1
|
Cranmer KD, Pant MD, Quesnel S, Sharp JA. Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia. Pathogens 2023; 13:25. [PMID: 38251333 PMCID: PMC10821353 DOI: 10.3390/pathogens13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).
Collapse
Affiliation(s)
- Katelyn D. Cranmer
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Mohan D. Pant
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Suzanne Quesnel
- Children’s Hospital of the King’s Daughters, Norfolk, VA 23507, USA
| | - Julia A. Sharp
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
2
|
Dai J, Huang J, Wu S, Zhang F, Li Y, Rong D, Zhao M, Ye Q, Gu Q, Zhang Y, Wei X, Zhang J, Wu Q. Occurrence, Antibiotic Susceptibility, Biofilm Formation and Molecular Characterization of Staphylococcus aureus Isolated from Raw Shrimp in China. Foods 2023; 12:2651. [PMID: 37509743 PMCID: PMC10378822 DOI: 10.3390/foods12142651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to determine the prevalence and characterization of Staphylococcus aureus isolated from 145 shrimp samples from 39 cities in China. The results show that 41 samples (28%) from 24 cities were positive, and most of the positive samples (39/41, 95.1%) were less than 110 MPN/g. Antimicrobial susceptibility testing showed that only seven isolates were susceptible to all 24 antibiotics, whereas 65.1% were multidrug-resistant. Antibiotic resistance genes that confer resistance to β-lactams, aminoglycosides, tetracycline, macrolides, lincosamides and streptogramin B (MLSB), trimethoprim, fosfomycin and streptothricin antibiotics were detected. All S. aureus isolates had the ability to produce biofilm and harbored most of the biofilm-related genes. Genes encoding one or more of the important virulence factors staphylococcal enterotoxins (sea, seb and sec), toxic shock syndrome toxin 1 (tsst-1) and Panton-Valentine leukocidin (PVL) were detected in 47.6% (30/63) of the S. aureus isolates. Molecular typing showed that ST15-t085 (27.0%, 17/63), ST1-t127 (14.3%, 9/63) and ST188-t189 (11.1%, 7/63) were the dominant genetic types. The finding of this study provides the first comprehensive surveillance on the incidence of S. aureus in raw shrimp in China. Some retained genotypes found in this food have been linked to human infections around the world.
Collapse
Affiliation(s)
- Jingsha Dai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanyu Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
3
|
Hochwalt AE, Abbinante-Nissen JM, Bohman LC, Hattersley AM, Hu P, Streicher-Scott JL, Teufel AG, Woeller KE. The safety assessment of tampons: illustration of a comprehensive approach for four different products. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1167868. [PMID: 37408999 PMCID: PMC10319135 DOI: 10.3389/frph.2023.1167868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction We illustrate a comprehensive tampon safety assessment approach that assures products can be used safely. Material biocompatibility, vaginal mucosa assessment, vaginal microbiome evaluation, and in vitro assessment of potential risk of staphylococcal toxic shock syndrome expressed through growth of Staphylococcus aureus (S. aureus) and production of TSST-1 are the four essential portions of the approach. Post-marketing surveillance informs of possible health effects that warrant follow up. The approach meets or exceeds US and international regulatory guidance and is described through the example of four tampon products. Methods/Results Each product is comprised mostly of large molecular weight components (cotton, rayon, polymers) that cannot pass the vaginal mucosa, are widely used across the industry, and replete with a vast body of safety data and a long history of safe use in the category. Quantitative risk assessment of all small molecular weight components assured a sufficient margin of safety supporting their use. Vaginal mucosa assessment confirmed that pressure points, rough edges and/or sharp contact points were absent. A randomized cross-over clinical trial (ClinicalTrials.gov Identifier: NCT03478371) revealed favorable comfort ratings, and few complaints of irritation, burning, stinging, or discomfort upon insertion, wear, and removal. Adverse events were few, mild in severity, self-limited and resolved without treatment. Vaginal microbiota assessment in vitro presented no adverse effect on microbial growth. Culture-independent microbiome analyses from vaginal swab samples obtained during the clinical trial showed no differences attributable to tampon usage, but instead due to statistically significant subject-to-subject variability. Growth of S. aureus and TSST-1 toxin production in the presence of any of the four products in vitro were statistically significantly reduced when compared to medium control alone. Discussion The data from the four elements of the comprehensive safety assessment approach illustrated herein confirm that tampons evaluated using this system can be used safely for menstrual protection. A post-marketing surveillance system that monitors and responds to in-market experiences indicated in-use tolerability of the product among consumers, thus confirming the conclusions of the pre-marketing safety assessment.
Collapse
Affiliation(s)
| | - Joan M. Abbinante-Nissen
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Lisa C. Bohman
- Data Modeling and Sciences, The Procter & Gamble Company, Mason, OH, United States
| | - Anne M. Hattersley
- Global Safety Surveillance and Analysis, The Procter & Gamble Company, Mason, OH, United States
| | - Ping Hu
- Corporate Biosciences, The Procter & Gamble Company, Mason, OH, United States
| | - Jan L. Streicher-Scott
- Baby, Feminine and Family Care Clinical Sciences, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Amber G. Teufel
- Baby, Feminine and Family Care Microbiology, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Kara E. Woeller
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| |
Collapse
|
4
|
Pivard M, Bastien S, Macavei I, Mouton N, Rasigade JP, Couzon F, Youenou B, Tristan A, Carrière R, Moreau K, Lemoine J, Vandenesch F. Targeted proteomics links virulence factor expression with clinical severity in staphylococcal pneumonia. Front Cell Infect Microbiol 2023; 13:1162617. [PMID: 37077532 PMCID: PMC10106754 DOI: 10.3389/fcimb.2023.1162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction The bacterial pathogen Staphylococcus aureus harbors numerous virulence factors that impact infection severity. Beyond virulence gene presence or absence, the expression level of virulence proteins is known to vary across S. aureus lineages and isolates. However, the impact of expression level on severity is poorly understood due to the lack of high-throughput quantification methods of virulence proteins. Methods We present a targeted proteomic approach able to monitor 42 staphylococcal proteins in a single experiment. Using this approach, we compared the quantitative virulomes of 136 S. aureus isolates from a nationwide cohort of French patients with severe community-acquired staphylococcal pneumonia, all requiring intensive care. We used multivariable regression models adjusted for patient baseline health (Charlson comorbidity score) to identify the virulence factors whose in vitro expression level predicted pneumonia severity markers, namely leukopenia and hemoptysis, as well as patient survival. Results We found that leukopenia was predicted by higher expression of HlgB, Nuc, and Tsst-1 and lower expression of BlaI and HlgC, while hemoptysis was predicted by higher expression of BlaZ and HlgB and lower expression of HlgC. Strikingly, mortality was independently predicted in a dose-dependent fashion by a single phage-encoded virulence factor, the Panton-Valentine leucocidin (PVL), both in logistic (OR 1.28; 95%CI[1.02;1.60]) and survival (HR 1.15; 95%CI[1.02;1.30]) regression models. Discussion These findings demonstrate that the in vitro expression level of virulence factors can be correlated with infection severity using targeted proteomics, a method that may be adapted to other bacterial pathogens.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Sylvère Bastien
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Iulia Macavei
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Nicolas Mouton
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Florence Couzon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Benjamin Youenou
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Anne Tristan
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Romain Carrière
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
5
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
6
|
Jahantigh HR, Faezi S, Habibi M, Mahdavi M, Stufano A, Lovreglio P, Ahmadi K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines (Basel) 2022; 10:vaccines10020199. [PMID: 35214658 PMCID: PMC8876328 DOI: 10.3390/vaccines10020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes various inflammatory local infections, from those of the skin to postinfectious glomerulonephritis. These infections could result in serious threats, putting the life of the patient in danger. Antibiotic-resistant S. aureus could lead to dramatic increases in human mortality. Antibiotic resistance would explicate the failure of current antibiotic therapies. So, it is obvious that an effective vaccine against S. aureus infections would significantly reduce costs related to care in hospitals. Bacterial vaccines have important impacts on morbidity and mortality caused by several common pathogens, however, a prophylactic vaccine against staphylococci has not yet been produced. During the last decades, the efforts to develop an S. aureus vaccine have faced two major failures in clinical trials. New strategies for vaccine development against S. aureus has supported the use of multiple antigens, the inclusion of adjuvants, and the focus on various virulence mechanisms. We aimed to present a compressive review of different antigens of S. aureus and also to introduce vaccine candidates undergoing clinical trials, from which can help us to choose a suitable and effective candidate for vaccine development against S. aureus.
