1
|
Gao J, Lu W, Xin Y, Ma H, Sheng X, Gao G, Kang X, Jiang S, Zhao Y, Lv Y, Niu Y, Liang Y, Wang H. Liver-specific Bcl3 Knockout Alleviates Acetaminophen-induced Liver Injury by Activating Nrf2 Pathway in Male Mice. Cell Mol Gastroenterol Hepatol 2025; 19:101483. [PMID: 40015625 PMCID: PMC12003009 DOI: 10.1016/j.jcmgh.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with oxidative stress being a critical factor in this process. Glutathione (GSH) plays a vital defensive role. Activation of nuclear factor erythroid 2 like 2 (Nrf2) pathway mitigates APAP-induced liver damage by promoting GSH biosynthesis and enhancing drug detoxification. Although the role of B cell leukemia/lymphoma 3 (Bcl3) in regulating inflammatory responses, cellular oncogenesis, and immune balance is well-documented, its function in APAP-induced liver injury remains unclear. METHODS We employed liver-specific Bcl3 knockout (Bcl3hep-/-) mice and adeno-associated virus (AAV)-8-mediated Bcl3 overexpression (AAV-Bcl3) mice to model APAP-induced liver injury. Liver damage was assessed through hematoxylin and eosin staining and serum alanine aminotransferase and aspartate aminotransferase measurements. The interaction between Bcl3 and Nrf2 was examined using immunofluorescence and co-immunoprecipitation assays. RESULTS Our study reveals a significant upregulation of Bcl3 expression in the livers of male mice following APAP administration, suggesting Bcl3's potential involvement in this pathological process. In Bcl3hep-/- mice, a reduced severity of liver damage was observed at both 6 and 24 hours post-APAP treatment compared with controls. Notably, Bcl3-deficient mice exhibited accelerated GSH replenishment due to the rapid induction of Gclc and Gclm genes following 6 hours of APAP exposure. Through immunofluorescence and co-immunoprecipitation analyses, we identified an interaction between Bcl3 and Nrf2. The loss of Bcl3 enhanced Nrf2 translocation upon APAP challenge, leading to the upregulation of antioxidant gene expression. These findings suggest that Bcl3 knockout alleviates oxidative stress resulting from APAP overdose. CONCLUSION We uncovered a previously uncharacterized role of Bcl3 in APAP-induced liver injury, emphasizing the role of the Bcl3-Nrf2 axis in oxidative stress-related liver damage.
Collapse
Affiliation(s)
- Jingtao Gao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Xin
- Cardiac Center, Beijing Luhe Hospital Capital Medical University, Tongzhou, Beijing, China
| | - Haowen Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaohang Sheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue Kang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shan Jiang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuna Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China; Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Zhang F, Weng X, Zhu J, Tang Q, Lei M, Zhou W. Identification and validation of three potential biomarkers and immune microenvironment for in severe asthma in microarray and single-cell datasets. J Asthma 2024; 61:1252-1264. [PMID: 38647226 DOI: 10.1080/02770903.2024.2335562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Objective: The aim of this study was to identify genetic biomarkers and cellular communications associated with severe asthma in microarray data sets and single cell data sets. The potential gene expression levels were verified in a mouse model of asthma.Methods: We identified differentially expressed genes from the microarray datasets (GSE130499 and GSE63142) of severe asthma, and then constructed models to screen the most relevant biomarkers to severe asthma by machine learning algorithms (LASSO and SVM-RFE), with further validation of the results by GSE43696. Single-cell datasets (GSE193816 and GSE227744) were identified for potential biomarker-specific expression and intercellular communication. Finally, The expression levels of potential biomarkers were verified with a mouse model of asthma.Results: The 73 genes were differentially expressed between severe asthma and normal control. LASSO and SVM-RFE recognized three genes BCL3, DDIT4 and S100A14 as biomarkers of severe asthma and had good diagnostic effect. Among them, BCL3 transcript level was down-regulated in severe asthma, while S100A14 and DDIT4 transcript levels were up-regulated. The transcript levels of the three genes were confirmed in the mouse model. Infiltration of neutrophils and mast cells were found to be increased in severe asthma and may be associated with bronchial epithelial cells through BMP and NRG signalingConclusions: We identified three differentially expressed genes (BCL3, DDIT4 and S100A14) of diagnostic significance that may be involved in the development of severe asthma and these gene expressions could be serviced as biomarker of severe asthma and investigating the function roles could bring new insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Fuying Zhang
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, Hunan, China
| | - Xiang Weng
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiabao Zhu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Tang
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, Hunan, China
| | - Mingsheng Lei
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, Hunan, China
- Zhangjiajie College, Zhangjiajie, Hunan, China
| | - Weimin Zhou
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Li K, Wang J, Fang L, Lou Y, Li J, Li Q, Luo Q, Zheng X, Fang J. Chronic inhalation of H 2S in low concentration induces immunotoxicity and inflammatory effects in lung tissue of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116279. [PMID: 38581906 DOI: 10.1016/j.ecoenv.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.
Collapse
Affiliation(s)
- Kexian Li
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Jian Wang
- Shanghai Radio Equipment Research Institute, Shanghai 201109, China; Shanghai Shentian Industrial Co., Ltd. Shanghai, 200090
| | - Liben Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Yinghua Lou
- Hubei Zhijiang People's Hospital, Hubei 443200, China
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qihui Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qun Luo
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jingjing Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, Playa-Albinyana H, Buhler MM, Clot G, Duran-Ferrer M, Lu J, Granada I, Baptista MJ, Navarro JT, Espinet B, Puiggros A, Tapia G, Bandiera L, De Canal G, Bonoldi E, Climent F, Ribera-Cortada I, Fernandez-Caballero M, De la Banda E, Do Nascimento J, Pineda A, Vela D, Rozman M, Aymerich M, Syrykh C, Brousset P, Perera M, Yanez L, Ortin JX, Tuset E, Zenz T, Cook JR, Swerdlow SH, Martin-Subero JI, Colomer D, Matutes E, Bea S, Costa D, Nadeu F, Campo E. BCL3 rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematologica 2024; 109:493-508. [PMID: 37560801 PMCID: PMC10828791 DOI: 10.3324/haematol.2023.283209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.
Collapse
Affiliation(s)
- Anna Carbo-Meix
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Luojun Wang
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona
| | - Gerard Frigola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Marco M Buhler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Marti Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Junyan Lu
- European Molecular Biology Laboratory, Heidelberg
| | - Isabel Granada
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Maria-Joao Baptista
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Jose-Tomas Navarro
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Gustavo Tapia
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona
| | - Laura Bandiera
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Gabriella De Canal
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Emanuela Bonoldi
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Fina Climent
- Department o f Pathology, H ospital Universitari d e Bellvitge, I nstitut d'Investigació B iomèdica d e Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | - Mariana Fernandez-Caballero
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Esmeralda De la Banda
- Laboratory of Hematology, Hospital Universitari Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | | | - Dolors Vela
- Hematologia Clínica, Hospital General de Granollers, Granollers
| | - Maria Rozman
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Charlotte Syrykh
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9
| | - Pierre Brousset
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9, France; INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France; Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse
| | - Miguel Perera
- Hematology Department, Hospital Dr Negrín, Las Palmas de Gran Canaria
| | - Lucrecia Yanez
- Hematology Department, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Santander
| | | | - Esperanza Tuset
- Hematology Department, Institut Català d'Oncologia, Hospital Dr. Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zurich
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Estella Matutes
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Silvia Bea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona.
