1
|
Cueno ME, Shintaku N, Hayasaki N, Migita Y, Imai K. Network modeling of the different SARS-CoV-2 spike protein infection points within the human hematopoietic network. J Theor Biol 2025; 609:112139. [PMID: 40349913 DOI: 10.1016/j.jtbi.2025.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Hematopoiesis is a physiological process that mainly functions in both the formation and replenishment of varying types of blood cells. SARS-CoV-2 has been reported to affect the human hematopoietic system at multiple infection points leading to multiple types of blood disorders. However, the possible effects of the different SARS-CoV-2 infection points within the hematopoietic system were never fully understood. In this study, we designed and generated multiple human hematopoietic network models representing the varying known SARS-CoV-2 infection points within the human hematopoietic system. Subsequently, centrality measurement analyses were performed to identify significant nodes and edges within the models. We putatively generated human hematopoietic network models to represent the distinct, synergistic, and integrated SARS-CoV-2 spike protein infection points within the human hematopoietic system. Additionally, we potentially established that neither the discrete nor the synergistic network models showed any changes in the human hematopoietic network, which we attributed to the conserved nature of the hematopoietic system. Furthermore, we presumably demonstrated that the integrated network model indicated that erythropoiesis and thrombopoiesis were primarily affected. Overall, we propose that an integrated network model is putatively the more accurate representation of the human hematopoietic system in the presence of SARS-CoV-2 infection involving the spike protein.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan.
| | - Noa Shintaku
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Noe Hayasaki
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Yuna Migita
- Immersion Biology Class, Department of Science, Tokyo Gakugei University International Secondary School, Tokyo 178-0063, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
2
|
Jempierre YFSH, Pavi CP, Guterres IZ, da Silva IT, Fongaro G. Effect of Iron on Viral Infections. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:25. [PMID: 40208561 DOI: 10.1007/s12560-025-09638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Iron is a cofactor in various biological processes, primarily obtained through dietary intake and also through oral or intravenous supplementation. Elevated iron levels are associated with increased production of reactive oxygen species, causing cellular damage. Additionally, iron influences the body's response to infections and participates in the synthesis of genetic material and cellular functions. Therefore, this review aims to explore the complex interplay between iron homeostasis and viral infections, analyzing how iron availability affects viral replication, possible mutations, and pathogenesis. The interaction between viruses and iron, although less explored in the literature, indicates the influence of host iron bioavailability on parasite-host interactions. Furthermore, iron absorption is regulated by hepcidin, a peptide hormone produced by the liver, which reduces blood iron levels by inhibiting ferroportin function. Iron is important in viral growth and activities, potentially promoting replication, possible mutations, and increased virulence as seen in some studies with respiratory, enteric, and other viral models. Thus, iron chelators can be a promising preventive therapeutic strategy to limit iron availability and thereby reduce viral infectivity.
Collapse
Affiliation(s)
| | - Catielen Paula Pavi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Izabella Thaís da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Karisola P, Kanerva M, Vuokko A, Liira H, Wang S, Kvarnström K, Varonen M, Suojalehto H, Alenius H. Patients with post-COVID-19 condition show minor blood transcriptomic changes, with altered erythrocyte gene expression in a male subgroup. Front Immunol 2025; 16:1500997. [PMID: 40191210 PMCID: PMC11968430 DOI: 10.3389/fimmu.2025.1500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background The mechanisms underlying persistent symptoms after non-severe COVID-19 remain unclear. This study aimed to investigate transcriptomic changes in peripheral blood cells of patients with post-COVID-19 condition (PCC) and assess if distinct clinical subtypes with specific gene signatures could be identified. Methods The cohort included 111 PCC patients from the SARS-CoV-2 Omicron variant era, with 57 recovered (Recov) and 54 having prolonged symptoms indicative of PCC. The results were compared to 63 healthy controls (Ctrl) without known SARS-CoV-2 infection. Clinical data included patient assessments, laboratory results, comorbidities, and questionnaires on quality of life and functioning. Transcriptomic analysis and cellular deconvolution methods were used on total RNA from peripheral blood mononuclear cells (PBMCs). Results PCC patients had more comorbidities (mean 1.3) and more frequently (59%) at least one comorbidity than recovered patients (31%) and controls (24%). Overall, past COVID-19 illness or current PCC symptoms caused minimal changes in the blood cell transcriptome, with only 3-6 differentially expressed genes (DEGs) identified across comparisons. However, a subset of male PCC patients exhibited an increased fraction of deconvoluted erythroblasts and significant genome-wide gene expression changes, with 399 DEGs compared to recovered and control males. These genes were enriched in pathways related to heme metabolism and gas exchange in erythrocytes. Conclusions Persistent symptoms in PCC are multifactorial and not directly linked to peripheral blood cell gene expression changes. However, a subgroup of male PCC patients shows distinct erythrocyte responses that may contribute to long-term symptoms.
Collapse
Affiliation(s)
- Piia Karisola
- Human Microbiome (HUMI) Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Kanerva
- Department of Infection Control, TYKS Turku University Hospital, The Wellbeing Services County of Southwest Finland, Turku, Finland
- Outpatient Clinic for Long-Term Effects of COVID-19, Helsinki University Central Hospital, Helsinki, Finland
| | - Aki Vuokko
- Occupational Medicine, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Helena Liira
- Outpatient Clinic for Long-Term Effects of COVID-19, Helsinki University Central Hospital, Helsinki, Finland
| | - Shuyuan Wang
- Human Microbiome (HUMI) Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Kvarnström
- Outpatient Clinic for Long-Term Effects of COVID-19, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Varonen
- Outpatient Clinic for Long-Term Effects of COVID-19, Helsinki University Central Hospital, Helsinki, Finland
| | - Hille Suojalehto
- Occupational Medicine, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Harri Alenius
- Human Microbiome (HUMI) Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Gembillo G, Soraci L, Peritore L, Siligato R, Labbozzetta V, Giuffrida AE, Cuzzola F, Spinella C, Romeo A, Calabrese V, Montesanto A, Corsonello A, Santoro D. Impact of SARS-CoV-2 Infection on Erythropoietin Resistance Index in Hemodialysis Patients. Geriatrics (Basel) 2025; 10:33. [PMID: 40126283 PMCID: PMC11932237 DOI: 10.3390/geriatrics10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives: Hemodialysis (HD) patients with advanced chronic kidney disease (CKD) are highly vulnerable to complications from SARS-CoV-2 infection. Anemia management in this population is complex, particularly due to erythropoietin resistance, which may be exacerbated by COVID-19-related inflammation. To this aim, in this small-scale retrospective study, we investigated trends in the erythropoietin resistance index (ERI) over time in patients with and without SARS-CoV-2 infection. Methods: This single-center retrospective study included 25 HD patients, divided into two groups: 15 with a history of SARS-CoV-2 infection (CoV2 group) and 10 without (nonCoV2 group). The ERI was assessed over four visits, with 70-100-day intervals between them. Linear mixed models were used to evaluate factors associated with ERI changes. Results: Patients in the CoV2 group exhibited significantly higher ERI increases between T1 (baseline) and T2 (post-infection) compared to the nonCoV2 group (median ΔERI: +4.65 vs. -0.27, p < 0.001). During the T2-T4 recovery period, CoV2 patients demonstrated a delayed but substantial decline in the ERI, converging to baseline levels by T4. Male sex and hemoglobin levels were negatively associated with the ERI. Conclusions: SARS-CoV-2 infection induces transient but significant erythropoietin resistance in HD patients, likely due to inflammation and disrupted erythropoiesis. Tailored anemia management strategies, including the potential use of hypoxia-inducible factor stabilizers, are warranted. Larger, multicenter studies are needed to validate these findings and improve treatment protocols.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Luigi Peritore
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Rossella Siligato
- Nephrology Unit, University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Vincenzo Labbozzetta
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Felicia Cuzzola
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Claudia Spinella
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Adolfo Romeo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (L.P.); (V.L.); (A.E.G.); (F.C.); (C.S.); (A.R.); (V.C.)
| |
Collapse
|
5
|
Gambari R, Gamberini MR, Cosenza LC, Zuccato C, Finotti A. A β-Thalassemia Cell Biobank: Updates, Further Validation in Genetic and Therapeutic Research and Opportunities During (and After) the COVID-19 Pandemic. J Clin Med 2025; 14:289. [PMID: 39797371 PMCID: PMC11722022 DOI: 10.3390/jcm14010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic. Methods: The methods were as follows: freezing, cryopreservation, long-term storage, and thawing of erythroid precursor cells from β-thalassemia patients; fetal hemoglobin (HbF) induction; CRISPR-Cas9 gene editing; HPLC analysis of the hemoglobin pattern. Results: The updated version of the Thal-Biobank is a cellular repository constituted of 990 cryovials from 221 β-thalassemia patients; the phenotype (pattern of hemoglobin production) is maintained after long-term storage; fetal hemoglobin induction and CRISPR-Cas9 gene editing can be performed using biobanked cells. In representative experiments using an isoxazole derivative as HbF inducer, the HbF increased from 13.36% to more than 60%. Furthermore, in CRIPR/Cas9 gene editing, de novo production of HbA was obtained (42.7% with respect to the trace amounts found in untreated cells). Conclusions: The implemented Thal-Biobank was developed before the COVID-19 outbreak and should be considered a tool of great interest for researchers working on β-thalassemia, with the aim of developing innovative therapeutic protocols and verifying the impact of the COVID-19 pandemic on erythroid precursor cells.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy;
| | - Maria Rita Gamberini
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy;
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (L.C.C.); (C.Z.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (L.C.C.); (C.Z.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (L.C.C.); (C.Z.)
| |
Collapse
|
6
|
Chen S, Zhang Y, Ashuo A, Song S, Yuan L, Wang W, Wang C, Du Z, Wu Y, Tan D, Huang C, Chen J, Li Y, Bai J, Guo H, Huang Z, Guan Y, Xia N, Yuan Z, Zhang J, Yuan Q, Fang Z. Combination of spatial transcriptomics analysis and retrospective study reveals liver infection of SARS-COV-2 is associated with clinical outcomes of COVID-19. EBioMedicine 2025; 111:105517. [PMID: 39709771 PMCID: PMC11732063 DOI: 10.1016/j.ebiom.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Liver involvement is a common complication of coronavirus disease 2019 (COVID-19), especially in hospitalized patients. However, the underlying mechanisms involved are not fully understood. METHODS Immunohistochemistry (IHC) staining of SARS-CoV-2 spike (S) and nucleocapsid (N) proteins was conducted on liver tissues from six patients with COVID-19. The 10x Genomics Visium CytAssist Spatial Gene Assay was designed to analyze liver transcriptomics. TCR CDR3 sequences were analyzed in DNA from liver tissues. Liver function indicators were retrospectively studied in 650 hospitalized patients with COVID-19. FINDINGS SARS-CoV-2 proteins were initially detected in the livers of naturally infected golden (Syrian) hamsters, prompting us to investigate the situation in clinical cases. Thus, we collected liver tissues from patients with abnormal liver biochemical values. Viral S and N proteins were detected in the livers of severe and deceased patients but not in those of moderate patients. We further demonstrated that hepatocytes and erythroid cells in hepatic sinusoids are major cells targeted by SARS-CoV-2. Immune cells, especially T cells, were enriched in surviving severe patients, characterized by enhanced CDR3α clonality and novel CDR3β recombination of the T-cell receptor. In contrast, hepatocyte apoptosis was triggered, and the transcription of albumin (ALB) was obviously impaired in the deceased patients. We then performed a retrospective study including patients with COVID-19. Serum aspartate aminotransferase (AST) and ALB levels at baseline significantly differed in the deceased cohort. However, AST regression did not decrease the risk of death. ALB recovery indicated clinical improvement, and declining or low serum ALB concentrations were associated with death. INTERPRETATION This study provides clinical evidence for liver infection with SARS-CoV-2, insight into the impact of SARS-CoV-2 on the liver, and a potential way to evaluate the risk of death via assessing serum ALB concentration fluctuations in patients with COVID-19. FUNDING National Key R&D Program of China (2021YFC2300602), National Natural Science Foundation of China (92369110), National Natural Science Foundation of China (U23A20474), Shanghai Municipal Science and Technology Major Project (ZD2021CY001), Shanghai Jinshan District Medical and Health Technology Innovation Fund Project (2023-WS-31).
