1
|
Park CB, Lee CH, Kang GM, Min SH, Kim MS. Microglial progranulin differently regulates hypothalamic lysosomal function in lean and obese conditions via cleavage-dependent mechanisms. J Neuroinflammation 2025; 22:68. [PMID: 40055725 PMCID: PMC11887206 DOI: 10.1186/s12974-025-03370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
Progranulin (PGRN) is a secretory precursor protein composed of 7.5 granulins (GRNs). Mutations in the PGRN-encoding gene Grn have been associated with neurodegenerative diseases. In our previous study, we found that Grn depletion in microglia disrupted glucose metabolism in mice fed a normal chow diet (NCD) but prevented the development of obesity in mice on a high-fat diet (HFD). Given that PGRN regulates lysosomal functions, we investigated lysosomal changes in the hypothalamus of mice with microglia-specific Grn depletion. Here we report that microglia-specific Grn depletion affects the lysosomes of hypothalamic proopiomelanocortin (POMC) neurons and microglia in diet-dependent fashion. Under NCD conditions, microglial Grn depletion led to increased lysosome mass, reduced lysosomal degradative capacity, and accumulation of lipofuscin and cytoplasmic TDP-43 in hypothalamic cells, indicative of lysosomal stress and dysfunction. In contrast, under HFD conditions, the absence of microglial Grn suppressed HFD-induced hypothalamic lysosomal stress. In cultured hypothalamic neurons and microglia, PGRN treatment enhanced lysosomal function, an effect inhibited by PGRN cleavage but restored when its cleavage was blocked. Since HFD feeding promotes the cleavage of hypothalamic PGRN into multi-GRNs and GRNs, the diet-dependent lysosomal changes observed in microglial Grn-depleted mice may be linked to PGRN cleavage. We also demonstrated that intracerebroventricular injection of bafilomycin, which induces lysosomal stress, resulted in microglial activation, inflammation, disrupted POMC neuronal circuitry, and impaired leptin signaling in the hypothalamus-common features of obesity. Our results indicate that microglial PGRN plays an important role in maintaining hypothalamic lysosomal function under healthy diet conditions, whereas increased cleavage of microglial PGRN in states of overnutrition disrupts hypothalamic lysosomal function, thereby fostering hypothalamic inflammation and obesity.
Collapse
Affiliation(s)
- Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Sciences, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, Asan Medical Center , Seoul, 05505, Republic of Korea
| | - Se Hee Min
- Diabetes Center, Asan Medical Center, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Seon Kim
- Diabetes Center, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Antonioni A, Raho EM, Granieri E, Koch G. Frontotemporal dementia. How to deal with its diagnostic complexity? Expert Rev Neurother 2025:1-35. [PMID: 39911129 DOI: 10.1080/14737175.2025.2461758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) encompasses a group of heterogeneous neurodegenerative disorders. Aside from genetic cases, its diagnosis is challenging, particularly in the early stages when symptoms are ambiguous, and structural neuroimaging does not reveal characteristic patterns. AREAS COVERED The authors performed a comprehensive literature search through MEDLINE, Scopus, and Web of Science databases to gather evidence to aid the diagnostic process for suspected FTD patients, particularly in early phases, even in sporadic cases, ranging from established to promising tools. Blood-based biomarkers might help identify very early neuropathological stages and guide further evaluations. Subsequently, neurophysiological measures reflecting functional changes in cortical excitatory/inhibitory circuits, along with functional neuroimaging assessing brain network, connectivity, metabolism, and perfusion alterations, could detect specific changes associated to FTD even decades before symptom onset. As the neuropathological process advances, cognitive-behavioral profiles and atrophy patterns emerge, distinguishing specific FTD subtypes. EXPERT OPINION Emerging disease-modifying therapies require early patient enrollment. Therefore, a diagnostic paradigm shift is needed - from relying on typical cognitive and neuroimaging profiles of advanced cases to widely applicable biomarkers, primarily fluid biomarkers, and, subsequently, neurophysiological and functional neuroimaging biomarkers where appropriate. Additionally, exploring subjective complaints and behavioral changes detected by home-based technologies might be crucial for early diagnosis.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, FE, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, FE, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Roma, RM, Italy
| |
Collapse
|
3
|