| |
Collapse
|
5
|
Merino-Vico A, van Hamburg JP, Tuijnenburg P, Frazzei G, Al-Soudi A, Bonasia CG, Helder B, Rutgers A, Abdulahad WH, Stegeman CA, Sanders JS, Bergamaschi L, Lyons PA, Bijma T, van Keep L, Wesenhagen K, Jongejan A, Olsson H, de Vries N, Kuijpers TW, Heeringa P, Tas SW. Targeting NF-κB signaling in B cells as a potential new treatment modality for ANCA-associated vasculitis. J Autoimmun 2024; 142:103133. [PMID: 37931331 DOI: 10.1016/j.jaut.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-β (IKKβ, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aram Al-Soudi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Boy Helder
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura van Keep
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kirsten Wesenhagen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Liu H, Zeng L, Pan M, Huang L, Li H, Liu M, Niu X, Zhang C, Wang H. Bcl-3 regulates T cell function through energy metabolism. BMC Immunol 2023; 24:35. [PMID: 37794349 PMCID: PMC10552310 DOI: 10.1186/s12865-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Bcl-3 is a member of the IκB protein family and an essential modulator of NF-κB activity. It is well established that Bcl-3 is critical for the normal development, survival and differentiation of adaptive immune cells, especially T cells. However, the regulation of immune cell function by Bcl-3 through metabolic pathways has rarely been studied. RESULTS In this study, we explored the role of Bcl-3 in the metabolism and function of T cells via the mTOR pathway. We verified that the proliferation of Bcl-3-deficient Jurkat T cells was inhibited, but their activation was promoted, and Bcl-3 depletion regulated cellular energy metabolism by reducing intracellular ATP and ROS production levels and mitochondrial membrane potential. Bcl-3 also regulates cellular energy metabolism in naive CD4+ T cells. In addition, the knockout of Bcl-3 altered the expression of mTOR, Akt, and Raptor, which are metabolism-related genes, in Jurkat cells. CONCLUSIONS This finding indicates that Bcl-3 may mediate the energy metabolism of T cells through the mTOR pathway, thereby affecting their function. Overall, we provide novel insights into the regulatory role of Bcl-3 in T-cell energy metabolism for the prevention and treatment of immune diseases.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Pan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hanying Li
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengxia Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
7
|
Hafer TL, Felton A, Delgado Y, Srinivasan H, Emerman M. A CRISPR Screen of HIV Dependency Factors Reveals That CCNT1 Is Non-Essential in T Cells but Required for HIV-1 Reactivation from Latency. Viruses 2023; 15:1863. [PMID: 37766271 PMCID: PMC10535513 DOI: 10.3390/v15091863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We sought to explore the hypothesis that host factors required for HIV-1 replication also play a role in latency reversal. Using a CRISPR gene library of putative HIV dependency factors, we performed a screen to identify genes required for latency reactivation. We identified several HIV-1 dependency factors that play a key role in HIV-1 latency reactivation including ELL, UBE2M, TBL1XR1, HDAC3, AMBRA1, and ALYREF. The knockout of Cyclin T1 (CCNT1), a component of the P-TEFb complex that is important for transcription elongation, was the top hit in the screen and had the largest effect on HIV latency reversal with a wide variety of latency reversal agents. Moreover, CCNT1 knockout prevents latency reactivation in a primary CD4+ T cell model of HIV latency without affecting the activation of these cells. RNA sequencing data showed that CCNT1 regulates HIV-1 proviral genes to a larger extent than any other host gene and had no significant effects on RNA transcripts in primary T cells after activation. We conclude that CCNT1 function is non-essential in T cells but is absolutely required for HIV latency reversal.
Collapse
Affiliation(s)
- Terry L. Hafer
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
| | - Abby Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yennifer Delgado
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Harini Srinivasan
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Sun R, Zhao H, Gao DS, Ni A, Li H, Chen L, Lu X, Chen K, Lu B. Amphiregulin couples IL1RL1 + regulatory T cells and cancer-associated fibroblasts to impede antitumor immunity. SCIENCE ADVANCES 2023; 9:eadd7399. [PMID: 37611111 PMCID: PMC10446484 DOI: 10.1126/sciadv.add7399] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/27/2023] [Indexed: 08/25/2023]
Abstract
Regulatory T (Treg) cells and cancer-associated fibroblasts (CAFs) jointly promote tumor immune tolerance and tumorigenesis. The molecular apparatus that drives Treg cell and CAF coordination in the tumor microenvironment (TME) remains elusive. Interleukin 33 (IL-33) has been shown to enhance fibrosis and IL1RL1+ Treg cell accumulation during tumorigenesis and tissue repair. We demonstrated that IL1RL1 signaling in Treg cells greatly dampened the antitumor activity of both IL-33 and PD-1 blockade. Whole tumor single-cell RNA sequencing (scRNA-seq) analysis and blockade experiments revealed that the amphiregulin (AREG)-epidermal growth factor receptor (EGFR) axis mediated cross-talk between IL1RL1+ Treg cells and CAFs. We further demonstrated that the AREG/EGFR axis enables Treg cells to promote a profibrotic and immunosuppressive functional state of CAFs. Moreover, AREG mAbs and IL-33 concertedly inhibited tumor growth. Our study reveals a previously unidentified AREG/EGFR-mediated Treg/CAF coupling that controls the bifurcation of fibroblast functional states and is a critical barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongyu Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - David Shihong Gao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Ni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haochen Li
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lujia Chen
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinghua Lu
- Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| |
Collapse
|
9
|
Hafer TL, Felton A, Delgado Y, Srinivasan H, Emerman M. A CRISPR screen of HIV dependency factors reveals CCNT1 is non-essential in T cells but required for HIV-1 reactivation from latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551016. [PMID: 37546973 PMCID: PMC10402164 DOI: 10.1101/2023.07.28.551016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We sought to explore the hypothesis that host factors required for HIV-1 replication also play a role in latency reversal. Using a CRISPR gene library of putative HIV dependency factors, we performed a screen to identify genes required for latency reactivation. We identified several HIV-1 dependency factors that play a key role in HIV-1 latency reactivation including ELL , UBE2M , TBL1XR1 , HDAC3 , AMBRA1 , and ALYREF . Knockout of Cyclin T1 ( CCNT1 ), a component of the P-TEFb complex important for transcription elongation, was the top hit in the screen and had the largest effect on HIV latency reversal with a wide variety of latency reversal agents. Moreover, CCNT1 knockout prevents latency reactivation in a primary CD4+ T cell model of HIV latency without affecting activation of these cells. RNA sequencing data showed that CCNT1 regulates HIV-1 proviral genes to a larger extent than any other host gene and had no significant effects on RNA transcripts in primary T cells after activation. We conclude that CCNT1 function is redundant in T cells but is absolutely required for HIV latency reversal.
Collapse
Affiliation(s)
- Terry L Hafer
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Abby Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yennifer Delgado
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Harini Srinivasan
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Expression of IkappaB Family in the Ovine Liver during Early Pregnancy. Animals (Basel) 2023; 13:ani13061057. [PMID: 36978599 PMCID: PMC10044098 DOI: 10.3390/ani13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During normal pregnancy, there is a dynamic regulation of the maternal immune system, including the liver, to accommodate the presence of the allogeneic foetus in the uterus. However, it was unclear that the expression of the IkappaB (IκB) family was regulated in the ovine maternal liver during early pregnancy. In this study, sheep livers were collected at day 16 of the oestrous cycle (NP16), and days 13, 16 and 25 of gestation (DP13, DP16 and DP25), and RT-qPCR, Western blot and immunohistochemistry analysis were used to analyse the expression of the IκB family, including B cell leukemia-3 (BCL-3), IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. The results revealed that expression of BCL-3, IκBβ, IκBε and IKKγ peaked at DP16, and the expression of IκBα was increased during early pregnancy. In addition, the expression of IκBζ peaked at DP13 and DP16, and IκBNS peaked at DP13. IκBβ and IKKγ proteins were located in the endothelial cells of the proper hepatic arteries and portal veins, and hepatocytes. In conclusion, early pregnancy changed the expression of the IκB family, suggesting that the modulation of the IκB family may be related to the regulation of maternal hepatic functions, which may be favourable for pregnancy establishment in sheep.
Collapse
|
11
|
Fang S, Cai C, Bai Y, Zhang L, Yang L. Early Pregnancy Regulates Expression of IkappaB Family in Ovine Spleen and Lymph Nodes. Int J Mol Sci 2023; 24:ijms24065156. [PMID: 36982231 PMCID: PMC10049502 DOI: 10.3390/ijms24065156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Early pregnancy modulates the maternal immune system, including the spleen and lymph nodes, which participate in maternal innate and adaptive immune responses. Methods: Ovine spleens and lymph nodes were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and qRT-PCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the IκB family, including BCL-3, IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. Early pregnancy induced expression of BCL-3, IκBα, IκBε, IKKγ and IκBζ, and expression of BCL-3, IκBβ and IκBNS peaked at day 16 of pregnancy in the spleen. However, early pregnancy suppressed the expression of BCL-3 and IκBNS, but stimulated the expression of IκBβ and IκBζ, and expression levels of IκBα, IκBβ, IκBε and IKKγ peaked in lymph nodes at days 13 and/or 16 of pregnancy. Early pregnancy changed the expression of the IκB family in the maternal spleen and lymph node in a tissue-specific manner, suggesting that the modulation of the IκB family may be involved in regulation of maternal functions of the spleen and lymph nodes, which are necessary for the establishment of maternal immune tolerance during early pregnancy in sheep.
Collapse
Affiliation(s)
- Shengya Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chunjiang Cai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
12
|
Restoring Age-Related Cognitive Decline through Environmental Enrichment: A Transcriptomic Approach. Cells 2022; 11:cells11233864. [PMID: 36497123 PMCID: PMC9736066 DOI: 10.3390/cells11233864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.