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Asha Ashuo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu Song
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Weixia Wang
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenlu Huang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jingna Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinjin Bai
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Huilin Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China; Joint Institute of Virology (Shantou University and University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Zhong Fang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Zhang W, Wang X, Zhang H, Pan Y, Ma W, Xu Y, Tian Z, Xia C, Fu L, Wang Y. Comparison of pathogenicity and host responses of emerging porcine reproductive and respiratory syndrome virus variants in piglets. J Virol 2024; 98:e0154223. [PMID: 39445829 PMCID: PMC11575335 DOI: 10.1128/jvi.01542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
Collapse
Affiliation(s)
- Wenli Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
8
|
Xie J, Yuan C, Yang S, Ma Z, Li W, Mao L, Jiao P, Liu W. The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection-induced cell death. Cell Mol Biol Lett 2024; 29:138. [PMID: 39516736 PMCID: PMC11549821 DOI: 10.1186/s11658-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents the novel respiratory infectious disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by rapid spread throughout the world. Reactive oxygen species (ROS) account for cellular metabolic by-products, and excessive ROS accumulation can induce oxidative stress due to insufficient endogenous antioxidant ability. In the case of oxidative stress, ROS production exceeds the cellular antioxidant capacity, thus leading to cell death. SARS-CoV-2 can activate different cell death pathways in the context of infection in host cells, such as neutrophil extracellular trap (NET)osis, ferroptosis, apoptosis, pyroptosis, necroptosis and autophagy, which are closely related to ROS signalling and control. In this review, we comprehensively elucidated the relationship between ROS generation and the death of host cells after SARS-CoV-2 infection, which leads to the development of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lin Mao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Aggravating mechanisms from COVID-19. Virol J 2024; 21:228. [PMID: 39334442 PMCID: PMC11430051 DOI: 10.1186/s12985-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
10
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Slama Schwok A, Henri J. Long Neuro-COVID-19: Current Mechanistic Views and Therapeutic Perspectives. Biomolecules 2024; 14:1081. [PMID: 39334847 PMCID: PMC11429791 DOI: 10.3390/biom14091081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/30/2024] Open
Abstract
Long-lasting COVID-19 (long COVID) diseases constitute a real life-changing burden for many patients around the globe and, overall, can be considered societal and economic issues. They include a variety of symptoms, such as fatigue, loss of smell (anosmia), and neurological-cognitive sequelae, such as memory loss, anxiety, brain fog, acute encephalitis, and stroke, collectively called long neuro-COVID-19 (long neuro-COVID). They also include cardiopulmonary sequelae, such as myocardial infarction, pulmonary damage, fibrosis, gastrointestinal dysregulation, renal failure, and vascular endothelial dysregulation, and the onset of new diabetes, with each symptom usually being treated individually. The main unmet challenge is to understand the mechanisms of the pathophysiologic sequelae, in particular the neurological symptoms. This mini-review presents the main mechanistic hypotheses considered to explain the multiple long neuro-COVID symptoms, namely immune dysregulation and prolonged inflammation, persistent viral reservoirs, vascular and endothelial dysfunction, and the disruption of the neurotransmitter signaling along various paths. We suggest that the nucleoprotein N of SARS-CoV-2 constitutes a "hub" between the virus and the host inflammation, immunity, and neurotransmission.
Collapse
Affiliation(s)
- Anny Slama Schwok
- Sorbonne Université, INSERM U938, Biology and Cancer Therapeutics, Centre de Recherche Saint Antoine, Saint Antoine Hospital, 75231 Paris, France
| | - Julien Henri
- Sorbonne Université, CNRS UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, 75005 Paris, France
| |
Collapse
|
12
|
Ameri A, Pourseyedi F, Davoodian P, Safa O, Hassanipour S, Fathalipour M. Efficacy and safety of deferoxamine in moderately ill COVID-19 patients: An open label, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39142. [PMID: 39183421 PMCID: PMC11346869 DOI: 10.1097/md.0000000000039142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Deferoxamine is a potent iron chelator that could remove iron from the virus, and severe acute respiratory syndrome coronavirus 2 requires iron to replication. Also, deferoxamine has antioxidant and cytokine-modulating effects. Therefore, we evaluated the efficacy and safety of deferoxamine in patients with moderate coronavirus disease 2019 (COVID-19). METHODS In this randomized controlled trial, patients with moderate COVID-19 were randomly assigned in a 1:1 ratio to the deferoxamine group (received a solution of 500 mg deferoxamine divided into 4 doses a day through a nebulizer for 7 days) and the control group. The main outcomes were viral clearance, oxygen saturation (SPO2), body temperature, and respiratory rate (RR). Intensive care unit admission, hospital length of stay, and hospital mortality were also assessed. RESULTS A total of 62 patients, with 30 in the deferoxamine group and 32 in the control group, were randomly assigned. There was no statistically significant improvement in viral clearance after the intervention ended in the deferoxamine group (36.7%) compared to the control group (34.4%). The results showed there was no significant difference between the analyzed groups in terms of SPO2, body temperature, RR, and the number of patients with a worse prognosis (SPO2 < 96%, temperature ≥ 37.5 °C, or RR ≥ 16/min) at the end of the study. There were no significant differences seen between the groups in terms of intensive care unit admission, hospital length of stay, hospital mortality, and the occurrence of adverse medication events during the follow-up period. CONCLUSION Deferoxamine had no significant impact on improving moderately ill patients with COVID-19. However, it was well-tolerated in the patients, and this intervention demonstrated a safe profile of adverse events.
Collapse
Affiliation(s)
- Ali Ameri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farnaz Pourseyedi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Endocrinology and Metabolic Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
13
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Basic implications on three pathways associated with SARS-CoV-2. Biomed J 2024:100766. [PMID: 39004185 DOI: 10.1016/j.bj.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts between the host and virus and govern induction, resulting in multiorgan impacts. Its pathophysiology involves the followings: 1) the angiotensin-converting enzyme (ACE2) and Toll-like receptor (TLR) pathways: 2) the neuropilin (NRP) pathway: 3) the spike protein pathway. Therefore, it is necessary to block the pathological course with modulating innate lymphoid cells against diverse corona variants in the future.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408, VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Republic of Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
14
|
Bjurström MF, Linder YC, Kjeldsen-Kragh J, Bengtsson J, Kander T. Adherence to a restrictive red blood cell transfusion strategy in critically ill patients: An observational study. Acta Anaesthesiol Scand 2024; 68:812-820. [PMID: 38453453 DOI: 10.1111/aas.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Randomized controlled trials relatively consistently show that restrictive red blood cell (RBC) transfusion strategies are safe and associated with similar outcomes compared to liberal transfusion strategies in critically ill patients. Based on these data, the general threshold for RBC transfusion was changed to 70 g/L at a 9-bed tertiary level intensive care unit in September 2020. Implementation measures included lectures, webinars and feedback during clinical practice. The aim of this study was to investigate how implementation of a restrictive transfusion strategy influenced RBC usage, haemoglobin trigger levels and adherence to prescribed trigger levels. METHODS In this registry-based, observational study, critically ill adult patients without massive bleeding were included and divided into a pre-cohort, with admissions prior to the change of transfusion strategy, and a post-cohort, with admissions following the change of transfusion strategy. These cohorts were compared regarding key RBC transfusion-related variables. RESULTS In total 5626 admissions were included in the analyses (pre-cohort n = 4373, post-cohort n = 1253). The median volume (interquartile range, IQR) of RBC transfusions per 100 admission days, in the pre-cohort was 6120 (4110-8110) mL versus 3010 (2890-4970) mL in the post-cohort (p < .001). This corresponds to an estimated median saving of 1128 € per 100 admission days after a restrictive RBC transfusion strategy was implemented. In total, 26% of the admissions in the pre-cohort and 19% in the post-cohort (p < .001) received RBC transfusion(s) during days 0-10. Both median (IQR) prescribed trigger levels (determined by intensivist) and actual haemoglobin trigger levels (i.e., levels prior to actual administration of transfusion) were higher in the pre- versus post-cohort (90 [80-100] vs. 80 [72-90] g/L, p < .001 and 89 [82-96] g/L vs. 83 [79-94], p < .001, respectively). Percentage of days without compliance with the prescribed transfusion trigger was higher in the pre-cohort than in the post-cohort (23% vs. 14%, p < .001). Sensitivity analyses, excluding patients with traumatic brain injury, ischemic heart disease and COVID-19 demonstrated similar results. CONCLUSIONS Implementation of a restrictive transfusion trigger in a critical care setting resulted in lasting decreased RBC transfusion use and costs, decreased prescribed and actual haemoglobin trigger levels and improved adherence to prescribed haemoglobin trigger levels.