Collapse
Affiliation(s)
- Hamid Reza Jahantigh
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht 41937, Iran;
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran;
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran 1517964311, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13164, Iran;
| | - Angela Stufano
- Animal Health and Zoonosis, Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy;
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari, 70010 Bari, Italy;
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 79391, Iran
- Correspondence: (H.R.J.); (K.A.); Tel.: +39-3773827669 (H.R.J.)
| |
Collapse
|
7
|
Thoms BL, Gosselin J, Libman B, Littenberg B, Budd RC. Efficacy of Combination Therapy with the JAK Inhibitor Baricitinib in the Treatment of COVID-19. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:42. [PMID: 35079694 PMCID: PMC8776555 DOI: 10.1007/s42399-022-01121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-19 (COVID-19), resulting from infection with SARS-CoV-2, spans a wide spectrum of illness. In severely ill patients, highly elevated serum levels of certain cytokines and considerable cytolytic T cell infiltrates in the lungs have been observed. These same patients may bear low to negligible viral burdens suggesting that an overactive immune response, often termed cytokine storm, contributes to the severity of COVID-19. We report the safety and efficacy of baricitinib combined with remdesivir and dexamethasone in a retrospective review of 45 hospitalized patients with COVID-19 pneumonia at a tertiary academic medical center. Patients received 7-day course of baricitinib, 5-day course of remdesivir, and 10-day course of dexamethasone. Clinical status and biomarkers were obtained daily. Outcomes assessed include mortality, duration of hospitalization, presence of shock, need for supplemental oxygen, need for non-invasive ventilation, need for mechanical ventilation, and development of thrombosis. Obesity and multiple medical comorbidities were associated with hospitalization in the setting of COVID-19. Treated patients demonstrated rapid declines of C-reactive protein (CRP), ferritin and D-dimer with gradual improvement in hemoglobin, platelet counts, and clinical status. Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment, and there were six deaths (13.3%). Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment. There were six deaths (13.3%) and these were associated with lower BMI. These findings support the utility of immunosuppression via JAK inhibition in moderate to severe COVID-19 pneumonia. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42399-022-01121-4.
Collapse
Affiliation(s)
- Brendan L. Thoms
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Jeanne Gosselin
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Bonita Libman
- Rheumatology and Clinical Immunology Division, Department of Medicine, The Larner College of Medicine at the University of Vermont, Burlington, VT 05405 USA
| | - Benjamin Littenberg
- Division of General Internal Medicine Research, Department of Medicine, The University of Vermont Larner College of Medicine, Burlington, VT 05405 USA
| | - Ralph C. Budd
- Rheumatology and Clinical Immunology Division, Department of Medicine, The Larner College of Medicine at the University of Vermont, Burlington, VT 05405 USA
- Vermont Center for Immunology and Infectious Diseases, The University of Vermont Larner College of Medicine, Burlington, VT 05405 USA
| |
Collapse
|
8
|
Nouws S, Bogaerts B, Verhaegen B, Denayer S, Laeremans L, Marchal K, Roosens NHC, Vanneste K, De Keersmaecker SCJ. Whole Genome Sequencing Provides an Added Value to the Investigation of Staphylococcal Food Poisoning Outbreaks. Front Microbiol 2021; 12:750278. [PMID: 34795649 PMCID: PMC8593433 DOI: 10.3389/fmicb.2021.750278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Through staphylococcal enterotoxin (SE) production, Staphylococcus aureus is a common cause of food poisoning. Detection of staphylococcal food poisoning (SFP) is mostly performed using immunoassays, which, however, only detect five of 27 SEs described to date. Polymerase chain reactions are, therefore, frequently used in complement to identify a bigger arsenal of SE at the gene level (se) but are labor-intensive. Complete se profiling of isolates from different sources, i.e., food and human cases, is, however, important to provide an indication of their potential link within foodborne outbreak investigation. In addition to complete se gene profiling, relatedness between isolates is determined with more certainty using pulsed-field gel electrophoresis, Staphylococcus protein A gene typing and other methods, but these are shown to lack resolution. We evaluated how whole genome sequencing (WGS) can offer a solution to these shortcomings. By WGS analysis of a selection of S. aureus isolates, including some belonging to a confirmed foodborne outbreak, its added value as the ultimate multiplexing method was demonstrated. In contrast to PCR-based se gene detection for which primers are sometimes shown to be non-specific, WGS enabled complete se gene profiling with high performance, provided that a database containing reference sequences for all se genes was constructed and employed. The custom compiled database and applied parameters were made publicly available in an online user-friendly interface. As an all-in-one approach with high resolution, WGS additionally allowed inferring correct isolate relationships. The different DNA extraction kits that were tested affected neither se gene profiling nor relatedness determination, which is interesting for data sharing during SFP outbreak investigation. Although confirming the production of enterotoxins remains important for SFP investigation, we delivered a proof-of-concept that WGS is a valid alternative and/or complementary tool for outbreak investigation.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.,IDLab, Department of Information Technology, Ghent University - IMEC, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.,IDLab, Department of Information Technology, Ghent University - IMEC, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Foodborne Outbreaks (NRL-FBO) and for Coagulase Positive Staphylococci (NRL-CPS), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Foodborne Outbreaks (NRL-FBO) and for Coagulase Positive Staphylococci (NRL-CPS), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Lasse Laeremans
- Organic Contaminants and Additives, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- IDLab, Department of Information Technology, Ghent University - IMEC, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | |
Collapse
|
9
|
Kircheis R. Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined Effect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways. Int J Mol Sci 2021; 22:10791. [PMID: 34639132 PMCID: PMC8509779 DOI: 10.3390/ijms221910791] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.
Collapse
|
10
|
Thoms BL, Gosselin J, Libman B, Littenberg B, Budd R. Efficacy of Combination Therapy With The JAK Inhibitor Baricitinib In The Treatment of COVID-19. RESEARCH SQUARE 2021. [PMID: 34518834 PMCID: PMC8437315 DOI: 10.21203/rs.3.rs-835734/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND: Coronavirus disease-19 (COVID-19), resulting from infection with SARS-CoV-2, spans a wide spectrum of illness. In severely ill patients, highly elevated serum levels of certain cytokines and considerable cytolytic T cell infiltrates in the lungs have been observed. These same patients may bear low to negligible viral burdens suggesting that an overactive immune response, often termed cytokine storm, contributes to the severity of COVID-19. We report the safety and efficacy of baricitinib combined with remdesivir and dexamethasone in 45 hospitalized patients with COVID-19 pneumonia at a tertiary academic medical center. METHODS: Retrospective review of 45 patients hospitalized with COVID-19 pneumonia. Patients received 7-day course of baricitinib, 5-day course of remdesivir and 10-day course of dexamethasone. Clinical status and biomarkers were obtained daily. Outcomes assessed include mortality, duration of hospitalization, presence of shock, need for supplemental oxygen, need for non-invasive ventilation, need for mechanical ventilation and development of thrombosis. RESULTS: Obesity and multiple medical comorbidities were associated with hospitalization in the setting of COVID-19. Treated patients demonstrated rapid declines of C-reactive protein (CRP), ferritin and D-dimer with gradual improvement in hemoglobin, platelet counts and clinical status. Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment and there were six deaths (13.3%).Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment. There were six deaths (13.3%) and these were associated with lower BMI. CONCLUSIONS: These findings support the utility of immunosuppression via JAK inhibition in moderate to severe COVID-19 pneumonia.
Collapse
|
11
|
Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021; 16:1003-1021. [PMID: 34414776 DOI: 10.2217/fmb-2020-0301] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic polymicrobial wound infections are often characterized by the presence of bacterial biofilms. They show considerable structural and functional heterogeneity, which influences the choice of antimicrobial therapy and wound healing dynamics. The hallmarks of biofilm-associated bacterial infections include elevated antibiotic resistance and extreme pathogenicity. Biofilm helps bacteria to evade the host defense mechanisms and persist longer in the host. Quorum-sensing (QS)-mediated cell signaling primarily regulates biofilm formation in chronic infections and plays a major role in eliciting virulence. This review focuses on the QS mechanisms of two major bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa and explains how they interact in the wound microenvironment to regulate biofilm development and virulence. The review also provides an insight into the treatment modalities aimed at eradicating polymicrobial biofilms. This information will help us develop better diagnostic modalities and devise effective treatment regimens to successfully manage and overcome severe life-threatening bacterial infections.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Grecka K, Szweda P. Synergistic Effects of Propolis Combined with 2-Phenoxyethanol and Antipyretics on the Growth of Staphylococcus aureus. Pharmaceutics 2021; 13:pharmaceutics13020215. [PMID: 33557393 PMCID: PMC7916011 DOI: 10.3390/pharmaceutics13020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
The present investigation aimed to assess the combinational effect of commonly used antipyretics and antiseptics with ethanolic extracts of propolis (EEPs) on the growth inhibition of Staphylococcus aureus. The broth microdilution checkerboard assay revealed synergistic interactions between all investigated antipyretics, namely acetylsalicylic acid, ibuprofen, and acetaminophen, with EEPs samples. The values of the fractional inhibitory concentration (ΣFIC) index for all these combinations were <0.5. While, in the case of considered antiseptics, namely chlorhexidine, octenidine dihydrochloride, and 2-phenoxyethanol, the positive interaction was confirmed only for the last one (values of ΣFIC in the range 0.0625-0.25). Combinations of two other agents with all four samples of EEPs resulted in an important antagonistic effect (values of ΣFIC ≥ 4.5). Propolis is mostly dedicated to the treatment of skin/wound infections; thus, these findings are of particular practical importance. The outcomes of the study also support the hypothesis that the propolis's antimicrobial effect is due to the combined (synergistic) action of several ingredients rather than the presence of one component of high antibacterial activity. The composition of 13 ingredients of EEPs (at a concentration below the MIC (minimum inhibitory concentration) of the most active agent) exhibited considerably high anti-staphylococcal efficiency with MIC = 128 µg/mL.