Wang Y, Shan J, Zhang L, Wang R, Wu MY, Li HM, Xu HM. The role of FAM171A2-GRN-NF-κB pathway in TBBPA induced oxidative stress and inflammatory response in mouse-derived hippocampal neuronal HT22 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117445. [PMID: 39616664 DOI: 10.1016/j.ecoenv.2024.117445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the brominated flame retardants (BFRs) widely used in industry, which has a broad toxic effect on organisms. However, there is still limited research on the neurotoxic mechanism of TBBPA. Using mouse hippocampal neurons (HT22) cells, the toxicity of TBBPA was evaluated, especially focusing on its alteration on the key molecules in FAM171A2-GRN-NF-κB signaling pathway. The results showed that TBBPA exposure could lead to an increase in the production of inflammation-related genes IL-6, iNOS, TGF-β1, COX2, and TNF-α in both HT22 cells and HT22-AD-model, intensifying the inflammatory response; it inhibits the mRNA expression of antioxidative enzymes genes Sod1, Cat, Gpx1, and Gsta1, resulting in reduced antioxidant enzyme activities of SOD, CAT, and GSH-Px/GPX. Mechanistically, TBBPA caused the upregulation of FAM171A2 expression level, alongside increased GRN, IκBα and p65 levels; whereas the expression of GRN, IκBα and p65 was decreased after FAM171A2 knockdown, demonstrating TBBPA-induced upregulation of FAM171A2 should be responsible for the increased GRN, IκBα and p65 expression. Therefore, for the first time, our data indicate that TBBPA-induced oxidative stress and inflammatory response is closely related to the FAM171A2-GRN-NF-κB pathway.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Shan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Xi'an GEM Flowers Changqing Hospital, Xi'an, Shanxi 710000, China
| | - Ling Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Meng-Yu Wu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Xi'an GEM Flowers Changqing Hospital, Xi'an, Shanxi 710000, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Feng T, Xu X, Wang X, Tang W, Lu Y. PGRN protects against serum deprivation-induced cell death by promoting the ROS scavenger system in cervical cancer. Cell Death Dis 2024; 15:889. [PMID: 39695087 DOI: 10.1038/s41419-024-07233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
Progranulin (PGRN), an autocrine growth factor with tumorigenic roles in a variety of tumors, is a putative survival factor for normal and cancer cells in vitro. However, the fundamental mechanism of PGRN-mediated survival of cancer cells suffering from various types of microenvironmental stresses, such as serum deprivation, remains unknown. We show here that serum deprivation decreases intracellular PGRN protein levels in cervical cancer cells. PGRN protects cervical cancer cells against serum deprivation-induced apoptosis, limits reactive oxygen species (ROS) levels, maintains mitochondria integrity, and reduces oxidative damage of protein, lipid and DNA. PGRN enhances the ROS scavenger system, as evidenced by increased superoxide dismutase (SOD), catalase protein expression and activity, elevated GSH and NADPH levels and increased phase II detoxification enzyme expression in cervical cancer cells after serum withdrawal. The role of PGRN in ROS clearance is mediated by the PGRN-stimulated nuclear factor erythroid-derived 2-like 2 (NFE2L2)-antioxidant response element (ARE) pathway. Our study reveals an antioxidant role of PGRN in supporting the survival of cervical cancer cells under oxidative stress. This insight provides a new perspective on the how cervical cancer cells adapt to microenvironmental stress, contributing to cell viability and other malignant characteristics.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoying Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Park CB, Lee CH, Cho KW, Shin S, Jang WH, Byeon J, Oh YR, Kim SJ, Park JW, Kang GM, Min SH, Kim S, Yu R, Kim MS. Extracellular Cleavage of Microglia-Derived Progranulin Promotes Diet-Induced Obesity. Diabetes 2024; 73:2009-2021. [PMID: 39302854 DOI: 10.2337/db24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily conserved secretory protein containing seven and a half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, which encodes PGRN. Mice with microglia-specific Grn depletion displayed diet-dependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn depletion produced adverse outcomes, such as fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high-fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appeared to be linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating diet-induced obesity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sunghun Shin
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junyeong Byeon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
He Y, Liu S, Lin H, Ding F, Shao Z, Xiong L. Roles of organokines in intervertebral disc homeostasis and degeneration. Front Endocrinol (Lausanne) 2024; 15:1340625. [PMID: 38532900 PMCID: PMC10963452 DOI: 10.3389/fendo.2024.1340625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.
Collapse
Affiliation(s)
- Yuxin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ding
- Department of Orthopaedics, JingMen Central Hospital, Jingmen, China
- Hubei Minzu University, Enshi, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Bowhay CR, Hanington PC. Animal granulins: In the GRN scheme of things. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105115. [PMID: 38101714 DOI: 10.1016/j.dci.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.
