1
|
Ravera S, Farsetti E, Maura G, Marcoli M, Bozzo M, Cervetto C, Amaroli A. 810-nm Photobiomodulation Evokes Glutamate Release in Normal and Rotenone-Dysfunctional Cortical Nerve Terminals by Modulating Mitochondrial Energy Metabolism. Cells 2025; 14:67. [PMID: 39851493 PMCID: PMC11764165 DOI: 10.3390/cells14020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
The dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature. However, the molecular mechanisms underlying these findings have yet to be fully elucidated. This study investigates the mechanism behind dose-dependent glutamate release in nerve terminals after irradiation with 810 nm, 1 W for 60 s continuous, 1 cm2, 1 W/cm2, 60 J, 60 J/cm2 (810 nm-1 W) or 810 nm, 0.1 W for 60 s continuous, 1 cm2, 0.1 W/cm2, 6 J, 6 J/cm2 (810 nm-0.1 W), focusing on mitochondrial activities. The results show that PBM modulated the mitochondrial metabolism of cortical nerve terminals and supported a power-dependent increase in oxidative phosphorylation (OxPhos) activity when stimulated with pyruvate plus malate (P/M) or succinate (succ) as respiratory substrates. The PBM-induced increase in OxPhos was sensitive to adding rotenone (Complex I inhibitor) and antimycin A (Complex III inhibitor) when synaptosomes were stimulated with P/M, but only to antimycin A when stimulated with succ. This allowed us to observe that the glutamate efflux, disrupted in the presence of rotenone, was partially restored by PBM due to the increase in the OxPhos pathway led by Complex II. This evidence suggests that PBM, acting on mitochondria, could facilitate physiological communication within the neuron-astrocyte network through vesicular glutamate release, potentially regulating healthy brain function and brain dysfunction.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, 16148 Genova, Italy;
| | - Guido Maura
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (G.M.); (M.M.); (M.B.)
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (G.M.); (M.M.); (M.B.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (G.M.); (M.M.); (M.B.)
| | - Chiara Cervetto
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, 16148 Genova, Italy;
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- BIO-Photonics Overarching Research Laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy
| |
Collapse
|
2
|
Amato S, Averna M, Farsetti E, Guidolin D, Pedrazzi M, Gatta E, Candiani S, Maura G, Agnati LF, Cervetto C, Marcoli M. Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes. Int J Mol Sci 2024; 25:8610. [PMID: 39201299 PMCID: PMC11354247 DOI: 10.3390/ijms25168610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
| | - Guido Maura
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
3
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
4
|
Akinyele O, Munir A, Johnson MA, Perez MS, Gao Y, Foley JR, Nwafor A, Wu Y, Murray-Stewart T, Casero RA, Bayir H, Kemaladewi DU. Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of Snyder-Robinson syndrome. Dis Model Mech 2024; 17:dmm050639. [PMID: 38463005 PMCID: PMC11103582 DOI: 10.1242/dmm.050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.
Collapse
Affiliation(s)
- Oluwaseun Akinyele
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Anushe Munir
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marie A. Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Megan S. Perez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuan Gao
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Ashley Nwafor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Hülya Bayir
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dwi U. Kemaladewi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
5
|
Rilievo G, Magro M, Tonolo F, Cecconello A, Rutigliano L, Cencini A, Molinari S, Di Paolo ML, Fiorucci C, Rossi MN, Cervelli M, Vianello F. Spermine Oxidase-Substrate Electrostatic Interactions: The Modulation of Enzyme Function by Neighboring Colloidal ɣ-Fe 2O 3. Biomolecules 2023; 13:1800. [PMID: 38136670 PMCID: PMC10742170 DOI: 10.3390/biom13121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical-physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein-nanoparticle conjugation as a means to modulate biological functions.
Collapse
Affiliation(s)
- Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.R.); (M.M.); (F.T.); (A.C.); (A.C.); (F.V.)
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.R.); (M.M.); (F.T.); (A.C.); (A.C.); (F.V.)
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.R.); (M.M.); (F.T.); (A.C.); (A.C.); (F.V.)
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.R.); (M.M.); (F.T.); (A.C.); (A.C.); (F.V.)
| | - Lavinia Rutigliano
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.R.); (M.M.); (F.T.); (A.C.); (A.C.); (F.V.)
| | - Simone Molinari
- Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padova, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padua, Via G. Colombo 3, 35131 Padova, Italy;
| | - Cristian Fiorucci
- Department of Sciences, University of Roma 3, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (C.F.); (M.N.R.)
| | - Marianna Nicoletta Rossi
- Department of Sciences, University of Roma 3, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (C.F.); (M.N.R.)
| | - Manuela Cervelli
- Department of Sciences, University of Roma 3, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (C.F.); (M.N.R.)