Collapse
Affiliation(s)
- Martin F Bjurström
- Department of Intensive and Perioperative Care, Skåne University Hospital and Lund University, Lund, Sweden
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Ylva C Linder
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Laboratory Medicine and Lund University, Lund, Sweden
| | - Jens Kjeldsen-Kragh
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Laboratory Medicine and Lund University, Lund, Sweden
| | - Jesper Bengtsson
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Laboratory Medicine and Lund University, Lund, Sweden
| | - Thomas Kander
- Department of Intensive and Perioperative Care, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
15
|
Xia X, Liu J, Fang W, Chen Z, Wang J, Xu H. The association between ferritin levels and all-cause mortality in stroke patients. Front Neurol 2024; 15:1386408. [PMID: 38988599 PMCID: PMC11233758 DOI: 10.3389/fneur.2024.1386408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose The purpose of study was to describe the association between ferritin and all-cause mortality of cases with stroke. Methods Clinical data derived from Multiparameter Intelligent Monitoring in Intensive Care were analyzed. The primary endpoint was 30-day mortality. The potential prognostic roles of Ferritin L were analyzed by Cox proportional hazard models. The independent prognostic roles of Ferritin L in the cases were analyzed by smooth curve fitting. Results Concerning 30-day mortality, the HR (95% CI) for a high Ferritin (≥373) was 1.925 (1.298, 2.854; p = 0.00113), compared to a low ferritin (< 373). After adjusting for multiple confounders, the HR (95% CI) for a high Ferritin (≥373) was 1.782 (1.126, 2.820; p = 0.01367), compared to a low Ferritin (< 373). A non-linear association between Ferritin and 30-day mortality was found. Using recursive algorithm and two-piecewise linear regression model, inflection point (IP) was calculated, which was 2,204. On the left side of the IP, there was a positive relationship between Ferritin and 30-day mortality, and the effect size, 95% CI and p value were 1.0006 (1.0004, 1.0009) p < 0.0001, respectively. On the right of the IP, the effect size, 95% CI and p value were 1.0000 (1.0000, 1.0000) and 0.3107, respectively. Conclusion Ferritin was associated with increased risk of stroke; it is important to further examine the association if the increased uric acid would increase the outcome of stroke in a longitudinal study. The non-linear relationship between Ferritin and all-cause mortality of stroke was observed. Ferritin was a risk factor for the outcome of stroke when ferritin was <2204.
Collapse
Affiliation(s)
- Xuefen Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiongjiong Liu
- Department of General Practice, Fuyang Hospital Affiliated to Anhui Medical University, Anhui, China
| | - Wenqiang Fang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibo Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Wang
- Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Almuqrin AM, Alotaibi BA, Aldali JA, Alshalani A, AlSudais H, Aldali HJ. Assessing the impact of COVID-19 on acute leukemia patients: a comparative analysis of hematological and biochemical parameters. BMC Infect Dis 2024; 24:576. [PMID: 38862891 PMCID: PMC11167824 DOI: 10.1186/s12879-024-09485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The impact of COVID-19 infection on the blood system remains to be investigated, especially with those encountering hematological malignancies. It was found that a high proportion of cancer patients are at an elevated risk of encountering COVID-19 infection. Leukemic patients are often suppressed and immunocompromised, which would impact the pathology following COVID-19 infection. Therefore, this research aims to bring valuable insight into the mechanism by which COVID-19 infection influences the hematological and biochemical parameters of patients with acute leukemia. METHODS This retrospective investigation uses repeated measures to examine changes in hematological and biochemical parameters among patients with acute leukemia before and after COVID-19 infection at a major Saudi tertiary center. The investigation was conducted at the Ministry of National Guard-Health Affairs in Riyadh, Saudi Arabia, on 24 acute leukemia patients with COVID-19 between April 2020 and July 2023. The impact of COVID-19 on clinical parameters, comorbidities, and laboratory values was evaluated using data obtained from the electronic health records at four designated time intervals. The relative importance of comorbidities, testing preferences, and significant predictors of survival was ascertained. RESULTS The majority of leukemic COVID-19-infected patients, primarily detected through PCR tests, were diagnosed with acute lymphoblastic leukemia (70.8%). The hematological and biochemical parameters exhibited stability, except for a brief increase in ALT and a sustained rise in AST. These changes were not statistically significant, and parameters remained normal at all time points. Additionally, an increase in monocyte count was shown at time point-3, as well as platelet counts at time point 2. CONCLUSION While this study did not detect statistically significant effects of COVID-19 on biochemical and hematological parameters in acute leukemia patients, further investigation is needed to fully understand the potential adverse reactions and modifications following COVID-19 infection.
Collapse
Affiliation(s)
- Abdulaziz M Almuqrin
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Badi A Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hamood AlSudais
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hamzah J Aldali
- Cellular and Molecular Medicine, College of Biomedical Science, University of Bristol, Bristol, BS8 1QU, UK
| |
Collapse
|
17
|
Grote K, Schaefer AC, Soufi M, Ruppert V, Linne U, Mukund Bhagwat A, Szymanski W, Graumann J, Gercke Y, Aldudak S, Hilfiker-Kleiner D, Schieffer E, Schieffer B. Targeting the High-Density Lipoprotein Proteome for the Treatment of Post-Acute Sequelae of SARS-CoV-2. Int J Mol Sci 2024; 25:4522. [PMID: 38674105 PMCID: PMC11049911 DOI: 10.3390/ijms25084522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Here, we target the high-density lipoprotein (HDL) proteome in a case series of 16 patients with post-COVID-19 symptoms treated with HMG-Co-A reductase inhibitors (statin) plus angiotensin II type 1 receptor blockers (ARBs) for 6 weeks. Patients suffering from persistent symptoms (post-acute sequelae) after serologically confirmed SARS-CoV-2 infection (post-COVID-19 syndrome, PCS, n = 8) or following SARS-CoV-2 vaccination (PVS, n = 8) were included. Asymptomatic subjects with corresponding serological findings served as healthy controls (n = 8/8). HDL was isolated using dextran sulfate precipitation and the HDL proteome of all study participants was analyzed quantitatively by mass spectrometry. Clinical symptoms were assessed using questionnaires before and after therapy. The inflammatory potential of the patients' HDL proteome was addressed in human endothelial cells. The HDL proteome of patients with PCS and PVS showed no significant differences; however, compared to controls, the HDL from PVS/PCS patients displayed significant alterations involving hemoglobin, cytoskeletal proteins (MYL6, TLN1, PARVB, TPM4, FLNA), and amyloid precursor protein. Gene Ontology Biological Process (GOBP) enrichment analysis identified hemostasis, peptidase, and lipoprotein regulation pathways to be involved. Treatment of PVS/PCS patients with statins plus ARBs improved the patients' clinical symptoms. After therapy, three proteins were significantly increased (FAM3C, AT6AP2, ADAM10; FDR < 0.05) in the HDL proteome from patients with PVS/PCS. Exposure of human endothelial cells with the HDL proteome from treated PVS/PCS patients revealed reduced inflammatory cytokine and adhesion molecule expression. Thus, HDL proteome analysis from PVS/PCS patients enables a deeper insight into the underlying disease mechanisms, pointing to significant involvement in metabolic and signaling disturbances. Treatment with statins plus ARBs improved clinical symptoms and reduced the inflammatory potential of the HDL proteome. These observations may guide future therapeutic strategies for PVS/PCS patients.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Ann-Christin Schaefer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Muhidien Soufi
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Volker Ruppert
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany;
| | - Aditya Mukund Bhagwat
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Witold Szymanski
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Yana Gercke
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Denise Hilfiker-Kleiner
- Institute Cardiovascular Complications in Pregnancy and Oncologic Therapies, Philipps University Marburg, 35043 Marburg, Germany;
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| |
Collapse
|
18
|
Kronstein-Wiedemann R, Tausche K, Kolditz M, Teichert M, Thiel J, Koschel D, Tonn T, Künzel SR. Long-COVID is Associated with Impaired Red Blood Cell Function. Horm Metab Res 2024; 56:318-323. [PMID: 37890507 DOI: 10.1055/a-2186-8108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
COVID-19 disease, caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), induces a broad spectrum of clinical symptoms ranging from asymptomatic cases to fatal outcomes. About 10-35% of all COVID-19 patients, even those with mild COVID-19 symptoms, continue to show symptoms, i. e., fatigue, shortness of breath, cough, and cognitive dysfunction, after initial recovery. Previously, we and others identified red blood cell precursors as a direct target of SARS-CoV-2 and suggested that SARS-CoV-2 induces dysregulation in hemoglobin- and iron-metabolism contributing to the severe systemic course of COVID-19. Here, we put particular emphasis on differences in parameters of clinical blood gas analysis and hematological parameters of more than 20 healthy and Long-COVID patients, respectively. Long-COVID patients showed impaired oxygen binding to hemoglobin with concomitant increase in carbon monoxide binding. Hand in hand with decreased plasma iron concentration and transferrin saturation, mean corpuscular hemoglobin was elevated in Long-COVID patients compared to healthy donors suggesting a potential compensatory mechanism. Although blood pH was within the physiological range in both groups, base excess- and bicarbonate values were significantly lower in Long-COVID patients. Furthermore, Long-COVID patients displayed reduced lymphocyte levels. The clinical relevance of these findings, e. g., as a cause of chronic immunodeficiency, remains to be investigated in future studies. In conclusion, our data suggest impaired erythrocyte functionality in Long-COVID patients, leading to diminished oxygen supply. This in turn could be an explanation for the CFS, dyspnea and anemia. Further investigations are necessary to identify the underlying pathomechanisms.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Kristin Tausche
- Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Kolditz
- Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Madeleine Teichert
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dirk Koschel
- Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Internal Medicine and Pneumology, Fachkrankenhaus Coswig, Lung Center, Coswig, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| |
Collapse
|
19
|
Jung F, Connes P. Morphology and Function of Red Blood Cells in COVID-19 Patients: Current Overview 2023. Life (Basel) 2024; 14:460. [PMID: 38672731 PMCID: PMC11051426 DOI: 10.3390/life14040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In severe cases, SARS-CoV-2 infection leads to severe respiratory failure. Although angiotensin-converting enzyme 2 (ACE2) receptors are not expressed in red blood cells, SARS-CoV-2 can interact with red blood cells (RBCs) via several receptors or auxiliary membrane proteins. Recent data show that viral infection causes significant damage to the RBCs, altering their morphology, deformability, and aggregability. Loss of RBC deformability and/or increased aggregability favors the development of thrombotic processes in the microcirculation, as has been described to occur in COVID-19 patients. In addition, many patients also develop systemic endotheliitis associated with generalized coagulopathy. This manifests itself clinically as obstructive microthrombi in the area of the medium and smallest vessels, which can affect all internal organs. It is thought that such changes in the RBCs may contribute to the microangiopathy/microthrombosis associated with COVID-19 and may result in impaired capillary blood flow and tissue oxygenation.