Collapse
|
13
|
Tang J, Suo L, Li F, Bian K, Yang C, Wang Y. Transcriptome profiling of lung immune responses potentially related to acute respiratory distress syndrome in forest musk deer. BMC Genomics 2022; 23:701. [PMID: 36221054 PMCID: PMC9552132 DOI: 10.1186/s12864-022-08917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Forest musk deer is an endangered species globally. The death of captive forest musk deer can be caused by certain respiratory system diseases. Acute respiratory distress syndrome (ARDS) is a huge threat to the life of forest muck deer that breed in our department. Methods Lung histopathologic analysis was conducted by hematoxylin and eosin (HE) staining. The lung gene changes triggered by ARDS were examined by RNA sequencing and related bioinformatics analysis in forest musk deer. The potential functions of unigenes were investigated by NR, SwissProt KOG, GO, and KEGG annotation analyses. Vital biological processes or pathways in ARDS were examined by GO and KEGG enrichment analyses. Results A total of 3265 unigenes were differentially expressed (|log2fold-change|> 2 and adjusted P value < 0.01) in lung tissues of 3 forest musk deer with ARDS compared with normal lung tissues of the non-ARDS group. These differentially expressed unigenes (DEGs) played crucial roles in immunity and defense responses to pathogens. Moreover, we identified the DEGs related to one or more of the following biological processes: lung development, immunity, and bacterial/viral/fungal infection. And six DEGs that might be involved in lung injury caused by immune dysregulation or viral/fungal infection were identified. Conclusion ARDS-mediated lung gene alterations were identified in forest musk deer. Moreover, multiple genes involved in lung development and lung defense responses to bacteria/viruses/fungi in ARDS were filtered out in forest musk deer. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08917-7.
Collapse
Affiliation(s)
- Jie Tang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Lijuan Suo
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Feiran Li
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Kun Bian
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Chao Yang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China.
| | - Yan Wang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China.,Shaanxi Provincial Field Observation & Research Station for Golden Monkey, Giant Panda and Biodiversity, Xi'an 723400, Shaanxi, China
| |
Collapse
|
14
|
Liu H, Zeng L, Yang Y, Huang Z, Guo C, Huang L, Niu X, Zhang C, Wang H. Bcl-3 regulates the function of Th17 cells through raptor mediated glycolysis metabolism. Front Immunol 2022; 13:929785. [PMID: 36159779 PMCID: PMC9500237 DOI: 10.3389/fimmu.2022.929785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Bcl-3 is an atypical IκB family member that regulates transcription in the nucleus by binding to the p50/p52 homologous dimer subunit. Although various studies illustrate the important role of Bcl-3 in physiological function, its role in metabolism is still unclear. We found that Bcl-3 has a metabolic regulatory effect on autoimmunity. Bcl-3-depleted mice are unable to develop experimental autoimmune encephalomyelitis. The disease resistance was linked to an increase in lactate levels in Th17 cells, and lactate could alleviate EAE development in WT mice. Bcl-3 deficient mice had more differentiated Th17 cells and an increased extracellular acidification rate in these cells. Concurrently, their ultimate respiration rate and respiratory reserve capacity were significantly lower than wild-type mice. However, adding GNE-140 (LADH inhibitor) to Bcl-3-deficient Th17 cells could reverse the phenomenon, and lactate supplementation could increase the glycolysis metabolism of Th17 cells in WT mice. Mechanically, Bcl-3 could interact with Raptor through ANK and RNC domains. Therefore, Bcl-3 regulates Th17 pathogenicity by promoting Raptor mediated energy metabolism, revealing a novel regulation of adaptive immunity.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Huang Y, Yang X, Meng Y, Shao C, Liao J, Li F, Li R, Jing Y, Huang A. The hepatic senescence-associated secretory phenotype promotes hepatocarcinogenesis through Bcl3-dependent activation of macrophages. Cell Biosci 2021; 11:173. [PMID: 34530917 PMCID: PMC8447591 DOI: 10.1186/s13578-021-00683-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Liver cancer is one of the most common malignancies in the world with a poor prognosis. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, accounting for 80–90% of cases. The initiation and progression of HCC are closely associated with chronic liver inflammation. In addition, HCC is often accompanied by cell senescence. Senescent hepatocytes can secrete various inflammatory factors, collectively called the senescence-associated secretory phenotype (SASP). The SASP has been confirmed to promote the occurrence of liver cancer by affecting the inflammatory microenvironment. However, its role and the underlying mechanism of hepatic SASP in hepatocarcinogenesis are not clearly understood. Therefore, a better understanding of the pathogenic mechanisms of the effect of the hepatic SASP on the occurrence of HCC is still needed. Methods The study aims to explore the role of SASP factors and the underlying mechanism in tumorigenesis and the progression of HCC in vivo. We used diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) (DEN-CCl4) to establish liver cancer model in wild-type (WT) mice and Bcl3 knockout (Bcl3−/−) mice. β-galactosidase (β-gal) staining was performed to evaluate the degree of cellular senescence. Immunohistochemistry (IHC) were used to detect the degree of cellular senescence and the activation of macrophage. PCR chip and clinical tissue chip assays were used to estimate the RNA levels of SASP factors and NF-κB related genes, and their protein levels were examined by Western blot assays. Results DEN-CCl4 induced cellular senescence in mouse hepatocytes. In addition, senescent hepatocytes might release a variety of inflammatory factors that further activate macrophages, thereby changing the microenvironmental state and promoting the occurrence of HCC. Mechanistically, the NF-κB pathway is important because it regulates the SASP. Therefore, we used a PCR chip to detect the expression of NF-κB-related genes in senescent liver tissue. Our results showed that the expression of Bcl3 was increased in senescent hepatocytes, and knocking out Bcl3 significantly inhibited the secretion of hepatocyte SASP factors and the activation of macrophages, thereby inhibiting hepatocarcinogenesis. Finally, in clinical tissues adjacent to HCC tissues in patients, the expression of Bcl3 and IL-8 correlated with poor prognosis in HCC patients. Conclusion The hepatic SASP can further induce the activation of macrophages during hepatocarcinogenesis, thereby promoting the occurrence of HCC, and that this process is closely related to the expression of Bcl3 in hepatocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00683-5.
Collapse
Affiliation(s)
- Yihua Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Changchun Shao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China
| | - Fengwei Li
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, People's Republic of China.
| |
Collapse
|
17
|
Tang W, Saret S, Tian R, Wang H, Claudio E, Murphy PM, Siebenlist U. Bcl-3 suppresses differentiation of RORγt + regulatory T cells. Immunol Cell Biol 2021; 99:586-595. [PMID: 33525048 PMCID: PMC11005920 DOI: 10.1111/imcb.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) exert inhibitory function under various physiological conditions and adopt diverse characteristics following environmental cues. Multiple subsets of Tregs expressing master transcription factors of helper T cells such as RORγt, T-bet, Gata3 and PPARγ have been characterized, but the molecular mechanism governing the differentiation of these subsets remains largely unknown. Here we report that the atypical IκB protein family member Bcl-3 suppresses RORγt+ Treg accumulation. The suppressive effect of Bcl-3 was particularly evident in the mouse immune tolerance model of anti-CD3 therapy. Using conditional knockout mice, we illustrate that loss of Bcl-3 specifically in Tregs was sufficient to boost RORγt+ Treg formation and resistance of mice to dextran sulfate sodium-induced colitis. We further demonstrate the suppressive effect of Bcl-3 on RORγt+ Treg differentiation in vitro. Our results reveal a novel role of nuclear factor-kappa B signaling pathways in Treg subset differentiation that may have clinical implications in immunotherapy.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruxiao Tian
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Voce DJ, Bernal GM, Cahill KE, Wu L, Mansour N, Crawley CD, Campbell PAS, Arina A, Weichselbaum RR, Yamini B. CDK1 is up-regulated by temozolomide in an NF-κB dependent manner in glioblastoma. Sci Rep 2021; 11:5665. [PMID: 33707466 PMCID: PMC7952566 DOI: 10.1038/s41598-021-84912-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
The alkylating agent, temozolomide (TMZ), is the most commonly used chemotherapeutic for the treatment of glioblastoma (GBM). The anti-glioma effect of TMZ involves a complex response that includes G2-M cell cycle arrest and cyclin-dependent kinase 1 (CDK1) activation. While CDK1 phosphorylation is a well-described consequence of TMZ treatment, we find that TMZ also robustly induces CDK1 expression. Analysis of this pathway demonstrates that CDK1 is regulated by NF-κB via a putative κB-site in its proximal promoter. CDK1 was induced in a manner dependent on mature p50 and the atypical inhibitor κB protein, BCL-3. Treatment with TMZ induced binding of NF-κB to the κB-site as assessed by gel shift analysis and chromatin immunoprecipitation. Examination of a CDK1 promoter-reporter demonstrated the functional relevance of the κB-site and underlined the requirement of p50 and BCL-3 for activation. Targeted knockdown of CDK1 or chemical inhibition with the selective CDK1 inhibitor, RO-3306, potentiated the cytotoxic effect of TMZ. These results identify CDK1 as an NF-κB target gene regulated by p50 and BCL-3 and suggest that targeting CDK1 may be a strategy to improve the efficacy of TMZ against GBM.
