1
|
Baccari MC, Vannucchi MG, Idrizaj E. The Possible Involvement of Glucagon-like Peptide-2 in the Regulation of Food Intake through the Gut-Brain Axis. Nutrients 2024; 16:3069. [PMID: 39339669 PMCID: PMC11435434 DOI: 10.3390/nu16183069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Food intake regulation is a complex mechanism involving the interaction between central and peripheral structures. Among the latter, the gastrointestinal tract represents one of the main sources of both nervous and hormonal signals, which reach the central nervous system that integrates them and sends the resulting information downstream to effector organs involved in energy homeostasis. Gut hormones released by nutrient-sensing enteroendocrine cells can send signals to central structures involved in the regulation of food intake through more than one mechanism. One of these is through the modulation of gastric motor phenomena known to be a source of peripheral satiety signals. In the present review, our attention will be focused on the ability of the glucagon-like peptide 2 (GLP-2) hormone to modulate gastrointestinal motor activity and discuss how its effects could be related to peripheral satiety signals generated in the stomach and involved in the regulation of food intake through the gut-brain axis. A better understanding of the possible role of GLP-2 in regulating food intake through the gut-brain axis could represent a starting point for the development of new strategies to treat some pathological conditions, such as obesity.
Collapse
Affiliation(s)
- Maria Caterina Baccari
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| | - Maria Giuliana Vannucchi
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, 50139 Florence, Italy;
| | - Eglantina Idrizaj
- Department of Experimental & Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
2
|
Pálsson TG, Gilliam-Vigh H, Jensen BAH, Jeppesen PB, Lund AB, Knop FK, Nielsen CK. Targeting the GLP-2 receptor in the management of obesity. Peptides 2024; 177:171210. [PMID: 38579917 DOI: 10.1016/j.peptides.2024.171210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Recent advancements in understanding glucagon-like peptide 2 (GLP-2) biology and pharmacology have sparked interest in targeting the GLP-2 receptor (GLP-2R) in the treatment of obesity. GLP-2 is a proglucagon-derived 33-amino acid peptide co-secreted from enteroendocrine L cells along with glucagon-like peptide 1 (GLP-1) and has a range of actions via the GLP-2R, which is particularly expressed in the gastrointestinal tract, the liver, adipose tissue, and the central nervous system (CNS). In humans, GLP-2 evidently induces intestinotrophic effects (i.e., induction of intestinal mucosal proliferation and improved gut barrier function) and promotes mesenteric blood flow. However, GLP-2 does not seem to have appetite or food intake-reducing effects in humans, but its gut barrier-promoting effect may be of interest in the context of obesity. Obesity is associated with reduced gut barrier function, increasing the translocation of proinflammatory gut content to the circulation. This phenomenon constitutes a strong driver of obesity-associated systemic low-grade inflammation, which in turn plays a major role in the development of most obesity-associated complications. Thus, the intestinotrophic and gut barrier-improving effect of GLP-2, which in obese rodent models shows strong anti-inflammatory potential, may, in combination with food intake-reducing strategies, e.g., GLP-1 receptor (GLP-1) agonism, be able to rectify core pathophysiological mechanism of obesity. Here, we provide an overview of GLP-2 physiology in the context of obesity pathophysiology and review the pharmacological potential of GLP-2R activation in the management of obesity and related comorbidities.
Collapse
Affiliation(s)
- Thorir G Pálsson
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Hannah Gilliam-Vigh
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle B Jeppesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Asger B Lund
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Casper K Nielsen
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| |
Collapse
|
3
|
Mukherjee K, Xiao C. GLP-2 regulation of intestinal lipid handling. Front Physiol 2024; 15:1358625. [PMID: 38426205 PMCID: PMC10902918 DOI: 10.3389/fphys.2024.1358625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Lipid handling in the intestine is important for maintaining energy homeostasis and overall health. Mishandling of lipids in the intestine contributes to dyslipidemia and atherosclerotic cardiovascular diseases. Despite advances in this field over the past few decades, significant gaps remain. The gut hormone glucagon-like peptide-2 (GLP-2) has been shown to play pleotropic roles in the regulation of lipid handling in the intestine. Of note, GLP-2 exhibits unique actions on post-prandial lipid absorption and post-absorptive release of intestinally stored lipids. This review aims to summarize current knowledge in how GLP-2 regulates lipid processing in the intestine. Elucidating the mechanisms of GLP-2 regulation of intestinal lipid handling not only improves our understanding of GLP-2 biology, but also provides insights into how lipids are processed in the intestine, which offers opportunities for developing novel strategies towards prevention and treatment of dyslipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Gabe MBN, Gasbjerg LS, Gadgaard S, Lindquist P, Holst JJ, Rosenkilde MM. N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 receptor selectivity towards more GLP-1 receptor interaction. Br J Pharmacol 2022; 179:4473-4485. [PMID: 35523760 PMCID: PMC9541843 DOI: 10.1111/bph.15866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To fully elucidate the regulatory role of