Collapse
Affiliation(s)
| | - Piotr Szweda
- Correspondence: (K.G.); (P.S.); Tel.: +48-58-347-11-44 (P.S.)
| |
Collapse
|
13
|
Yamasaki O, Sugihara S, Kajita A, Yokoyama E, Miyake T, Hirai Y, Morizane S. Staphylococcal enterotoxin B- and lipopolysaccharide-induced toxic shock syndrome in a burn patient. J Dermatol 2021; 48:547-550. [PMID: 33410193 DOI: 10.1111/1346-8138.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Toxic shock syndrome (TSS) is caused by toxic shock syndrome toxin 1 or enterotoxins secreted by Staphylococcus aureus. Lipopolysaccharide (LPS) has also been shown to play a major role in the development of sepsis. Staphylococcal superantigens and LPS operate synergistically in conditioning cytokine release and lethal shock in mice. An 80-year-old woman was admitted because of a 20% mixed-depth flame burn. Despite two excisions and grafts, necrotic ulcers with methicillin-resistant Staphylococcus aureus (MRSA) colonization remained. On the 7th day after the operation, she developed shock with an erythematous rash. Blood examination revealed evidence of disseminated intravascular coagulation, and liver and renal dysfunction. A blood culture revealed a staphylococcal enterotoxin B (SEB)-producing strain of MRSA and Klebsiella pneumoniae. The septic symptoms were prolonged, but the condition gradually improved with extensive treatment. T-cell receptor analysis demonstrated a marked accumulation of SEB-mediated Vβ T cells. Stimulation of peripheral blood mononuclear cells in the recovery phase with SEB and LPS induced additive effects on tumor necrosis factor-α, interferon-γ, and interleukin-6 production. Although the present case did not fulfill the clinical criteria for TSS, the additive effects of SEB and LPS might have caused the severe septic shock.
Collapse
Affiliation(s)
- Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Sugihara
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ai Kajita
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emi Yokoyama
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoji Hirai
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
High Titer Persistent Neutralizing Antibodies Induced by TSST-1 Variant Vaccine Against Toxic Shock Cytokine Storm. Toxins (Basel) 2020; 12:toxins12100640. [PMID: 33023185 PMCID: PMC7601046 DOI: 10.3390/toxins12100640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022] Open
Abstract
Staphylococcal superantigen toxins lead to a devastating cytokine storm resulting in shock and multi-organ failure. We have previously assessed the safety and immunogenicity of a recombinant toxic shock syndrome toxin 1 variant vaccine (rTSST-1v) in clinical trials (NCT02971670 and NCT02340338). The current study assessed neutralizing antibody titers after repeated vaccination with escalating doses of rTSST-1v. At study entry, 23 out of 34 subjects (67.6%) had neutralizing antibody titers inhibiting T cell activation as determined by 3H-thymidine incorporation at a serum dilution of ≤1:100 with similar figures for inhibition of IL-2 activation (19 of 34 subjects, 55.9%) as assessed by quantitative PCR. After the first vaccination, numbers of subjects with neutralization titers inhibiting T cell activation (61.7% ≥ 1:1000) and inhibiting IL-2 gene induction (88.2% ≥ 1:1000) increased. The immune response was augmented after the second vaccination (inhibiting T cell activation: 78.8% ≥ 1:1000; inhibiting IL-2 induction: 93.9% ≥ 1:1000) corroborated with a third immunization months later in a small subgroup of subjects. Assessment of IFNγ, TNFα and IL-6 inhibition revealed similar results, whereas neutralization titers did not change in placebo participants. Antibody titer studies show that vaccination with rTSST-1v in subjects with no/low neutralizing antibodies can rapidly induce high titer neutralizing antibodies persisting over months.
Collapse
|
15
|
Gergi M, Cushman M, Littenberg B, Budd RC. Thrombo-inflammation response to Tocilizumab in COVID-19. Res Pract Thromb Haemost 2020; 4:1262-1268. [PMID: 33043232 PMCID: PMC7537313 DOI: 10.1002/rth2.12436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background Coronavirus disease‐19 (COVID‐19) spans a wide spectrum of illness. Severe cases of COVID‐19 can manifest inflammation in organs other than the lung, in tissues not known to support viral replication, and also in a hypercoagulable state. These observations have suggested that severe acute respiratory syndrome coronavirus 2 can provoke a hyperimmune response in some cases that could lead to secondary organ damage. Methods With evidence of elevated levels of interleukin‐6 (IL‐6) in patients with severe COVID‐19, we conducted a small pilot off‐label compassionate care study of the IL‐6 receptor inhibitor tocilizumab in patients with severe COVID‐19. Results A single infusion of tocilizumab in patients with severe COVID‐19 manifested rapid declines in C‐reactive protein and d‐dimer and gradual rises in lymphocyte and platelet counts. Conclusions These findings suggest both pathophysiological mechanisms and clinical benefit that might be seen with IL‐6 inhibition in severe COVID‐19.
Collapse
Affiliation(s)
- Mansour Gergi
- Division of Hematology and Oncology Department of Medicine Department of Medicine University of Vermont Larner College of Medicine Burlington VT USA 05405
| | - Mary Cushman
- Division of Hematology and Oncology Department of Medicine Department of Medicine University of Vermont Larner College of Medicine Burlington VT USA 05405
| | - Benjamin Littenberg
- Division of General Internal Medicine Research Department of Medicine Department of Medicine University of Vermont Larner College of Medicine Burlington VT USA 05405
| | - Ralph C Budd
- Vermont Center for Immunology and Infectious Diseases Department of Medicine University of Vermont Larner College of Medicine Burlington VT USA 05405
| |
Collapse
|
16
|
Zhang Y, Wang HB, Chu B, Zhao HZ, Li H, Zhou HM, Wang T. Disparate effects of methicillin-resistant Staphylococcus aureus infection on renal function in IgA-dominant infection-associated glomerulonephritis and menstrual toxic shock syndrome: a case report and literature review. J Int Med Res 2020; 48:300060520933810. [PMID: 32776805 PMCID: PMC7418260 DOI: 10.1177/0300060520933810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
The sudden outbreak of severe acute respiratory syndrome coronavirus 2 pneumonia posed a significant challenge to medical professionals because treatment of critically ill patients requires the efforts of a multidisciplinary team. To highlight this principle, we examined acute kidney injury (AKI) in IgA-dominant infection-associated glomerulonephritis (GN) and menstrual toxic shock syndrome (mTSS). Both GN and mTSS are rare diseases caused by staphylococcal infection, and renal function is frequently impaired. The resulting AKIs are disparate pathological entities driven by distinct immune mechanisms. We begin by describing the case of a diabetic man with pyopneumothorax following methicillin-resistant Staphylococcus aureus (MRSA). He had endocapillary proliferative GN with in situ IgA-dominant immune-complex formation in the mesangium accompanied by complement C3 deposition in the glomerular capillary wall. By contrast, acute tubular necrosis was observed in a case of mTSS; the patient's immune response was stimulated differently by MRSA enterotoxin and exotoxin resulting in aberrant IgA deposition, complement activation, and insufficient antibody production. As a multidisciplinary communication covering the fields of nephrology, immunology, and pathology, this report may help clinicians to understand these distinct renal lesions and make optimal therapeutic decisions expeditiously.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Dermatology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - He-bo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Bao Chu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Hui-zhi Zhao
- Office of Medical Records and Statistics, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Hang Li
- Department of Nephrology, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Hui-min Zhou
- Department of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Tao Wang
- Department of Science and Education, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
17
|
Zheng Y, Qin C, Zhang X, Zhu Y, Li A, Wang M, Tang Y, Kreiswirth BN, Chen L, Zhang H, Du H. The tst gene associated Staphylococcus aureus pathogenicity island facilitates its pathogenesis by promoting the secretion of inflammatory cytokines and inducing immune suppression. Microb Pathog 2019; 138:103797. [PMID: 31614194 DOI: 10.1016/j.micpath.2019.103797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus (S. aureus) is an important pathogen causing various limited or systemic infections. Methicillin resistant S. aureus (MRSA) in particular presents a major clinical and public health problem. Toxic shock syndrome toxin-1 (TSST-1) encoded by the gene tst is an important virulence factor of tst positive S. aureus, leading to multi-organ malfunction. However, the mechanism of TSST-1 in pathogenesis is only partly clear. In this study, we investigated the prevalence of the tst gene in clinical isolates of S. aureus. Then, animal experiments were performed to further evaluate the influence of the presence of the tst gene associated Staphylococcus aureus Pathogenicity Island (SaPI) on body weight, serum cytokine concentrations and the bacterial load in different organs. In addition, macrophages were used to analyze the secretion of cytokines in vitro and bacterial survival in the cytoplasm. Finally, pathological analysis was carried out to evaluate organ tissue impairment. The results demonstrated that the prevalence of tst gene was approximately 17.8% of the bacterial strains examined. BALB/c mice infected with tst gene associated SaPI positive isolates exhibited a severe loss of body weight and a high bacterial load in the liver, heart, kidney and spleen. Pathological analysis demonstrated that tissue impairment was more severe after infection with tst gene associated SaPI positive isolates. Moreover, the secretion of IL-6, IL-2 and IL17A by macrophages infected with tst gene associated SaPI positive isolates clearly increased. Notably, IL-6 secretion in BALB/c mice infected with tst gene associated SaPI positive isolates was higher than that in BALB/c mice infected with negative ones. Together, these results indicated that the tst gene associated SaPI may play a critical role in the pathological process of infection via a direct and persistent toxic function, and by promoting the secretion of inflammatory cytokines that indirectly induce immune suppression.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China
| | - Chenhao Qin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China
| | - Xianfeng Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China
| | - Yifan Zhu
- School of Psychiatry, North Sichuan Medical College, Nanchong, Sichuan, 637007, PR China
| | - Aiqing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China
| | - Yiwei Tang
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Barry N Kreiswirth
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Liang Chen
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, PR China.