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.R.); (M.M.); (F.T.); (A.C.); (A.C.); (F.V.)
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| |
Collapse
|
6
|
Cervetto C, Amaroli A, Amato S, Gatta E, Diaspro A, Maura G, Signore A, Benedicenti S, Marcoli M. Photons Induce Vesicular Exocytotic Release of Glutamate in a Power-Dependent Way. Int J Mol Sci 2023; 24:10977. [PMID: 37446155 DOI: 10.3390/ijms241310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Andrea Amaroli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia-IIT, Via Morego 30, 16133 Genova, Italy
- Biophysics Institute, National Research Council-CNR, Via de Marini, 6, 16149 Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moskow, Russia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
7
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
8
|
Baldassari S, Cervetto C, Amato S, Fruscione F, Balagura G, Pelassa S, Musante I, Iacomino M, Traverso M, Corradi A, Scudieri P, Maura G, Marcoli M, Zara F. Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. Int J Mol Sci 2022; 23:ijms231810545. [PMID: 36142455 PMCID: PMC9501332 DOI: 10.3390/ijms231810545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.
Collapse
Affiliation(s)
- Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Correspondence: (C.C.); (M.M.)
| | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Floriana Fruscione
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Simone Pelassa
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Ilaria Musante
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Monica Traverso
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Center of Excellence for Biomedical Research, Viale Benedetto XV, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| |
Collapse
|
9
|
Identification and Characterization of Novel Small-Molecule SMOX Inhibitors. Med Sci (Basel) 2022; 10:medsci10030047. [PMID: 36135832 PMCID: PMC9504029 DOI: 10.3390/medsci10030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 μM, Ki 1.60 μM) and 7 (IC50 0.23 μM, Ki 0.46 μM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.
Collapse
|
10
|
The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration. Biomedicines 2022; 10:biomedicines10071756. [PMID: 35885061 PMCID: PMC9312548 DOI: 10.3390/biomedicines10071756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
In mammalian cells, the content of polyamines is tightly regulated. Polyamines, including spermine, spermidine and putrescine, are involved in many cellular processes. Spermine oxidase specifically oxidizes spermine, and its deregulated activity has been reported to be linked to brain pathologies involving neuron damage. Spermine is a neuromodulator of a number of ionotropic glutamate receptors and types of ion channels. In this respect, the Dach-SMOX mouse model overexpressing spermine oxidase in the neocortex neurons was revealed to be a model of chronic oxidative stress, excitotoxicity and neuronal damage. Reactive astrocytosis, chronic oxidative and excitotoxic stress, neuron loss and the susceptibility to seizure in the Dach-SMOX are discussed here. This genetic model would help researchers understand the linkage between polyamine dysregulation and neurodegeneration and unveil the roles of polyamines in the crosstalk between astrocytes and neurons in neuroprotection or neurodegeneration.
Collapse
|
11
|
Neuronal alarmin IL-1α evokes astrocyte-mediated protective signals: Effectiveness in chemotherapy-induced neuropathic pain. Neurobiol Dis 2022; 168:105716. [PMID: 35367629 DOI: 10.1016/j.nbd.2022.105716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
The distinction between glial painful and protective pathways is unclear and the possibility to finely modulate the system is lacking. Focusing on painful neuropathies, we studied the role of interleukin 1α (IL-1α), an alarmin belonging to the larger family of damage-associated molecular patterns endogenously secreted to restore homeostasis. The treatment of rat primary neurons with increasing dose of the neurotoxic anticancer drug oxaliplatin (0.3-100μM, 48 h) induced the release of IL-1α. The knockdown of the alarmin in neurons leads to their higher mortality when co-cultured with astrocytes. This toxicity was related to increased extracellular ATP and decreased release of transforming growth factor β1, mostly produced by astrocytes. In a rat model of neuropathy induced by oxaliplatin, the intrathecal treatment with IL-1α was able to reduce mechanical and thermal hypersensitivity both after acute injection and continuous infusion. Ex vivo analysis on spinal purified astrocyte processes (gliosomes) and nerve terminals (synaptosomes) revealed the property of IL-1α to reduce the endogenous glutamate release induced by oxaliplatin. This protective effect paralleled with an increased number of GFAP-positive cells in the spinal cord, suggesting the ability of IL-1α to evoke a positive, conservative astrocyte phenotype. Endogenous IL-1α induces protective signals in the cross-talk between neurons and astrocytes. Exogenously administered in rats, IL-1α prevents neuropathic pain in the presence of spinal glutamate decrease and astrocyte activation.