Collapse
Affiliation(s)
- Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Philippe Connes
- Laboratory LIBM EA7424, Team “Vascular Biology and Red Blood Cell”, University of Lyon I, 69500 Lyon, France;
| |
Collapse
|
20
|
Lin Y, Yang Y, Xiang N, Wang L, Zheng T, Zhuo X, Shi R, Su X, Liu Y, Liao G, Du L, Huang J. Characterization and trajectories of hematological parameters prior to severe COVID-19 based on a large-scale prospective health checkup cohort in western China: a longitudinal study of 13-year follow-up. BMC Med 2024; 22:105. [PMID: 38454462 PMCID: PMC10921814 DOI: 10.1186/s12916-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The relaxation of the "zero-COVID" policy on Dec. 7, 2022, in China posed a major public health threat recently. Complete blood count test was discovered to have complicated relationships with COVID-19 after the infection, while very few studies could track long-term monitoring of the health status and identify the characterization of hematological parameters prior to COVID-19. METHODS Based on a 13-year longitudinal prospective health checkup cohort of ~ 480,000 participants in West China Hospital, the largest medical center in western China, we documented 998 participants with a laboratory-confirmed diagnosis of COVID-19 during the 1 month after the policy. We performed a time-to-event analysis to explore the associations of severe COVID-19 patients diagnosed, with 34 different hematological parameters at the baseline level prior to COVID-19, including the whole and the subtypes of white and red blood cells. RESULTS A total of 998 participants with a positive SARS-CoV-2 test were documented in the cohort, 42 of which were severe cases. For white blood cell-related parameters, a higher level of basophil percentage (HR = 6.164, 95% CI = 2.066-18.393, P = 0.001) and monocyte percentage (HR = 1.283, 95% CI = 1.046-1.573, P = 0.017) were found associated with the severe COVID-19. For lymphocyte-related parameters, a lower level of lymphocyte count (HR = 0.571, 95% CI = 0.341-0.955, P = 0.033), and a higher CD4/CD8 ratio (HR = 2.473, 95% CI = 1.009-6.059, P = 0.048) were found related to the risk of severe COVID-19. We also observed that abnormality of red cell distribution width (RDW), mean corpuscular hemoglobin concentration (MCHC), and hemoglobin might also be involved in the development of severe COVID-19. The different trajectory patterns of RDW-SD and white blood cell count, including lymphocyte and neutrophil, prior to the infection were also discovered to have significant associations with the risk of severe COVID-19 (all P < 0.05). CONCLUSIONS Our findings might help decision-makers and clinicians to classify different risk groups of population due to outbreaks including COVID-19. They could not only optimize the allocation of medical resources, but also help them be more proactive instead of reactive to long COVID-19 or even other outbreaks in the future.
Collapse
Affiliation(s)
- Yifei Lin
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yong Yang
- Health Management Center, General Practice Medical Center, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Nanyan Xiang
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Le Wang
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, Frontiers Science Center for Disease-Related Molecular Network, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tao Zheng
- Engineering Research Center of Medical Information Technology, Ministry of Education, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuejun Zhuo
- Engineering Research Center of Medical Information Technology, Ministry of Education, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Rui Shi
- Engineering Research Center of Medical Information Technology, Ministry of Education, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyi Su
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, Chinese Evidence-Based Medicine Center, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Liu
- Department of Neurosurgery, Innovation Institute for Integration of Medicine and Engineering, Ministry of Education, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Du
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Jin Huang
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Farani MR, Zalpoor H, Azarian M, Saadi MI, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M. COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 2024; 22:126. [PMID: 38360719 PMCID: PMC10868124 DOI: 10.1186/s12964-023-01316-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024] Open
Abstract
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Kaur G, Kaur R, Sumanpreet, Kaur M. Association of COVID with Mycosis in General. Infect Disord Drug Targets 2024; 24:e190124225866. [PMID: 38251692 DOI: 10.2174/0118715265266815231130063931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 is a respiratory disease which created havoc worldwide, was accompanied by another peculiar, otherwise rare, secondary fungal infection Mucormycosis which was observed at exceptionally high incidence in India during the second wave of COVID-19. The article explores possible links between the two infectious diseases to understand a higher-than-normal occurrence of Mucormycosis in COVID-19 patients. Coronavirus enters the patients through ACE-2 and many other receptors like- NRP-1, TfR, CD-126, and CD-26. Virus bind to cells possessing these receptors and affect their proper functioning, disturbing homeostatic metabolism and resulting in conditions like hyperglycemia, Diabetic Ketoacidosis (DKA), low serum pH, iron overload, anemia, hypoxia, and immunosuppression as explained in the article. All these outcomes provide a very supportive environment for the attack and spread of Mucormycosis fungi. The major receptor for Mucormycosis in humans is the GRP-78. Its expression is upregulated by coronavirus entry and by hyperferritinemia, hyperglycemia, and acidic conditions prevalent in COVID patients, thus providing an easy entry for the fungal species. Upregulation of GRP-78 furthermore damages pancreatic β-cells and intensifies hyperglycemia, showing quite a synergic relationship. Inordinate rise of Mucormycosis cases in India might be explained by facts like- India possessing a large proportion of diabetic patients, emergence of a very deadly strain of coronavirus- Delta strain, higher doses of steroids and antibodies used to treat patients against this strain, overburdened health care services, sudden much higher need of oxygen supply and use of industrial oxygen could explain the Mucormycosis outbreak observed in India during the second wave of COVID-19. OBJECTIVE The present review discusses the functional interdependence between COVID-19 and Mucormycosis and summarizes the possible synergic links between COVID and Mucormycosis. CONCLUSION The receptors and metabolic pathways affected by COVID-19 result in severe physiological conditions- hyperglycemia, DKA, anemia, iron overload, immunosuppression, and hypoxia. All these conditions not only increase the expression of GRP-78, the major receptor for entry of fungi but also play a crucial role in providing quality media for Mucormycosis fungus to establish and grow. Hence explains the fungal epidemic observed in India during the second wave of COVID-19 in India.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Rajinder Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Sumanpreet
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Manpreet Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| |
Collapse
|
23
|
Cosenza LC, Marzaro G, Zurlo M, Gasparello J, Zuccato C, Finotti A, Gambari R. Inhibitory effects of SARS-CoV-2 spike protein and BNT162b2 vaccine on erythropoietin-induced globin gene expression in erythroid precursor cells from patients with β-thalassemia. Exp Hematol 2024; 129:104128. [PMID: 37939833 DOI: 10.1016/j.exphem.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
During the recent coronavirus disease 2019 (COVID-19) pandemic several patients with β-thalassemia have been infected by severe acute respiratory syndrome coronavirus (SARS-CoV-2), and most patients were vaccinated against SARS-CoV-2. Recent studies demonstrate an impact of SARS-CoV-2 infection on the hematopoietic system. The main objective of this study was to verify the effects of exposure of erythroid precursor cells (ErPCs) from patients with β-thalassemia to SARS-CoV-2 spike protein (S-protein) and the BNT162b2 vaccine. Erythropoietin (EPO)-cultured ErPCs have been either untreated or treated with S-protein or BNT162b2 vaccine. The employed ErPCs were from a β-thalassemia cellular Biobank developed before the COVID-19 pandemic. The genotypes were β+-IVSI-110/β+-IVSI-110 (one patient), β039/β+-IVSI-110 (3 patients), and β039/ β039 (2 patients). After treatment with S-protein or BNT162b2 for 5 days, lysates were analyzed by high performance liquid chromatography (HPLC), for hemoglobin production, and isolated RNA was assayed by RT-qPCR, for detection of globin gene expression. The main conclusions of the results obtained are that SARS-CoV-2 S-protein and BNT162b2 vaccine (a) inhibit fetal hemoglobin (HbF) production by β-thalassemic ErPCs and (b) inhibit γ-globin mRNA accumulation. In addition, we have performed in silico studies suggesting a high affinity of S-protein to HbF. Remarkably, the binding interaction energy of fetal hemoglobin to S-protein was comparable with that of angiotensin-converting enzyme 2 (ACE2). Our results are consistent with the hypothesis of a relevant impact of SARS-CoV-2 infection and COVID-19 vaccination on the hematopoietic system.
Collapse
Affiliation(s)
- Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy; Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy; Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy; Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
24
|
Gasparello J, Verona M, Chilin A, Gambari R, Marzaro G. Assessing the interaction between hemoglobin and the receptor binding domain of SARS-CoV-2 spike protein through MARTINI coarse-grained molecular dynamics. Int J Biol Macromol 2023; 253:127088. [PMID: 37774812 DOI: 10.1016/j.ijbiomac.2023.127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The emergence of different coronavirus-related diseases in the 2000's (SARS, MERS, and Covid-19) warrants the need of a complete understanding of the pathological, biological, and biochemical behavior of this class of pathogens. Great attention has been paid to the SARS-CoV-2 Spike protein, and its interaction with the human ACE2 has been thoroughly investigated. Recent findings suggested that the SARS-CoV-2 components may interact with different human proteins, and hemoglobin has very recently been demonstrated as a potential target for the Spike protein. Here we have investigated the interaction between either adult or fetal hemoglobin and the receptor binding domain of the Spike protein at molecular level through advanced molecular dynamics techniques and proposed rational binding modes and energy estimations. Our results agree with biochemical data previously reported in literature. We also demonstrated that co-incubation of pulmonary epithelial cells with hemoglobin strongly reduces the pro-inflammatory effects exerted by the concomitant administration of Spike protein.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35313 Padova, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35313 Padova, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35313 Padova, Italy.
| |
Collapse
|
25
|
Panteleev MA, Sveshnikova AN, Shakhidzhanov SS, Zamaraev AV, Ataullakhanov FI, Rumyantsev AG. The Ways of the Virus: Interactions of Platelets and Red Blood Cells with SARS-CoV-2, and Their Potential Pathophysiological Significance in COVID-19. Int J Mol Sci 2023; 24:17291. [PMID: 38139118 PMCID: PMC10743882 DOI: 10.3390/ijms242417291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The hematological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important in COVID-19 pathophysiology. However, the interactions of SARS-CoV-2 with platelets and red blood cells are still poorly understood. There are conflicting data regarding the mechanisms and significance of these interactions. The aim of this review is to put together available data and discuss hypotheses, the known and suspected effects of the virus on these blood cells, their pathophysiological and diagnostic significance, and the potential role of platelets and red blood cells in the virus's transport, propagation, and clearance by the immune system. We pay particular attention to the mutual activation of platelets, the immune system, the endothelium, and blood coagulation and how this changes with the evolution of SARS-CoV-2. There is now convincing evidence that platelets, along with platelet and erythroid precursors (but not mature erythrocytes), are frequently infected by SARS-CoV-2 and functionally changed. The mechanisms of infection of these cells and their role are not yet entirely clear. Still, the changes in platelets and red blood cells in COVID-19 are significantly associated with disease severity and are likely to have prognostic and pathophysiological significance in the development of thrombotic and pulmonary complications.
