhang X, Chen M, Mao J, Cao M, Shen J. In Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging. Cell Transplant 2017; 26:1648-1662. [PMID: 29251112 PMCID: PMC5753979 DOI: 10.1177/0963689717722560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meiwei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell Mol Life Sci 2017; 74:4455-4469. [PMID: 28674728 DOI: 10.1007/s00018-017-2584-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
Abstract
Cell fate is a concept used to describe the differentiation and development of a cell in its organismal context over time. It is important in the field of regenerative medicine, where stem cell therapy holds much promise but is limited by our ability to assess its efficacy, which is mainly due to the inability to monitor what happens to the cells upon engraftment to the damaged tissue. Currently, several imaging modalities can be used to track cells in the clinical setting; however, they do not satisfy many of the criteria necessary to accurately assess several aspects of cell fate. In recent years, reporter genes have become a popular option for tracking transplanted cells, via various imaging modalities in small mammalian animal models. This review article examines the reporter gene strategies used in imaging modalities such as MRI, SPECT/PET, Optoacoustic and Bioluminescence Imaging. Strengths and limitations of the use of reporter genes in each modality are discussed.
Collapse
Affiliation(s)
- Piotr Jurgielewicz
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stefan Harmsen
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Suite 1511, New York, NY, 10065, USA.
| |
Collapse
|
39
|
Herynek V, Gálisová A, Srinivas M, van Dinther EAW, Kosinová L, Ruzicka J, Jirátová M, Kriz J, Jirák D. Pre-Microporation Improves Outcome of Pancreatic Islet Labelling for Optical and 19F MR Imaging. Biol Proced Online 2017; 19:6. [PMID: 28674481 PMCID: PMC5488379 DOI: 10.1186/s12575-017-0055-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/01/2017] [Indexed: 01/02/2023] Open
Abstract
Background In vitro labelling of cells and small cell structures is a necessary step before in vivo monitoring of grafts. We modified and optimised a procedure for pancreatic islet labelling using bimodal positively charged poly(lactic-co-glycolic acid) nanoparticles with encapsulated perfluoro crown ethers and indocyanine green dye via microporation and compared the method with passive endocytosis. Results Pancreatic islets were microporated using two pulses at various voltages. We tested a standard procedure (poration in the presence of nanoparticles) and a modified protocol (pre-microporation in a buffer only, and subsequent islet incubation with nanoparticles on ice for 10 min). We compared islet labelling by microporation with labelling by endocytosis, i.e. pancreatic islets were incubated for 24 h in a medium with suspended nanoparticles. In order to verify the efficiency of the labelling procedures, we used 19F magnetic resonance imaging, optical fluorescence imaging and confocal microscopy. The experiment confirmed that microporation, albeit fast and effective, is invasive and may cause substantial harm to islets. To achieve sufficient poration and to minimise the reduction of viability, the electric field should be set at 20 kV/m (two pulses, 20 ms each). Poration in the presence of nanoparticles was found to be unsuitable for the nanoparticles used. The water suspension of nanoparticles (which served as a surfactant) was slightly foamy and microbubbles in the suspension were responsible for sparks causing the destruction of islets during poration. However, pre-microporation (poration of islets in a buffer only) followed by 10-min incubation with nanoparticles was safer. Conclusions For labelling of pancreatic islets using poly(lactic-co-glycolic acid) nanoparticles, the modified microporation procedure with low voltage was found to be safer than the standard microporation procedure. The modified procedure was fast, however, efficiency was lower compared to endocytosis.