Collapse
|
12
|
Amato S, Averna M, Guidolin D, Pedrazzi M, Pelassa S, Capraro M, Passalacqua M, Bozzo M, Gatta E, Anderlini D, Maura G, Agnati LF, Cervetto C, Marcoli M. Heterodimer of A2A and Oxytocin Receptors Regulating Glutamate Release in Adult Striatal Astrocytes. Int J Mol Sci 2022; 23:ijms23042326. [PMID: 35216441 PMCID: PMC8879615 DOI: 10.3390/ijms23042326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy;
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Michela Capraro
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
- Italian Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy;
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy;
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Blair Drive, St. Lucia, QLD 4067, Australia;
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy;
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Correspondence: (C.C.); (M.M.)
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| |
Collapse
|
13
|
Marcoli M, Cervetto C, Amato S, Fiorucci C, Maura G, Mariottini P, Cervelli M. Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures. Biomolecules 2022; 12:204. [PMID: 35204705 PMCID: PMC8961639 DOI: 10.3390/biom12020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
| | - Cristian Fiorucci
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
| | - Paolo Mariottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
- Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
14
|
Kovács Z, Skatchkov SN, Veh RW, Szabó Z, Németh K, Szabó PT, Kardos J, Héja L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front Cell Neurosci 2022; 15:787319. [PMID: 35069115 PMCID: PMC8770812 DOI: 10.3389/fncel.2021.787319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central Del Caribe, Bayamon, PR, United States
- Department of Biochemistry, Universidad Central Del Caribe, Bayamon, PR, United States
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Pál T. Szabó
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
15
|
Lalo U, Koh W, Lee CJ, Pankratov Y. The tripartite glutamatergic synapse. Neuropharmacology 2021; 199:108758. [PMID: 34433089 DOI: 10.1016/j.neuropharm.2021.108758] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
Astroglial cells were long considered as structural and metabolic supporting cells are which do not directly participate in information processing in the brain. Discoveries of responsiveness of astrocytes to synaptically-released glutamate and their capability to release agonists of glutamate receptors awakened extensive studies of glia-neuron communications and led to the revolutionary changes in our understanding of brain cellular networks. Nowadays, astrocytes are widely acknowledged as inseparable element of glutamatergic synapses and role for glutamatergic astrocyte-neuron interactions in the brain computation is emerging. Astroglial glutamate receptors, in particular of NMDA, mGluR3 and mGluR5 types, can activate a variety of molecular cascades leading astroglial-driven modulation of extracellular levels of glutamate and activity of neuronal glutamate receptors. Their preferential location to the astroglial perisynaptic processes facilitates interaction of astrocytes with individual excitatory synapses. Bi-directional glutamatergic communication between astrocytes and neurons underpins a complex, spatially-distributed modulation of synaptic signalling thus contributing to the enrichment of information processing by the neuronal networks. Still, further research is needed to bridge the substantial gaps in our understanding of mechanisms and physiological relevance of astrocyte-neuron glutamatergic interactions, in particular ability of astrocytes directly activate neuronal glutamate receptors by releasing glutamate and, arguably, d-Serine. An emerging roles for aberrant changes in glutamatergic astroglial signalling, both neuroprotective and pathogenic, in neurological and neurodegenerative diseases also require further investigation. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
16
|
Cervetto C, Averna M, Vergani L, Pedrazzi M, Amato S, Pelassa S, Giuliani S, Baldini F, Maura G, Mariottini P, Marcoli M, Cervelli M. Reactive Astrocytosis in a Mouse Model of Chronic Polyamine Catabolism Activation. Biomolecules 2021; 11:1274. [PMID: 34572487 PMCID: PMC8467798 DOI: 10.3390/biom11091274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. METHODS To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. RESULTS The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. CONCLUSIONS Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genoa, Italy; (M.A.); (M.P.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy; (L.V.); (F.B.)
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genoa, Italy; (M.A.); (M.P.)
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Stefano Giuliani
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (S.G.); (P.M.)
| | - Francesca Baldini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy; (L.V.); (F.B.)