the GLP-2 system in the gut and the bones, potent and selective GLP-2 receptor (GLP-2R) antagonists are needed. Searching for antagonist activity, we performed systematic N-terminal truncations of human GLP-2(1-33). EXPERIMENTAL APPROACH COS-7 cells were transfected with the human GLP-2R and assessed for cAMP accumulation or competition binding using 125 I-GLP-2(1-33)[M10Y]. To examine selectivity, human GLP-1 or GIP receptor expressing COS-7 cells were assessed for cAMP accumulation. KEY RESULTS The affinity for the GLP-2R of the N-terminally truncated GLP-2 peptides decreased with reduced N-terminal peptide length (Ki 6.5-871 nM), while increasing antagonism appeared with inhibitory potencies (IC50 ) values from 79 to 204 nM for truncation up to GLP-2(4-33) and then declined. In contrast, truncation-dependent increases in intrinsic activity were observed from an Emax of only 20% for GLP-(2-33) up to 46% for GLP-2(6-33) at 1 μM, followed by a decline. GLP-2(9-33) had the highest intrinsic efficacy (Emax 65%) and no antagonistic properties. Moreover, with truncations up to GLP-2(8-33) a gradual loss in selectivity for the GLP-2R appeared with increasing GLP-1 receptor (GLP-1R) inhibition (up to 73% at 1 μM). Lipidation of the peptides improved antagonism (IC50 down to 7.9 nM) for both the GLP-2R and the GLP-1R. CONCLUSION AND IMPLICATIONS The N-terminus of GLP-2 is crucial for GLP-2R activity and selectivity. Our observations form the basis for the development of tool compounds for further characterization of the GLP-2 system.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Girdhar K, Soto M, Huang Q, Orliaguet L, Cederquist C, Sundaresh B, Hu J, Figura M, Raisingani A, Canfora EE, Dirice E, Fujisaka S, Goossens GH, Blaak EE, Kulkarni RN, Kahn CR, Altindis E. Gut Microbiota Regulate Pancreatic Growth, Exocrine Function, and Gut Hormones. Diabetes 2022; 71:945-960. [PMID: 35212729 PMCID: PMC9044125 DOI: 10.2337/db21-0382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022]
Abstract
Growing evidence indicates an important link between gut microbiota, obesity, and metabolic syndrome. Alterations in exocrine pancreatic function are also widely present in patients with diabetes and obesity. To examine this interaction, C57BL/6J mice were fed a chow diet, a high-fat diet (HFD), or an HFD plus oral vancomycin or metronidazole to modify the gut microbiome. HFD alone leads to a 40% increase in pancreas weight, decreased glucagon-like peptide 1 and peptide YY levels, and increased glucose-dependent insulinotropic peptide in the plasma. Quantitative proteomics identified 138 host proteins in fecal samples of these mice, of which 32 were significantly changed by the HFD. The most significant of these were the pancreatic enzymes. These changes in amylase and elastase were reversed by antibiotic treatment. These alterations could be reproduced by transferring gut microbiota from donor C57BL/6J mice to germ-free mice. By contrast, antibiotics had no effect on pancreatic size or exocrine function in C57BL/6J mice fed the chow diet. Further, 1 week vancomycin administration significantly increased amylase and elastase levels in obese men with prediabetes. Thus, the alterations in gut microbiota in obesity can alter pancreatic growth, exocrine function, and gut endocrine function and may contribute to the alterations observed in patients with obesity and diabetes.
Collapse
Affiliation(s)
| | - Marion Soto
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Qian Huang
- Biology Department Boston College, Chestnut Hill, MA
| | - Lucie Orliaguet
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Carly Cederquist
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | | | - Emanuel E. Canfora
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY
| | - Shiho Fujisaka
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Gijs H. Goossens
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women′s Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - C. Ronald Kahn
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Corresponding authors: Emrah Altindis, , and C. Ronald Kahn,
| | - Emrah Altindis
- Biology Department Boston College, Chestnut Hill, MA
- Corresponding authors: Emrah Altindis, , and C. Ronald Kahn,
| |
Collapse
|
6
|
Vasto S, Amato A, Proia P, Baldassano S. Is the Secret in the Gut? SuperJump Activity Improves Bone Remodeling and Glucose Homeostasis by GLP-1 and GIP Peptides in Eumenorrheic Women. BIOLOGY 2022; 11:296. [PMID: 35205162 PMCID: PMC8869418 DOI: 10.3390/biology11020296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023]
Abstract
We showed that twenty weeks of SuperJump activity, an innovative workout training performed on an elastic minitrampoline, reduced bone resorption and increased bone formation in eumenorrheic women acting on the key points of the regulation of bone metabolism. The present study analyzed whether the gastrointestinal hormones are involved in the mechanism of action and if it has an impact on glucose homeostasis. The control group was composed of twelve women, similar to the exercise group that performed SuperJump activity for twenty weeks. The analysis was performed on blood samples and investigated GLP-1, GIP, GLP-2, PYY, ghrelin, glucose, insulin, insulin resistance, β-cell function, and insulin sensitivity. The results showed that the activity contributes to raising the GLP-1and GIP levels, and not on GLP-2, PYY, and ghrelin, which did not change. Moreover, SuperJump activity significantly reduced fasting insulin, glucose, insulin resistance, and increased insulin sensitivity but did not affect beta cell function. These data suggest that GLP-1, and GIP are involved in the mechanism of action that improves bone and glucose homeostasis following 20 weeks of SuperJump activity in eumenorrheic women.