| |
Collapse
|
18
|
Naas HT, Edarhoby RA, Garbaj AM, Azwai SM, Abolghait SK, Gammoudi FT, Moawad AA, Barbieri I, Eldaghayes IM. Occurrence, characterization, and antibiogram of Staphylococcus aureus in meat, meat products, and some seafood from Libyan retail markets. Vet World 2019; 12:925-931. [PMID: 31440015 PMCID: PMC6661493 DOI: 10.14202/vetworld.2019.925-931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: The aim of the current investigation was to screen the presence of Staphylococci spp., especially S. aureus in meat, meat products of different animal species, and some seafood sold in some retail markets in Libya using cultural and molecular techniques, and to study their antibiotics resistance profiles. Materials and Methods: A total of 139 samples from red meat, meat products, and seafood were collected from many areas in Libya. Enumeration and isolation of Staphylococci spp. and S. aureus by normal cultural methods followed by molecular identification using molecular techniques by bacterial DNA extraction and partial sequencing of 16S rDNA. Results: Out of 139 samples, 112 (80.6%) were contaminated with different species of Staphylococci based on cultural characteristics of Staphylococci on Baird-Parker medium, for which S. aureus was detected in only 32 samples (23%). However, only six out of 18 (33.3%) isolates sent for sequencing were confirmed to be S. aureus using the molecular technique. The six identified isolates of S. aureus were tested for antimicrobial resistance against 24 most commonly used antibiotics. All isolates were resistant to only two antibiotics (cefotaxime and clindamycin). Among these six isolates, only one confirmed to be Methicillin-resistant Staphylococcus aureus. Conclusion: Results of this study suggest that food of animal origin could be a source of S. aureus with antimicrobial resistance characteristics that can be spread through the food chain, and raise the importance of these results for public health.
Collapse
Affiliation(s)
- Hesham T Naas
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya
| | - Ramadan A Edarhoby
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya
| | - Aboubaker M Garbaj
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya
| | - Salah M Azwai
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya
| | - Said K Abolghait
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Fatim T Gammoudi
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya
| | - Ashraf A Moawad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211 Giza 12211, Egypt
| | - Ilaria Barbieri
- Department of Genetics, The Lombardy and Emilia Romagna Experimental Zootechnic Institute, Via Bianchi 9, Brescia 25124, Italy
| | - Ibrahim M Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, P.O. Box 13662, Tripoli, Libya
| |
Collapse
|
19
|
Zhao H, Xu S, Yang H, He C, Xu X, Hu F, Shu W, Gong F, Zhang C, Liu Q. Molecular Typing and Variations in Amount of tst Gene Expression of TSST-1-Producing Clinical Staphylococcus aureus Isolates. Front Microbiol 2019; 10:1388. [PMID: 31275293 PMCID: PMC6594356 DOI: 10.3389/fmicb.2019.01388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
The toxic shock syndrome toxin-1 (TSST-1), encoded by tst gene, has been proposed to cause staphylococcal toxic shock syndrome (TSS) in a susceptible host, which highlights the need to evaluate the level of tst gene expression and molecular genetic characteristics of the tst-positive isolates. A total of 916 S. aureus isolates collected from seven hospitals in China were screened for the tst gene. The tst positive isolates were characterized by spa, SCCmec, PFGE, and agr typing. Representative strains were also subjected to MLST typing. qRT-PCR was used to quantify tst and major virulence regulator genes expression. We also sequenced the regions of promoter and open reading frame (ORF) of tst to investigate whether they correlate with the variation in tst expression. We found 208 (22.7%) of surveyed isolates including 198 (29.8%) of MRSA and 10 (4.0%) of MSSA isolates harbored the tst gene. The most common clone among tst positive MRSA isolates belonged to ST5 (CC5)-agr2-t002-SCCmecII. The amount of tst mRNA varied 8.4-folds among clinical S. aureus isolates. Sequencing the tst promoter revealed a base T deletion in tst high expressed isolates. As for major virulence regulators, srrA, sarT, RNAIII, and ccpA in four tst differentially expressed strains were detected to be highly expressed, respectively. Our study revealed high prevalence of ST5 (CC5)-agr2-t002-SCCmecII clone among tst positive MRSA in hospitals from China. The levels of tst expression among clinical S. aureus isolates varied, which may be associated with tst promoter and variations in specific virulence regulators.
Collapse
Affiliation(s)
- Huanqiang Zhao
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Su Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Gong
- Department of Clinical Laboratory, the Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Chuanling Zhang
- Department of Clinical Laboratory, Xiaoshan Hospital, Hangzhou, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
The T cell activating properties and antitumour activity of Staphylococcal Enterotoxin-like Q. Med Microbiol Immunol 2019; 208:781-792. [PMID: 31187242 DOI: 10.1007/s00430-019-00614-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxins (SEs), as typical superantigens, exhibit promising antitumour activity in the clinic, but their unavoidable side effects related to fever and emesis seriously limit their application for the treatment of malignant tumours. Fortunately, the identification of Staphylococcal enterotoxin-like toxins (SEls), which possess amino acid sequences similar to those of classical SEs but exhibit no or low emetic activity, has provided a set of potential immunomodulatory candidates for cancer therapy. The aim of this study was to examine the effect of SElQ on lymphocyte activation and to further demonstrate its antitumour activity both in vitro and in vivo. High-purity SElQ was successfully harvested, and in vitro results confirmed that SElQ can significantly activate mouse- and human-derived lymphocytes in a dose-dependent manner, particularly CD4+ and CD8+ T cells, which showed significant increases in both percentage and absolute number. Further examination revealed that in addition to the originally recognized TCR Vβ5 and 21, TCR Vβ14, 17 and 18 were activated in SElQ-induced human PBMCs. Moreover, the expression of IL-2 and IFN-γ was significantly upregulated in vitro and in vivo after SElQ treatment. Based on the findings that SElQ induces lymphocyte activation and cytokine release, we then confirmed its antitumour activity both in vitro and in vivo. The data showed that treatment with a low concentration of SElQ (30 µg/mouse) could inhibit the growth of tumours by approximately 30% and no significant toxicity was observed. Taken together, our results demonstrated that SElQ can significantly induce T cell activation and cytokine release and further elicit substantial antitumour activity and thus provide support for the potential application of SElQ in cancer immunotherapy.
Collapse
|
21
|
Hadyeh E, Azmi K, Seir RA, Abdellatief I, Abdeen Z. Molecular Characterization of Methicillin Resistant Staphylococcus aureus in West Bank-Palestine. Front Public Health 2019; 7:130. [PMID: 31192182 PMCID: PMC6549579 DOI: 10.3389/fpubh.2019.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a public health threat and a major cause of hospital-acquired and community-acquired infections. This study aimed to investigate the genetic diversity of MRSA isolates from 2015 to 2017 and to characterize the major MRSA clones and anti-biogram trends in Palestine. Methodology: Isolates were obtained from 112 patients admitted to different hospitals of West Bank and East Jerusalem, originating from different clinical sources. Antibiotic susceptibility patterns, staphylococcal chromosomal cassette mec (SCCmec) typing, and Staphylococcus aureus protein A (spa) typing were determined. Also, a panel of toxin genes and virulence factors was studied, including: Panton-Valentine Leukocidin (PVL), ACME-arcA, Toxic Shock Syndrome Toxin-1 (TSST-1), and Exfoliative Toxin A (ETA). Results: Of the 112 confirmed MRSA isolates, 100% were resistant to all β-lactam antibiotics. Resistance rates to other non- β-lactam classes were as the following: 18.8% were resistant to trimethoprim-sulfamethoxazole, 23.2% were resistant to gentamicin, 34.8% to clindamycin, 39.3% to ciprofloxacin, and 63.4% to erythromycin. All MRSA isolates were susceptible to vancomycin (100%). Of all isolates, 32 isolates (28.6%) were multidrug- resistant (MDR). The majority of the isolates were identified as SCCmec type IV (86.6%). The molecular typing identified 29 spa types representing 12 MLST-clonal complexes (CC). The most prevalent spa types were: spa type t386 (CC1)/(12.5%), spa type t044 (CC80)/(10.7%), spa type t008 (CC8)/(10.7%), and spa type t223 (CC22)/(9.8%). PVL toxin gene was detected in (29.5%) of all isolates, while ACME-arcA gene was present in 18.8% of all isolates and 23.2% had the TSST-1 gene. The two most common spa types among the TSST-1positive isolates were the spa type t223 (CC22)/(Gaza clone) and the spa type t021 (CC30)/(South West Pacific clone). All isolates with the spa type t991 were ETA positive (5.4%). USA-300 clone (spa type t008, positive for PVL toxin gene and ACME-arcA genes) was found in nine isolates (8.0%). Conclusions: Our results provide insights into the epidemiology of MRSA strains in Palestine. We report a high diversity of MRSA strains among hospitals in Palestine, with frequent SCCmec type IV carriage. The four prominent clones detected were: t386-IV/ CC1, the European clone (t044/CC80), Gaza clone (t223/CC22), and the USA-300 clone (t008/CC8).