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Paolo Mariottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (S.G.); (P.M.)
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (S.G.); (P.M.)
- Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
17
|
Nakanishi S, Cleveland JL. Polyamine Homeostasis in Development and Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2021; 9:medsci9020028. [PMID: 34068137 PMCID: PMC8162569 DOI: 10.3390/medsci9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Polycationic polyamines are present in nearly all living organisms and are essential for mammalian cell growth and survival, and for development. These positively charged molecules are involved in a variety of essential biological processes, yet their underlying mechanisms of action are not fully understood. Several studies have shown both beneficial and detrimental effects of polyamines on human health. In cancer, polyamine metabolism is frequently dysregulated, and elevated polyamines have been shown to promote tumor growth and progression, suggesting that targeting polyamines is an attractive strategy for therapeutic intervention. In contrast, polyamines have also been shown to play critical roles in lifespan, cardiac health and in the development and function of the brain. Accordingly, a detailed understanding of mechanisms that control polyamine homeostasis in human health and disease is needed to develop safe and effective strategies for polyamine-targeted therapy.
Collapse
|
18
|
Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist. Life (Basel) 2020; 10:life10120333. [PMID: 33302569 PMCID: PMC7763181 DOI: 10.3390/life10120333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies highlighted that compounds targeting cannabinoid receptors could be useful for developing novel therapies against neurodegenerative disorders. However, the chronic use of orthosteric agonists alone has several disadvantages, limiting their usefulness as clinically relevant drugs. Positive allosteric modulators might represent a promising approach to achieve the potential therapeutic benefits of orthosteric agonists of cannabinoid receptors through increasing their activity and limiting their adverse effects. The aim of the present study was to show the effects of positive allosteric ligands of cannabinoid receptors on the activity of a potent dual orthosteric agonist for neuroinflammation and excitotoxic damage by excessive glutamate release. The results indicate that the combination of an orthosteric agonist with positive allosteric modulators could represent a promising therapeutic approach to the treatment of neurodegenerative disorders.
Collapse
|
19
|
Arena C, Gado F, Di Cesare Mannelli L, Cervetto C, Carpi S, Reynoso-Moreno I, Polini B, Vallini E, Chicca S, Lucarini E, Bertini S, D’Andrea F, Digiacomo M, Poli G, Tuccinardi T, Macchia M, Gertsch J, Marcoli M, Nieri P, Ghelardini C, Chicca A, Manera C. The endocannabinoid system dual-target ligand N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide improves disease severity in a mouse model of multiple sclerosis. Eur J Med Chem 2020; 208:112858. [DOI: 10.1016/j.ejmech.2020.112858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
|
20
|
Fouda AY, Eldahshan W, Narayanan SP, Caldwell RW, Caldwell RB. Arginase Pathway in Acute Retina and Brain Injury: Therapeutic Opportunities and Unexplored Avenues. Front Pharmacol 2020; 11:277. [PMID: 32256357 PMCID: PMC7090321 DOI: 10.3389/fphar.2020.00277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic retinopathies represent a major cause of visual impairment and blindness. They include diabetic retinopathy (DR), acute glaucoma, retinopathy of prematurity (ROP), and central (or branch) retinal artery occlusion (CRAO). These conditions share in common a period of ischemia or reduced blood supply to the retinal tissue that eventually leads to neuronal degeneration. Similarly, acute brain injury from ischemia or trauma leads to neurodegeneration and can have devastating consequences in patients with stroke or traumatic brain injury (TBI). In all of these conditions, current treatment strategies are limited by their lack of effectiveness, adverse effects or short time window for administration. Therefore, there is a great need to identify new therapies for acute central nervous system (CNS) injury. In this brief review article, we focus on the pathway of the arginase enzyme as a novel therapeutic target for acute CNS injury. We review the recent work on the role of arginase enzyme and its downstream components in neuroprotection in both retina and brain acute injury models. Delineating the similarities and differences between the role of arginase in the retina and brain neurodegeneration will allow for better understanding of the role of arginase in CNS disorders. This will also facilitate repurposing the arginase pathway as a new therapeutic target in both retina and brain diseases.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Wael Eldahshan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - S Priya Narayanan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, United States
| | - R William Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
21
|
Agostinelli E. Biochemical and pathophysiological properties of polyamines. Amino Acids 2020; 52:111-117. [PMID: 32072296 DOI: 10.1007/s00726-020-02821-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Enzo Agostinelli
- Department of Biochemical Sciences, A. Rossi Fanelli', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, 00159, Rome, Italy.