Collapse
Affiliation(s)
- Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Alessandra Amato
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| |
Collapse
|
7
|
Indicaxanthin from Opuntia ficus-indica Fruit Ameliorates Glucose Dysmetabolism and Counteracts Insulin Resistance in High-Fat-Diet-Fed Mice. Antioxidants (Basel) 2021; 11:antiox11010080. [PMID: 35052584 PMCID: PMC8773302 DOI: 10.3390/antiox11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity-related dysmetabolic conditions are amongst the most common causes of death globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between inflammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were carried out. Our results showed that indicaxanthin treatment significantly reduced body weight, daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remarkable, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiological values. These effects were associated with a reduction in hepatic and adipose tissue oxidative stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2 and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like structures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related dysmetabolic conditions.
Collapse
|
8
|
Ejarque M, Sabadell‐Basallote J, Beiroa D, Calvo E, Keiran N, Nuñez‐Roa C, Rodríguez MDM, Sabench F, Castillo D, Jimenez V, Bosch F, Nogueiras R, Vendrell J, Fernández‐Veledo S. Adipose tissue is a key organ for the beneficial effects of GLP‐2 metabolic function. Br J Pharmacol 2020; 178:2131-2145. [DOI: 10.1111/bph.15278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Miriam Ejarque
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Joan Sabadell‐Basallote
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III Madrid Spain
| | - Enrique Calvo
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Noelia Keiran
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Catalina Nuñez‐Roa
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Maria del Mar Rodríguez
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Fatima Sabench
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- Facultat de Medicina i Ciències de la Salut de Reus Universitat Rovira Virgili Tarragona Spain
- Surgery Service Hospital Sant Joan de Reus Reus Spain
| | - Daniel Castillo
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- Facultat de Medicina i Ciències de la Salut de Reus Universitat Rovira Virgili Tarragona Spain
- Surgery Service Hospital Sant Joan de Reus Reus Spain
| | - Veronica Jimenez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra Spain
| | - Fatima Bosch
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III Madrid Spain
| | - Joan Vendrell
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
- Facultat de Medicina i Ciències de la Salut de Reus Universitat Rovira Virgili Tarragona Spain
| | - Sonia Fernández‐Veledo
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
9
|
Baldassano S, Amato A, Terzo S, Caldara GF, Lentini L, Mulè F. Glucagon-like peptide-2 analog and inflammatory state in obese mice. Endocrine 2020; 68:695-698. [PMID: 32172484 DOI: 10.1007/s12020-020-02261-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Department of Neuroscience and Cell Biology, University of Palermo, 90127, Palermo, Italy
| | - Gaetano Felice Caldara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
10
|
Chen RM, Yuan X, Ouyang Q, Lin XQ, Ai ZZ, Zhang Y, Yang XH. Adropin and glucagon-like peptide-2 are associated with glucose metabolism in obese children. World J Pediatr 2019; 15:565-571. [PMID: 31598832 DOI: 10.1007/s12519-019-00296-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The interaction of adropin, glucagon-like peptide-2 (GLP2), angiopoietin-like protein 4 (ANGPTL4), and with childhood obesity and glucose metabolism is inconsistent. This study is to evaluate the association of the three cytokines and glucose homeostasis. METHODS This was a cross-sectional study of children with obesity ranging from 5 to 14 years compared to age- and sex-matched children of normal weight. Fasting plasma glucose (FPG), oral glucose tolerance test 2-hour plasma glucose (OGTT2hPG), and insulin (INS) were measured, and serum adropin, GLP2, and ANGPTL4 levels were measured by enzyme-linked immunosorbent assay. The body mass index (BMI), BMI-Z scores, waist-to-hip ratio (WHR), and homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. RESULTS Thirty-nine children (9.70 ± 1.71 years, 18 females) with obesity and 29 normal weight children (8.98 ± 1.98 years, 16 females) were assessed. The levels of INS, HOMA-IR and GLP2 of the obesity group were significantly higher than the controls (P < 0.05). Pearson correlation analysis showed that serum GLP2 was positively associated with WHR, FPG, and OGTT2hPG, and adropin was negatively associated with BMI, BMI-Z, WHR, INS, and HOMA-IR (all P < 0.05). Furthermore, GLP2 were negatively associated with adropin and ANGPTL4 (both P < 0.05). By binary logistic regression, adropin and GLP2 were found to be independent markers of obesity. Multiple linear regression showed that GLP2 was associated with OGTT2hPG, and adropin was associated with INS and HOMA-IR (all P < 0.05). CONCLUSIONS Obese children had elevated GLP2 concentrations, and adropin and GLP2 associated with both childhood obesity and glucose homeostasis. Furthermore, there may be a physiologic interplay between adropin and GLP2 in obese children.
Collapse
Affiliation(s)
- Rui-Min Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China.