Collapse
Affiliation(s)
- Etaf Hadyeh
- Al-Quds Public Health Society, Jerusalem, Palestine.,Department of Medical Lab Sciences, Faculty of Health Professions, Jerusalem, Palestine
| | - Kifaya Azmi
- Al-Quds Public Health Society, Jerusalem, Palestine.,Faculty of Medicine, Al-Quds Nutrition and Health Research Institute, Al-Quds University, Jerusalem, Palestine.,Biochemistry and Molecular Biology Department, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Rania Abu Seir
- Department of Medical Lab Sciences, Faculty of Health Professions, Jerusalem, Palestine
| | - Inas Abdellatief
- Laboratory Department of Al-Makassed Charitable Hospital, Jerusalem, Palestine
| | - Ziad Abdeen
- Al-Quds Public Health Society, Jerusalem, Palestine.,Faculty of Medicine, Al-Quds Nutrition and Health Research Institute, Al-Quds University, Jerusalem, Palestine
| |
Collapse
|
22
|
Ansari S, Jha RK, Mishra SK, Tiwari BR, Asaad AM. Recent advances in Staphylococcus aureus infection: focus on vaccine development. Infect Drug Resist 2019; 12:1243-1255. [PMID: 31190912 PMCID: PMC6526327 DOI: 10.2147/idr.s175014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus normally colonizes the nasal cavity and pharynx. After breaching the normal habitat, the organism is able to cause a number of infections at any site of the body. The development of antibiotic resistance has created a global challenge for treating infections. Therefore, protection by vaccines may provide valuable measures. Currently, several vaccine candidates have been prepared which are either in preclinical phase or in early clinical phase, whereas several candidates have failed to show a protective efficacy in human subjects. Approaches have also been made in the development of monoclonal or polyclonal antibodies for passive immunization to protect from S. aureus infections. Therefore, in this review we have summarized the findings of recently published scientific literature to make a concise report.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur, Chitwan, Nepal
| | - Rajesh Kumar Jha
- Department of Systems and Diseases (Pharmacology), Saba University School of Medicine, Saba, Dutch Caribbean
| | - Shyam Kumar Mishra
- Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | - Ahmed Morad Asaad
- Department of Microbiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Rossi BF, Bonsaglia ECR, Castilho IG, Dantas STA, Salina A, Langoni H, Pantoja JCF, Budri PE, Fitzgerald-Hughes D, Júnior AF, Rall VLM. Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis. Microb Pathog 2019; 132:45-50. [PMID: 31015015 DOI: 10.1016/j.micpath.2019.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Bovine mastitis affects dairy cattle worldwide and Staphylococcus aureus is one of the most common microorganisms involved in subclinical and chronic disease. Superantigens, such as enterotoxins contribute to S. aureus persistence and pathogenicity in this disease. Subclinical and chronic mastitis cases were diagnosed and S. aureus isolates from sub-clinical cases were investigated for carriage of virulence and antibiotic resistance genes that may contribute to long-term carriage and infection. Over a 12-month period, 116 S. aureus strains were recovered from 68 cows with subclinical mastitis. Classical enterotoxin genes (sea-see) were detected in 24.1% of isolates, and pvl and tsst-1 were identified in 3.4% and 46.6% the isolates, respectively. 18.1% that were persistent isolates were identified and characterized by pulsed field gel electrophoresis (PFGE), MLST, spa typing. Four isolates were methicillin-resistant S. aureus (MRSA) and belonged to SCCmec type I. Molecular typing showed that the agrI group was the most frequent, and a rare isolate was positive for both agrI and agrIII groups. Molecular characterization revealed the persistence of the spa type t10856 (ST133, clonal complex CC133, agr I), in a single animal for nine months and the persistence t605 (ST126, CC126) colonizing four animals for four months. These strains have been described recently in other herds in the same region, indicating their transmissibility and clonal expansion. We conclude that animals with subclinical mastitis are an important and somewhat overlooked reservoir for transmission within and between herds, and may carry virulence and antibiotic resistance genes contributing to persistent colonization, hinder the control of mastitis and may cause risks to the public health.
Collapse
Affiliation(s)
- B F Rossi
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - E C R Bonsaglia
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - I G Castilho
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - S T A Dantas
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - A Salina
- Department of Hygiene Veterinary and Public Health, Sao Paulo State University, Botucatu, SP, Brazil
| | - H Langoni
- Department of Hygiene Veterinary and Public Health, Sao Paulo State University, Botucatu, SP, Brazil
| | - J C F Pantoja
- Department of Hygiene Veterinary and Public Health, Sao Paulo State University, Botucatu, SP, Brazil
| | - P E Budri
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - D Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - A Fernandes Júnior
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - V L M Rall
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
24
|
Staphylococcal Superantigens: Pyrogenic Toxins Induce Toxic Shock. Toxins (Basel) 2019; 11:toxins11030178. [PMID: 30909619 PMCID: PMC6468478 DOI: 10.3390/toxins11030178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related superantigenic toxins produced by Staphylococcus aureus are potent activators of the immune system. These protein toxins bind to major histocompatibility complex (MHC) class II molecules and specific Vβ regions of T-cell receptors (TCRs), resulting in the activation of both monocytes/macrophages and T lymphocytes. The bridging of TCRs with MHC class II molecules by superantigens triggers an early “cytokine storm” and massive polyclonal T-cell proliferation. Proinflammatory cytokines, tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 elicit fever, inflammation, multiple organ injury, hypotension, and lethal shock. Upon MHC/TCR ligation, superantigens induce signaling pathways, including mitogen-activated protein kinase cascades and cytokine receptor signaling, which results in NFκB activation and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. In addition, gene profiling studies have revealed the essential roles of innate antimicrobial defense genes in the pathogenesis of SEB. The genes expressed in a murine model of SEB-induced shock include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, endoplasmic reticulum/mitochondrial stress responses, immunoproteasome components, and IFN-stimulated genes. This review focuses on the signaling pathways induced by superantigens that lead to the activation of inflammation and damage response genes. The induction of these damage response genes provides evidence that SEB induces danger signals in host cells, resulting in multiorgan injury and toxic shock. Therapeutics targeting both host inflammatory and cell death pathways can potentially mitigate the toxic effects of staphylococcal superantigens.
Collapse
|
25
|
Minasyan H. Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med 2019; 27:19. [PMID: 30764843 PMCID: PMC6376788 DOI: 10.1186/s13049-019-0596-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
In bacteremia the majority of bacterial species are killed by oxidation on the surface of erythrocytes and digested by local phagocytes in the liver and the spleen. Sepsis-causing bacteria overcome this mechanism of human innate immunity by versatile respiration, production of antioxidant enzymes, hemolysins, exo- and endotoxins, exopolymers and other factors that suppress host defense and provide bacterial survival. Entering the bloodstream in different forms (planktonic, encapsulated, L-form, biofilm fragments), they cause different types of sepsis (fulminant, acute, subacute, chronic, etc.). Sepsis treatment includes antibacterial therapy, support of host vital functions and restore of homeostasis. A bacterium killing is only one of numerous aspects of antibacterial therapy. The latter should inhibit the production of bacterial antioxidant enzymes and hemolysins, neutralize bacterial toxins, modulate bacterial respiration, increase host tolerance to bacterial products, facilitate host bactericidal mechanism and disperse bacterial capsule and biofilm.
Collapse
|
26
|
Borišek J, Pintar S, Ogrizek M, Grdadolnik SG, Hodnik V, Turk D, Perdih A, Novič M. Discovery of (phenylureido)piperidinyl benzamides as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus. J Enzyme Inhib Med Chem 2018; 33:1239-1247. [PMID: 30141354 PMCID: PMC6116672 DOI: 10.1080/14756366.2018.1493474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Autolysin E (AtlE) is a cell wall degrading enzyme that catalyzes the hydrolysis of the β-1,4-glycosidic bond between the N-acetylglucosamine and N-acetylmuramic acid units of the bacterial peptidoglycan. Using our recently determined crystal structure of AtlE from Staphylococcus aureus and a combination of pharmacophore modeling, similarity search, and molecular docking, a series of (Phenylureido)piperidinyl benzamides were identified as potential binders and surface plasmon resonance (SPR) and saturation-transfer difference (STD) NMR experiments revealed that discovered compounds bind to AtlE in a lower micromolar range. (phenylureido)piperidinyl benzamides are the first reported non-substrate-like compounds that interact with this enzyme and enable further study of the interaction of small molecules with bacterial AtlE as potential inhibitors of this target.