Collapse
Affiliation(s)
- Vít Herynek
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Andrea Gálisová
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Centre, Route 278, Geert Grooteplein 28, Nijmegen, Netherlands
| | - Eric A W van Dinther
- Department of Tumor Immunology, Radboud University Medical Centre, Route 278, Geert Grooteplein 28, Nijmegen, Netherlands
| | - Lucie Kosinová
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Jiri Ruzicka
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic.,Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine AS CR, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Markéta Jirátová
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Jan Kriz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| | - Daniel Jirák
- MR Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, Czech Republic
| |
Collapse
|
40
|
Zhang M, Liu X, Huang J, Wang L, Shen H, Luo Y, Li Z, Zhang H, Deng Z, Zhang Z. Ultrasmall graphene oxide based T 1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2475-2483. [PMID: 28552648 DOI: 10.1016/j.nano.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Herein, we report on development of a two-dimensional nanomaterial graphene oxide (GO)-based T1 magnetic resonance imaging (MRI) contrast agent (CA) for in vitro and in vivo labeling of human mesenchymal stem cells (hMSCs). The CA was synthesized by PEGylation of ultrasmall GO, followed by conjugation with a chelating agent DOTA and then gadolinium(III) to form GO-DOTA-Gd complexes. Thus-prepared GO-DOTA-Gd complexes exhibited significantly improved T1 relaxivity, and the r1 value was 14.2 mM-1s-1 at 11.7 T, approximately three times higher than Magnevist, a commercially available CA. hMSCs can be effectively labeled by GO-DOTA-Gd, leading to remarkably enhanced cellular MRI effect without obvious adverse effects on proliferation and differentiation of hMSCs. More importantly, in vivo experiment revealed that intracranial detection of 5×105 hMSCs labeled with GO-DOTA-Gd is achieved. The current work demonstrates the feasibility of the GO-based T1 MRI CA for stem cell labeling, which may find potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Mengxin Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoyun Liu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Lina Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - He Shen
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhenjun Li
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hailu Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zongwu Deng
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
41
|
Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, Cormode DP. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography. Bioconjug Chem 2017; 28:1581-1597. [PMID: 28485976 PMCID: PMC5481820 DOI: 10.1021/acs.bioconjchem.7b00194] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Efforts
to develop novel cell-based therapies originated with the
first bone marrow transplant on a leukemia patient in 1956. Preclinical
and clinical examples of cell-based treatment strategies have shown
promising results across many disciplines in medicine, with recent
advances in immune cell therapies for cancer producing remarkable
response rates, even in patients with multiple treatment failures.
However, cell-based therapies suffer from inconsistent outcomes, motivating
the search for tools that allow monitoring of cell delivery and behavior
in vivo. Noninvasive cell imaging techniques, also known as cell tracking,
have been developed to address this issue. These tools can allow real-time,
quantitative, and long-term monitoring of transplanted cells in the
recipient, providing insight on cell migration, distribution, viability,
differentiation, and fate, all of which play crucial roles in treatment
efficacy. Understanding these parameters allows the optimization of
cell choice, delivery route, and dosage for therapy and advances cell-based
therapy for specific clinical uses. To date, most cell tracking work
has centered on imaging modalities such as MRI, radionuclide imaging,
and optical imaging. However, X-ray computed tomography (CT) is an
emerging method for cell tracking that has several strengths such
as high spatial and temporal resolution, and excellent quantitative
capabilities. The advantages of CT for cell tracking are enhanced
by its wide availability and cost effectiveness, allowing CT to become
one of the most popular clinical imaging modalities and a key asset
in disease diagnosis. In this review, we will discuss recent advances
in cell tracking methods using X-ray CT in various applications, in
addition to predictions on how the field will progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachela Popovtzer
- Department of Engineering, Bar-Ilan University , Ramat Gan, 5290002, Israel
| | | |
Collapse
|
42
|
Martinez A, Palomo Ruiz MDV, Perez DI, Gil C. Drugs in clinical development for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2017; 26:403-414. [PMID: 28277881 DOI: 10.1080/13543784.2017.1302426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron progressive disorder for which no treatment exists to date. However, there are other investigational drugs and therapies currently under clinical development may offer hope in the near future. Areas covered: We have reviewed all the ALS ongoing clinical trials (until November 2016) and collected in Clinicaltrials.gov or EudraCT. We have described them in a comprehensive way and have grouped them in the following sections: biomarkers, biological therapies, cell therapy, drug repurposing and new drugs. Expert opinion: Despite multiple obstacles that explain the absence of effective drugs for the treatment of ALS, joint efforts among patient's associations, public and private sectors have fueled innovative research in this field, resulting in several compounds that are in the late stages of clinical trials. Drug repositioning is also playing an important role, having achieved the approval of some orphan drug applications, in late phases of clinical development. Endaravone has been recently approved in Japan and is pending in USA.