| | - Xin Yuan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Qian Ouyang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiang-Quan Lin
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Zhuan-Zhuan Ai
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Ying Zhang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiao-Hong Yang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
11
|
Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: A target to modulate cardiovascular risk? Int J Cardiol 2019; 292:218-224. [DOI: 10.1016/j.ijcard.2019.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
|
12
|
Cremonini E, Daveri E, Mastaloudis A, Adamo AM, Mills D, Kalanetra K, Hester SN, Wood SM, Fraga CG, Oteiza PI. Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biol 2019; 26:101269. [PMID: 31330482 PMCID: PMC6646927 DOI: 10.1016/j.redox.2019.101269] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) tract can play a critical role in the development of pathologies associated with overeating, overweight and obesity. We previously observed that supplementation with anthocyanins (AC) (particularly glycosides of cyanidin and delphinidin) mitigated high fat diet (HFD)-induced development of obesity, dyslipidemia, insulin resistance and steatosis in C57BL/6J mice. This paper investigated whether these beneficial effects could be related to AC capacity to sustain intestinal monolayer integrity, prevent endotoxemia, and HFD-associated dysbiosis. The involvement of redox-related mechanisms were further investigated in Caco-2 cell monolayers. Consumption of a HFD for 14 weeks caused intestinal permeabilization and endotoxemia, which were associated with a decreased ileum expression of tight junction (TJ) proteins (occludin, ZO-1 and claudin-1), increased expression of NADPH oxidase (NOX1 and NOX4) and NOS2 and oxidative stress, and activation of redox sensitive signals (NF-κB and ERK1/2) that regulate TJ dynamics. AC supplementation mitigated all these events and increased GLP-2 levels, the intestinal hormone that upregulates TJ protein expression. AC also prevented, in vitro, tumor necrosis factor alpha-induced Caco-2 monolayer permeabilization, NOX1/4 upregulation, oxidative stress, and NF-κB and ERK activation. HFD-induced obesity in mice caused dysbiosis and affected the levels and secretion of MUC2, a mucin that participates in intestinal cell barrier protection and immune response. AC supplementation restored microbiota composition and MUC2 levels and distribution in HFD-fed mice. Thus, AC, particularly delphinidin and cyanidin, can preserve GI physiology in HFD-induced obesity in part through redox-regulated mechanisms. This can in part explain AC capacity to mitigate pathologies, i.e. insulin resistance and steatosis, associated with HFD-associated obesity. Anthocyanidins (AC) mitigate high fat diet (HFD)-induced intestinal permeabilization and endotoxemia. AC inhibit HFD-induced ileum NADPH oxidase upregulation and oxidative stress. AC inhibit the activation of redox sensitive signals that cause intestinal permeabilization. AC mitigate HFD-induced dysbiosis and improve ileum endocrine/immunological responses. AC's beneficial systemic effects in HFD-mice could begin at the GI tract.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Departments of Nutrition, University of California, Davis, CA, USA; Environmental Toxicology, University of California, Davis, CA, USA
| | - Elena Daveri
- Departments of Nutrition, University of California, Davis, CA, USA; Environmental Toxicology, University of California, Davis, CA, USA
| | | | - Ana M Adamo
- Quimica Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFYB), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - David Mills
- Food Science and Technology, University of California, Davis, CA, USA; Viticulture and Enology, University of California, Davis, CA, USA
| | - Karen Kalanetra
- Food Science and Technology, University of California, Davis, CA, USA; Viticulture and Enology, University of California, Davis, CA, USA
| | | | - Steve M Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Cesar G Fraga
- Departments of Nutrition, University of California, Davis, CA, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Departments of Nutrition, University of California, Davis, CA, USA; Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Xu B, He Y, Lu Y, Ren W, Shen J, Wu K, Xu K, Wu J, Hu Y. Glucagon like peptide 2 has a positive impact on osteoporosis in ovariectomized rats. Life Sci 2019; 226:47-56. [PMID: 30959027 DOI: 10.1016/j.lfs.2019.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
AIMS In this study, we evaluate the effects of glucagon-like peptide 2 (GLP-2) on bone microarchitecture, bone turnover markers (BTMs) and inflammation markers in ovariectomized (OVX) rats. MATERIAL AND METHODS In total, 31 Sprague-Dawley rats were divided into the following three groups: sham (control sham-operated with vehicle, n = 7), OV (OVX with vehicle, n = 12), and GLP-2 (OVX with GLP-2, n = 12). Intervention began at the 12th week after surgery and lasted for 4 weeks. The dosage of the GLP-2 was 160 μg/kg/d through subcutaneous injections, and normal saline was used as the vehicle agent. After 4 weeks of treatment, serum BTM and inflammation marker levels were measured by ELISA, and femora samples were analyzed by qRT-PCR, micro-CT, histology and histomorphometry. KEY FINDINGS After 4 weeks of treatment, serum TRAcP-5b and RANKL levels as well as the CTX-1/P1NP ratio in the GLP-2 group decreased, and ALP activity, P1NP level, and OPG/RANKL ratio increased significantly; qRT-PCR analysis showed that mRNA levels of RANKL decreased, and Runx2, ALP, and Col-1 levels as well as the OPG/RANKL ratio increased significantly in the GLP-2 group compared with the OV group. In bone histology analysis, GLP-2 significantly decreased the AV/MV, Oc.N and Oc.S but increased the Ob.N, BFR and MAR. Analysis with μ-CT showed that the BMD, BV/TV, Tb.N and Conn.D increased significantly in the GLP-2 group compared with the OV group. The levels of serum inflammation markers TNF-α, IL-1β and IL-6 decreased, and TGF-β levels increased in the GLP-2 group compared with the OV group. SIGNIFICANCE GLP-2 may have a positive impact on osteoporosis by promoting bone formation, inhibiting bone resorption and decreasing circulatory inflammation in ovariectomized rats.