Collapse
Affiliation(s)
- Christina R Bowhay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
8
|
Sung W, Noh MY, Nahm M, Kim YS, Ki CS, Kim YE, Kim HJ, Kim SH. Progranulin haploinsufficiency mediates cytoplasmic TDP-43 aggregation with lysosomal abnormalities in human microglia. J Neuroinflammation 2024; 21:47. [PMID: 38347588 PMCID: PMC10863104 DOI: 10.1186/s12974-024-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Sung Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Alnaaim SA, Al‐kuraishy HM, Al‐Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. New insights on the potential anti-epileptic effect of metformin: Mechanistic pathway. J Cell Mol Med 2023; 27:3953-3965. [PMID: 37737447 PMCID: PMC10747420 DOI: 10.1111/jcmm.17965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Saud A. Alnaaim
- Clinical Neurosciences Department, College of MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
10
|
Feng T, Minevich G, Liu P, Qin HX, Wozniak G, Pham J, Pham K, Korgaonkar A, Kurnellas M, Defranoux NA, Long H, Mitra A, Hu F. AAV- GRN partially corrects motor deficits and ALS/FTLD-related pathology in Tmem106b-/-Grn-/- mice. iScience 2023; 26:107247. [PMID: 37519899 PMCID: PMC10371829 DOI: 10.1016/j.isci.2023.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Loss of function of progranulin (PGRN), encoded by the granulin (GRN) gene, is implicated in several neurodegenerative diseases. Several therapeutics to boost PGRN levels are currently in clinical trials. However, it is difficult to test the efficacy of PGRN-enhancing drugs in mouse models due to the mild phenotypes of Grn-/- mice. Recently, mice deficient in both PGRN and TMEM106B were shown to develop severe motor deficits and pathology. Here, we show that intracerebral ventricle injection of PGRN-expressing AAV1/9 viruses partially rescues motor deficits, neuronal loss, glial activation, and lysosomal abnormalities in Tmem106b-/-Grn-/- mice. Widespread expression of PGRN is detected in both the brain and spinal cord for both AAV subtypes. However, AAV9 but not AAV1-mediated expression of PGRN results in high levels of PGRN in the serum. Together, these data support using the Tmem106b-/-Grn-/- mouse strain as a robust mouse model to determine the efficacy of PGRN-elevating therapeutics.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Pengan Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry Xin Qin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jenny Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | - Khanh Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | | | | | | | - Hua Long
- Alector Inc, South San Francisco, CA 94080, USA
| | | | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Hembasat T, Chaiyadet S, Ittiprasert W, Smout MJ, Young ND, Loukas A, Brindley PJ, Laha T. Peptide derived from progranulin of the carcinogenic liver fluke, Opisthorchis viverrini stimulates cell hyperproliferation and proinflammatory cytokine production. RESEARCH SQUARE 2023:rs.3.rs-2586058. [PMID: 36993607 PMCID: PMC10055533 DOI: 10.21203/rs.3.rs-2586058/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Purpose Progranulin (PGRN) is a secreted glycoprotein growth factor with roles in wound healing, inflammation, angiogenesis and malignancy. An orthologue of the gene encoding human PGRN was identified in the carcinogenic liver fluke Opisthorchis viverrini. Methods Sequence structure, general characteristics and possible function of O. viverrini PGRN was analyzed using bioinformatics. Expression profiles were investigated with quantitative RT-PCR, western blot and immunolocalization. A specific peptide of Ov-PGRN was used to investigate a role for this molecule in pathogenesis. Results The structure of the gene coding for O. viverrini PGRN was 36,463 bp in length, and comprised of 13 exons, 12 introns, and a promoter sequence. The Ov-pgrn mRNA is 2,768 bp in length and encodes an 846 amino acids with a predicted molecular mass of 91.61 kDa. Ov-PGRN exhibited one half and seven complete granulin domains. Phylogenetic analysis revealed that Ov-PGRN formed its closest relationship with PGRN of liver flukes in the Opisthorchiidae. Transcripts of Ov-pgrn were detected in several developmental stages, with highest expression in the metacercaria, indicating that Ov-PGRN may participate as a growth factor in the early development of O. viverrini. Western blot analysis revealed the presence of detected Ov-PGRN in both soluble somatic or excretory/secretory products, and immunolocalization indicated high levels of expression in the tegument and parenchyma of the adult fluke. Co-culture of a human cholangiocyte cell line and a peptide fragment of Ov-PGRN stimulated proliferation of cholangiocytes and upregulation of expression of the cytokines IL6 and IL8. Conclusion Ov-PGRN is expressed throughout the life cycle of liver fluke, and likely plays a key role in development and growth.
Collapse
|
12
|
Rahman MM, Islam MR, Alam Tumpa MA, Shohag S, Shakil Khan Shuvo, Ferdous J, Kajol SA, Aljohani ASM, Al Abdulmonem W, Rauf A, Thiruvengadam M. Insights into the promising prospect of medicinal chemistry studies against neurodegenerative disorders. Chem Biol Interact 2023; 373:110375. [PMID: 36739931 DOI: 10.1016/j.cbi.2023.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Medicinal chemistry is an interdisciplinary field that incorporates organic chemistry, biochemistry, physical chemistry, pharmacology, informatics, molecular biology, structural biology, cell biology, and other disciplines. Additionally, it considers molecular factors such as the mode of action of the drugs, their chemical structure-activity relationship (SAR), and pharmacokinetic aspects like absorption, distribution, metabolism, elimination, and toxicity. Neurodegenerative disorders (NDs), which are defined by the breakdown of neurons over time, are affecting an increasing number of people. Oxidative stress, particularly the increased production of Reactive Oxygen Species (ROS), plays a crucial role in the growth of various disorders, as indicated by the identification of protein, lipid, and Deoxyribonucleic acid (DNA) oxidation products in vivo. Because of their inherent nature, most biological molecules are vulnerable to ROS, even if they play a role in metabolic parameters and cell signaling. Due to their high polyunsaturated fatty acid content, low antioxidant barrier, and high oxygen uptake, neurons are particularly vulnerable to oxidation by nature. As a result, excessive ROS generation in neurons looks especially harmful, and the mechanisms associated with biomolecule oxidative destruction are several and complex. This review focuses on the formation and management of ROS, as well as their chemical characteristics (both thermodynamic and kinetic), interactions, and implications in NDs.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mst Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saima Akter Kajol