Collapse
Affiliation(s)
- David J Voce
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Nassir Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Paige-Ashley S Campbell
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Tang W, Wang H, Tian R, Saret S, Cheon H, Claudio E, Siebenlist U. Bcl-3 inhibits lupus-like phenotypes in BL6/lpr mice. Eur J Immunol 2020; 51:197-205. [PMID: 32652549 DOI: 10.1002/eji.202048584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/22/2020] [Indexed: 11/06/2022]
Abstract
Bcl-3 is an atypical member of the IκB family that modulates NF-κB activity in nuclei. lpr mice carry the lpr mutation in Fas, resulting in functional loss of this death receptor; they serve as models for lupus erythematosus and autoimmune lymphoproliferation syndrome (ALPS). To explore the biologic roles of Bcl-3 in this disease model, we generated BL6/lpr mice lacking Bcl-3. Unlike lpr mice on an MRL background, BL6/lpr mice present with very mild lupus- or ALPS-like phenotypes. Bcl-3 KO BL6/lpr mice, however, developed severe splenomegaly, dramatically increased numbers of double negative T cells - a hallmark of human lupus, ALPS, and MRL/lpr mice - and exhibited inflammation in multiple organs, despite low levels of autoantibodies, similar to those in BL6/lpr mice. Loss of Bcl-3 specifically in T cells exacerbated select lupus-like phenotypes, specifically organ infiltration. Mechanistically, elevated levels of Tnfα in Bcl-3 KO BL6/lpr mice may promote lupus-like phenotypes, since loss of Tnfα in these mice reversed the pathology due to loss of Bcl-3. Contrary to the inhibitory functions of Bcl-3 revealed here, this regulator has also been shown to promote inflammation in different settings. Our findings highlight the profound, yet highly context-dependent roles of Bcl-3 in the development of inflammation-associated pathology.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruxiao Tian
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - HeeJin Cheon
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Collard TJ, Fallatah HM, Greenhough A, Paraskeva C, Williams AC. BCL‑3 promotes cyclooxygenase‑2/prostaglandin E2 signalling in colorectal cancer. Int J Oncol 2020; 56:1304-1313. [PMID: 32319612 DOI: 10.3892/ijo.2020.5013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/26/2020] [Indexed: 11/05/2022] Open
Abstract
First discovered as an oncogene in leukaemia, recent reports highlight an emerging role for the proto‑oncogene BCL‑3 in solid tumours. Importantly, BCL‑3 expression is upregulated in >30% of colorectal cancer cases and is reported to be associated with a poor prognosis. However, the mechanism by which BCL‑3 regulates tumorigenesis in the large intestine is yet to be fully elucidated. In the present study, it was shown for the first time that knocking down BCL‑3 expression suppressed cyclooxygenase‑2 (COX‑2)/prostaglandin E2 (PGE2) signalling in colorectal cancer cells, a pathway known to drive several of the hallmarks of cancer. RNAi‑mediated suppression of BCL‑3 expression decreased COX‑2 expression in colorectal cancer cells both at the mRNA and protein level. This reduction in COX‑2 expression resulted in a significant and functional reduction (30‑50%) in the quantity of pro‑tumorigenic PGE2 produced by the cancer cells, as shown by enzyme linked immunoassays and medium exchange experiments. In addition, inhibition of BCL‑3 expression also significantly suppressed cytokine‑induced (TNF‑α or IL‑1β) COX‑2 expression. Taken together, the results of the present study identified a novel role for BCL‑3 in colorectal cancer and suggested that expression of BCL‑3 may be a key determinant in the COX‑2‑meditated response to inflammatory cytokines in colorectal tumour cells. These results suggest that targeting BCL‑3 to suppress PGE2 synthesis may represent an alternative or complementary approach to using non‑steroidal anti‑inflammatory drugs [(NSAIDs), which inhibit cyclooxygenase activity and suppress the conversion of arachidonic acid to prostaglandin], for prevention and/or recurrence in PGE2‑driven tumorigenesis.
Collapse
Affiliation(s)
- Tracey Jane Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hafsah Mohammed Fallatah
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alexander Greenhough
- Health and Applied Sciences, University of The West of England, Bristol BS16 1QY, United Kingdom
| | - Christos Paraskeva
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ann Caroline Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
21
|
Wu L, Bernal GM, Cahill KE, Pytel P, Fitzpatrick CA, Mashek H, Weichselbaum RR, Yamini B. BCL3 expression promotes resistance to alkylating chemotherapy in gliomas. Sci Transl Med 2019; 10:10/448/eaar2238. [PMID: 29973405 DOI: 10.1126/scitranslmed.aar2238] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/09/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
The response of patients with gliomas to alkylating chemotherapy is heterogeneous. However, there are currently no universally accepted predictors of patient response to these agents. We identify the nuclear factor κB (NF-κB) co-regulator B cell CLL/lymphoma 3 (BCL-3) as an independent predictor of response to temozolomide (TMZ) treatment. In glioma patients with tumors that have a methylated O6-methylguanine DNA methyltransferase (MGMT) promoter, high BCL-3 expression was associated with a poor response to TMZ. Mechanistically, BCL-3 promoted a more malignant phenotype by inducing an epithelial-to-mesenchymal transition in glioblastomas through promoter-specific NF-κB dimer exchange. Carbonic anhydrase II (CAII) was identified as a downstream factor promoting BCL-3-mediated resistance to chemotherapy. Experiments in glioma xenograft mouse models demonstrated that the CAII inhibitor acetazolamide enhanced survival of TMZ-treated animals. Our data suggest that BCL-3 might be a useful indicator of glioma response to alkylating chemotherapy and that acetazolamide might be repurposed as a chemosensitizer for treating TMZ-resistant gliomas.
Collapse
Affiliation(s)
- Longtao Wu
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Giovanna M Bernal
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Kirk E Cahill
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | - Heather Mashek
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Bakhtiar Yamini
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Huo J, Chen X, Zhang H, Hu Y, Jiang Y, Liu S, Zhang X. Bcl-3 promotes proliferation and chemosensitivity in BL1 subtype of TNBC cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1141-1149. [PMID: 30289427 DOI: 10.1093/abbs/gmy117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Bcl-3 is an established oncogene in diverse malignant tumors. In this study, we investigated a dual role of Bcl-3 in BL1-subtype triple-negative breast cancer (TNBC). The BL1-subtype TNBC is featured by increasing cell cycle gene expression and the highest sensitivity to chemotherapy among all subtypes. Bcl-3 is associated with a better prognosis in BL1 patients. Bcl-3 knockdown in BL1 cell MDA-MB-468 induces the inhibition of cell proliferation and the G1/S transition arrest by promoting p27 and reducing the expressions of c-Myc and skp2 at mRNA and protein levels. Meanwhile, Bcl-3 enhances the sensitivity of MDA-MB-468 to chemotherapeutics ABX and PTX. Furthermore, the regulation mechanisms are restricted to BL1 cell and do not occur in SUM159PT, a typical MSL subtype of TNBC cell. These data suggest that Bcl-3 may be a potential clinical biomarker for diagnosis, treatment, and prognosis of patients with BL1-subtype TNBC.
Collapse
Affiliation(s)
- Junhaohui Huo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xi Chen
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haohao Zhang
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yiming Hu
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yuhang Jiang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sanhong Liu
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaoren Zhang
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
23
|
Yamini B. NF-κB, Mesenchymal Differentiation and Glioblastoma. Cells 2018; 7:cells7090125. [PMID: 30200302 PMCID: PMC6162779 DOI: 10.3390/cells7090125] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Although glioblastoma (GBM) has always been recognized as a heterogeneous tumor, the advent of largescale molecular analysis has enabled robust categorization of this malignancy into several specific subgroups. Among the subtypes designated by expression profiling, mesenchymal tumors have been associated with an inflammatory microenvironment, increased angiogenesis, and resistance to therapy. Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor that plays a prominent role in mediating many of the central features associated with mesenchymal differentiation. This review summarizes the mechanisms by which NF-κB proteins and their co-regulating partners induce the transcriptional network that underlies the mesenchymal phenotype. Moreover, both the intrinsic changes within mesenchymal GBM cells and the microenvironmental factors that modify the overall NF-κB response are detailed.
Collapse
Affiliation(s)
- Bakhtiar Yamini
- Section of Neurosurgery Department of Surgery, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IκBζ: an emerging player in cancer. Oncotarget 2018; 7:66310-66322. [PMID: 27579619 PMCID: PMC5323236 DOI: 10.18632/oncotarget.11624] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023] Open
Abstract
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.