Collapse
Affiliation(s)
- Bing'er Xu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuting He
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Lu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiying Ren
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiping Shen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kefen Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kan Xu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayu Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Evidence Based Medicine and Clinical Epidemiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Castro BBA, Arriel K, Renó P, Sanders-Pinheiro H. Modelos experimentais de obesidade: análise crítica do perfil metabólico e da aplicabilidade. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introdução: a prevalência da obesidade e de outras doenças relacionadas está aumentando em todo o mundo de forma preocupante. Caracterizada pelo aumento do peso corporal ou do acúmulo excessivo de gordura corporal, a obesidade tem sido associada ao aumento da mortalidade decorrente de maior incidência de hipertensão, diabetes e vários tipos de câncer. Os modelos animais fornecem dados fundamentais para a compreensão dos parâmetros básicos que regulam os componentes do nosso balanço energético. Objetivo: esta revisão selecionou artigos que utilizaram modelos animais (ratos e camundongos) de obesidade focando nas principais alterações metabólicas causadas pela obesidade com o objetivo de apresentar os principais modelos utilizados nos últimos 5 anos. Material e Métodos: Foram realizadas duas buscas na base de dados PubMed utilizando as expressões: “obesity” AND “metabolism” AND “animal model” AND “mice” e “obesity” AND “metabolism” AND “animal model” AND “rat”, sendo selecionados os estudos considerados mais relevantes a partir dos critérios: descrição detalhada do modelo experimental e análise dos parâmetros metabólicos de interesse: peso, perfil lipídico e perfil glicêmico. Outras referências foram utilizadas para elucidar melhor os modelos encontrados e também aqueles que não foram citados, mas, que possuem importância no entendimento da evolução dos modelos animais de obesidade. Resultados: A espécie mais utilizada foi o camundongo, o sexo predominante foi o masculino, a faixa etária dos roedores variou de neonatos até 44 semanas e o período de acompanhamento chegou até 53 semanas. A obesidade foi confirmada pelo aumento significativo do peso e na maioria dos estudos foram encontradas alterações no metabolismo lipídico e glicêmico. Encontramos cinco grupos de mecanismos de indução da obesidade porém a maioria dos estudos utilizou dietas hiperlipídicas, modelo que mais se assemelha às alterações metabólicas encontradas em humanos. Conclusão: Investigar as causas e efeitos da obesidade induzida em modelos experimentais pode fornecer uma melhor compreensão da fisiopatologia da obesidade, e proporcionar novas opções de prevenção e tratamento.
Collapse
|
15
|
Baldassano S, Gasbjerg LS, Kizilkaya HS, Rosenkilde MM, Holst JJ, Hartmann B. Increased Body Weight and Fat Mass After Subchronic GIP Receptor Antagonist, but Not GLP-2 Receptor Antagonist, Administration in Rats. Front Endocrinol (Lausanne) 2019; 10:492. [PMID: 31447774 PMCID: PMC6691063 DOI: 10.3389/fendo.2019.00492] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are hormones secreted from the enteroendocrine cells after a meal. They exert their actions through activation of G protein-coupled receptors (R), the GIPR and GLP-2R, respectively. Both have been reported to influence metabolism. The purpose of the study was to investigate the role of the hormones in the regulation of lipid and bone homeostasis by subchronic treatment with novel GIPR and GLP-2R antagonists. Rats were injected once daily with vehicle, GIPR, or GLP-2R antagonists for 3 weeks. Body weight, food intake, body composition, plasma lipoprotein lipase (LPL), adipokines, triglycerides and the marker of bone resorption carboxy-terminal collagen crosslinks (CTX), were examined. In rats, subchronic treatment with GIPR antagonist, rat GIP (3-30)NH2, did not modify food intake and bone resorption, but significantly increased body weight, body fat mass, triglycerides, LPL, and leptin levels compared with vehicle treated rats. Subchronic (Pro3)GIP (a partial GIPR agonist), GLP-2(11-33), and GLP-2(3-33) (GLP-2R antagonists) treatment did not affect any parameter. The present results would be consistent with a role for GIP, but not GLP-2, in the maintenance of lipid homeostasis in rats, while neither GIPR nor GLP-2R antagonism appeared to influence bone resorption in rats.
Collapse
Affiliation(s)
- Sara Baldassano
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Bolette Hartmann
| |
Collapse
|
16
|
Regulatory Efficacy of Spirulina platensis Protease Hydrolyzate on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Rats. Int J Mol Sci 2018; 19:ijms19124023. [PMID: 30551559 PMCID: PMC6320850 DOI: 10.3390/ijms19124023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Lipid metabolism disorder (LMD) is a public health issue. Spirulina platensis is a widely used natural weight-reducing agent and Spirulina platensis is a kind of protein source. In the present study, we aimed to evaluate the effect of Spirulina platensis protease hydrolyzate (SPPH) on the lipid metabolism and gut microbiota in high-fat diet (HFD)-fed rats. Our study showed that SPPH decreased the levels of triglyceride (TG), total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), and aspartate transaminase (AST), but increased the level of high-density-lipoprotein cholesterol (HDL-c) in serum and liver. Moreover, SPPH had a hypolipidemic effect as indicated by the down-regulation of sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl CoA carboxylase (ACC), SREBP-1c, and peroxisome proliferator-activated receptor-γ (PPARγ) and the up-regulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptorα (PPARα) at the mRNA level in liver. SPPH treatment enriched the abundance of beneficial bacteria. In conclusion, our study showed that SPPH might be produce glucose metabolic benefits in rats with diet-induced LMD. The mechanisms underlying the beneficial effects of SPPH on the metabolism remain to be further investigated. Collectively, the above-mentioned findings illustrate that Spirulina platensis peptides have the potential to ameliorate lipid metabolic disorders, and our data provides evidence that SPPH might be used as an adjuvant therapy and functional food in obese and diabetic individuals.