Collapse
Affiliation(s)
- Jure Borišek
- a National Institute of Chemistry , Ljubljana , Slovenia
| | - Sara Pintar
- b Department of Biochemistry, Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana , Slovenia.,c Jozef Stefan International Postgraduate School , Ljubljana , Slovenia
| | - Mitja Ogrizek
- a National Institute of Chemistry , Ljubljana , Slovenia
| | | | - Vesna Hodnik
- d Biotechnical Faculty , Infrastructural Center for Surface Plasmon Resonance , Ljubljana , Slovenia
| | - Dušan Turk
- b Department of Biochemistry, Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana , Slovenia.,e Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins , Ljubljana , Slovenia
| | - Andrej Perdih
- a National Institute of Chemistry , Ljubljana , Slovenia
| | - Marjana Novič
- a National Institute of Chemistry , Ljubljana , Slovenia
| |
Collapse
|
27
|
Contribution of toxic shock syndrome toxin-1 to systemic inflammation investigated by a mouse model of cervicovaginal infection with Staphylococcus aureus. Med Microbiol Immunol 2018; 207:297-306. [DOI: 10.1007/s00430-018-0551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
|
28
|
The Superantigen Toxic Shock Syndrome Toxin 1 Alters Human Aortic Endothelial Cell Function. Infect Immun 2018; 86:IAI.00848-17. [PMID: 29229737 PMCID: PMC5820935 DOI: 10.1128/iai.00848-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus infective endocarditis (IE) is a fast-progressing and tissue-destructive infection of the cardiac endothelium. The superantigens (SAgs) toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin C (SEC), and the toxins encoded by the enterotoxin gene cluster (egc) play a novel and essential role in the etiology of S. aureus IE. Recent studies indicate that SAgs act at the infection site to cause tissue pathology and promote vegetation growth. The underlying mechanism of SAg involvement has not been clearly defined. In SAg-mediated responses, immune cell priming is considered a primary triggering event leading to endothelial cell activation and altered function. Utilizing immortalized human aortic endothelial cells (iHAECs), we demonstrated that TSST-1 directly activates iHAECs, as documented by upregulation of vascular and intercellular adhesion molecules (VCAM-1 and ICAM-1). TSST-1-mediated activation results in increased monolayer permeability and defects in vascular reendothelialization. Yet stimulation of iHAECs with TSST-1 fails to induce interleukin-8 (IL-8) and IL-6 production. Furthermore, simultaneous stimulation of iHAECs with TSST-1 and lipopolysaccharide (LPS) inhibits LPS-mediated IL-8 and IL-6 secretion, even after pretreatment with either of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β. IL-8 suppression is not mediated by TSST-1 binding to its canonical receptor major histocompatibility complex class II (MHC-II), supporting current evidence for a nonhematopoietic interacting site on SAgs. Together, the data suggest that TSST-1 differentially regulates cell-bound and secreted markers of endothelial cell activation that may result in dysregulated innate immune responses during S. aureus IE. Endothelial changes resulting from the action of SAgs can therefore directly contribute to the aggressive nature of S. aureus IE and development of life-threatening complications.
Collapse
|
29
|
NAKAO JH, TALKINGTON D, BOPP CA, BESSER J, SANCHEZ ML, GUARISCO J, DAVIDSON SL, WARNER C, McINTYRE MG, GROUP JP, COMSTOCK N, XAVIER K, PINSENT TS, BROWN J, DOUGLAS JM, GOMEZ GA, GARRETT NM, CARLETON HA, TOLAR B, WISE ME. Unusually high illness severity and short incubation periods in two foodborne outbreaks of Salmonella Heidelberg infections with potential coincident Staphylococcus aureus intoxication. Epidemiol Infect 2018; 146:19-27. [PMID: 29208063 PMCID: PMC9134534 DOI: 10.1017/s0950268817002655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 11/07/2022] Open
Abstract
We describe the investigation of two temporally coincident illness clusters involving salmonella and Staphylococcus aureus in two states. Cases were defined as gastrointestinal illness following two meal events. Investigators interviewed ill persons. Stool, food and environmental samples underwent pathogen testing. Alabama: Eighty cases were identified. Median time from meal to illness was 5·8 h. Salmonella Heidelberg was identified from 27 of 28 stool specimens tested, and coagulase-positive S. aureus was isolated from three of 16 ill persons. Environmental investigation indicated that food handling deficiencies occurred. Colorado: Seven cases were identified. Median time from meal to illness was 4·5 h. Five persons were hospitalised, four of whom were admitted to the intensive care unit. Salmonella Heidelberg was identified in six of seven stool specimens and coagulase-positive S. aureus in three of six tested. No single food item was implicated in either outbreak. These two outbreaks were linked to infection with Salmonella Heidelberg, but additional factors, such as dual aetiology that included S. aureus or the dose of salmonella ingested may have contributed to the short incubation periods and high illness severity. The outbreaks underscore the importance of measures to prevent foodborne illness through appropriate washing, handling, preparation and storage of food.
Collapse
Affiliation(s)
- J. H. NAKAO
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - D. TALKINGTON
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C. A. BOPP
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J. BESSER
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. L. SANCHEZ
- Alabama Department of Public Health, Montgomery, AL, USA
| | - J. GUARISCO
- Alabama Department of Public Health, Montgomery, AL, USA
| | - S. L. DAVIDSON
- Alabama Department of Public Health, Montgomery, AL, USA
| | - C. WARNER
- Alabama Department of Public Health, Montgomery, AL, USA
| | - M. G. McINTYRE
- Alabama Department of Public Health, Montgomery, AL, USA
| | - J. P. GROUP
- Tri-County Health Department, Colorado, Greenwood Village, CO, USA
| | - N. COMSTOCK
- Colorado Department of Public Health and Environment, Denver, CO, USA
| | - K. XAVIER
- Colorado Department of Public Health and Environment, Denver, CO, USA
| | - T. S. PINSENT
- Tri-County Health Department, Colorado, Greenwood Village, CO, USA
| | - J. BROWN
- Tri-County Health Department, Colorado, Greenwood Village, CO, USA
| | - J. M. DOUGLAS
- Tri-County Health Department, Colorado, Greenwood Village, CO, USA
| | - G. A. GOMEZ
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - N. M. GARRETT
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - H. A. CARLETON
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - B. TOLAR
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. E. WISE
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
30
|
Awad A, Ramadan H, Nasr S, Ateya A, Atwa S. Genetic Characterization, Antimicrobial Resistance Patterns and Virulence Determinants of Staphylococcus aureus Isolated form Bovine Mastitis. Pak J Biol Sci 2017; 20:298-305. [PMID: 29023054 DOI: 10.3923/pjbs.2017.298.305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Staphylococcus aureus is commonly associated with mastitis in dairy herds with potential public health implications. This study was conducted to investigate the existence of S. aureus in mastitic milk and to determine the antimicrobial resistance profiles of the isolated strains as well as the resistance and virulence associated genes. MATERIALS AND METHODS Two hundred quarter milk samples were collected from 3 dairy farms at Dakahliya (n = 2) and Damietta (n = 1) Governorates, Egypt from September to December 2016. Conventional culturing and Polymerase Chain Reaction (PCR) assays targeting nuc (thermonuclease) and coa (coagulase) genes were performed. Isolates were tested for its susceptibility against 14 antimicrobial agents using disk diffusion method. All the isolates were screened for the presence of β-lactamases (blaZ, mecA) and virulence associated (pvl and tst) genes by PCR. RESULTS The S. aureus was detected in 42% (84/200) of the total examined milk samples. Regarding the antibiogram results, S. aureus revealed a high resistance against ampicillin (95.2%) and penicillin (83.3%) and a lower resistance was observed against gentamicin (23.8%), amikacin (16.7%) and ciprofloxacin (14.3%). Multidrug resistances were detected in 83.3% of the isolated S. aureus. Of the 70 penicillin-resistant S. aureus isolates, blaZ gene was identified in 67 (95.7%) isolates. Fifty percent of S. aureus isolates harbored the specific amplicon of mecA gene. Markedly, all mecA positive strains displayed multidrug resistance and were also positive for blaZ gene. The virulence determinants pvl and tst were detected in 7.1 and 11.9% of the isolated S. aureus, respectively. CONCLUSION Presence of multidrug resistant and toxin producing S. aureus in dairy farms pose a major risk to public health. Therefore, this study highlighted the importance of developing an efficient control program to inhibit the transmission of S. aureus, particularly multidrug resistant strains to humans.
Collapse
Affiliation(s)
- Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egyp
| | - Hazem Ramadan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Sherif Nasr
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Samar Atwa
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
31
|
Dearborn AD, Wall EA, Kizziah JL, Klenow L, Parker LK, Manning KA, Spilman MS, Spear JM, Christie GE, Dokland T. Competing scaffolding proteins determine capsid size during mobilization of Staphylococcus aureus pathogenicity islands. eLife 2017; 6:30822. [PMID: 28984245 PMCID: PMC5644958 DOI: 10.7554/elife.30822] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific helper bacteriophages, like 80α, for their high frequency mobilization, a process termed 'molecular piracy'. SaPI1 redirects the helper's assembly pathway to form small capsids that can only accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the structures of the 80α and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, and show that CpmB competes with the 80α scaffolding protein (SP) for a binding site on the capsid protein (CP), and works by altering the angle between capsomers. We probed these interactions genetically and identified second-site suppressors of lethal mutations in SP. Our structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, providing unique insights into macromolecular assembly processes.