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
13
|
Saeedi-Boroujeni A, Purrahman D, Shojaeian A, Poniatowski ŁA, Rafiee F, Mahmoudian-Sani MR. Progranulin (PGRN) as a regulator of inflammation and a critical factor in the immunopathogenesis of cardiovascular diseases. J Inflamm (Lond) 2023; 20:1. [PMID: 36658641 PMCID: PMC9851114 DOI: 10.1186/s12950-023-00327-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Immune dysregulation has been identified as a critical cause of the most common types of cardiovascular diseases (CVDs). Notably, the innate and adaptive immune responses under physiological conditions are typically regulated with high sensitivity to avoid the exacerbation of inflammation, but any dysregulation can probably be associated with CVDs. In this respect, progranulin (PGRN) serves as one of the main components of the regulation of inflammatory processes, which significantly contributes to the immunopathogenesis of such disorders. PGRN has been introduced among the secreted growth factors as one related to wound healing, inflammation, and human embryonic development, as well as a wide variety of autoimmune diseases. The relationship between the serum PGRN and TNF-α ratio with the spontaneous bacterial peritonitis constitute one of the independent predictors of these conditions. The full-length PGRN can thus effectively reduce the calcification of valve interstitial cells, and the granulin precursor (GRN), among the degradation products of PGRN, can be beneficial. Moreover, it was observed that, PGRN protects the heart against ischemia-reperfusion injury. Above all, PGRN also provides protection in the initial phase following myocardial ischemia-reperfusion injury. The protective impact of PGRN on this may be associated with the early activation of the PI3K/Akt signaling pathway. PGRN also acts as a protective factor in hyperhomocysteinemia, probably by down-regulating the wingless-related integration site Wnt/β-catenin signaling pathway. Many studies have further demonstrated that SARS-CoV-2 (COVID-19) has dramatically increased the risks of CVDs due to inflammation, so PGRN has drawn much more attention among scholars. Lysosomes play a pivotal role in the inflammation process, and PGRN is one of the key regulators in their functioning, which contributes to the immunomodulatory mechanism in the pathogenesis of CVDs. Therefore, investigation of PGRN actions can help find new prospects in the treatment of CVDs. This review aims to summarize the role of PGRN in the immunopathogenesis of CVD, with an emphasis on its treatment.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Daryush Purrahman
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A. Poniatowski
- grid.491786.50000 0001 0211 9062Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Fatemeh Rafiee
- grid.469309.10000 0004 0612 8427Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,grid.411230.50000 0000 9296 6873Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Bossolasco P, Cimini S, Maderna E, Bardelli D, Canafoglia L, Cavallaro T, Ricci M, Silani V, Marucci G, Rossi G. GRN−/− iPSC-derived cortical neurons recapitulate the pathological findings of both frontotemporal lobar degeneration and neuronal ceroidolipofuscinosis. Neurobiol Dis 2022; 175:105891. [DOI: 10.1016/j.nbd.2022.105891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|
15
|
Cimini S, Bellini S, Saraceno C, Benussi L, Ghidoni R, Giliani SC, Puoti G, Canafoglia L, Giaccone G, Rossi G. Pathological 25 kDa C-Terminal Fragments of TDP-43 Are Present in Lymphoblastoid Cell Lines and Extracellular Vesicles from Patients Affected by Frontotemporal Lobar Degeneration and Neuronal Ceroidolipofuscinosis Carrying a GRN Mutation. Int J Mol Sci 2022; 23:ijms232213753. [PMID: 36430231 PMCID: PMC9694984 DOI: 10.3390/ijms232213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a complex disease, characterized by progressive degeneration of frontal and temporal lobes. Mutations in progranulin (GRN) gene have been found in up to 50% of patients with familial FTLD. Abnormal deposits of post-translationally-modified TAR DNA-binding protein of 43 kDa (TDP-43) represent one of the main hallmarks of the brain pathology. To investigate in peripheral cells the presence of the different TDP-43 forms, especially the toxic 25 kDa fragments, we analyzed lymphoblastoid cell lines (LCLs) and the derived extracellular vesicles (EVs) from patients carrying a GRN mutation, together with wild-type (WT) healthy controls. After characterizing EV sizes and concentrations by nanoparticle tracking analysis, we investigated the levels of different forms of the TDP-43 protein in LCLs and respective EVs by Western blot. Our results showed a trend of concentration decreasing in EVs derived from GRN-mutated LCLs, although not reaching statistical significance. A general increase in p-TDP-43 levels in GRN-mutated LCLs and EVs was observed. In particular, the toxic 25 kDa fragments of p-TDP-43 were only present in GRN-mutated LCLs and were absent in the WT controls. Furthermore, these fragments appeared to be more concentrated in EVs than in LCLs, suggesting a relevant role of EVs in spreading pathological molecules between cells.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, “Angelo Nocivelli” Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giorgio Giaccone