Collapse
|
17
|
Terzo S, Caldara GF, Ferrantelli V, Puleio R, Cassata G, Mulè F, Amato A. Pistachio Consumption Prevents and Improves Lipid Dysmetabolism by Reducing the Lipid Metabolizing Gene Expression in Diet-Induced Obese Mice. Nutrients 2018; 10:nu10121857. [PMID: 30513740 PMCID: PMC6316241 DOI: 10.3390/nu10121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
Pistachios contain beneficial substances such as unsaturated fatty acids, phytosterols, and polyphenols. In the present study, we investigated if pistachio consumption is able to prevent or to revert hyperglycemia, dyslipidemia, hepatic steatosis, and adipose tissue morphological alterations caused by high fat diet (HFD) in the mouse. Moreover, the impact of pistachio intake on the mRNA expression of peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid transport proteins (FAT-P), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding transcription factor-1c (SREBP-1c) in liver and adipose tissue was also analyzed. No change in body weight, food intake, and hyperglycemia was observed between mice consuming pistachios (HFD-P) and HFD mice. Pistachio intake was able to prevent but not to reverse HFD-induced hypertriglyceridemia. Cholesterol plasma levels, steatosis grading, body fat mass, and adipocyte size were significantly lower in HFD-P group compared to HFD in both prevention and reversal protocol. Pistachio-diet was able to prevent HFD-induced overexpression of PPAR-γ, FAS, and SCD1 in the liver and SREBP-1c, PPAR-γ, and FAT-P in adipose tissue. Similarly, HFD-P significantly ameliorated the expression levels of FAT-P and SCD1 in the liver and SREBP-1c, FAS, and SCD1 in adipose tissue of obese mice. The present study shows that pistachio consumption is able to prevent and to ameliorate obesity-related dysfunctions by positively modulating the expression of genes linked to lipid metabolism.
Collapse
Affiliation(s)
- Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Gaetano Felice Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| |
Collapse
|
18
|
Nuzzo D, Baldassano S, Amato A, Picone P, Galizzi G, Caldara GF, Di Carlo M, Mulè F. Glucagon-like peptide-2 reduces the obesity-associated inflammation in the brain. Neurobiol Dis 2018; 121:296-304. [PMID: 30347266 DOI: 10.1016/j.nbd.2018.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests a link between obesity and neurodegeneration. The purpose of the present study was to explore the neuroprotective potential of glucagon-like peptide-2 (GLP-2) in the brain of high fat diet (HFD)-fed mice. Markers of inflammation and oxidative stress were analysed in the brains of obese mice chronically treated with [Gly2]-GLP-2 (teduglutide), the stable analogue of the GLP-2, and they were compared to age-matched untreated obese and lean animals. Neurodegeneration was examined by TUNEL assay. HFD feeding increased the expression of pro-inflammatory mediators (NF-kB, IL-8, TNF-α, IL-1β and IL-6), glial fibrillary acidic protein (GFAP), index of gliosis and neurodegeneration, stress marker proteins (p-ERK, Hsp60 and i-NOS), amyloid-β precursor protein (APP). [Gly2]-GLP-2 treatment significantly attenuated the HFD-induced increased expression of the various markers, as well as the higher levels of reactive oxygen species found in brains of untreated-HFD mice. Immunofluorescence confirmed that the increase of GFAP or APP in the brain cortex of HFD mice were less prominent in the [Gly2]-GLP-2 treated group. TUNEL-positive cell number in brain sections of [Gly2]-GLP-2-treated HFD-fed mice was significantly lesser in comparison with untreated-HFD animals and similar to STD fed mice. In conclusion, the results of the present study suggest that GLP-2 stable analogue improves the obesity-associated neuroinflammation and the central stress conditions, it reduces the neuronal apoptotic death, providing evidence for a neuroprotective role of the peptide.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
| | - Pasquale Picone
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Giacoma Galizzi
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Gaetano Felice Caldara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
| | - Marta Di Carlo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy.