| |
Collapse
|
22
|
Leonetti A, Baroli G, Fratini E, Pietropaoli S, Marcoli M, Mariottini P, Cervelli M. Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase. Amino Acids 2020; 52:129-139. [PMID: 31197571 DOI: 10.1007/s00726-019-02749-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
Several studies have demonstrated high polyamine levels in brain diseases such as epilepsy. Epilepsy is the fourth most common neurological disorder and affects people of all ages. Excitotoxic stress has been associated with epilepsy and it is considered one of the main causes of neuronal degeneration and death. The transgenic mouse line Dach-SMOX, with CD1 background, specifically overexpressing spermine oxidase in brain cortex, has been proven to be highly susceptible to epileptic seizures and excitotoxic stress induced by kainic acid. In this study, we analysed the effect of spermine oxidase over-expression in a different epileptic model, pentylenetetrazole. Behavioural evaluations of transgenic mice compared to controls showed a higher susceptibility towards pentylentetrazole. High-performance liquid chromatography analysis of transgenic brain from treated mice revealed altered polyamine content. Immunoistochemical analysis indicated a rise of 8-oxo-7,8-dihydro-2'-deoxyguanosine, demonstrating an increase in oxidative damage, and an augmentation of system xc- as a defence mechanism. This cascade of events can be initially linked to an increase in protein kinase C alpha, as shown by Western blot. This research points out the role of spermine oxidase, as a hydrogen peroxide producer, in the oxidative stress during epilepsy. Moreover, Dach-SMOX susceptibility demonstrated by two different epileptic models strongly indicates this transgenic mouse line as a potential animal model to study epilepsy.
Collapse
Affiliation(s)
- Alessia Leonetti
- Department of Science, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Giulia Baroli
- Department of Science, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Emiliano Fratini
- Department of Science, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Stefano Pietropaoli
- Department of Science, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Paolo Mariottini
- Department of Science, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Manuela Cervelli
- Department of Science, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
23
|
Venturini A, Passalacqua M, Pelassa S, Pastorino F, Tedesco M, Cortese K, Gagliani MC, Leo G, Maura G, Guidolin D, Agnati LF, Marcoli M, Cervetto C. Exosomes From Astrocyte Processes: Signaling to Neurons. Front Pharmacol 2019; 10:1452. [PMID: 31849688 PMCID: PMC6901013 DOI: 10.3389/fphar.2019.01452] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022] Open
Abstract
It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or long-distance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.
Collapse
Affiliation(s)
- Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, and Italian Institute of Biostructures and Biosystems, University of Genova, Genova, Italy
| | - Simone Pelassa
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Mariateresa Tedesco
- 3BrainAG, Wädenswil, Switzerland.,Department of Informatics, Bioengineering, Robotics and System Engineering DIBRIS, University of Genova, Genova, Italy
| | - Katia Cortese
- Section of Anatomy, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Maria Cristina Gagliani
- Section of Anatomy, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Giuseppina Leo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Diego Guidolin
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Luigi F Agnati
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Genova, Italy
| | - Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| |
Collapse
|
24
|
Di Paolo ML, Cervelli M, Mariottini P, Leonetti A, Polticelli F, Rosini M, Milelli A, Basagni F, Venerando R, Agostinelli E, Minarini A. Exploring the activity of polyamine analogues on polyamine and spermine oxidase: methoctramine, a potent and selective inhibitor of polyamine oxidase. J Enzyme Inhib Med Chem 2019; 34:740-752. [PMID: 30829081 PMCID: PMC6407594 DOI: 10.1080/14756366.2019.1584620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023] Open
Abstract
Fourteen polyamine analogues, asymmetric or symmetric substituted spermine (1-9) or methoctramine (10-14) analogues, were evaluated as potential inhibitors or substrates of two enzymes of the polyamine catabolic pathway, spermine oxidase (SMOX) and acetylpolyamine oxidase (PAOX). Compound 2 turned out to be the best substrate for PAOX, having the highest affinity and catalytic efficiency with respect to its physiological substrates. Methoctramine (10), a well-known muscarinic M2 receptor antagonist, emerged as the most potent competitive PAOX inhibitor known so far (Ki = 10 nM), endowed with very good selectivity compared with SMOX (Ki=1.2 μM vs SMOX). The efficacy of methoctramine in inhibiting PAOX activity was confirmed in the HT22 cell line. Methoctramine is a very promising tool in the design of drugs targeting the polyamine catabolism pathway, both to understand the physio-pathological role of PAOX vs SMOX and for pharmacological applications, being the polyamine pathway involved in various pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Fabio Polticelli