- Unit of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giacomina Rossi
- Unit of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
16
|
Zhou Y, Pang H, Wang J, Wu H, Xu Z, Liu X, Xiao Z. Progranulin Promotes the Formation and Development of Capsules Caused by Silicone in Sprague-Dawley Rats. Clin Cosmet Investig Dermatol 2022; 15:1561-1573. [PMID: 35967917 PMCID: PMC9365064 DOI: 10.2147/ccid.s374128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Background Silicone implants are currently the most widely used artificial materials in plastic surgery. Capsule formation following implant application is unavoidable. When the capsule is excessively thick and strongly contracted, it can lead to obvious symptoms, clinically known as capsular contracture. Biological factors have always been the focus of research on the capsule formation. As a growth factor, progranulin (PGRN) plays an important regulatory role in wound healing, tissue fibrosis, tumor proliferation and invasion, and inflammation regulation. At present, the research on the capsule mainly involves the regulation of tissue healing and fibrosis under the influence of inflammation. Because PGRN has a regulatory role in these processes, we believe that the study of both can provide a new theoretical basis and intervention sites for monitoring and inhibiting the development of the capsule. Methods In this experiment, the effects of different surgical operations on the content of PGRN in the surgical site and plasma of rats were detected. Sprague-Dawley (SD) rat dermal fibroblasts were co-cultured by recombinant PGRN. The effects of r-PGRN on fibroblasts were detected by 5-ethynyl-2’-deoxyuridine (EdU) assay, wound healing assay and Western blot assay. Finally, the effect of PGRN on capsule formation and contracture was studied by changing the content of PGRN in the prosthesis in rats after operation. Results Surgical trauma and silicone implant increased plasma and local PGRN levels in SD rats. PGRN can activate the TGF-β/SMAD signaling pathway in a dose-dependent manner, thereby promoting fibroblast proliferation, differentiation and migration and inhibiting apoptosis and enhancing cell function, thereby promoting capsule formation and contracture. Conclusion PGRN promotes the formation and contracture of the silicone implant capsule in SD rats by activating the TGF-β/SMAD signaling pathway. This discovery may provide new therapeutic targets and detection indicators.
Collapse
Affiliation(s)
- Yongting Zhou
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hao Pang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jie Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hao Wu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zidi Xu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xueyi Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhibo Xiao
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Correspondence: Zhibo Xiao, Email
| |
Collapse
|
17
|
Alyahya AM. The role of progranulin in ischemic heart disease and its related risk factors. Eur J Pharm Sci 2022; 175:106215. [DOI: 10.1016/j.ejps.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
|
18
|
Ondaro J, Hernandez-Eguiazu H, Garciandia-Arcelus M, Loera-Valencia R, Rodriguez-Gómez L, Jiménez-Zúñiga A, Goikolea J, Rodriguez-Rodriguez P, Ruiz-Martinez J, Moreno F, Lopez de Munain A, Holt IJ, Gil-Bea FJ, Gereñu G. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front Cell Dev Biol 2022; 10:836196. [PMID: 35419363 PMCID: PMC8996160 DOI: 10.3389/fcell.2022.836196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
Collapse
Affiliation(s)
- Jon Ondaro
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Haizea Hernandez-Eguiazu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maddi Garciandia-Arcelus
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Loera-Valencia
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Laura Rodriguez-Gómez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrés Jiménez-Zúñiga
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julen Goikolea
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Javier Ruiz-Martinez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Adolfo Lopez de Munain
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ian James Holt
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Francisco Javier Gil-Bea
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gorka Gereñu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), Leioa, Spain
| |
Collapse
|
19
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
20
|
Dong T, Tejwani L, Jung Y, Kokubu H, Luttik K, Driessen TM, Lim J. Microglia regulate brain progranulin levels through the endocytosis/lysosomal pathway. JCI Insight 2021; 6:e136147. [PMID: 34618685 PMCID: PMC8663778 DOI: 10.1172/jci.insight.136147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/06/2021] [Indexed: 01/01/2023] Open
Abstract
Genetic variants in Granulin (GRN), which encodes the secreted glycoprotein progranulin (PGRN), are associated with several neurodegenerative diseases, including frontotemporal lobar degeneration, neuronal ceroid lipofuscinosis, and Alzheimer's disease. These genetic alterations manifest in pathological changes due to a reduction of PGRN expression; therefore, identifying factors that can modulate PGRN levels in vivo would enhance our understanding of PGRN in neurodegeneration and could reveal novel potential therapeutic targets. Here, we report that modulation of the endocytosis/lysosomal pathway via reduction of Nemo-like kinase (Nlk) in microglia, but not in neurons, can alter total brain Pgrn levels in mice. We demonstrate that Nlk reduction promotes Pgrn degradation by enhancing its trafficking through the endocytosis/lysosomal pathway, specifically in microglia. Furthermore, genetic interaction studies in mice showed that Nlk heterozygosity in Grn haploinsufficient mice further reduces Pgrn levels and induces neuropathological phenotypes associated with PGRN deficiency. Our results reveal a mechanism for Pgrn level regulation in the brain through the active catabolism by microglia and provide insights into the pathophysiology of PGRN-associated diseases.