| |
Collapse
|
19
|
Impact of diet-induced obesity on the mouse brain phosphoproteome. J Nutr Biochem 2018; 58:102-109. [DOI: 10.1016/j.jnutbio.2018.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
|
20
|
Wismann P, Pedersen SL, Hansen G, Mannerstedt K, Pedersen PJ, Jeppesen PB, Vrang N, Fosgerau K, Jelsing J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol Behav 2018. [PMID: 29540315 DOI: 10.1016/j.physbeh.2018.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Analogues of several gastrointestinal peptide hormones have been developed into effective medicines for treatment of diseases such as type 2 diabetes mellitus (T2DM), obesity and short bowel syndrome (SBS). In this study, we aimed to explore whether the combination of glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) into a potent co-agonist could provide additional benefits compared to existing monotherapies. METHODS A short-acting (GUB09-123) and a half-life extended (GUB09-145) GLP-1/GLP-2 co-agonist were generated using solid-phase peptide synthesis and tested for effects on food intake, body weight, glucose homeostasis, and gut proliferation in lean mice and in diabetic db/db mice. RESULTS Sub-chronic administration of GUB09-123 to lean mice significantly reduced food intake, improved glucose tolerance, and increased gut volume, superior to monotherapy with the GLP-2 analogue teduglutide. Chronic administration of GUB09-123 to diabetic mice significantly improved glycemic control and showed persistent effects on gastric emptying, superior to monotherapy with the GLP-1 analogue liraglutide. Due to the short-acting nature of the molecule, no effects on body weight were observed, whereas a marked and robust intestinotrophic effect on mainly the small intestine volume and surface area was obtained. In contrast to GUB09-123, sub-chronic administration of a half-life extended GUB09-145 to lean mice caused marked dose-dependent effects on body weight while maintaining its potent intestinotrophic effect. CONCLUSION Our data demonstrate that the GLP-1/GLP-2 co-agonists have effects on gut morphometry, showing a marked increase in intestinal volume and mucosal surface area. Furthermore, effects on glucose tolerance and long-term glycemic control are evident. Effects on body weight and gastric emptying are also observed depending on the pharmacokinetic properties of the molecule. We suggest that this novel co-agonistic approach could exemplify a novel concept for treatment of T2DM or SBS.
Collapse
Affiliation(s)
| | | | - Gitte Hansen
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | | | | | - Palle B Jeppesen
- Rigshospitalet CA-2121, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Niels Vrang
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | - Keld Fosgerau
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | - Jacob Jelsing
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| |
Collapse
|
21
|
Cremonini E, Wang Z, Bettaieb A, Adamo AM, Daveri E, Mills DA, Kalanetra KM, Haj FG, Karakas S, Oteiza PI. (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biol 2017; 14:588-599. [PMID: 29154190 PMCID: PMC5691220 DOI: 10.1016/j.redox.2017.11.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 02/09/2023] Open
Abstract
Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD) is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (-)-epicatechin (EC) supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ) were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2-20mg/kg body weight) mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα)-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ziwei Wang
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Ana M Adamo
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Elena Daveri
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, USA; Department of Viticulture and Enology, University of California, Davis, USA
| | - Karen M Kalanetra
- Department of Food Science and Technology, University of California, Davis, USA; Department of Viticulture and Enology, University of California, Davis, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Sidika Karakas
- Department of Internal Medicine, University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
22
|
Garella R, Idrizaj E, Traini C, Squecco R, Vannucchi MG, Baccari MC. Glucagon-like peptide-2 modulates the nitrergic neurotransmission in strips from the mouse gastric fundus. World J Gastroenterol 2017; 23:7211-7220. [PMID: 29142468 PMCID: PMC5677198 DOI: 10.3748/wjg.v23.i40.7211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether glucagon-like peptide-2 (GLP-2) influences the neurally-induced responses in gastric strips from mice, since no data are available.
METHODS For functional experiments, gastric fundal strips were mounted in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation (EFS) was applied via two platinum wire rings through which the preparation was threaded. The effects of GLP-2 (2 and 20 nmol/L) were evaluated on the neurally-induced contractile and relaxant responses elicited by EFS. Neuronal nitric oxide synthase (nNOS) enzyme was evaluated by immunohistochemistry.
RESULTS In the functional experiments, electrical field stimulation (EFS, 4-16 Hz) induced tetrodotoxin (TTX)-sensitive contractile responses, which were reduced in amplitude by GLP-2 (P < 0.05). In the presence of the nitric oxide (NO) synthesis inhibitor L-NNA, GLP-2 no longer influenced the neurally-evoked contractile responses (P > 0.05). The direct smooth muscle response to methacholine was not influenced by GLP-2 (P > 0.05). In the presence of guanethidine and carbachol, the addition of GLP-2 to the bath medium evoked TTX-sensitive relaxant responses that were unaffected by L-NNA (P > 0.05). EFS induced a fast NO-mediated relaxation, whose amplitude was enhanced in the presence of the hormone (P < 0.05). Immunohistochemical experiments showed a significant increase (P < 0.05) in nNOS immunoreactivity in the nerve structures after GLP-2 exposure.
CONCLUSION The results demonstrate that in gastric fundal strips, GLP-2 influences the amplitude of neurally-induced responses through the modulation of the nitrergic neurotransmission and increases nNOS expression.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| | - Chiara Traini
- Department of Experimental and Clinical Medicine, Histology and Embryology Research Unit, University of Florence, 50134 Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Histology and Embryology Research Unit, University of Florence, 50134 Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, 50134 Florence, Italy
| |
Collapse
|
23
|
Beta-glucans and cancer: The influence of inflammation and gut peptide. Eur J Med Chem 2017; 142:486-492. [PMID: 28964548 DOI: 10.1016/j.ejmech.2017.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Dietary β-glucans are soluble fibers with potentially health-promoting effects. Gut peptides are important signals in the regulation of energy and glucose homeostasis. This article reviews the effects of different enriched β-glucan food consumption on immune responses, inflammation, gut hormone and cancer. Gut hormones are influenced by enriched β-glucan food consumption and levels of such peptide as YY, ghrelin, glucagon-like peptide 1 and 2 in humans influence serum glucose concentration as well as innate and adaptive immunity. Cancer cell development is also regulated by obesity and glucose dishomeostasy that are influenced by β-glucan food consumption that in turn regulated gut hormones.