- Department of Sciences, University of Roma Tre, Roma, Italy
- Roma Tre Section, National Institute of Nuclear Physics, Roma, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Rina Venerando
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enzo Agostinelli
- Department of Biochemical Science "A. Rossi Fanelli", University of Rome "La Sapienza", Rome, Italy
- International Polyamines Foundation – ONLUS –Via del Forte Tiburtino 98, Rome, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Baroli G, Sanchez JR, Agostinelli E, Mariottini P, Cervelli M. Polyamines: The possible missing link between mental disorders and epilepsy (Review). Int J Mol Med 2019; 45:3-9. [PMID: 31746386 DOI: 10.3892/ijmm.2019.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/22/2019] [Indexed: 11/05/2022] Open
Abstract
Polyamines are small positively charged alkylamines that are essential in a number of crucial eukaryotic processes, like normal cell growth and development. In normal physiological conditions, intracellular polyamine content is tightly regulated through a fine regulated network of biosynthetic and catabolic enzymes and a transport system. The dysregulation of this network is frequently associated to different tumors, where high levels of polyamines has been detected. Polyamines also modulate ion channels and ionotropic glutamate receptors and altered levels of polyamines have been observed in different brain diseases, including mental disorders and epilepsy. The goal of this article is to review the role of polyamines in mental disorders and epilepsy within a frame of the possible link between these two brain pathologies. The high comorbidity between these two neurological illnesses is strongly suggestive that they share a common background in the central nervous system. This review proposes an additional association between the noradrenalin/serotonin and glutamatergic neuronal circuits with polyamines. Polyamines can be considered supplementary defensive shielding molecules, important to protect the brain from the development of epilepsy and mental illnesses that are caused by different types of neurons. In this contest, the modulation of polyamine metabolism may be a novel important target for the prevention and therapeutic treatment of these diseases that have a high impact on the costs of public health and considerably affect quality of life.
Collapse
Affiliation(s)
- Giulia Baroli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | | | - Enzo Agostinelli
- Department of Biochemical Sciences 'Rossi Fanelli', University of Rome 'La Sapienza', I‑00185 Rome, Italy
| | - Paolo Mariottini
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | - Manuela Cervelli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| |
Collapse
|
26
|
Pelassa S, Guidolin D, Venturini A, Averna M, Frumento G, Campanini L, Bernardi R, Cortelli P, Buonaura GC, Maura G, Agnati LF, Cervetto C, Marcoli M. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int J Mol Sci 2019; 20:ijms20102457. [PMID: 31109007 PMCID: PMC6566402 DOI: 10.3390/ijms20102457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor–receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor–receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor–receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson’s pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy.
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy.
| | - Giulia Frumento
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Letizia Campanini
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Rosa Bernardi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden.
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
- Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
27
|
Amaroli A, Marcoli M, Venturini A, Passalacqua M, Agnati LF, Signore A, Raffetto M, Maura G, Benedicenti S, Cervetto C. Near-infrared laser photons induce glutamate release from cerebrocortical nerve terminals. JOURNAL OF BIOPHOTONICS 2018; 11:e201800102. [PMID: 29931754 DOI: 10.1002/jbio.201800102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Although photons have been repeatedly shown to affect the functioning of the nervous system, their effects on neurotransmitter release have never been investigated. We exploited in vitro models that allow effects involving neuron-astrocyte network functioning to be detected (mouse cerebrocortical slices) and dissected these effects at cerebrocortical nerve endings and astrocyte processes. Infrared light proved able to induce glutamate release by stimulating glutamatergic nerve endings.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Mirco Raffetto
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genova, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | | |
Collapse
|
28
|
Pietropaoli S, Leonetti A, Cervetto C, Venturini A, Mastrantonio R, Baroli G, Persichini T, Colasanti M, Maura G, Marcoli M, Mariottini P, Cervelli M. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression. Mol Neurobiol 2018; 55:7259-7270. [PMID: 29397558 DOI: 10.1007/s12035-017-0864-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2'-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system xc- transporter, a Nrf-2 target, was observed. Sulfasalazine, a system xc- transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.