Collapse
Affiliation(s)
- Tingting Dong
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
| | - Youngseob Jung
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hiroshi Kokubu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
| | - Terri M. Driessen
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
- Program in Cellular Neuroscience, Neurodegeneration and Repair, and
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Jafari-Gharabaghlou D, Vaghari-Tabari M, Oghbaei H, Lotz L, Zarezadeh R, Rastgar Rezaei Y, Ranjkesh M, Nouri M, Fattahi A, Nikanfar S, Dittrich R. Role of adipokines in embryo implantation. Endocr Connect 2021; 10:R267-R278. [PMID: 34559064 PMCID: PMC8558901 DOI: 10.1530/ec-21-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022]
Abstract
Embryo implantation is a complex process in which multiple molecules acting together under strict regulation. Studies showed the production of various adipokines and their receptors in the embryo and uterus, where they can influence the maternal-fetal transmission of metabolites and embryo implantation. Therefore, these cytokines have opened a novel area of study in the field of embryo-maternal crosstalk during early pregnancy. In this respect, the involvement of adipokines has been widely reported in the regulation of both physiological and pathological aspects of the implantation process. However, the information about the role of some recently identified adipokines is limited. This review aims to highlight the role of various adipokines in embryo-maternal interactions, endometrial receptivity, and embryo implantation, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laura Lotz
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Erlangen, Germany
| | - Reza Zarezadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ranjkesh
- Medical Radiation Science Research Group (MRSRG), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Erlangen, Germany
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence should be addressed to A Fattahi or S Nikanfar: or
| | - Saba Nikanfar
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence should be addressed to A Fattahi or S Nikanfar: or
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Yoon T, Lee LE, Ahn SS, Pyo JY, Song JJ, Park YB, Lee SW. Serum progranulin as a predictive marker for high activity of antineutrophil cytoplasmic antibody-associated vasculitis. J Clin Lab Anal 2021; 35:e24048. [PMID: 34626000 PMCID: PMC8605163 DOI: 10.1002/jcla.24048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study investigated whether serum progranulin could act as a predictive marker for high disease activity of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS Fifty-eight AAV patients were included in this study. Clinical and laboratory data were obtained at blood collection. The Short-Form 36-Item Health Survey Physical and Mental Component Summaries (SF-36 PCS and SF-36 MCS), Birmingham Vasculitis activity score (BVAS), Five-Factor Score (FFS), and Vasculitis Damage Index (VDI) were assessed as AAV-specific indices. Whole blood was collected and serum samples were isolated and stored at -80°C. Serum progranulin concentration was quantified by ELISA kits. RESULTS The median age of patients was 63.0 years (19 men). The median BVAS was 11.0, and the median serum progranulin level was 49.0 ng/ml. Serum progranulin was significantly correlated with BVAS, FFS, erythrocyte sedimentation rate, C-reactive protein level, SF-36 PCS, haemoglobin, and serum albumin. Severe AAV was arbitrarily defined as the highest tertile of BVAS (BVAS ≥16). When the cut-offs of serum progranulin were set as 55.16 ng/ml and 43.01 ng/ml for severe AAV, AAV patients with serum progranulin ≥55.16 and 43.01 ng/ml had significantly higher risks of severe AAV than those without (relative risk (RR) 4.167 and 4.524, respectively). CONCLUSIONS Progranulin might play an anti-inflammatory role in AAV pathogenesis and serum progranulin could be used as a predictive marker for high activity of AAV.
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, College of Medicine, BK21 Plus Project, Yonsei University, Seoul, Republic of Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Singh RB, Gupta P, Kartik A, Farooqui N, Singhal S, Shergill S, Singh KP, Agarwal A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin Ophthalmol 2021; 36:582-595. [PMID: 34106804 DOI: 10.1080/08820538.2021.1936571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare neurodegenerative storage disorders associated with devastating visual prognosis, with an incidence of 1/1,000,000 in the United States and comparatively higher incidence in European countries. The pathophysiological mechanisms causing NCLs occur due to enzymatic or transmembrane defects in various sub-cellular organelles including lysosomes, endoplasmic reticulum, and cytoplasmic vesicles. NCLs are categorized into different types depending upon the underlying cause i.e., soluble lysosomal enzyme deficiencies or non-enzymatic deficiencies (functions of identified proteins), which are sub-divided based on an axial classification system. In this review, we have evaluated the current evidence in the literature and reported the incidence rates, underlying mechanisms and currently available management protocols for these rare set of neuroophthalmological disorders. Additionally, we also highlighted the potential therapies under development that can expand the treatment of these rare disorders beyond symptomatic relief.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Prakash Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kartik
- Department of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Naba Farooqui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sachi Singhal
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sukhman Shergill
- Department of Anesthesiology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Kanwar Partap Singh
- Department of Ophthalmology, Dayanand Medical College & Hospital, Ludhiana, India
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Liu Y, Ren J, Kang M, Zhai C, Cheng Q, Li J, Wu Y, Ruan X, Zhou J, Fan J, Tian Y. Progranulin promotes functional recovery and neurogenesis in the subventricular zone of adult mice after cerebral ischemia. Brain Res 2021; 1757:147312. [PMID: 33539798 DOI: 10.1016/j.brainres.2021.147312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Progranulin (PGRN), a secreted glycosylated protein, has been reported to attenuate ischemia-induced cerebral injury through anti-inflammation, attenuation of blood-brain barrier disruption and neuroprotection. However, the effect of PGRN on neurogenesis in the subventricular zone (SVZ) after cerebral ischemia remains unclear. In this study, adult C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (pMCAO), and different doses of recombinant mouse PGRN (r-PGRN, 0.3 ng, 1 ng, 5 ng) were intracerebroventricularly administered 30 min after pMCAO. Results showed that 1 ng r-PGRN markedly reduced infarct volume and rescued functional deficits 24 h after pMCAO. Meanwhile, 1 ng r-PGRN increased SVZ cell proliferation, as shown by a high number of bromodeoxyuridine-positive (BrdU+) cells and Ki-67+ cells in the ischemic ipsilateral SVZ 7 d after pMCAO. Additionally, PGRN increased the percentage of BrdU+/Doublecortin (DCX)+ cells in the ipsilateral SVZ 14 d after pMCAO and increased the percentage of new neurons (BrdU+/NeuN+ cells) in the peri-infarct striatum 28 d after pMCAO, suggesting that PGRN promotes neuronal differentiation. PGRN also upregulated phosphorylation of ERK1/2 and Akt in the ipsilateral SVZ 3 d after pMCAO. Our data indicate that PGRN treatment promotes acute functional recovery; most importantly, it also stimulates neurogenesis in the SVZ, which could be beneficial for long-term recovery after cerebral ischemia. The increase in neurogenesis could be associated with activation of the MAPK/ERK and PI3K/Akt pathways. These results suggest a potential new strategy utilizing PGRN in ischemic stroke therapy.