Collapse
Affiliation(s)
- Ana Martinez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | | | - Daniel I Perez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | - Carmen Gil
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| |
Collapse
|
43
|
Mok PL, Leow SN, Koh AEH, Mohd Nizam HH, Ding SLS, Luu C, Ruhaslizan R, Wong HS, Halim WHWA, Ng MH, Idrus RBH, Chowdhury SR, Bastion CML, Subbiah SK, Higuchi A, Alarfaj AA, Then KY. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer. Int J Mol Sci 2017; 18:ijms18020345. [PMID: 28208719 PMCID: PMC5343880 DOI: 10.3390/ijms18020345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Collapse
Affiliation(s)
- Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Sue Ngein Leow
- Department of Ophthalmology, Hospital Sultanah Aminah, 80100 Johor Bahru, Johor, Malaysia.
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Harun Mohd Nizam
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Chi Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne 3002, Australia.
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne 3002, Australia.
| | - Raduan Ruhaslizan
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Hon Seng Wong
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Ruszymah Binti Hj Idrus
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Catherine Mae-Lynn Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32001, Taiwan.
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Lyczek A, Arnold A, Zhang J, Campanelli JT, Janowski M, Bulte JWM, Walczak P. Transplanted human glial-restricted progenitors can rescue the survival of dysmyelinated mice independent of the production of mature, compact myelin. Exp Neurol 2017; 291:74-86. [PMID: 28163160 DOI: 10.1016/j.expneurol.2017.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 01/11/2023]
Abstract
The therapeutic effect of glial progenitor transplantation in diseases of dysmyelination is currently attributed to the formation of new myelin. Using magnetic resonance imaging (MRI), we show that the therapeutic outcome in dysmyelinated shiverer mice is dependent on the extent of cell migration but not the presence of mature and compact myelin. Human or mouse glial restricted progenitors (GRPs) were transplanted into rag2-/- shiverer mouse neonates and followed for over one year. Mouse GRPs produced mature myelin as detected with multi-parametric MRI, but showed limited migration without extended animal lifespan. In sharp contrast, human GRPs migrated extensively and significantly increased animal survival, but production of mature myelin did not occur until 46weeks post-grafting. We conclude that human GRPs can extend the survival of transplanted shiverer mice prior to production of mature myelin, while mouse GRPs fail to extend animal survival despite the early presence of mature myelin. This paradox suggests that transplanted GRPs provide therapeutic benefits through biological processes other than the formation of mature myelin capable to foster rapid nerve conduction, challenging the current dogma of the primary role of myelination in regaining function of the central nervous system.
Collapse
Affiliation(s)
- Agatha Lyczek
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Antje Arnold
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Jiangyang Zhang
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | | | - Miroslaw Janowski
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Dept. of Neurosurgery, Mossakowski Med. Res. Center, Polish Acad. of Sci., Warsaw, Poland; Dept. of NeuroRepair, Mossakowski Med. Res. Center, Polish Acad. of Sci., Warsaw, Poland
| | - Jeff W M Bulte
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Piotr Walczak
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Dept. of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland.