Collapse
Affiliation(s)
- Marie Willems
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Nadège Dubois
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Lucia Musumeci
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Pierre A Robe
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium.,Department of Neurology and Neurosurgery, T&P Bohnenn Laboratory for Neuro-Oncology, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan, Utrecht, The Netherlands
| |
Collapse
|
25
|
Tohyama M, Shirakata Y, Hanakawa Y, Dai X, Shiraishi K, Murakami M, Miyawaki S, Mori H, Utsunomiya R, Masuda K, Hashimoto K, Sayama K. Bcl-3 induced by IL-22 via STAT3 activation acts as a potentiator of psoriasis-related gene expression in epidermal keratinocytes. Eur J Immunol 2018; 48:168-179. [PMID: 28901004 DOI: 10.1002/eji.201747017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/26/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
IL-22 induces STAT3 phosphorylation and mediates psoriasis-related gene expression. However, the signaling mechanism leading from pSTAT3 to the expression of these genes remains unclear. We focused on Bcl-3, which is induced by STAT3 activation and mediates gene expression. In cultured human epidermal keratinocytes, IL-22 increased Bcl-3, which was translocated to the nucleus with p50 via STAT3 activation. The increases in CXCL8, S100As and human β-defensin 2 mRNA expression caused by IL-22 were abolished by siRNA against Bcl-3. Although CCL20 expression was also augmented by IL-22, the knockdown of Bcl-3 increased its level. Moreover, the combination of IL-22 and IL-17A enhanced Bcl-3 production, IL-22-induced gene expression, and the expression of other psoriasis-related genes, including those encoding IL-17C, IL-19, and IL-36γ. The expression of these genes (except for CCL20) was also suppressed by the knockdown of Bcl-3. Bcl-3 overexpression induced CXCL8 and HBD2 expression but not S100As expression. We also compared Bcl-3 expression between psoriatic skin lesions and normal skin. Immunostaining revealed strong signals for Bcl-3 and p50 in the nucleus of epidermal keratinocytes from psoriatic skin. The IL-22-STAT3-Bcl-3 pathway may be important in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Mikiko Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuji Shirakata
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasushi Hanakawa
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Saori Miyawaki
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kana Masuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Hashimoto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
26
|
Mufazalov IA, Kuschmann J, Andruszewski D, Masri J, Gabriel LA, Adams P, Reissig S, Hövelmeyer N, Waisman A. Balanced Bcl-3 expression in murine CD4 + T cells is required for generation of encephalitogenic Th17 cells. Eur J Immunol 2017; 47:1335-1341. [PMID: 28598502 DOI: 10.1002/eji.201746933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/17/2017] [Accepted: 06/06/2017] [Indexed: 02/01/2023]
Abstract
The function of NF-κB family members is controlled by multiple mechanisms including the transcriptional regulator Bcl-3, an atypical member of the IκB family. By using a murine model of conditional Bcl-3 overexpression specifically in T cells, we observed impairment in the development of Th2, Th1, and Th17 cells. High expression of Bcl-3 promoted CD4+ T-cell survival, but at the same time suppressed proliferation in response to TCR stimulation, resulting in reduced CD4+ T-cell expansion. As a consequence, T-cell-specific overexpression of Bcl-3 led to reduced inflammation in the small intestine of mice applied with anti-CD3 in a model of gut inflammation. Moreover, impaired Th17-cell development resulted in the resistance of Bcl-3 overexpressing mice to EAE, a mouse model of multiple sclerosis. Thus, we concluded that fine-tuning expression of Bcl-3 is needed for proper CD4+ T-cell development and is required to sustain Th17-cell mediated pathology.
Collapse
Affiliation(s)
- Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Janina Kuschmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David Andruszewski
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joumana Masri
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laureen A Gabriel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Petra Adams
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sonja Reissig
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
27
|
Wang X, Liu S, Yang Y, Fu Q, Abebe A, Liu Z. Identification of NF-κB related genes in channel catfish and their expression profiles in mucosal tissues after columnaris bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:27-38. [PMID: 28063885 DOI: 10.1016/j.dci.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Interactions of NF-κB family, IκB family and IKK complex are the key components of NF-κB pathway that is essential for many biological processes including innate and adaptive immunity, inflammation and stress responses. In spite of their importance, systematic analysis of these genes in fish has been lacking. Here we report a systematic study of the NF-κB related genes in channel catfish. Five NF-κB family genes, five IκB family genes and three IKK complex genes were identified in the channel catfish genome. Annotation of these 13 NF-κB related genes was further confirmed by phylogenetic and syntenic analysis. Negative selection was found to play a crucial role in the adaptive evolution of these genes. Expression profiles of NF-κB related genes after Flavobacterium columnare (columnaris) infection were determined by analysis of the existing RNA-Seq dataset. The majority of NF-κB related genes were significantly regulated in mucosal tissues of gill, skin and intestine after columnaris infection, indicating their potential involvement in host defense responses. Distinct expression patterns of NF-κB related genes were observed in susceptible and resistant catfish in response to columnaris infection, suggesting that expression of these genes may contribute to the variations in disease resistance/susceptibility of catfish.
Collapse
Affiliation(s)
- Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
28
|
Elevated levels of Bcl-3 inhibits Treg development and function resulting in spontaneous colitis. Nat Commun 2017; 8:15069. [PMID: 28452361 PMCID: PMC5414353 DOI: 10.1038/ncomms15069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Bcl-3 is an atypical NF-κB family member that regulates NF-κB-dependent gene expression in effector T cells, but a cell-intrinsic function in regulatory T (Treg) cells and colitis is not clear. Here we show that Bcl-3 expression levels in colonic T cells correlate with disease manifestation in patients with inflammatory bowel disease. Mice with T-cell-specific overexpression of Bcl-3 develop severe colitis that can be attributed to defective Treg cell development and function, leading to the infiltration of immune cells such as pro-inflammatory γδT cells, but not αβ T cells. In Treg cells, Bcl-3 associates directly with NF-κB p50 to inhibit DNA binding of p50/p50 and p50/p65 NF-κB dimers, thereby regulating NF-κB-mediated gene expression. This study thus reveals intrinsic functions of Bcl-3 in Treg cells, identifies Bcl-3 as a potential prognostic marker for colitis and illustrates the mechanism by which Bcl-3 regulates NF-κB activity in Tregs to prevent colitis. Bcl-3 modulates effector T cell responses, but the importance of Bcl-3 in T regulatory cells and autoimmunity is not clear. Here the authors show that Bcl-3 impedes NF-κB DNA binding to alter T regulatory cell development and function, causing spontaneous colitis in mice.
Collapse
|
29
|
Chuang Y, Knickel BK, Leonard JN. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun 2016; 22:647-657. [PMID: 27670945 PMCID: PMC5292318 DOI: 10.1177/1753425916668243] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages are ubiquitous innate immune cells that play a central role in health and disease by adopting distinct phenotypes, which are broadly divided into classical inflammatory responses and alternative responses that promote immune suppression and wound healing. Although macrophages are attractive therapeutic targets, incomplete understanding of this functional choice limits clinical manipulation. While individual stimuli, pathways, and genes involved in macrophage functional responses have been identified, how macrophages evaluate complex in vivo milieus comprising multiple divergent stimuli remains poorly understood. Here, we used combinations of "incoherent" stimuli-those that individually promote distinct macrophage phenotypes-to elucidate how the immunosuppressive, IL-10-driven macrophage phenotype is induced, maintained, and modulated under such combinatorial stimuli. The IL-10-induced immunosuppressive phenotype was largely insensitive to co-administered IL-12, which has been reported to modulate macrophage phenotype, but maintaining the immunosuppressive phenotype required sustained exposure to IL-10. Our data implicate the intracellular protein, BCL3, as a key mediator of the IL-10-driven phenotype. Notably, co-administration of IFN-γ disrupted an IL-10-mediated positive feedback loop that may reinforce the immunosuppressive phenotype. This novel combinatorial perturbation approach thus generated new insights into macrophage decision making and local immune network function.
Collapse
Affiliation(s)
- Yishan Chuang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Brianne K. Knickel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Krappmann D, Vincendeau M. Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 2016; 39:3-14. [DOI: 10.1016/j.semcancer.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
|
31
|
Tang W, Wang H, Ha HL, Tassi I, Bhardwaj R, Claudio E, Siebenlist U. The B-cell tumor promoter Bcl-3 suppresses inflammation-associated colon tumorigenesis in epithelial cells. Oncogene 2016; 35:6203-6211. [PMID: 27132515 PMCID: PMC5093091 DOI: 10.1038/onc.2016.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/17/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Bcl-3 is an atypical member of the IκB family. It associates with p50/NF-κB1 and p52/NF-κB2 homodimers in nuclei where it modulates transcription in a context-dependent manner. A subset of B cell tumors exhibits recurrent translocations of Bcl-3, resulting in overexpression. Elevated expression without translocations is also observed in various B cell lymphomas and even some solid tumors. Here we investigated the role of Bcl-3 in AOM/DSS-induced colon tumors, a mouse model for colitis-associated colorectal cancers in humans. Contrary to expectations, Bcl-3 suppressed colorectal tumor formation: Bcl-3-deficient mice were relatively protected from DSS-induced epithelial damage and developed more polyps after AOM/DSS treatment, though polyp size was unaffected. DSS-challenged mutant mice exhibited increased recruitment of myeloid-derived suppressor cells (MDSCs), consistent with protection of the epithelium. Loss of Bcl-3 in intestinal epithelial cells was sufficient to increase tumorigenesis. The added tumor burden in mutant mice was dependent on TNFα, a tumorigenic, NF-κB-mediated signaling pathway that was dampened by Bcl-3. These findings reveal a tumor-suppressive role for Bcl-3 in this inflammation-associated cancer model. Bcl-3 thus functions as a tumor promoter or suppressor, depending on the cellular and environmental context.