Collapse
Affiliation(s)
- Yingxun Liu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Junrong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mengsi Kang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chenyang Zhai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qiangqiang Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jin Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuzi Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaofei Ruan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jinlong Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Juan Fan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yingfang Tian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
25
|
Fu W, Hettinghouse A, Liu CJ. In Vitro Physical and Functional Interaction Assays to Examine the Binding of Progranulin Derivative Atsttrin to TNFR2 and Its Anti-TNFα Activity. Methods Mol Biol 2021; 2248:109-119. [PMID: 33185871 DOI: 10.1007/978-1-0716-1130-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
TNFα/TNFR signaling plays a critical role in the pathogenesis of various inflammatory and autoimmune diseases, and anti-TNFα therapies have been accepted as the effective approaches for treating several autoimmune diseases. Progranulin (PGRN), a multi-faced growth factor-like molecule, directly binds to TNFR1 and TNFR2, particularly to the latter with higher affinity than TNFα. PGRN derivative Atsttrin is composed of three TNFR-binding domain of PGRN and exhibits even better therapeutic effects than PGRN in several inflammatory disease models, including collagen-induced arthritis. Herein we describe the detailed methodology of using (1) ELISA-based solid phase protein-protein interaction assay to demonstrate the direct binding of Atsttrin to TNFR2 and its inhibition of TNFα/TNFR2 interaction; and (2) tartrate-resistant acid phosphatase (TRAP) staining of in vitro osteoclastogenesis to reveal the cell-based anti-TNFα activity of Atsttrin. Using the protocol described here, the investigators should be able to reproducibly detect the physical inhibition of TNFα binding to TNFR and the functional inhibition of TNFα activity by Atsttrin and various kinds of TNF inhibitors.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8 + T cell exclusion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:4. [PMID: 33390170 PMCID: PMC7780622 DOI: 10.1186/s13046-020-01786-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Background Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism. Methods The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative polymerase chain reaction (PCR) and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in Wild-type (WT) and PGRN−/− breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry. Results After being treated with PGRN, the expressions of M2 markers and programmed death ligand 1 (PD-L1) on macrophages increased significantly. Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitor Stattic significantly inhibited the expression of PD-L1 and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN−/− breast cancer tissue increased, and their infiltration into tumor parenchyma was also enhanced. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+ T cells but also reduced the proportion of proliferating CD8+ T cells. The addition of programmed death receptor 1 (PD-1) and PD-L1 neutralizing antibodies effectively reversed this effect and restored the immune function of CD8+ T cells. Conclusion These results demonstrate that PGRN promotes M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01786-6.
Collapse
Affiliation(s)
- Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
27
|
Zhou X, Kukar T, Rademakers R. Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:219-242. [PMID: 33433878 DOI: 10.1007/978-3-030-51140-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- VIB Center for Molecular Neurology, University of Antwerp-CDE, Antwerp, Belgium.