| |
Collapse
|
45
|
Meir R, Betzer O, Motiei M, Kronfeld N, Brodie C, Popovtzer R. Design principles for noninvasive, longitudinal and quantitative cell tracking with nanoparticle-based CT imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:421-429. [DOI: 10.1016/j.nano.2016.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/05/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023]
|
46
|
Chhour P, Kim J, Benardo B, Tovar A, Mian S, Litt HI, Ferrari VA, Cormode DP. Effect of Gold Nanoparticle Size and Coating on Labeling Monocytes for CT Tracking. Bioconjug Chem 2017; 28:260-269. [PMID: 28095688 PMCID: PMC5462122 DOI: 10.1021/acs.bioconjchem.6b00566] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With advances in cell therapies, interest in cell tracking techniques to monitor the migration, localization, and viability of these cells continues to grow. X-ray computed tomography (CT) is a cornerstone of medical imaging but has been limited in cell tracking applications due to its low sensitivity toward contrast media. In this study, we investigate the role of size and surface functionality of gold nanoparticles for monocyte uptake to optimize the labeling of these cells for tracking in CT. We synthesized gold nanoparticles (AuNP) that range from 15 to 150 nm in diameter and examined several capping ligands, generating 44 distinct AuNP formulations. In vitro cytotoxicity and uptake experiments were performed with the RAW 264.7 monocyte cell line. The majority of formulations at each size were found to be biocompatible, with only certain 150 nm PEG functionalized particles reducing viability at high concentrations. High uptake of AuNP was found using small capping ligands with distal carboxylic acids (11-MUA and 16-MHA). Similar uptake values were found with intermediate sizes (50 and 75 nm) of AuNP when coated with 2000 MW poly(ethylene-glycol) carboxylic acid ligands (PCOOH). Low uptake values were observed with 15, 25, 100, and 150 nm PCOOH AuNP, revealing interplay between size and surface functionality. Transmission electron microscopy (TEM) and CT performed on cells revealed similar patterns of high gold uptake for 50 nm PCOOH and 75 nm PCOOH AuNP. These results demonstrate that highly negatively charged carboxylic acid coatings for AuNP provide the greatest internalization of AuNP in monocytes, with a complex dependency on size.
Collapse
Affiliation(s)
- Peter Chhour
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Johoon Kim
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Barbara Benardo
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Alfredo Tovar
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Shaameen Mian
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Harold I Litt
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Victor A Ferrari
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, ‡Department of Bioengineering, and §Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine of the University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
47
|
Srivastava AK, Gross SK, Almad AA, Bulte CA, Maragakis NJ, Bulte JWM. Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2016; 289:96-102. [PMID: 28038988 DOI: 10.1016/j.expneurol.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/27/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are being investigated as a possible treatment for amyotrophic lateral sclerosis (ALS) through intraspinal transplantation, but no longitudinal imaging studies exist that describe the survival of engrafted cells over time. Allogeneic firefly luciferase-expressing murine NSCs (Luc+-NSCs) were transplanted bilaterally (100,000 cells/2μl) into the cervical spinal cord (C5) parenchyma of pre-symptomatic (63day-old) SOD1G93A ALS mice (n=14) and wild-type age-matched littermates (n=14). Six control SOD1G93A ALS mice were injected with saline. Mice were immunosuppressed using a combination of tacrolimus+sirolimus (1mg/kg each, i.p.) daily. Compared to saline-injected SOD1G93A ALS control mice, a transient improvement (p<0.05) in motor performance (rotarod test) was observed after NSC transplantation only at the early disease stage (weeks 2 and 3 post-transplantation). Compared to day one post-transplantation, there was a significant decline in bioluminescent imaging (BLI) signal in SOD1G93A ALS mice at the time of disease onset (71.7±17.9% at 4weeks post-transplantation, p<0.05), with a complete loss of BLI signal at endpoint (120day-old mice). In contrast, BLI signal intensity was observed in wild-type littermates throughout the entire study period, with only a 41.4±8.7% decline at the endpoint. In SOD1G93A ALS mice, poor cell survival was accompanied by accumulation of mature macrophages and the presence of astrogliosis and microgliosis. We conclude that the disease progression adversely affects the survival of engrafted murine Luc+-NSCs in SOD1G93A ALS mice as a result of the hostile ALS spinal cord microenvironment, further emphasizing the challenges that face successful cell therapy of ALS.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah K Gross
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akshata A Almad
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camille A Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Stem Cells and Labeling for Spinal Cord Injury. Int J Mol Sci 2016; 18:ijms18010006. [PMID: 28035961 PMCID: PMC5297641 DOI: 10.3390/ijms18010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.