Collapse
Affiliation(s)
- Altaira D Dearborn
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - James L Kizziah
- Department of Microbiology, University of Alabama, Birmingham, United States
| | - Laura Klenow
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Laura K Parker
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States.,Department of Microbiology, University of Alabama, Birmingham, United States
| | - Keith A Manning
- Department of Microbiology, University of Alabama, Birmingham, United States
| | | | - John M Spear
- Biological Science Imaging Resource, Florida State University, Tallahassee, United States
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Terje Dokland
- Department of Microbiology, University of Alabama, Birmingham, United States
| |
Collapse
|
32
|
Prevalence and Genetic Characteristics of Staphylococcus aureus and Staphylococcus argenteus Isolates Harboring Panton-Valentine Leukocidin, Enterotoxins, and TSST-1 Genes from Food Handlers in Myanmar. Toxins (Basel) 2017; 9:toxins9080241. [PMID: 28777321 PMCID: PMC5577575 DOI: 10.3390/toxins9080241] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022] Open
Abstract
Asymptomatic carriers of toxigenic Staphylococcus aureus are potential source of diseases, including food poisoning. Toxigenic potential and genetic traits of colonizing S. aureus were investigated for 563 healthy food handlers in Myanmar. Carriage of S. aureus was found in 110 individuals (19.5%), and a total of 144 S. aureus isolates were recovered from nasal cavities (110 isolates) and hands (34 isolates). Panton-Valentine leucocidin genes (pvl) were detected in 18 isolates (12.5%), among which 11 isolates were classified into coa-VIa, agr type III, and ST1930 (CC96) that had been also detected in pvl-positive clinical isolates in Myanmar. A pvl-positive, ST2250 nasal isolate was identified as S. argenteus, a novel coagulase-positive staphylococcus species. Toxic shock syndrome toxin-1 (TSST-1) gene was detected in five pvl-negative isolates. All of the 144 isolates harbored at least one of the 21 enterotoxin(-like) gene(s). The most prevalent enterotoxin(-like) gene was selw (98%), followed by selx (97%), sei (28%), sely (28%), sem (26%), sel (24%), and sea and sec (22% each). Considerable genetic diversity with five groups was detected for selw. The present study revealed the relatively high rate of pvl, as well as the wide distribution of enterotoxin(-like) genes among colonizing S. aureus in Myanmar.
Collapse
|
33
|
Krakauer T. FDA-approved immunosuppressants targeting staphylococcal superantigens: mechanisms and insights. Immunotargets Ther 2017; 6:17-29. [PMID: 28497030 PMCID: PMC5423536 DOI: 10.2147/itt.s125429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immunostimulating staphylococcal enterotoxin B (SEB) and related superantigenic toxins cause diseases in human beings and laboratory animals by hyperactivating cells of the immune system. These protein toxins bind to the major histocompatibility complex class II (MHC II) molecules and specific Vβ regions of T-cell receptors (TCRs), resulting in the stimulation of both monocytes/macrophages and T lymphocytes. The bridging of TCR with MHC II molecules by superantigens triggers intracellular signaling cascades, resulting in excessive release of proinflammatory mediators and massive polyclonal T-cell proliferation. The early induction of tumor necrosis factor α, interleukin 1 (IL-1), interleukin 2 (IL-2), interferon gamma (IFNγ), and macrophage chemoattractant protein 1 promotes fever, inflammation, and multiple organ injury. The signal transduction pathways for staphylococcal superantigen-induced toxicity downstream from TCR/major histocompatibility complex (MHC) ligation and interaction of cell surface co-stimulatory molecules include the mitogen-activated protein kinase cascades and cytokine receptor signaling, activating nuclear factor κB (NFκB) and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Knowledge of host regulation within these activated pathways and molecules initiated by SEB and other superantigens enables the selection of US Food and Drug Administration (FDA)-approved drugs to interrupt and prevent superantigen-induced shock in animal models. This review focuses on the use of FDA-approved immunosuppressants in targeting the signaling pathways induced by staphylococcal superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
34
|
Rukkawattanakul T, Sookrung N, Seesuay W, Onlamoon N, Diraphat P, Chaicumpa W, Indrawattana N. Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1. Toxins (Basel) 2017; 9:toxins9020050. [PMID: 28218671 PMCID: PMC5331430 DOI: 10.3390/toxins9020050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 11/16/2022] Open
Abstract
Some Staphylococcus aureus isolates produced toxic shock syndrome toxin-1 (TSST-1) which is a pyrogenic toxin superantigen (PTSAg). The toxin activates a large fraction of peripheral blood T lymphocytes causing the cells to proliferate and release massive amounts of pro-inflammatory cytokines leading to a life-threatening multisystem disorder: toxic shock syndrome (TSS). PTSAg-mediated-T cell stimulation circumvents the conventional antigenic peptide presentation to T cell receptor (TCR) by the antigen-presenting cell (APC). Instead, intact PTSAg binds directly to MHC-II molecule outside peptide binding cleft and simultaneously cross-links TCR-Vβ region. Currently, there is neither specific TSS treatment nor drug that directly inactivates TSST-1. In this study, human single chain antibodies (HuscFvs) that bound to and neutralized bioactivities of the TSST-1 were generated using phage display technology. Three E. coli clones transfected with TSST-1-bound phages fished-out from the human scFv library using recombinant TSST-1 as bait expressed TSST-1-bound-HuscFvs that inhibited the TSST-1-mediated T cell activation and pro-inflammatory cytokine gene expressions and productions.Computerized simulation, verified by mutations of the residues of HuscFv complementarity determining regions (CDRs),predicted to involve in target binding indicated that the HuscFvs formed interface contact with the toxin residues important for immunopathogenesis. The HuscFvs have high potential for future therapeutic application.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Bacterial Toxins/antagonists & inhibitors
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Cell Surface Display Techniques
- Cells, Cultured
- Cytokines/metabolism
- Enterotoxins/antagonists & inhibitors
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Histocompatibility Antigens Class II/metabolism
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Lymphocyte Activation/drug effects
- Mutation
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Shock, Septic/immunology
- Shock, Septic/metabolism
- Shock, Septic/microbiology
- Shock, Septic/prevention & control
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Single-Chain Antibodies/pharmacology
- Staphylococcal Infections/immunology
- Staphylococcal Infections/metabolism
- Staphylococcal Infections/microbiology
- Staphylococcal Infections/prevention & control
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/genetics
- Staphylococcus aureus/immunology
- Staphylococcus aureus/metabolism
- Superantigens/genetics
- Superantigens/immunology
- Superantigens/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
Collapse
Affiliation(s)
- Thunchanok Rukkawattanakul
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Nattawat Onlamoon
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
35
|
Abstract
Staphylococcus aureus, although generally identified as a commensal, is also a common cause of human bacterial infections, including of the skin and other soft tissues, bones, bloodstream, and respiratory tract. The history of S. aureus treatment is marked by the development of resistance to each new class of antistaphylococcal antimicrobial drugs, including the penicillins, sulfonamides, tetracyclines, glycopeptides, and others, complicating therapy. S. aureus isolates identified in the 1960s were sometimes resistant to methicillin, a ß-lactam antimicrobial active initially against a majority S. aureus strains. These MRSA isolates, resistant to nearly all ß-lactam antimicrobials, were first largely confined to the health care environment and the patients who attended it. However, in the mid-1990s, new strains, known as community-associated (CA-) MRSA strains, emerged. CA-MRSA organisms, compared with health care-associated (HA-) MRSA strain types, are more often susceptible to multiple classes of non ß-lactam antimicrobials. While infections caused by methicillin-susceptible S. aureus (MSSA) strains are usually treated with drugs in the ß-lactam class, such as cephalosporins, oxacillin or nafcillin, MRSA infections are treated with drugs in other antimicrobial classes. The glycopeptide drug vancomycin, and in some countries teicoplanin, is the most common drug used to treat severe MRSA infections. There are now other classes of antimicrobials available to treat staphylococcal infections, including several that have been approved after 2009. The antimicrobial management of invasive and noninvasive S. aureus infections in the ambulatory and in-patient settings is the topic of this review. Also discussed are common adverse effects of antistaphylococcal antimicrobial agents, advantages of one agent over another for specific clinical syndromes, and the use of adjunctive therapies such as surgery and intravenous immunoglobulin. We have detailed considerations in the therapy of noninvasive and invasive S. aureus infections. This is followed by sections on specific clinical infectious syndromes including skin and soft tissue infections, bacteremia, endocarditis and intravascular infections, pneumonia, osteomyelitis and vertebral discitis, epidural abscess, septic arthritis, pyomyositis, mastitis, necrotizing fasciitis, orbital infections, endophthalmitis, parotitis, staphylococcal toxinoses, urogenital infections, and central nervous system infections.
Collapse
|
36
|
Zhang H, Zheng Y, Gao H, Xu P, Wang M, Li A, Miao M, Xie X, Deng Y, Zhou H, Du H. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype. Front Cell Infect Microbiol 2016; 6:146. [PMID: 27917374 PMCID: PMC5114236 DOI: 10.3389/fcimb.2016.00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huasheng Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Aiqing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Minhui Miao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yimai Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huiqin Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| |
Collapse
|
37
|
Enterotoxin Gene Cluster-Encoded SEI and SElN from Staphylococcus aureus Isolates are Crucial for the Induction of Human Blood Cell Proliferation and Pathogenicity in Rabbits. Toxins (Basel) 2016; 8:toxins8110314. [PMID: 27801832 PMCID: PMC5127111 DOI: 10.3390/toxins8110314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
Among the toxin family of bacterial superantigens, the six members of the enterotoxin gene cluster (egc) seem to have unusual characteristics. They are present in the majority of Staphylococcus aureus strains, but their role in disease remains uncertain. We assessed secretion levels, immunogenicity, and toxicity of native and recombinant egc proteins. After having developed enzyme-linked immunosorbent assays, we found different quantities of egc proteins secreted by bacterial isolates. Supernatants induced proliferation of human peripheral blood mononuclear cells. However, purified recombinant egc proteins were shown to have differing superantigenicity potentials. Immunization with identical amounts of all members of egc, and the prominent toxic agent SEB, resulted in neutralizing antisera. Two egc proteins, SEI and SElN, were found to play a predominant role within the cluster. Both displayed the highest potential to activate blood cells, and were essential to be neutralized in supernatants. The application of a supernatant of a strain bearing only egc was sufficient for a lethal outcome in a rabbit model. Again, neutralization of SEI and SElN led to the survival of all tested animals. Finally, nanogram amounts of purified rSEI and rSElN led to lethality in vivo, pointing out the importance of both as virulence determinants among egc superantigens.