Collapse
Affiliation(s)
- W Tang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H Wang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H L Ha
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I Tassi
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - R Bhardwaj
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - E Claudio
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - U Siebenlist
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol 2016; 94:821-829. [PMID: 27121163 PMCID: PMC5073155 DOI: 10.1038/icb.2016.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ) B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.
Collapse
|
33
|
Cieślik M, Bekiranov S. Genome-wide predictors of NF-κB recruitment and transcriptional activity. BioData Min 2015; 8:37. [PMID: 26617673 PMCID: PMC4661973 DOI: 10.1186/s13040-015-0071-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible transcription factors (TFs) mediate transcriptional responses to environmental cues. In response to multiple inflammatory signals active NF-κB dimers enter the nucleus and trigger cell-type-, and stimulus-specific transcriptional programs. Although much is known about NF-κB inducing pathways and about locus-specific mechanisms of transcriptional control, it is poorly understood how the pre-existing chromatin landscape determines NF-κB target selection and activation. Specifically, it is not known which epigenetic marks and pre-bound TFs serve genome-wide as positive (negative) cues for active NF-κB. RESULTS We applied multivariate and combinatorial data mining techniques on a comprehensive dataset of DNA methylation, DNase I hypersensitivity, eight epigenetic marks, and 34 TFs to arrive at genome-wide patterns that predict NF-κB binding. Strikingly, we observed NF-κB recruitment to accessible and nucleosome-bound sites. Within nucleosomal DNA NF-κB binding was primed by H3K4me1 and H2A.Z, but also hyper-methylated DNA outside of promoters and CpG-islands. Many of these predictors showed combinatorial cooperativity and statistically significant interactions. Recruitment to pre-accessible sites was more frequent and influenced by chromatin-associated TFs. We observed that specific TF-combinations are greatly enriched for (or depleted of) NF-κB binding events. CONCLUSIONS We provide evidence of NF-κB binding within genomic regions that lack classical marks of activity. These pioneer binding events are relatively often associated with transcriptional regulation. Further, our predictive models indicate that specific combinations of epigenetic marks and transcription factors predetermine the NF-κB cistrome, supporting the feasibility of using statistical approaches to identify "histone codes".
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
34
|
Ishikawa C, Senba M, Mori N. Induction of IκB-ζ by Epstein-Barr virus latent membrane protein-1 and CD30. Int J Oncol 2015; 47:2197-207. [PMID: 26498461 DOI: 10.3892/ijo.2015.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 11/05/2022] Open
Abstract
Activation of nuclear factor-κB (NF-κB) in Burkitt's lymphoma (BL) and Hodgkin's lymphoma (HL) cells is important in the transformation and development process of these lymphomas. Epstein-Barr virus (EBV) latent membrane protein-1 (LMP-1) and ligand-independent signaling by overexpressed CD30 are known to cause permanent activation of NF-κB in lymphomas. However, hyperactivation of NF-κB triggers cellular senescence and apoptosis. Here, we show that IκB-ζ, an inducible regulator of NF-κB, is constitutively expressed in BL and HL cell lines. In addition, immunohistochemical staining identified nuclear IκB-ζ‑positive BL cells, and Hodgkin and Reed-Sternberg cells in lymph nodes. Expression of LMP-1 and CD30 increased IκB-ζ expression at the transcriptional level. IκB-ζ promoter was regulated by activation of the NF-κB‑inducing kinase (NIK)/IκB kinase/NF-κB pathway via the carboxyl‑terminal tumor necrosis factor (TNF) receptor‑associated factor (TRAF)-interacting regions of LMP-1 and CD30. Interestingly, IκB-ζ inhibited NF-κB activation by LMP-1 and CD30. The results suggest that NF-κB-induced IκB-ζ negatively modulates NF-κB hyperactivation, resulting in a fine balance that ultimately endows a net evolutionary benefit to the survival of BL and HL cells.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
35
|
Chen CY, Lee DS, Yan YT, Shen CN, Hwang SM, Lee ST, Hsieh PC. Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of Naïve Pluripotency. Stem Cells 2015; 33:3468-80. [DOI: 10.1002/stem.2201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Chen-Yun Chen
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Desy S. Lee
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Chia-Ning Shen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center; Food Industry Research and Development Institute; Hsinchu Taiwan
| | - Sho Tone Lee
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Patrick C.H. Hsieh
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| |
Collapse
|
36
|
Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, Richardson C, Callaghan K, Blair GE, Fox N, Lagnado A, Passos JF, Moore AJ, Smith GR, Tiniakos DG, Mann J, Oakley F, Mann DA. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 2015; 6:6818. [PMID: 25879839 PMCID: PMC4410629 DOI: 10.1038/ncomms7818] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) develops on the background of chronic hepatitis.
Leukocytes found within the HCC microenvironment are implicated as regulators of
tumour growth. We show that diethylnitrosamine (DEN)-induced murine HCC is
attenuated by antibody-mediated depletion of hepatic neutrophils, the latter
stimulating hepatocellular ROS and telomere DNA damage. We additionally report a
previously unappreciated tumour suppressor function for hepatocellular nfkb1
operating via p50:p50 dimers and the co-repressor HDAC1. These anti-inflammatory
proteins combine to transcriptionally repress hepatic expression of a S100A8/9,
CXCL1 and CXCL2 neutrophil chemokine network. Loss of nfkb1 promotes
ageing-associated chronic liver disease (CLD), characterized by steatosis,
neutrophillia, fibrosis, hepatocyte telomere damage and HCC.
Nfkb1S340A/S340Amice carrying a mutation
designed to selectively disrupt p50:p50:HDAC1 complexes are more susceptible to HCC;
by contrast, mice lacking S100A9 express reduced neutrophil chemokines and are
protected from HCC. Inhibiting neutrophil accumulation in CLD or targeting their
tumour-promoting activities may offer therapeutic opportunities in HCC. The role of neutrophils in cancer development is not widely
appreciated. Here, the authors show that NF-κB-deficient hepatocytes
overproduce chemokines, leading to hepatocellular carcinoma due to excessive neutrophil
recruitment, and that neutrophil depletion prevents liver cancer in these
mice.
Collapse
Affiliation(s)
- C L Wilson
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D Jurk
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - N Fullard
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - P Banks
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - A Page
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - S Luli
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - A M Elsharkawy
- Liver Unit, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - R G Gieling
- Hypoxia and Therapeutics Group, Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - J Bagchi Chakraborty
- Department of Medicine, Immunology and Inflammation, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London W12 0NN, UK
| | - C Fox
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - C Richardson
- Centre for Behaviour and Evolution/Institute of Neuroscience, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - K Callaghan
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - G E Blair
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Garstang Building, Leeds LS2 9JT, UK
| | - N Fox
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Garstang Building, Leeds LS2 9JT, UK
| | - A Lagnado
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - J F Passos
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - A J Moore
- Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - G R Smith
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D G Tiniakos
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - J Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - F Oakley
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D A Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
37
|
Mansour NM, Bernal GM, Wu L, Crawley CD, Cahill KE, Voce DJ, Balyasnikova IV, Zhang W, Spretz R, Nunez L, Larsen GF, Weichselbaum RR, Yamini B. Decoy Receptor DcR1 Is Induced in a p50/Bcl3-Dependent Manner and Attenuates the Efficacy of Temozolomide. Cancer Res 2015; 75:2039-48. [PMID: 25808868 DOI: 10.1158/0008-5472.can-14-2144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Temozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy. To identify factors that modulate cytotoxicity in the setting of DNA damage, we used an unbiased strategy to examine the NF-κB-dependent expression profile induced by temozolomide. By this route, we defined the decoy receptor DcR1 as a temozolomide response gene induced by a mechanism relying upon p50/NF-κB1. A conserved NF-κB-binding sequence (κB-site) was identified in the proximal promoter and was demonstrated to be required for DcR1 induction by temozolomide. Loss-of-function and gain-of-function studies reveal that the atypical IκB protein, Bcl3, is also required for induction of DcR1 by temozolomide. Mechanistically, DcR1 attenuates temozolomide efficacy by blunting activation of the Fas receptor pathway in p53(+/+) glioma cells. Intracranial xenograft studies show that DcR1 depletion in glioma cells enhances the efficacy of temozolomide. Taken together, our results show how DcR1 upregulation mediates temozolomide resistance and provide a rationale for DcR1 targeting as a strategy to sensitize gliomas to this widely used chemotherapy.