Collapse
Affiliation(s)
- Mikhail A. Panteleev
- Department of Medical Physics, Physics Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Faculty of Fundamental Physics and Chemical Engineering, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Soslan S. Shakhidzhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Alexey V. Zamaraev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Ulitsa Vavilova, 119991 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Fazoil I. Ataullakhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Aleksandr G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
| |
Collapse
|
26
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Zhang W, Tao Y, Zhu Y, Zheng Q, Hu F, Zhu W, Wang J, Ning M. Effect of serum autoantibodies on the COVID-19 patient's prognosis. Front Microbiol 2023; 14:1259960. [PMID: 38107861 PMCID: PMC10721969 DOI: 10.3389/fmicb.2023.1259960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023] Open
Abstract
Objectives Virus infection closely associated with autoimmune disease. The study aimed to explore the autoantibody profiles and the correlation of autoantibodies with the disease severity and the prognosis of the coronavirus disease 2019 (COVID-19) patients. Methods Three hundred thirty-seven hospitalized COVID-19 patients from 6th to 23rd January 2023 were enrolled. Logistic and Cox regression analyses were used to analyze the risk factors for the patient's disease severity and outcome. The association between Anti-extractable nuclear antigen antibody (ENA) positivity and the prognosis of COVID-19 patients was analyzed using Kaplan-Meier survival curves. Results 137 of COVID-19 patients were detected positive for antinuclear antibody (ANA), 61 had positive results for ENA, and 38 were positive for ANA and ENA. ANA positivity rate was higher in non-severe illness group (p = 0.032). COVID-19 patients who died during hospitalization had a high rate of ENA positivity than convalescent patients (p = 0.002). Multivariate logistic regression showed that ANA positivity was a protective factor for the disease severity of COVID-19. Multivariate Cox regression analysis revealed that ENA positivity, white blood cells count (WBC), aspartate aminotransferase (AST), Creatinine (CREA), and CRP were independent risk factors for the outcome of COVID-19 patients, and that COVID-19 patients with ENA positivity had a lower cumulative survival rate (p = 0.002). Conclusion A spectrum of autoantibodies were expressed in COVID-19 patients, among which ANA and ENA positivity was associated with the severity and prognosis of COVID-19. Therefore, autoantibodies may help to assess the disease severity and prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yijia Zhu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qisi Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Fenghua Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenbo Zhu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Kondratov KA, Artamonov AA, Mikhailovskii VY, Velmiskina AA, Mosenko SV, Grigoryev EA, Anisenkova AY, Nikitin YV, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. SARS-CoV-2 Impact on Red Blood Cell Morphology. Biomedicines 2023; 11:2902. [PMID: 38001903 PMCID: PMC10669871 DOI: 10.3390/biomedicines11112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Severe COVID-19 alters the biochemical and morphological characteristics of blood cells in a wide variety of ways. To date, however, the vast majority of research has been devoted to the study of leukocytes, while erythrocyte morphological changes have received significantly less attention. The aim of this research was to identify erythrocyte morphology abnormalities that occur in COVID-19, compare the number of different poikilocyte types, and measure erythrocyte sizes to provide data on size dispersion. Red blood cells obtained from 6 control donors (800-2200 cells per donor) and 5 COVID-19 patients (800-1900 cells per patient) were examined using low-voltage scanning electron microscopy. We did not discover any forms of erythrocyte morphology abnormalities that would be specific to COVID-19. Among COVID-19 patients, we observed an increase in the number of acanthocytes (p = 0.01) and a decrease in the number of spherocytes (p = 0.03). In addition, our research demonstrates that COVID-19 causes an increase in the median (p = 0.004) and interquartile range (p = 0.009) when assessing erythrocyte size. The limitation of our study is a small number of participants.
Collapse
Affiliation(s)
- Kirill A. Kondratov
- City Hospital No. 40, St. Petersburg 197706, Russia
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | | | - Anastasiya A. Velmiskina
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey V. Mosenko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Anna Yu. Anisenkova
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Yuri V. Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Svetlana V. Apalko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Andrey M. Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Sergey G. Scherbak
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
29
|
Bu S, Zheng H, Chen S, Wu Y, He C, Yang D, Wu C, Zhou Y. An optimized machine learning model for predicting hospitalization for COVID-19 infection in the maintenance dialysis population. Comput Biol Med 2023; 165:107410. [PMID: 37672928 DOI: 10.1016/j.compbiomed.2023.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
COVID-19 has a high rate of infection in dialysis patients and poses a serious risk to human health. Currently, there are no dialysis centers in China that have analyzed the prevalence of COVID-19 infection in dialysis patients and the mortality rate. Although machine learning-based disease prediction methods have proven to be effective, redundant attributes in the data and the interpretability of the predictive models are still worth investigating. Therefore, this paper proposed a wrapper feature selection classification model to achieve the prediction of the risk of COVID-19 infection in dialysis patients. The method was used to optimize the feature set of the sample through an enhanced JAYA optimization algorithm based on the dispersed foraging strategy and the greedy levy mutation strategy. Then, the proposed method combines fuzzy K-nearest neighbor for classification prediction. IEEE CEC2014 benchmark function experiments as well as prediction experiments on the uremia dataset are used to validate the proposed model. The experimental results showed that the proposed method has a high prediction accuracy of 95.61% for the prevalence risk of COVID-19 infection in dialysis patients. Furthermore, it was shown that proalbumin, CRP, direct bilirubin, hemoglobin, albumin, and phosphorus are of great value for clinical diagnosis. Therefore, the proposed method can be considered as a promising method.
Collapse
Affiliation(s)
- Shuangshan Bu
- Department of Nephrology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - HuanHuan Zheng
- Department of Nephrology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Shanshan Chen
- Department of Nephrology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Yuemeng Wu
- Department of Nephrology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Chenlei He
- Department of Nephrology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Deshu Yang
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Chengwen Wu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
30
|
Khedr A, Khayat MT, Khayyat AN, Asfour HZ, Alsilmi RA, Kammoun AK. Accumulation of oxysterols in the erythrocytes of COVID-19 patients as a biomarker for case severity. Respir Res 2023; 24:206. [PMID: 37612691 PMCID: PMC10464166 DOI: 10.1186/s12931-023-02515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Due to the high risk of COVID-19 patients developing thrombosis in the circulating blood, atherosclerosis, and myocardial infarction, it is necessary to study the lipidome of erythrocytes. Specifically, we examined the pathogenic oxysterols and acylcarnitines in the erythrocyte homogenate of COVID-19 patients. These molecules can damage cells and contribute to the development of these diseases. METHODS This study included 30 patients and 30 healthy volunteers. The erythrocyte homogenate extract was analyzed using linear ion trap mass spectrometry combined with high-performance liquid chromatography. The concentrations of oxysterols and acylcarnitines in erythrocyte homogenates of healthy individuals and COVID-19 patients were measured. Elevated levels of toxic biomarkers in red blood cells could initiate oxidative stress, leading to a process known as Eryptosis. RESULTS In COVID-19 patients, the levels of five oxysterols and six acylcarnitines in erythrocyte homogenates were significantly higher than those in healthy individuals, with a p-value of less than 0.05. The mean total concentration of oxysterols in the red blood cells of COVID-19 patients was 23.36 ± 13.47 μg/mL, while in healthy volunteers, the mean total concentration was 4.92 ± 1.61 μg/mL. The 7-ketocholesterol and 4-cholestenone levels were five and ten times higher, respectively, in COVID-19 patients than in healthy individuals. The concentration of acylcarnitines in the red blood cell homogenate of COVID-19 patients was 2 to 4 times higher than that of healthy volunteers on average. This finding suggests that these toxic biomarkers may cause the red blood cell death seen in COVID-19 patients. CONCLUSIONS The abnormally high levels of oxysterols and acylcarnitines found in the erythrocytes of COVID-19 patients were associated with the severity of the cases, complications, and the substantial risk of thrombosis. The concentration of oxysterols in the erythrocyte homogenate could serve as a diagnostic biomarker for COVID-19 case severity.
Collapse
Affiliation(s)
- Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia.
| | - Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| | - Hany Z Asfour
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, P.O. Box 80200, 21589, Jeddah, Saudi Arabia
| | - Rahmah A Alsilmi
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80200, 21589, Jeddah, Saudi Arabia
| | - Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Hensen T, Fässler D, O’Mahony L, Albrich WC, Barda B, Garzoni C, Kleger GR, Pietsch U, Suh N, Hertel J, Thiele I. The Effects of Hospitalisation on the Serum Metabolome in COVID-19 Patients. Metabolites 2023; 13:951. [PMID: 37623894 PMCID: PMC10456321 DOI: 10.3390/metabo13080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
COVID-19, a systemic multi-organ disease resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is known to result in a wide array of disease outcomes, ranging from asymptomatic to fatal. Despite persistent progress, there is a continued need for more accurate determinants of disease outcomes, including post-acute symptoms after COVID-19. In this study, we characterised the serum metabolomic changes due to hospitalisation and COVID-19 disease progression by mapping the serum metabolomic trajectories of 71 newly hospitalised moderate and severe patients in their first week after hospitalisation. These 71 patients were spread out over three hospitals in Switzerland, enabling us to meta-analyse the metabolomic trajectories and filter consistently changing metabolites. Additionally, we investigated differential metabolite-metabolite trajectories between fatal, severe, and moderate disease outcomes to find prognostic markers of disease severity. We found drastic changes in serum metabolite concentrations for 448 out of the 901 metabolites. These results included markers of hospitalisation, such as environmental exposures, dietary changes, and altered drug administration, but also possible markers of physiological functioning, including carboxyethyl-GABA and fibrinopeptides, which might be prognostic for worsening lung injury. Possible markers of disease progression included altered urea cycle metabolites and metabolites of the tricarboxylic acid (TCA) cycle, indicating a SARS-CoV-2-induced reprogramming of the host metabolism. Glycerophosphorylcholine was identified as a potential marker of disease severity. Taken together, this study describes the metabolome-wide changes due to hospitalisation and COVID-19 disease progression. Moreover, we propose a wide range of novel potential biomarkers for monitoring COVID-19 disease course, both dependent and independent of the severity.
Collapse
Affiliation(s)
- Tim Hensen
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
- School of Microbiology, University of Galway, H91 TK33 Galway, Ireland
- Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Liam O’Mahony
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
- Department of Medicine and School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Werner C. Albrich
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Beatrice Barda
- Fondazione Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland; (B.B.); (C.G.)
| | - Christian Garzoni
- Fondazione Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland; (B.B.); (C.G.)
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Gian-Reto Kleger
- Division of Intensive Care, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland;
| | - Urs Pietsch
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland;
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals, The Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
- School of Microbiology, University of Galway, H91 TK33 Galway, Ireland
- Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland; (L.O.); (W.C.A.)
| |
Collapse
|
32
|
Yin K, Peluso MJ, Luo X, Thomas R, Shin MG, Neidleman J, Andrew A, Young K, Ma T, Hoh R, Anglin K, Huang B, Argueta U, Lopez M, Valdivieso D, Asare K, Deveau TM, Munter SE, Ibrahim R, Ständker L, Lu S, Goldberg SA, Lee SA, Lynch KL, Kelly JD, Martin JN, Münch J, Deeks SG, Henrich TJ, Roan NR. Long COVID manifests with T cell dysregulation, inflammation, and an uncoordinated adaptive immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527892. [PMID: 36798286 PMCID: PMC9934605 DOI: 10.1101/2023.02.09.527892] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Long COVID (LC), a type of post-acute sequelae of SARS-CoV-2 infection (PASC), occurs after at least 10% of SARS-CoV-2 infections, yet its etiology remains poorly understood. Here, we used multiple "omics" assays (CyTOF, RNAseq/scRNAseq, Olink) and serology to deeply characterize both global and SARS-CoV-2-specific immunity from blood of individuals with clear LC and non-LC clinical trajectories, 8 months following infection and prior to receipt of any SARS-CoV-2 vaccine. Our analysis focused on deep phenotyping of T cells, which play important roles in immunity against SARS-CoV-2 yet may also contribute to COVID-19 pathogenesis. Our findings demonstrate that individuals with LC exhibit systemic inflammation and immune dysregulation. This is evidenced by global differences in T cell subset distribution in ways that imply ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. Individuals with LC harbored increased frequencies of CD4+ T cells poised to migrate to inflamed tissues, and exhausted SARS-CoV-2-specific CD8+ T cells. They also harbored significantly higher levels of SARS-CoV-2 antibodies, and in contrast to non-LC individuals, exhibited a mis-coordination between their SARS-CoV-2-specific T and B cell responses. RNAseq/scRNAseq and Olink analyses similarly revealed immune dysregulatory mechanisms, along with non-immune associated perturbations, in individuals with LC. Collectively, our data suggest that proper crosstalk between the humoral and cellular arms of adaptive immunity has broken down in LC, and that this, perhaps in the context of persistent virus, leads to the immune dysregulation, inflammation, and clinical symptoms associated with this debilitating condition.