Collapse
Affiliation(s)
- Stefano Pietropaoli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Alessia Leonetti
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Roberta Mastrantonio
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Giulia Baroli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Tiziana Persichini
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Marco Colasanti
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Paolo Mariottini
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
29
|
Cervetto C, Venturini A, Guidolin D, Maura G, Passalacqua M, Tacchetti C, Cortelli P, Genedani S, Candiani S, Ramoino P, Pelassa S, Marcoli M, Agnati LF. Homocysteine and A2A-D2 Receptor-Receptor Interaction at Striatal Astrocyte Processes. J Mol Neurosci 2018; 65:456-466. [PMID: 30030763 DOI: 10.1007/s12031-018-1120-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/11/2018] [Indexed: 01/03/2023]
Abstract
The interaction between adenosine A2A and dopamine D2 receptors in striatal neurons is a well-established phenomenon and has opened up new perspectives on the molecular mechanisms involved in Parkinson's disease. However, it has barely been investigated in astrocytes. Here, we show by immunofluorescence that both A2A and D2 receptors are expressed in adult rat striatal astrocytes in situ, and investigate on presence, function, and interactions of the receptors in the astrocyte processes-acutely prepared from the adult rat striatum-and on the effects of homocysteine on the A2A-D2 receptor-receptor interaction. We found that A2A and D2 receptors were co-expressed on vesicular glutamate transporter-1-positive astrocyte processes, and confirmed that A2A-D2 receptor-receptor interaction controlled glutamate release-assessed by measuring the [3H]D-aspartate release-from the processes. The complexity of A2A-D2 receptor-receptor interaction is suggested by the effect of intracellular homocysteine, which reduced D2-mediated inhibition of glutamate release (homocysteine allosteric action on D2), without interfering with the A2A-mediated antagonism of the D2 effect (maintained A2A-D2 interaction). Our findings indicate the crucial integrative role of A2A-D2 molecular circuits at the plasma membrane of striatal astrocyte processes. The fact that homocysteine reduced D2-mediated inhibition of glutamate release could provide new insights into striatal astrocyte-neuron intercellular communications. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, these findings may shed light on the pathogenic mechanisms of the disease and contribute to the development of new drugs for its treatment.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, and Italian Institute of Biostructures and Biosystems, University of Genova, Genoa, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, Scientific Institute San Raffaele, Milan, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Susanna Genedani
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, University of Genova, Genoa, Italy
| | - Paola Ramoino
- Department of Earth, Environmental and Life Sciences, University of Genova, Genoa, Italy
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy. .,Centre of Excellence for Biomedical Research CEBR, University of Genova, Genoa, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med Sci (Basel) 2018; 6:medsci6010014. [PMID: 29443878 PMCID: PMC5872171 DOI: 10.3390/medsci6010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Alessia Leonetti
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| | - Guglielmo Duranti
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Stefania Sabatini
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Roberta Ceci
- Department of of Movement Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| | - Paolo Mariottini
- Department of Science, Università degli Studi di Roma "Roma Tre", 00146 Rome, Italy.
| |
Collapse
|
31
|
Leonetti A, Cervoni L, Polticelli F, Kanamori Y, Yurtsever ZN, Agostinelli E, Mariottini P, Stano P, Cervelli M. Spectroscopic and calorimetric characterization of spermine oxidase and its association forms. Biochem J 2017; 474:4253-4268. [PMID: 29138259 DOI: 10.1042/bcj20170744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Spermine oxidase (SMOX) is a flavin-containing enzyme that oxidizes spermine to produce spermidine, 3-aminopropanaldehyde, and hydrogen peroxide. SMOX has been shown to play key roles in inflammation and carcinogenesis; indeed, it is differentially expressed in several human cancer types. Our previous investigation has revealed that SMOX purified after heterologous expression in Escherichia coli actually consists of monomers, covalent homodimers, and other higher-order forms. All association forms oxidize spermine and, after treatment with dithiothreitol, revert to SMOX monomer. Here, we report a detailed investigation on the thermal denaturation of SMOX and its association forms in native and reducing conditions. By combining spectroscopic methods (circular dichroism, fluorescence) and thermal methods (differential scanning calorimetry), we provide new insights into the structure, the transformation, and the stability of SMOX. While the crystal structure of this protein is not available yet, experimental results are interpreted also on the basis of a novel SMOX structural model, obtained in silico exploiting the recently solved acetylspermine oxidase crystal structure. We conclude that while at least one specific intermolecular disulfide bond links two SMOX molecules to form the homodimer, the thermal denaturation profiles can be justified by the presence of at least one intramolecular disulfide bond, which also plays a critical role in the stabilization of the overall three-dimensional SMOX structure, and in particular of its flavin adenine dinucleotide-containing active site.