Collapse
|
38
|
Kametani Y, Ohshima S, Miyamoto A, Shigenari A, Takasu M, Imaeda N, Matsubara T, Tanaka M, Shiina T, Kamiguchi H, Suzuki R, Kitagawa H, Kulski JK, Hirayama N, Inoko H, Ando A. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS One 2016; 11:e0164995. [PMID: 27760184 PMCID: PMC5070868 DOI: 10.1371/journal.pone.0164995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022] Open
Abstract
The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
- * E-mail:
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Teaching and Research Support Center, Tokai University School of Medicine, Isehara, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley WA, Australia
| | - Noriaki Hirayama
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
39
|
Wang D, Zhang L, Zhou X, He Y, Yong C, Shen M, Szenci O, Han B. Antimicrobial susceptibility, virulence genes, and randomly amplified polymorphic DNA analysis of Staphylococcus aureus recovered from bovine mastitis in Ningxia, China. J Dairy Sci 2016; 99:9560-9569. [PMID: 27771092 DOI: 10.3168/jds.2016-11625] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureusis the leading pathogen involved inbovine mastitis, but knowledgeabout antimicrobial resistance, virulence factors, and genotypes of Staphylococcus aureus resulting in bovine mastitis in Ningxia, China, is limited. Therefore, antimicrobial susceptibility, virulence gene, and randomly amplified polymorphic DNA (RAPD) analyses of Staph. aureus were carried out. A total of 327 milk samples from cows with clinical and subclinical mastitis in 4 regions of Ningxia were used for the isolation and identification of pathogens according to phenotypic and molecular characteristics. Antimicrobial susceptibility against 22 antimicrobial agents was determined by disk diffusion. The presence of 8 virulence genes in Staph. aureus isolates was tested by PCR. Genotypes of isolates were investigated based on RAPD. Results showed that 35 isolates obtained from mastitis milk samples were identified as Staph. aureus. The isolates were resistant to sulfamethoxazole (100%), penicillin G (94.3%), ampicillin (94.3%), erythromycin (68.6%), azithromycin (68.6%), clindamycin (25.7%), amoxicillin (11.4%), and tetracycline (5.7%). All of the isolates contained one or more virulence genes with average (standard deviation) of 6.6±1.6. The most prevalent virulence genes were hlb (97.1%), followed by fnbpA, hla, coa (94.3% each), nuc (85.7%), fnbpB (80%), clfA (77.1%), and tsst-1 (40%). Nine different gene patterns were found and 3 of them were the dominant gene combinations (77.1%). Staphylococcus aureus isolates (n=35) were divided into 6 genotypes by RAPD tying, the genotypes III and VI were the most prevalent genotypes. There was greatvariation in genotypes of Staph. aureus isolates, not only among different farms, but also within the same herd in Ningxia province. The study showed a high incidence of Staph. aureus with genomic variation of resistance genes, which is matter of great concern in public and animal health in Ningxia province of China.
Collapse
Affiliation(s)
- Dong Wang
- College of Life Science, Ningxia University, Yinchuan Ningxia 750021, China
| | - Limei Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan Ningxia 750021, China
| | - Yulong He
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Changfu Yong
- Animal Disease Prevention and Control Center of Shapotou District, Zhongwei, Ningxia 755000, China
| | - Mingliang Shen
- Agriculture and Animal Husbandry Bureau of Shizuishan, Shizuishan, Ningxia 753000, China
| | - Otto Szenci
- Magyar Tudományos Akadémia-Szent István Egyetem Large Animal Research Group, Üllő - Dóra major, H-2225 Hungary
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Abstract
Staphylococcal enterotoxins (SEs) are unique bacterial toxins that cause gastrointestinal toxicity as well as superantigenic activity. Since systemic administration of SEs induces superantigenic activity leading to toxic shock syndrome that may mimic enterotoxic activity of SEs such as vomiting and diarrhea, oral administration of SEs in the monkey feeding assay is considered as a standard method to evaluate emetic activity of SEs. This chapter summarizes and discusses practical considerations of the monkey feeding assay used in studies characterizing classical and newly identified SEs.
Collapse
|
41
|
Schwameis M, Roppenser B, Firbas C, Gruener CS, Model N, Stich N, Roetzer A, Buchtele N, Jilma B, Eibl MM. Safety, tolerability, and immunogenicity of a recombinant toxic shock syndrome toxin (rTSST)-1 variant vaccine: a randomised, double-blind, adjuvant-controlled, dose escalation first-in-man trial. THE LANCET. INFECTIOUS DISEASES 2016; 16:1036-1044. [DOI: 10.1016/s1473-3099(16)30115-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/04/2023]
|
42
|
Artursson K, Söderlund R, Liu L, Monecke S, Schelin J. Genotyping of Staphylococcus aureus in bovine mastitis and correlation to phenotypic characteristics. Vet Microbiol 2016; 193:156-61. [DOI: 10.1016/j.vetmic.2016.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|
43
|
Li L, Pian Y, Chen S, Hao H, Zheng Y, Zhu L, Xu B, Liu K, Li M, Jiang H, Jiang Y. Phenol-soluble modulin α4 mediates Staphylococcus aureus-associated vascular leakage by stimulating heparin-binding protein release from neutrophils. Sci Rep 2016; 6:29373. [PMID: 27383625 PMCID: PMC4935938 DOI: 10.1038/srep29373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1-3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca(2+) influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yaya Pian
- Key Laboratory of infection and immunity, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Huaijie Hao
- Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bin Xu
- National Center of Biomedical Analysis, Beijing, China
| | - Keke Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Li
- Department of laboratory medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Yang X, Bam M, Nagarkatti PS, Nagarkatti M. RNA-seq Analysis of δ9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation. J Biol Chem 2016; 291:15460-72. [PMID: 27268054 DOI: 10.1074/jbc.m116.719179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/07/2023] Open
Abstract
Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-Tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells. In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4(+) T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4(+) T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC-treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down-regulated by THC. On the other hand miR-146a, which has been shown to induce apoptosis, was up-regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC. In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation.
Collapse
Affiliation(s)
- Xiaoming Yang
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Marpe Bam
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Prakash S Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Mitzi Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| |
Collapse
|
45
|
Stach CS, Vu BG, Merriman JA, Herrera A, Cahill MP, Schlievert PM, Salgado-Pabón W. Novel Tissue Level Effects of the Staphylococcus aureus Enterotoxin Gene Cluster Are Essential for Infective Endocarditis. PLoS One 2016; 11:e0154762. [PMID: 27124393 PMCID: PMC4849672 DOI: 10.1371/journal.pone.0154762] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Superantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens. Methods We examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis. Results TSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis. Conclusions Our studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.
Collapse
Affiliation(s)
- Christopher S. Stach
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Joseph A. Merriman
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Alfa Herrera
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Michael P. Cahill
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
- * E-mail:
| | - Wilmara Salgado-Pabón
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| |
Collapse
|
46
|
Marton M. Staphylococcal Toxic Shock Syndrome Caused by an Intravaginal Product. A Case Report. ACTA ACUST UNITED AC 2016; 2:51-55. [PMID: 29967837 DOI: 10.1515/jccm-2016-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022]
Abstract
Staphylococcal toxic shock syndrome (STSS) represents a potentially lethal disease, and survival depends primarily on the early initiation of appropriate treatment. As the clinical picture at presentation is usually common, frequently this could lead to misdiagnosis and delays in the initiation of the proper therapy. The case of a 43-years old female who developed a staphylococcal septic shock syndrome caused by a forgotten intravaginal tampon is reported.
Collapse
Affiliation(s)
- Monica Marton
- Swedish Medical Center, Department of Anesthesiology and Critical Care, Seattle, USA
| |
Collapse
|
47
|
Stress-caused anergy of leukocytes towards Staphylococcal enterotoxin B and exposure transcriptome signatures. Genes Immun 2015; 16:330-46. [PMID: 26020283 DOI: 10.1038/gene.2015.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Abstract
Leucocytes from soldiers exposed to battlefield-like stress (RASP: Rangers Assessment and Selection Program) were exposed in vitro to Staphylococcal enterotoxin B (SEB). We assayed SEB-induced regulation of gene expression, both in the presence and absence of severe stress, to generate two sets of gene profiles. One set of transcripts and microRNAs were specific to post-RASP SEB exposure, and another set were signatures of SEB exposure common to both the pre- and post-RASP leucocytes. Pathways and upstream regulatory analyses indicated that the post-RASP SEB-signature transcripts were manifestation of the anergic state of post-RASP leucocytes. These were further verified using expression-based predictions of cellular processes and literature searches. Specificity of the second set of transcripts to SEB exposure was verified using machine-learning algorithms on our and four other (Gene Expression Omnibus) data sets. Cell adhesion, coagulation, hypoxia and vascular endothelial growth factor-mediated vascular leakage were SEB-specific pathways even under the background of severe stress. Hsa-miR-155-3p was the top SEB exposure predictor in our data set, and C-X-C motif chemokine ligand 9 was SEB specific in all the analyzed data sets. The SEB-signature transcripts (which also showed distinct expression signatures from Yersinia pestis and dengue virus) may serve as potential biomarkers of SEB exposure even under the background of stress.
Collapse
|