Collapse
Affiliation(s)
- Kailin Yin
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Xiaoyu Luo
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, USA
| | - Min-Gyoung Shin
- Gladstone Institutes, University of California, San Francisco, USA
| | - Jason Neidleman
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Alicer Andrew
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Kyrlia Young
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Tongcui Ma
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Khamal Anglin
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Beatrice Huang
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Urania Argueta
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Monica Lopez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Daisy Valdivieso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Kofi Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Sadie E Munter
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Rania Ibrahim
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Meyerhofstrasse 1, Ulm, Germany
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, USA
| | - Kara L Lynch
- Division of Laboratory Medicine, University of California, San Francisco, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jan Münch
- Core Facility Functional Peptidomics, Ulm University Medical Center, Meyerhofstrasse 1, Ulm, Germany
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| |
Collapse
|
33
|
Lechuga GC, Morel CM, De-Simone SG. Hematological alterations associated with long COVID-19. Front Physiol 2023; 14:1203472. [PMID: 37565145 PMCID: PMC10411895 DOI: 10.3389/fphys.2023.1203472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Long COVID-19 is a condition characterized by persistent symptoms lasting beyond the acute phase of COVID-19. Long COVID-19 produces diverse symptomatology and can impact organs and systems, including the hematological system. Several studies have reported, in COVID-19 patients, hematological abnormalities. Most of these alterations are associated with a higher risk of severe disease and poor outcomes. This literature review identified studies reporting hematological parameters in individuals with Long COVID-19. Findings suggest that Long COVID-19 is associated with a range of sustained hematological alterations, including alterations in red blood cells, anemia, lymphopenia, and elevated levels of inflammatory markers such as ferritin, D-dimer, and IL-6. These alterations may contribute to a better understanding of the pathophysiology of Long COVID-19 and its associated symptoms. However, further research is needed to elucidate the underlying mechanisms and potential treatments for these hematological changes in individuals with Long COVID-19.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Cellular Ultrastructure, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/ National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
34
|
Shevchenko JA, Perik-Zavodskii RY, Nazarov KV, Denisova VV, Perik-Zavodskaya OY, Philippova YG, Alsalloum A, Sennikov SV. Immunoregulatory properties of erythroid nucleated cells induced from CD34+ progenitors from bone marrow. PLoS One 2023; 18:e0287793. [PMID: 37390055 PMCID: PMC10313023 DOI: 10.1371/journal.pone.0287793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
CD 71+ erythroid nucleated cells have pronounced immunoregulatory properties in normal and pathological conditions. Many populations of cells with immunoregulatory properties are considered candidates for cellular immunotherapy for various pathologies. This study characterized the immunoregulatory properties of CD71+ erythroid cells derived from CD34-positive bone marrow cells under the influence of growth factors that stimulate differentiation into erythroid cells. CD34-negative bone marrow cells were used to isolate CD71+ erythroid nuclear cells. The resulting cells were used to assess the phenotype, determine the mRNA spectrum of the genes responsible for the main pathways and processes of the immune response, and obtain culture supernatants for the analysis of immunoregulatory factors. It was found that CD71+ erythroid cells derived from CD34+ cells carry the main markers of erythroid cells, but differ markedly from natural bone marrow CD71+ erythroid cells. The main differences are in the presence of the CD45+ subpopulation, distribution of terminal differentiation stages, transcriptional profile, secretion of certain cytokines, and immunosuppressive activity. The properties of induced CD71+ erythroid cells are closer to the cells of extramedullary erythropoiesis foci than to natural bone marrow CD71+ erythroid cells. Thus, when cultivating CD71+ erythroid cells for clinical experimental studies, it is necessary to take into account their pronounced immunoregulatory activity.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Roman Yu Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Vera V. Denisova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Olga Yu. Perik-Zavodskaya
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Yulia G. Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| |
Collapse
|
35
|
Soriano JB, Peláez A, Busquets X, Rodrigo-García M, Pérez-Urría EÁ, Alonso T, Girón R, Valenzuela C, Marcos C, García-Castillo E, Ancochea J. ABO blood group as a determinant of COVID-19 and Long COVID: An observational, longitudinal, large study. PLoS One 2023; 18:e0286769. [PMID: 37267401 DOI: 10.1371/journal.pone.0286769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND An association of ABO blood group and COVID-19 remains controversial. METHODS Following STROBE guidance for observational research, we explored the distribution of ABO blood group in patients hospitalized for acute COVID-19 and in those with Long COVID. Contingency tables were made and risk factors were explored using crude and adjusted Mantle-Haentzel odds ratios (OR and 95% CI). RESULTS Up to September 2022, there were a total of 5,832 acute COVID-19 hospitalizations in our hospital, corresponding to 5,503 individual patients, of whom blood group determination was available for 1,513 (27.5%). Their distribution by ABO was: 653 (43.2%) group 0, 690 (45.6%) A, 113 (7.5%) B, and 57 (3.8%) AB, which corresponds to the expected frequencies in the general population. In parallel, of 676 patients with Long COVID, blood group determination was available for 135 (20.0%). Their distribution was: 60 (44.4%) from group 0, 61 (45.2%) A, 9 (6.7%) B, and 5 (3.7%) AB. The distribution of the ABO system of Long COVID patients did not show significant differences with respect to that of the total group (p ≥ 0.843). In a multivariate analysis adjusting for age, sex, ethnicity, and severity of acute COVID-19 infection, subgroups A, AB, and B were not significantly associated with developing Long COVID with an OR of 1.015 [0.669-1.541], 1.327 [0.490-3.594] and 0.965 [0.453-2.058], respectively. The effect of the Rh+ factor was also not significant 1,423 [0.772-2,622] regarding Long COVID. CONCLUSIONS No association of any ABO blood subgroup with COVID-19 or developing Long COVID was identified.
Collapse
Affiliation(s)
- Joan B Soriano
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Peláez
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma, Spain
| | | | - Elena Ávalos Pérez-Urría
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamara Alonso
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Girón
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Claudia Valenzuela
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Celeste Marcos
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena García-Castillo
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Sokolov AV, Isakova-Sivak IN, Mezhenskaya DA, Kostevich VA, Gorbunov NP, Elizarova AY, Matyushenko VA, Berson YM, Grudinina NA, Kolmakov NN, Zabrodskaya YA, Komlev AS, Semak IV, Budevich AI, Rudenko LG, Vasilyev VB. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals 2023; 36:437-462. [PMID: 36334191 PMCID: PMC9638208 DOI: 10.1007/s10534-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves dysregulations of iron metabolism, and although the mechanism of this pathology is not yet fully understood, correction of iron metabolism pathways seems a promising pharmacological target. The previously observed effect of inhibiting SARS-CoV-2 infection by ferristatin II, an inducer of transferrin receptor 1 (TfR1) degradation, prompted the study of competition between Spike protein and TfR1 ligands, especially lactoferrin (Lf) and transferrin (Tf). We hypothesized molecular mimicry of Spike protein as cross-reactivity of Spike-specific antibodies with Tf and Lf. Thus, strong positive correlations (R2 > 0.95) were found between the level of Spike-specific IgG antibodies present in serum samples of COVID-19-recovered and Sputnik V-vaccinated individuals and their Tf-binding activity assayed with peroxidase-labeled anti-Tf. In addition, we observed cross-reactivity of Lf-specific murine monoclonal antibody (mAb) towards the SARS-CoV-2 Spike protein. On the other hand, the interaction of mAbs produced to the receptor-binding domain (RBD) of the Spike protein with recombinant RBD protein was disrupted by Tf, Lf, soluble TfR1, anti-TfR1 aptamer, as well as by peptides RGD and GHAIYPRH. Furthermore, direct interaction of RBD protein with Lf, but not Tf, was observed, with affinity of binding estimated by KD to be 23 nM and 16 nM for apo-Lf and holo-Lf, respectively. Treatment of Vero E6 cells with apo-Lf and holo-Lf (1-4 mg/mL) significantly inhibited SARS-CoV-2 replication of both Wuhan and Delta lineages. Protective effects of Lf on different arms of SARS-CoV-2-induced pathogenesis and possible consequences of cross-reactivity of Spike-specific antibodies are discussed.
Collapse
Affiliation(s)
- A V Sokolov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia.