Collapse
Affiliation(s)
- Alessia Leonetti
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Rome I-00146, Italy
| | - Laura Cervoni
- Department of Biochemical Sciences 'A. Rossi Fanelli', University of 'La Sapienza', Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Rome I-00146, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, Rome I-00146, Italy
| | - Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', University of 'La Sapienza', Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Zuleyha Nihan Yurtsever
- Department of Biochemical Sciences 'A. Rossi Fanelli', University of 'La Sapienza', Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', University of 'La Sapienza', Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Paolo Mariottini
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Rome I-00146, Italy
| | - Pasquale Stano
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Rome I-00146, Italy
| | - Manuela Cervelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Rome I-00146, Italy
| |
Collapse
|
32
|
Ceci R, Duranti G, Leonetti A, Pietropaoli S, Spinozzi F, Marcocci L, Amendola R, Cecconi F, Sabatini S, Mariottini P, Cervelli M. Adaptive responses of heart and skeletal muscle to spermine oxidase overexpression: Evaluation of a new transgenic mouse model. Free Radic Biol Med 2017; 103:216-225. [PMID: 28043891 DOI: 10.1016/j.freeradbiomed.2016.12.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Spermine oxidase oxidizes spermine to produce H2O2, spermidine, and 3-aminopropanal. It is involved in cell drug response, apoptosis, and in the etiology of several pathologies, including cancer. Spermine oxidase is an important positive regulator of muscle gene expression and fiber size and, when repressed, leads to muscle atrophy. We have generated a transgenic mouse line overexpressing Smox gene in all organs, named Total-Smox. The spermine oxidase overexpression was revealed by β-Gal staining and reverse-transcriptase/PCR analysis, in all tissues analysed. Spermine oxidase activity resulted higher in Total-Smox than controls. Considering the important role of this enzyme in muscle physiology, we have focused our study on skeletal muscle and heart of Total-Smox mice by measuring redox status and oxidative damage. We assessed the redox homeostasis through the analysis of the reduced/oxidized glutathione ratio. Chronic H2O2 production induced by spermine oxidase overexpression leads to a cellular redox state imbalance in both tissues, although they show different redox adaptation. In skeletal muscle, catalase and glutathione S-transferase activities were significantly increased in Total-Smox mice compared to controls. In the heart, no differences were found in CAT activity level, while GST activity decreased compared to controls. The skeletal muscle showed a lower oxidative damage than in the heart, evaluated by lipid peroxidation and protein carbonylation. Altogether, our findings illustrate that skeletal muscle adapts more efficiently than heart to oxidative stress H2O2-induced. The Total-Smox line is a new genetic model useful to deepen our knowledge on the role of spermine oxidase in muscle atrophy and muscular pathological conditions like dystrophy.
Collapse
Affiliation(s)
- Roberta Ceci
- Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135, Rome, Italy
| | | | | | | | - Lucia Marcocci
- Department of Biochemical Sciences 'A.Rossi Fanelli', La Sapienza University, Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', 00133, Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Stefania Sabatini
- Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135, Rome, Italy
| | | | - Manuela Cervelli
- Department of Sciences, Roma Tre Università, 00146, Rome, Italy.
| |
Collapse
|
33
|
Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, Borroto-Esquela DO, Cortelli P, Woods A, Maura G, Marcoli M, Agnati LF. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 2016; 140:268-279. [PMID: 27896809 DOI: 10.1111/jnc.13885] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023]
Abstract
Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, and Italian Institute of Biostructures and Biosystems, University of Genova, Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Susanna Genedani
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences DIBINEM, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Amina Woods
- Structural Biology Unit, National Institutes of Health, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Cervelli M, Leonetti A, Cervoni L, Ohkubo S, Xhani M, Stano P, Federico R, Polticelli F, Mariottini P, Agostinelli E. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase. Amino Acids 2016; 48:2283-91. [PMID: 27295021 DOI: 10.1007/s00726-016-2273-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Alessia Leonetti
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Laura Cervoni
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Shinji Ohkubo
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marla Xhani
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pasquale Stano
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Rodolfo Federico
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146, Rome, Italy
| | - Paolo Mariottini
- Department of Sciences, Roma Tre University, V.le Guglielmo Marconi 446, 00146, Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|