Collapse
|
24
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Differential expression of glucagon-like peptide-2 (GLP-2) is involved in pancreatic islet cell adaptations to stress and beta-cell survival. Peptides 2017; 95:68-75. [PMID: 28746825 DOI: 10.1016/j.peptides.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Recent studies have confirmed that locally released proglucagon derived gene products, other than glucagon, have a major influence on pancreatic endocrine function. We assessed the impact of glucagon-like peptide-2 (GLP-2) on beta-cell secretory function, proliferation and apoptosis, as well as glucose tolerance, feeding behaviour and islet adaptions to chemically-induced insulin deficiency and resistance. The GLP-2 receptor was evidenced on cultured rodent and human beta-cells, rodent alpha-cells and isolated mouse islets. GLP-2 had no effect on insulin secretion from beta-cells, or isolated mouse islets. In vivo, GLP-2 administration significantly (P<0.05 to P<0.01) decreased food intake in mice. Conversely, GLP-2 had no discernible effects on glucose disposal or insulin secretion. As expected, streptozotocin treatment decreased and hydrocortisone increased beta-cell mass in mice. GLP-2 was visualised in mouse islets and intestinal L-cells. Islet GLP-2 co-localisation with glucagon was significantly decreased (P<0.01) by both streptozotocin and hydrocortisone. In contrast, both interventions increased (P<0.05) co-localisation of GLP-2 with somatostatin. Interestingly, GLP-2 positive cells were reduced (P<0.05) in the intestines of streptozotocin, but not hydrocortisone, treated mice. Further in vitro investigations revealed that GLP-2 protected rodent and human 1.1B4 beta-cells against streptozotocin induced DNA damage. Furthermore, GLP-2 augmented (P<0.05) BRIN BD11 beta-cell proliferation, but was less efficacious in 1.1B4 cells. These data highlight the involvement of GLP-2 receptor signalling in the adaptations to pancreatic islet cell stress.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
25
|
Gu J, Liu S, Mu N, Huang T, Zhang W, Zhao H, Shu Z, Zhang C, Hao Q, Li W, Xue X, Zhang W, Zhang Y. A DPP-IV-resistant glucagon-like peptide-2 dimer with enhanced activity against radiation-induced intestinal injury. J Control Release 2017; 260:32-45. [PMID: 28522195 DOI: 10.1016/j.jconrel.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Although radiotherapy is a highly effective treatment for abdominal or pelvic cancer patients, it can increase the incidence of severe gastrointestinal (GI) toxicity. As an intestinal growth factor, glucagon-like peptide 2 (GLP-2) has been shown to improve the preclinical models of both short bowel syndrome and inflammatory bowel disease by stimulating intestinal growth. Teduglutide ([Gly2]GLP-2), a recombinant human GLP-2 variant, has a prolonged half-life and stability as compared to the native GLP-2 peptide, but still requires daily application in the clinic. Here, we designed and prepared a new degradation-resistant GLP-2 analogue dimer, designated GLP-2②, with biotechnological techniques. The purity of GLP-2②reached 97% after ammonium sulphate precipitation and anion exchange chromatography purification, and the purification process was simple and cost-effective. We next confirmed that the GLP-2② exhibited enhanced activities compared with [Gly2]GLP-2, the long-acting, degradation-resistant analogue. Notably, GLP-2② offers a pharmacokinetic and therapeutic advantage in the treatment of radiation-induced intestinal injury over [Gly2]GLP-2. We further demonstrated that GLP-2② rapidly activates divergent intracellular signaling pathways involved in cell survival and apoptosis. Taken together, our data revealed a potential novel and safe peptide drug for limiting the adverse effect of radiotherapy on the gastrointestinal system.
Collapse
Affiliation(s)
- Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shuo Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Nan Mu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tonglie Huang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Shu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Baldassano S, Amato A, Mulè F. Influence of glucagon-like peptide 2 on energy homeostasis. Peptides 2016; 86:1-5. [PMID: 27664588 DOI: 10.1016/j.peptides.2016.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released from enteroendocrine L-type cells together with glucagon like peptide-1 in response to dietary nutrients. GLP-2 acts through a specific receptor, the GLP-2 receptor, mainly located in the gut and in the brain. Classically, GLP-2 is considered a trophic hormone involved in the maintenance of intestinal epithelial morphology and function. This role has been targeted for therapies promoting repair and adaptive growth of the intestinal mucosa. Recently, GLP-2 has been shown to exert beneficial effects on glucose metabolism specially in conditions related to increased uptake of energy, such as obesity. Several actions of GLP-2 are related to a positive energy balance: GLP-2 increases not only the absorptive surface, but also expression and activity of epithelial brush-border nutrient transporters and digestive enzymes, intestinal blood flow, postprandial chylomicron secretion and it inhibits gastrointestinal motility, providing the opportunity to increase absorption of nutrients. Other actions, including anorexigenic effects, appear in opposition to the energy intake. In this review, we discuss the GLP-2 functions related to energy homeostasis. GLP-2 could be considered an hormone causing positive energy balance, which, however has the role to mitigate the metabolic dysfunctions associated with hyper-adiposity.
Collapse
Affiliation(s)
- Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy.
| |
Collapse
|
27
|
Amato A, Baldassano S, Mulè F. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol 2016; 229:R57-66. [PMID: 27048234 DOI: 10.1530/joe-16-0035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| |
Collapse
|