| | - I N Isakova-Sivak
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - D A Mezhenskaya
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N P Gorbunov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - A Yu Elizarova
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Matyushenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Yu M Berson
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N A Grudinina
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popova Str. 15/17, St. Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064, Saint Petersburg, Russia
| | - A S Komlev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - I V Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - A I Budevich
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Breeding, 11 Frunze Str., 222160, Zhodino, Belarus
| | - L G Rudenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| |
Collapse
|
37
|
Zhang L, Xie S, Lyu F, Liu C, Li C, Liu W, Ma X, Zhou J, Qian X, Lu Y, Qian Z. Predictive value of immunoglobulin G, activated partial thromboplastin time, platelet, and indirect bilirubin for delayed viral clearance in patients infected with the Omicron variant. PeerJ 2023; 11:e15443. [PMID: 37223120 PMCID: PMC10202103 DOI: 10.7717/peerj.15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
Background Omicron is the recently emerged highly transmissible severe acute respiratory syndrome coronavirus 2 variant that has caused a dramatic increase in coronavirus disease-2019 infection cases worldwide. This study was to investigate the association between demographic and laboratory findings, and the duration of Omicron viral clearance. Methods Approximately 278 Omicron cases at the Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine were retrospectively analyzed between August 11 and August 31, 2022. Demographic and laboratory data were also collected. The association between demographics, laboratory findings, and duration of Omicron viral clearance was analyzed using Pearson correlation analysis and univariate and multivariate logistic regression. Results Univariate logistic regression analyses showed that a prolonged viral clearance time was significantly associated with older age and lower immunoglobulin (Ig) G and platelet (PLT) levels. Using multinomial logistic regression analyses, direct bilirubin, IgG, activated partial thromboplastin time (APTT), and PLT were independent factors for longer viral shedding duration. The model combining direct bilirubin, IgG, APTT, and PLT identifies patients infected with Omicron whose viral clearance time was ≥7 days with 62.7% sensitivity and 83.4% specificity. Conclusion These findings suggest that direct bilirubin, IgG, PLT, and APTT are significant risk factors for a longer viral shedding duration in patients infected with Omicron. Measuring levels of direct bilirubin, IgG, PLT, and APTT is advantageous to identify patients infected with Omicron with longer viral shedding duration.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Lyu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Chun Liu
- Respiratory and Critical Care Medicine Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunhui Li
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinhua Ma
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Xinyu Qian
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Nasiri K, Mohammadzadehsaliani S, Kheradjoo H, Shabestari AM, Eshaghizadeh P, Pakmehr A, Alsaffar MF, Al-Naqeeb BZT, Yasamineh S, Gholizadeh O. Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Commun Signal 2023; 21:103. [PMID: 37158893 PMCID: PMC10165295 DOI: 10.1186/s12964-023-01122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their significant capability to reconstitute and preserve a functional hematopoietic system in long-term periods after transplantation into conditioned hosts. HSCs are thus crucial cellular targets for the continual repair of inherited hematologic, metabolic, and immunologic disorders. In addition, HSCs can undergo various fates, such as apoptosis, quiescence, migration, differentiation, and self-renewal. Viruses continuously pose a remarkable health risk and request an appropriate, balanced reaction from our immune system, which as well as affects the bone marrow (BM). Therefore, disruption of the hematopoietic system due to viral infection is essential. In addition, patients for whom the risk-to-benefit ratio of HSC transplantation (HSCT) is acceptable have seen an increase in the use of HSCT in recent years. Hematopoietic suppression, BM failure, and HSC exhaustion are all linked to chronic viral infections. Virus infections continue to be a leading cause of morbidity and mortality in HSCT recipients, despite recent advancements in the field. Furthermore, whereas COVID-19 manifests initially as an infection of the respiratory tract, it is now understood to be a systemic illness that significantly impacts the hematological system. Patients with advanced COVID-19 often have thrombocytopenia and blood hypercoagulability. In the era of COVID-19, Hematological manifestations of COVID-19 (i.e., thrombocytopenia and lymphopenia), the immune response, and HSCT may all be affected by the SARS-CoV-2 virus in various ways. Therefore, it is important to determine whether exposure to viral infections may affect HSCs used for HSCT, as this, in turn, may affect engraftment efficiency. In this article, we reviewed the features of HSCs, and the effects of viral infections on HSCs and HSCT, such as SARS-CoV-2, HIV, cytomegalovirus, Epstein-Barr virus, HIV, etc. Video Abstract.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | | | | | - Parisa Eshaghizadeh
- Department of Dental Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Medical Doctor, Tehran University of Medical Science, Tehran, Iran
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department / AL-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | | | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Teodoro AGF, Rodrigues WF, Farnesi-de-Assunção TS, Borges AVBE, Obata MMS, Neto JRDC, da Silva DAA, Andrade-Silva LE, Desidério CS, Costa-Madeira JC, Barbosa RM, Cunha ACCH, Pereira LQ, de Vito FB, Vaz Tanaka SCS, Helmo FR, Lemes MR, Barbosa LM, Trevisan RO, Mundim FV, Oliveira-Scussel ACM, Junior PRR, Monteiro IB, Ferreira YM, Machado GH, Ferreira-Paim K, Moraes-Souza H, de Oliveira CJF, Rodrigues Júnior V, Silva MVD. Inflammatory Response and Activation of Coagulation after COVID-19 Infection. Viruses 2023; 15:v15040938. [PMID: 37112918 PMCID: PMC10145373 DOI: 10.3390/v15040938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
SARS-CoV-2 (COVID-19) infection is responsible for causing a disease with a wide spectrum of clinical presentations. Predisposition to thromboembolic disease due to excessive inflammation is also attributed to the disease. The objective of this study was to characterize the clinical and laboratory aspects of hospitalized patients, in addition to studying the pattern of serum cytokines, and associate them with the occurrence of thromboembolic events. METHODOLOGY A retrospective cohort study with 97 COVID-19 patients hospitalized from April to August 2020 in the Triângulo Mineiro macro-region was carried out. A review of medical records was conducted to evaluate the clinical and laboratory aspects and the frequency of thrombosis, as well as the measurement of cytokines, in the groups that presented or did not present a thrombotic event. RESULTS There were seven confirmed cases of thrombotic occurrence in the cohort. A reduction in the time of prothrombin activity was observed in the group with thrombosis. Further, 27.8% of all patients had thrombocytopenia. In the group that had thrombotic events, the levels of IL1b, IL-10, and IL2 were higher (p < 0.05). CONCLUSIONS In the studied sample, there was an increase in the inflammatory response in patients with thrombotic events, confirmed by the increase in cytokines. Furthermore, in this cohort, a link was observed between the IL-10 percentage and an increased chance of a thrombotic event.
Collapse
Affiliation(s)
- Anna Glória Fonseca Teodoro
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Wellington Francisco Rodrigues
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | | | - Anna V Bernardes E Borges
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Malu Mateus Santos Obata
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Djalma A Alves da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Leonardo E Andrade-Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Chamberttan S Desidério
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Juliana C Costa-Madeira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Rafaela M Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Andrezza C C Hortolani Cunha
- Postgraduate Program in Physiological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-200, Brazil
| | - Loren Q Pereira
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Fernanda Bernadelli de Vito
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Sarah Cristina Sato Vaz Tanaka
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Fernanda R Helmo
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Laís M Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Rafael O Trevisan
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Fabiano V Mundim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | | | - Paulo Roberto Resende Junior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Ivan B Monteiro
- UNIMED São Domingos Hospital, Uberaba 38025-110, Brazil
- José Alencar Gomes da Silva Regional Hospital, Uberaba 38060-200, Brazil
| | - Yulsef M Ferreira
- José Alencar Gomes da Silva Regional Hospital, Uberaba 38060-200, Brazil
| | | | - Kennio Ferreira-Paim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Hélio Moraes-Souza
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Carlo José Freire de Oliveira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| |
Collapse
|
40
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
41
|
Lopardo V, Montella F, Esposito RM, Zannella C, Aliberti SM, Capunzo M, Franci G, Puca AA, Ciaglia E. SARS-CoV-2 Lysate Stimulation Impairs the Release of Platelet-like Particles and Megakaryopoiesis in the MEG-01 Cell Line. Int J Mol Sci 2023; 24:4723. [PMID: 36902151 PMCID: PMC10003077 DOI: 10.3390/ijms24054723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.
Collapse
Affiliation(s)
- Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Roberta Maria Esposito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy
| |
Collapse
|
42
|
Böning D, Kuebler WM, Vogel D, Bloch W. The oxygen dissociation curve of blood in COVID-19-An update. Front Med (Lausanne) 2023; 10:1098547. [PMID: 36923010 PMCID: PMC10008909 DOI: 10.3389/fmed.2023.1098547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
An impressive effect of the infection with SARS-Co-19 is the impairment of oxygen uptake due to lung injury. The reduced oxygen diffusion may potentially be counteracted by an increase in oxygen affinity of hemoglobin. However, hypoxia and anemia associated with COVID-19 usually decrease oxygen affinity due to a rise in [2,3-bisphosphoglycerate]. As such, COVID-19 related changes in the oxygen dissociation curve may be critical for oxygen uptake and supply, but are hard to predict. A Pubmed search lists 14 publications on oxygen affinity in COVID-19. While some investigations show no changes, three large studies found an increased affinity that was related to a good prognosis. Exact causes remain unknown. The cause of the associated anemia in COVID-19 is under discussion. Erythrocytes with structural alterations of membrane and cytoskeleton have been observed, and virus binding to Band 3 and also to ACE2 receptors in erythroblasts has been proposed. COVID-19 presentation is moderate in many subjects suffering from sickle cell disease. A possible explanation is that COVID-19 counteracts the unfavorable large right shift of the oxygen dissociation curve in these patients. Under discussion for therapy are mainly affinity-increasing drugs.
Collapse
Affiliation(s)
- Dieter Böning
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Dominik Vogel
- Klinik für Interdisziplinäre Intensivmedizin, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
43
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Urra JM, Gortázar C, de la Fuente J. Serum biomarkers for nutritional status as predictors in COVID-19 patients before and after vaccination. J Funct Foods 2023; 101:105412. [PMID: 36644001 PMCID: PMC9829648 DOI: 10.1016/j.jff.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to characterize serum protein biomarkers for nutritional status that may be used as predictors for disease symptomatology in COVID-19 patients before and after vaccination. In pre-vaccine cohorts, proteomics analysis revealed significant differences between groups, with serum proteins alpha-1-acid glycoproteins (AGPs) 1 and 2, C-reactive protein (CRP) and retinol binding protein (RBP) increasing with COVID-19 severity, in contrast with serum albumin, transthyretin (TTR) and serotransferrin (TF) reduction as the symptomatology increased. Immunoassay reproduced and validated proteomics results of serum proteins albumin and RBP. In post-vaccine cohorts, the results showed the same pattern as in pre-vaccine cohorts for serum proteins AGPs, CRP, albumin and TTR. However, TF levels were similar between groups and RBP presented a slight reduction as COVID-19 symptomatology increased. In these cohorts, immunoassay validated proteomics results of serum proteins albumin, TTR and TF. Additionally, immune response to α-Gal in pre-vaccine cohorts varied in predominant immunoglobulin type profile, while post-vaccine groups presented mainly anti-α-Gal protective IgG antibodies. The study identified serum nutritional biomarkers that could potentially predict an accurate prognostic of COVID-19 disease to provide an appropriate nutritional care and guidance in non-vaccinated and vaccinated individuals against SARS-CoV-2. These results highlight the importance of designing personalized nutrition protocols to improve diet along with the application of prebiotics or probiotics for the control of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Margarita Villar
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Miguel Urra
- Immunology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain,Medicine School, Universidad de Castilla la Mancha (UCLM), 13005 Ciudad Real, Spain
| | - Christian Gortázar
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - José de la Fuente
- Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA,Corresponding author at: SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| |
Collapse
|
44
|
Efficacy and safety of oral melatonin in patients with severe COVID-19: a randomized controlled trial. Inflammopharmacology 2023; 31:265-274. [PMID: 36401728 PMCID: PMC9676876 DOI: 10.1007/s10787-022-01096-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Patients with COVID-19 have shown melatonin deficiency. We evaluated the efficacy and safety of administration oral melatonin in patients with COVID-19-induced pneumonia. Patients were randomly assigned in a 1:1 ratio to receive melatonin plus standard treatment or standard treatment alone. The primary outcomes were mortality rate and requirement of IMV. The clinical status of patients was recorded at baseline and every day over hospitalization based on seven-category ordinal scale from 1 (discharged) to 7 (death). A total of 226 patients (109 in the melatonin group and 117 in the control group) were enrolled (median age; in melatonin group: 54.60 ± 11.51, in control group: 54.69 ± 13.40). The mortality rate was 67% in the melatonin group and 94% in the control group (OR; 7.75, 95% CI, 3.27-18.35, P < 0.001). The rate of IMV requirement was 51.4% in the melatonin group and 70.9% in the control group, for an OR of 2.31 (95% CI, 1.34-4.00, P < 0.001). The median number of days to hospital discharge was 15 days (13-17) in the melatonin group and 21 days (14-24) in the control group (OR; 5.00, 95% CI, 0.15-9.84, P = 0.026). Time to clinical status improvement by ≥ 2 on the ordinal scale in was 12 days (9-13) in the melatonin group and 16 days (10-19) in the control group (OR; 3.92, 95% CI, 1.69-6.14, P = 0.038). Melatonin significantly improved clinical status with a safe profile in patients with severe COVID-19 pneumonia.