Collapse
|
49
|
Gambhir HS, Raharjo E, Forden J, Kumar R, Mishra C, Guo GF, Grochmal J, Shapira Y, Midha R. Improved method to track and precisely count Schwann cells post-transplantation in a peripheral nerve injury model. J Neurosci Methods 2016; 273:86-95. [PMID: 27546200 DOI: 10.1016/j.jneumeth.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND To optimize survival evaluation of Schwann cells (SCs) in vivo, we tested fluorescent labeling of the nucleus as an improved method of tracking and counting the transplanted SCs at sciatic nerve injury sites in rodents. We also investigated if co-administering cells with the glial growth factor Neuregulin-1 β (NRG1β) improves in vivo survival. NEW METHOD We transduced SCs using a Lentiviral vector with a nuclear localization signal (NLS) fused with mCherry and transplanted them in the sciatic nerve of rat post-crush injury (bilateral) either in the presence or absence of NRG1β in the injectate media. For comparison, in a separate group of similar injury, GFP-labeled cells were transplanted. After 10 days, nerves were harvested and sections (14μm) were counterstained with Hoechst and imaged. Cells showing co-localization with Hoechst and GFP or mCherry were exhaustively counted and data analyzed. RESULTS Percentage cells counted in with- and without-NRG condition in both the groups were 0.83±0.13% and 0.06±0.04% (Group 1) & 2.83*±1.95% and 0.23*±0.29% (Group 2). COMPARISON TO EXISTING METHOD We are introducing fluorescent labeling of the nucleus as a reliable and efficient technique to perform survival assessments in Schwann cell based treatment studies in animal model. This method can overcome the challenges and limitations of the existing method that could result in underestimation of the therapeutic outcome. CONCLUSIONS Nucleus-restricted fluorescent labeling technique offer improved method of tracking as well as accurately counting transplanted SCs in vivo while NRG1β in the injectate media can improve survival.
Collapse
Affiliation(s)
- Hardeep S Gambhir
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eko Raharjo
- Department of Comparative Biology and Experimental Medicine and Alberta Children Hospital Research Institute, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Joanne Forden
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ranjan Kumar
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Comparative Biology and Experimental Medicine and Alberta Children Hospital Research Institute, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Chinmaya Mishra
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gui Fang Guo
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuval Shapira
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
50
|
Wang M, Liang C, Hu H, Zhou L, Xu B, Wang X, Han Y, Nie Y, Jia S, Liang J, Wu K. Intraperitoneal injection (IP), Intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Sci Rep 2016; 6:30696. [PMID: 27488951 PMCID: PMC4973258 DOI: 10.1038/srep30696] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation showed promising results in IBD management. However, the therapeutic impacts of cell delivery route that is critical for clinical translation are currently poorly understood. Here, three different MSCs delivery routes: intraperitoneal (IP), intravenous (IV), and anal injection (AI) were compared on DSS-induced colitic mice model. The overall therapeutic factors, MSCs migration and targeting as well as local immunomodulatory cytokines and FoxP3+ cells infiltration were analyzed. Colitis showed varying degrees of alleviation after three ways of MSCs transplantation, and the IP injection showed the highest survival rate of 87.5% and displayed the less weight loss and quick weight gain. The fecal occult blood test on the day 3 also showed nearly complete absence of occult blood in IP group. The fluorescence imaging disclosed higher intensity of engrafted cells in inflamed colon and the corresponding mesentery lymph nodes (MLNs) in IP and AI groups than the IV group. Real time-PCR and ELISA also demonstrate lower TNF-α and higher IL-10, TSG-6 levels in IP group. The immunohistochemistry indicated higher repair proliferation (Ki-67) and more FoxP3+ cells accumulation of IP group. IP showed better colitis recovery and might be the optimum MSCs delivery route for the treatment of DSS-induced colitis.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Gastroenterology, Xi'an Children's Hospital, 710006, China
| | - Cong Liang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Respiratory and Gastroenterology, Second People's Hospital, Xi'an, 710005, China
| | - Hao Hu
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Gastroenterology, PLA No.5 Hospital, Yinchuan, 750004, China
| | - Lin Zhou
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuyun Jia
- Department of Gastroenterology, PLA No.5 Hospital, Yinchuan, 750004, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|