Collapse
Affiliation(s)
- Nassir M Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - David J Voce
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Irina V Balyasnikova
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Wei Zhang
- College of Medicine, The University of Illinois at Chicago, Chicago, Illinois
| | | | - Luis Nunez
- LNK Chemsolutions LLC, Lincoln, Nebraska
| | | | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
38
|
Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S, Siebenlist U. The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity 2015; 41:555-66. [PMID: 25367572 DOI: 10.1016/j.immuni.2014.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Bcl-3 is an atypical member of the IκB family that modulates transcription in the nucleus via association with p50 (NF-κB1) or p52 (NF-κB2) homodimers. Despite evidence attesting to the overall physiologic importance of Bcl-3, little is known about its cell-specific functions or mechanisms. Here we demonstrate a T-cell-intrinsic function of Bcl-3 in autoimmunity. Bcl-3-deficient T cells failed to induce disease in T cell transfer-induced colitis and experimental autoimmune encephalomyelitis. The protection against disease correlated with a decrease in Th1 cells that produced the cytokines IFN-γ and GM-CSF and an increase in Th17 cells. Although differentiation into Th1 cells was not impaired in the absence of Bcl-3, differentiated Th1 cells converted to less-pathogenic Th17-like cells, in part via mechanisms involving expression of the RORγt transcription factor. Thus, Bcl-3 constrained Th1 cell plasticity and promoted pathogenicity by blocking conversion to Th17-like cells, revealing a unique type of regulation that shapes adaptive immunity.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Marchetti G, Girelli D, Zerbinati C, Lunghi B, Friso S, Meneghetti S, Coen M, Gagliano T, Guastella G, Bochaton-Piallat ML, Pizzolo F, Mascoli F, Malerba G, Bovolenta M, Ferracin M, Olivieri O, Bernardi F, Martinelli N. An integrated genomic-transcriptomic approach supports a role for the proto-oncogene BCL3 in atherosclerosis. Thromb Haemost 2014; 113:655-63. [PMID: 25374339 DOI: 10.1160/th14-05-0466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/08/2014] [Indexed: 11/05/2022]
Abstract
Data with border-line statistical significance, copiously generated in genome-wide association studies of coronary artery disease (CAD), could include functionally relevant associations. We propose an integrated genomic and transcriptomic approach for unravelling new potential genetic signatures of atherosclerosis. Fifteen among 91 single nucleotide polymorphisms (SNPs) were first selected for association in a sex- and age-adjusted model by examining 510 patients with CAD and myocardial infarction and 388 subjects with normal coronary arteries (CAD-free) in the replication stages of a genome-wide association study. We investigated the expression of 71 genes proximal to the 15 tag-SNPs by two subsequent steps of microarray-based mRNA profiling, the former in vascular smooth muscle cell populations, isolated from non-atherosclerotic and atherosclerotic human carotid portions, and the latter in whole carotid specimens. BCL3 and PVRL2, contiguously located on chromosome 19, and ABCA1, extensively investigated before, were found to be differentially expressed. BCL3 and PVRL2 SNPs were genotyped within a second population of CAD patients (n=442) and compared with CAD-free subjects (n=393). The carriership of the BCL3 rs2965169 G allele was more represented among CAD patients and remained independently associated with CAD after adjustment for all the traditional cardiovascular risk factors (odds ratio=1.70 with 95% confidence interval 1.07-2.71), while the BCL3 rs8100239 A allele correlated with metabolic abnormalities. The up-regulation of BCL3 mRNA levels in atherosclerotic tissue samples was consistent with BCL3 protein expression, which was detected by immunostaining in the intima-media of atherosclerotic specimens, but not within non-atherosclerotic ones. Our integrated approach suggests a role for BCL3 in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicola Martinelli
- Nicola Martinelli, Department of Medicine, University of Verona, 37134 Verona, Italy, E-mail:
| |
Collapse
|
40
|
Gene polymorphism of rs556621 but Not rs11984041 is associated with the risk of large artery atherosclerotic stroke in a Xinjiang Uyghur population. J Stroke Cerebrovasc Dis 2014; 23:2641-2645. [PMID: 25307434 DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stroke is one of the main causes of death and adult chronic disability. Recently, 2 independent genome-wide association studies reported that the genetic variants (rs556621 and rs11984041) are significantly associated with large artery atherosclerosis (LAA). METHODS To determine whether these 2 variants are associated with the pathogenesis of LAA in stroke patients from the Xinjiang Uyghur autonomous region of China, both variants were evaluated in a series of 733 LAA stroke patients (434 Han and 299 Uyghur) and 725 age-, gender-, smoking-, alcohol habits- and ethnicity-matched controls (401 Han and 324 Uyghur). RESULTS For rs556621, significant differences in genotypic and allelic distributions were observed between Uyghur patients and controls (P = .045 for genotypic distribution, P = .042 for allelic distribution) but not in the Chinese Han cohort (P > .05). No significant differences were found in genotypic and allele distributions between patients and controls for rs11984041 in either the Chinese Han or Uyghur cohort (P > .05). CONCLUSIONS The variant rs556621 but not rs11984041 may increase susceptibility of LAA stroke in the Xinjiang Uyghur population.
Collapse
|
41
|
Zhou Y, Xu J, Liu Y, Li J, Chang C, Xu C. Rat hepatocytes weighted gene co-expression network analysis identifies specific modules and hub genes related to liver regeneration after partial hepatectomy. PLoS One 2014; 9:e94868. [PMID: 24743545 PMCID: PMC3990548 DOI: 10.1371/journal.pone.0094868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR.
Collapse
Affiliation(s)
- Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
- * E-mail: (YZ); (CSX)
| | - Jiucheng Xu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yunqing Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
| | - Juntao Li
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
- * E-mail: (YZ); (CSX)
| |
Collapse
|
42
|
Collins PE, Kiely PA, Carmody RJ. Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50. J Biol Chem 2014; 289:7059-7067. [PMID: 24459141 DOI: 10.1074/jbc.m114.551986] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B cell leukemia 3 (Bcl-3) is an essential negative regulator of NF-κB during Toll-like receptor and TNF receptor signaling. Bcl-3 also interacts with a number of transcriptional regulators, including homodimers of the NF-κB p50 subunit. Deletion of Bcl-3 results in increased NF-κB p50 ubiquitination and proteasomal degradation and increased inflammatory gene expression. We employed immobilized peptide array technology to define a region of p50 required for the formation of a Bcl-3·p50 homodimer immunosuppressor complex. Our data demonstrate that amino acids 359-361 and 363 of p50 are critical for interaction with Bcl-3 and essential for Bcl-3-mediated inhibition of inflammatory gene expression. Bcl-3 is unable to interact with p50 when these amino acids are mutated, rendering it incapable of inhibiting the transcriptional activity of NF-κB. Bcl-3 interaction-defective p50 is hyperubiquitinated and has a significantly reduced half-life relative to wild-type p50. Nfkb1(-/-) cells reconstituted with mutated p50 precursor p105 are hyperresponsive to TNFα stimulation relative to wild-type p105, as measured by inflammatory gene expression. Mutant p105 recapitulates a Bcl3(-/-) phenotype. This study demonstrates that interaction with p50 is necessary and sufficient for the anti-inflammatory properties of Bcl-3 and further highlights the importance of p50 homodimer stability in the control of NF-κB target gene expression.
Collapse
Affiliation(s)
| | - Patrick A Kiely
- Department of Life Sciences and the Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow G12 8TA, Scotland, Glasgow, United Kingdom.
| |
Collapse
|
43
|
Wang J, Niu Z, Shi Y, Gao C, Wang X, Han J, Li J, Gao Z, Zhu X, Song X, Qin Z, Wang H. Bcl-3, induced by Tax and HTLV-1, inhibits NF-κB activation and promotes autophagy. Cell Signal 2013; 25:2797-804. [DOI: 10.1016/j.cellsig.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
44
|
Diamant G, Dikstein R. Transcriptional control by NF-κB: elongation in focus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:937-45. [PMID: 23624258 DOI: 10.1016/j.bbagrm.2013.04.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/01/2023]
Abstract
The NF-κB family of transcription factors governs the cellular reaction to a variety of extracellular signals. Following stimulation, NF-κB activates genes involved in inflammation, cell survival, cell cycle, immune cell homeostasis and more. This review focuses on studies of the past decade that uncover the transcription elongation process as a key regulatory stage in the activation pathway of NF-κB. Of interest are studies that point to the elongation phase as central to the selectivity of target gene activation by NF-κB. Particularly, the cascade leading to phosphorylation and acetylation of the NF-κB subunit p65 on serine 276 and lysine 310, respectively, was shown to mediate the recruitment of Brd4 and P-TEFb to many pro-inflammatory target genes, which in turn facilitate elongation and mRNA processing. On the other hand, some anti-inflammatory genes are refractory to this pathway and are dependent on the elongation factor DSIF for efficient elongation and mRNA processing. While these studies have advanced our knowledge of NF-κB transcriptional activity, they have also raised unresolved issues regarding the specific genomic and physiological contexts by which NF-κB utilizes different mechanisms for activation.