Collapse
|
45
|
Zhang W, Liu L, Xiao X, Zhou H, Peng Z, Wang W, Huang L, Xie Y, Xu H, Tao L, Nie W, Yuan X, Liu F, Yuan Q. Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease. Front Immunol 2023; 14:961642. [PMID: 37026010 PMCID: PMC10070855 DOI: 10.3389/fimmu.2023.961642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein-protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)-gene, miRNA-gene, and gene-disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Hongshan Zhou
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Fang Liu
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
- National Clinical Medical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Research Center for Medical Metabolomics, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| |
Collapse
|
46
|
Skakun O, Seredyuk N, Fedorov S, Verbovska O. Ferritin-haemoglobin ratio as a predictor of severity and fatal outcome in patients with Covid-19. SCRIPTA MEDICA 2023; 54:237-244. [DOI: 10.5937/scriptamed54-45157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Background/Aim: Although ferritin and haemoglobin were well-studied for adverse outcome prediction in COVID-19 patients, a ferritin-haemoglobin ratio (FHR) was studied poorly. The study aimed to evaluate the prognostic ability of FHR at hospital admission in hypertensive and non-hypertensive patients with COVID-19. Methods: The study included 135 patients hospitalised for COVID-19-associated pneumonia. The 78.5 % of patients were hypertensive. Results: FHR at admission was higher in patients with critical condition (39.8 [17.1-83.0]) than in patients with moderate (22.0 [12.1-32.1], p = 0.01) and severe condition (34.6 [15.1-64.5], p = 0.01). FHR was higher in patients who required supplemental oxygen (40.4 [29.4-47.8]) than in patients without the need for supplemental oxygen (22.0 [18.0-25.5]) (p = 0.001). FHR at admission was higher in non-survivors (40.1 [24.6-95.9]) than in survivors (24.5 [21.6-28.4]) (p = 0.047). FHR showed weak discriminative ability for the prediction of severe/critical conditions in hypertensive patients (AUC = 0.636, p = 0.015) and all (hypertensive and non-hypertensive patients) patients (AUC = 0.658, p = 0.001), whereas FHR had an acceptable discriminative ability in non-hypertensive patients (AUC = 0.764, p = 0.015). There was an acceptable discriminative ability of FHR for in-hospital mortality prediction in hypertensive patients (AUC = 0.717, p = 0.029). Patients with FHR > 33.98 (Youden index, 0.39) had higher odds of severe/critical clinical condition (OR: 4.57; 95 % CI: 1.87-11.18; p = 0.001). FHR of > 37.64 (Youden index, 0.55) was associated with higher in-hospital mortality among hypertensive patients (OR: 12.06; 95 % CI: 2.44-59.71; p = 0.002). There was no difference in AUC for the discriminative ability of FHR regarding severe/ critical condition (p = 0.296) and mortality (p = 0.663) in hypertensive and non-hypertensive patients. Conclusion: FHR at admission of > 33.98 is a predictor of severe/critical COVID-19 in both hypertensive and non-hypertensive patients. FHR of > 37.64 is a predictor of in-hospital mortality in hypertensive patients. There was no significant difference in the discriminative ability of FHR between hypertensive and non-hypertensive patients.
Collapse
|
47
|
Liang H, Kong X, Wang H, Ren Y, Liu E, Sun F, Qi J, Zhang Q, Zhou Y. Elucidating the Heterogeneity of Serum Metabolism in Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia by Raman Spectroscopy. ACS OMEGA 2022; 7:47056-47069. [PMID: 36570283 PMCID: PMC9773805 DOI: 10.1021/acsomega.2c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Myelodysplastic syndrome (MDS) is difficult to diagnose and classify because it has the potential to evolve into acute myeloid leukemia (AML). Raman spectroscopy and orthogonal partial least squares discrimination analysis (OPLS-DA) are used to systematically analyze peripheral blood serum samples from 33 patients with MDS, 25 patients with AML, and 29 control volunteers to gain insight into the heterogeneity of serum metabolism in patients with MDS and AML. AML patients show unique serum spectral data compared to MDS patients with considerably greater peak intensities of collagen (859 and 1345 cm-1) and carbohydrate (920 and 1123 cm-1) compared to MDS patients. Screening and bioinformatics analysis of MDS- and AML-related genes based on the Gene Expression Omnibus (GEO) database shows that 1459 genes are differentially expressed, and the main signaling pathways are related to Th17 cell differentiation, pertussis, and cytokine receptor interaction. Statistical analysis of serological indexes related to glucose and lipid metabolism shows that patients with AML have increased serum triglyceride (TG) levels and decreased total protein levels. This study provides a spectral basis for the relationship between the massive serological data of patients and the typing of MDS and AML and provides important information for the rapid and early identification of MDS and AML.
Collapse
Affiliation(s)
- Haoyue Liang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaodong Kong
- Department
of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haoyu Wang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yansong Ren
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ertao Liu
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fanfan Sun
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jianwei Qi
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qiang Zhang
- Department
of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Zhou
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute
of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
48
|
Jasenovec T, Radosinska D, Kollarova M, Balis P, Zorad S, Vrbjar N, Bernatova I, Cacanyiova S, Tothova L, Radosinska J. Effects of Taxifolin in Spontaneously Hypertensive Rats with a Focus on Erythrocyte Quality. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122045. [PMID: 36556410 PMCID: PMC9788412 DOI: 10.3390/life12122045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Oxidative stress and multiple erythrocyte abnormalities have been observed in hypertension. We focused on the effects of angiotensin-converting enzyme 2 (ACE2) inhibition by MLN-4760 inhibitor on angiotensin peptides, oxidative stress parameters, and selected erythrocyte quality markers in spontaneously hypertensive rats (SHR). We also investigated the potential effects of polyphenolic antioxidant taxifolin when applied in vivo and in vitro following its incubation with erythrocytes. SHRs were divided into four groups: control, taxifolin-treated, MLN-4760-treated, and MLN-4760 with taxifolin. MLN-4760 administration increased the blood pressure rise independent of taxifolin treatment, whereas taxifolin decreased it in control SHRs. Body weight gain was also higher in ACE2-inhibited animals and normalized after taxifolin treatment. However, taxifolin did not induce any change in angiotensin peptide concentrations nor a clear antioxidant effect. We documented an increase in Na,K-ATPase enzyme activity in erythrocyte membranes of ACE2-inhibited SHRs after taxifolin treatment. In conclusion, ACE2 inhibition deteriorated some selected RBC properties in SHRs. Although taxifolin treatment did not improve oxidative stress markers, our data confirmed the blood pressure-lowering potential, anti-obesogenic effect, and some "erythroprotective" effects of this compound in both control and ACE2-inhibited SHRs. In vitro investigations documenting different effects of taxifolin on erythrocyte properties from control and ACE2-inhibited SHRs accentuated the irreplaceability of in vivo studies.
Collapse
Affiliation(s)
- Tomas Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Dominika Radosinska
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Iveta Bernatova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Sona Cacanyiova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Correspondence: ; Tel.: +42-12-9011-9526
| |
Collapse
|
49
|
Bizjak DA, John L, Matits L, Uhl A, Schulz SVW, Schellenberg J, Peifer J, Bloch W, Weiß M, Grüner B, Bracht H, Steinacker JM, Grau M. SARS-CoV-2 Altered Hemorheological and Hematological Parameters during One-Month Observation Period in Critically Ill COVID-19 Patients. Int J Mol Sci 2022; 23:15332. [PMID: 36499657 PMCID: PMC9735540 DOI: 10.3390/ijms232315332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hematological and hemorheological parameters are known to be altered in COVID-19; however, the value of combined monitoring in order to deduce disease severity is only scarcely examined. A total of 44 acute SARS-CoV-2-infected patients (aCOV) and 44 age-matched healthy controls (Con) were included. Blood of aCOV was sampled at admission (T0), and at day 2 (T2), day 5 (T5), day 10 (T10), and day 30 (T30) while blood of Con was only sampled once. Inter- and intra-group differences were calculated for hematological and hemorheological parameters. Except for mean cellular volume and mean cellular hemoglobin, all blood cell parameters were significantly different between aCOV and Con. During the acute disease state (T0-T5), hematological and hemorheological parameters were highly altered in aCOV; in particular, anemic conditions and increased immune cell response/inflammation, oxidative/nitrosative stress, decreased deformability, as well as increased aggregation, were observed. During treatment and convalescence until T30, almost all abnormal values of aCOV improved towards Con values. During the acute state of the COVID-19 disease, the hematological, as well as the hemorheological system, show fast and potentially pathological changes that might contribute to the progression of the disease, but changes appear to be largely reversible after four weeks. Measuring RBC deformability and aggregation, as well as oxidative stress induction, may be helpful in monitoring critically ill COVID-19 patients.
Collapse
Affiliation(s)
| | - Lucas John
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | - Lynn Matits
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Alisa Uhl
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | | | - Jana Schellenberg
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | - Johannes Peifer
- Central Emergency Services, University Hospital Ulm, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Manfred Weiß
- Clinic for Anaesthesiology and Intensive Care Medicine, University Hospital Medical School, 89081 Ulm, Germany
| | - Beate Grüner
- Department of Internal Medicine III, Division of Infectious Diseases, University Hospital Ulm, 89081 Ulm, Germany
| | - Hendrik Bracht
- Central Emergency Services, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Marijke Grau
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
50
|
Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103937. [PMID: 35882309 PMCID: PMC9307469 DOI: 10.1016/j.etap.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/14/2023]
Abstract
In severe COVID-19, the levels of iron (Fe), copper (Cu), zinc (Zn) and selenium (Se), do not only regulate host immune responses, but modify the viral genome, as well. While low serum Fe concentration is an independent risk factor for the increased death rate, Zn controls oxidative stress, synthesis of inflammatory cytokines and viral replication. Therefore, Zn deficiency associates with a worse prognosis. Although Cu exposure inactivates the viral genome and exhibits spike protein dispersal, increase in Cu/Zn due to high serum Cu levels, are correlated with enhanced risk of infections. Se levels are significantly higher in surviving COVID-19 patients. Meanwhile, both Zn and Se suppress the replication of SARS-CoV-2. Since the balance between the deficiency and oversupply of these metals due to a reciprocal relationship, has decisive effect on the prognosis of the SARS-CoV-2 infection, monitoring their concentrations may facilitate improved outcomes for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|