Collapse
Affiliation(s)
- Gil Diamant
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot , Israel
| | | |
Collapse
|
45
|
Ryzhakov G, Teixeira A, Saliba D, Blazek K, Muta T, Ragoussis J, Udalova IA. Cross-species analysis reveals evolving and conserved features of the nuclear factor κB (NF-κB) proteins. J Biol Chem 2013; 288:11546-54. [PMID: 23508954 PMCID: PMC3630861 DOI: 10.1074/jbc.m113.451153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NF-κB is a key regulator of immune gene expression in metazoans. It is currently unclear what changes occurred in NF-κB during animal evolution and what features remained conserved. To address this question, we compared the biochemical and functional properties of NF-κB proteins derived from human and the starlet sea anemone (Nematostella vectensis) in 1) a high-throughput assay of in vitro preferences for DNA sequences, 2) ChIP analysis of in vivo recruitment to the promoters of target genes, 3) a LUMIER-assisted examination of interactions with cofactors, and 4) a transactivation assay. We observed a remarkable evolutionary conservation of the DNA binding preferences of the animal NF-κB orthologs. We also show that NF-κB dimerization properties, nuclear localization signals, and binding to cytosolic IκBs are conserved. Surprisingly, the Bcl3-type nuclear IκB proteins functionally pair up only with NF-κB derived from their own species. The basis of the differential NF-κB recognition by IκB subfamilies is discussed.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
46
|
García I, Cosío G, Lizárraga F, Martínez-Ruiz G, Meléndez-Zajgla J, Ceballos G, Espinosa M, Pacheco R, Maldonado V. Bcl-3 regulates UVB-induced apoptosis. Hum Cell 2013; 26:47-55. [DOI: 10.1007/s13577-012-0056-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023]
|
47
|
Massaro M, Scoditti E, Carluccio MA, Pellegrino M, Calabriso N, Storelli C, Martines G, De Caterina R. Dipyridamole decreases inflammatory metalloproteinase-9 expression and release by human monocytes. Thromb Haemost 2012; 109:280-9. [PMID: 23238437 DOI: 10.1160/th12-05-0326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/30/2012] [Indexed: 11/05/2022]
Abstract
Matrix metalloproteinase (MMP)-9 plays an important role in stroke by accelerating matrix degradation, disrupting the blood-brain barrier and increasing infarct size. Dipyridamole is an antiplatelet agent with recognised benefits in ischaemic stroke prevention. In addition to its antiplatelet properties, recent studies have reported that dipyridamole also features anti-inflammatory and anti-oxidant properties. We therefore investigated whether dipyridamole can ameliorate the proinflammatory profile of human monocytes, a source of MMP-9 in stroke, in terms of regulation of MMP-9 activity and expression, and explored underlying mechanisms. Human peripheral blood mononuclear cells (PBMC) and U937 cells were treated with increasing concentrations of dipyridamole (up to 10 µg/ml) for 60 minutes before stimulation with tumour necrosis factor (TNF)-α or phorbol myristate acetate (PMA). Exposure of PBMC and U937 to dipyridamole reduced TNF-α- and PMA-induced MMP-9 activity and protein release as well as MMP-9 mRNA, without significantly affecting the release of TIMP-1. This inhibitory effect was independent of dipyridamole-induced cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) increase. Correspondingly, dipyridamole also significantly inhibited TNF-α-induced nuclear factor (NF)-κB activation and nuclear translocation of the p65 NF-κB subunit through a mechanism involving the inhibition of IkBα degradation and p38 MAPK activation. In conclusion, dipyridamole, at therapeutically achievable concentrations, reduces the expression and release of MMP-9 through a mechanism involving p38 MAPK and NF-κB inhibition. These results indicate that dipyridamole exerts anti-inflammatory properties in human monocytes that may favourably contribute to its actions in the secondary prevention of stroke, independent of its antiplatelet properties.
Collapse
Affiliation(s)
- Marika Massaro
- C.N.R. Institute of Clinical Physiology, Pisa and Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wakefield A, Soukupova J, Montagne A, Ranger J, French R, Muller WJ, Clarkson RWE. Bcl3 selectively promotes metastasis of ERBB2-driven mammary tumors. Cancer Res 2012; 73:745-55. [PMID: 23149915 DOI: 10.1158/0008-5472.can-12-1321] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bcl3 is a putative proto-oncogene deregulated in hematopoietic and solid tumors. Studies in cell lines suggest that its oncogenic effects are mediated through the induction of proliferation and inhibition of cell death, yet its role in endogenous solid tumors has not been established. Here, we address the oncogenic effect of Bcl3 in vivo and describe how this Stat3-responsive oncogene promotes metastasis of ErbB2-positive mammary tumors without affecting primary tumor growth or normal mammary function. Deletion of the Bcl3 gene in ErbB2-positive (MMTV-Neu) mice resulted in a 75% reduction in metastatic tumor burden in the lungs with a 3.6-fold decrease in cell turnover index in these secondary lesions with no significant effect on primary mammary tumor growth, cyclin D1 levels, or caspase-3 activity. Direct inhibition of Bcl3 by siRNA in a transplantation model of an Erbb2-positive mammary tumor cell line confirmed the effect of Bcl3 in malignancy, suggesting that the effect of Bcl3 was intrinsic to the tumor cells. Bcl3 knockdown resulted in a 61% decrease in tumor cell motility and a concomitant increase in the cell migration inhibitors Nme1, Nme2, and Nme3, the GDP dissociation inhibitor Arhgdib, and the metalloprotease inhibitors Timp1 and Timp2. Independent knockdown of Nme1, Nme2, and Arhgdib partially rescued the Bcl3 motility phenotype. These results indicate for the first time a cell-autonomous disease-modifying role for Bcl3 in vivo, affecting metastatic disease progression rather than primary tumor growth.
Collapse
Affiliation(s)
- Alison Wakefield
- University of Cardiff School of Biosciences, Museum Avenue, Cardiff, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Bcl-3 suppresses Tax-induced NF-κB activation through p65 nuclear translocation blockage in HTLV-1-infected cells. Int J Oncol 2012; 42:269-76. [PMID: 23135533 DOI: 10.3892/ijo.2012.1685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/16/2012] [Indexed: 11/05/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) Tax-induced persistent activation of the NF-κB pathway is perceived as the primary cause of adult T cell leukemia (ATL), an aggressive leukemia caused by HTLV-1. Although elevated oncoprotein Bcl-3 levels are found in many HTLV-1-infected T cell lines and ATL cells, the role of Bcl-3 in the malignant progression caused by HTLV-1 retrovirus remains poorly understood. We confirmed, in the present study, that the Tax-induced NF-κB activation involves the regulation of Bcl-3. Both knockdown and overexpression of Bcl-3 inhibit the Tax-induced NF-κB activation. Similarly, excessive Bcl-3 inhibits the NF-κB/DNA binding activity and significantly decreases Tax-induced p65 nuclear translocation. The present results demonstrate the pleiotropic roles of Bcl-3 in Tax-induced NF-κB activation and indicate that a balance in the aberrant Bcl-3 expression may be established to play an important role in the maintenance of proliferation and inhibition of apoptosis in HTLV-1-infected and ATL cells.
Collapse
|
50
|
Abstract
The vast majority of research on nuclear factor κB (NF-κB) signaling in the past 25 years has focused on its roles in normal and disease-related processes in vertebrates, especially mice and humans. Recent genome and transcriptome sequencing efforts have shown that homologs of NF-κB transcription factors, inhibitor of NF-κB (IκB) proteins, and IκB kinases are present in a variety of invertebrates, including several in phyla simpler than Arthropoda, the phylum containing insects such Drosophila. Moreover, many invertebrates also contain genes encoding homologs of upstream signaling proteins in the Toll-like receptor signaling pathway, which is well-known for its downstream activation of NF-κB for innate immunity. This review describes what we now know or can infer and speculate about the evolution of the core elements of NF-κB signaling as well as the biological processes controlled by NF-κB in invertebrates. Further research on NF-κB in invertebrates is likely to uncover information about the evolutionary origins of this key human signaling pathway and may have relevance to our management of the responses of ecologically and economically important organisms to environmental and adaptive pressures.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|