| |
Collapse
|
28
|
Maia A, Barahona-Corrêa B, Oliveira-Maia AJ, Oliveira J. Immune Dysfunction in Obsessive-Compulsive Disorder: From Risk Factors to Multisystem Involvement. IMMUNO-PSYCHIATRY 2021:289-307. [DOI: 10.1007/978-3-030-71229-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Miyakawa S, Sakuma H, Warude D, Asanuma S, Arimura N, Yoshihara T, Tavares D, Hata A, Ida K, Hori Y, Okuzono Y, Yamamoto S, Iida K, Shimizu H, Kondo S, Sato S. Anti-sortilin1 Antibody Up-Regulates Progranulin via Sortilin1 Down-Regulation. Front Neurosci 2020; 14:586107. [PMID: 33384578 PMCID: PMC7770147 DOI: 10.3389/fnins.2020.586107] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Progranulin (PGRN) haploinsufficiency associated with loss-of-function mutations in the granulin gene causes frontotemporal dementia (FTD). This suggests that increasing PGRN levels could have promising therapeutic implications for patients carrying GRN mutations. In this study, we explored the therapeutic potential of sortilin1 (SORT1), a clearance receptor of PGRN, by generating and characterizing monoclonal antibodies against SORT1. Anti-SORT1 monoclonal antibodies were generated by immunizing Sort1 knockout mice with SORT1 protein. The antibodies were classified into 7 epitope bins based on their competitive binding to the SORT1 protein and further defined by epitope bin-dependent characteristics, including SORT1-PGRN blocking, SORT1 down-regulation, and binding to human and mouse SORT1. We identified a positive correlation between PGRN up-regulation and SORT1 down-regulation. Furthermore, we also characterized K1-67 antibody via SORT1 down-regulation and binding to mouse SORT1 in vivo and confirmed that K1-67 significantly up-regulated PGRN levels in plasma and brain interstitial fluid of mice. These data indicate that SORT1 down-regulation is a key mechanism in increasing PGRN levels via anti-SORT1 antibodies and suggest that SORT1 is a potential target to correct PGRN reduction, such as that in patients with FTD caused by GRN mutation.
Collapse
Affiliation(s)
- Shuuichi Miyakawa
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroyuki Sakuma
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Dnyaneshwar Warude
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Satomi Asanuma
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Naoto Arimura
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoki Yoshihara
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Daniel Tavares
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Akito Hata
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Koh Ida
- Global Biologics Research, Takeda Pharmaceutical Company Limited, Cambridge, MA, United States
| | - Yuri Hori
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Koichi Iida
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hisao Shimizu
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shinichi Kondo
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shuji Sato
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
30
|
Kraemer MDS, Moehlecke M, Rheinheimer J, Canani LH, Leitão CB, Nicoletto BB. Plasma progranulin levels in obese patients before and after Roux-en-Y gastric bariatric surgery: a longitudinal study. Surg Obes Relat Dis 2020; 16:1655-1660. [PMID: 32839122 DOI: 10.1016/j.soard.2020.06.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bariatric surgery stands out as the most effective long-term intervention for sustainable weight loss and metabolic improvement in patients with severe obesity. Progranulin was recently identified as an adipokine related to obesity and inflammation, revealing a metabolic function and proinflammatory properties. OBJECTIVE To evaluate plasma progranulin levels before and after 6 months of bariatric surgery in Roux-en-Y gastric bypass (RYGB). SETTING Tertiary referral hospital, southern Brazil. METHODS This was a prospective longitudinal study, including 23 obese patients who underwent RYGB. Demographic and clinical characteristics, body composition, and resting energy expenditure were evaluated. Plasma progranulin was determined with enzyme-linked immunosorbent assays in a peripheral blood sample collected before and 6 months after the surgical procedure. RESULTS The participants were mostly women (78.3%), with a mean age of 42.3 ± 10.8 years and baseline body mass index of 48.8 ± 10.4 kg/m2. Regarding the anthropometric parameters, there were differences in the pre- and post-RYGB values, with reduction of weight, body mass index, body fat percentage, and cervical and abdominal circumferences. All laboratory parameters improved, such as lipid profile and fasting glycemia, and resting energy expenditure values decreased significantly. Plasma progranulin levels decreased from 47.6 ± 13.5 ng/mL before RYGB to 40.4 ± 9.9 ng/mL after 6 months of surgery (P = .005). The reduction of progranulin did not correlate with body composition or laboratory data. CONCLUSIONS Plasma progranulin levels significantly reduced 6 months after RYGB, but it could not be explained by changes in anthropometry, body composition, or glycemic or lipid profile.
Collapse
Affiliation(s)
| | - Milene Moehlecke
- Programa de Pós Graduação em Ciências Médicas, Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Jakeline Rheinheimer
- Programa de Pós Graduação em Ciências Médicas, Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Luis Henrique Canani
- Programa de Pós Graduação em Ciências Médicas, Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Cristiane Bauermann Leitão
- Programa de Pós Graduação em Ciências Médicas, Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Divisão de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Bruna Bellincanta Nicoletto
- Programa de Pós Graduação em Ciências Médicas, Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Área do Conhecimento de Ciências da Vida, Universidade de Caxias do Sul, Caxias do Sul, Brasil.
| |
Collapse
|
31
|
Zambusi A, Pelin Burhan Ö, Di Giaimo R, Schmid B, Ninkovic J. Granulins Regulate Aging Kinetics in the Adult Zebrafish Telencephalon. Cells 2020; 9:E350. [PMID: 32028681 PMCID: PMC7072227 DOI: 10.3390/cells9020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Granulins (GRN) are secreted factors that promote neuronal survival and regulate inflammation in various pathological conditions. However, their roles in physiological conditions in the brain remain poorly understood. To address this knowledge gap, we analysed the telencephalon in Grn-deficient zebrafish and identified morphological and transcriptional changes in microglial cells, indicative of a pro-inflammatory phenotype in the absence of any insult. Unexpectedly, activated mutant microglia shared part of their transcriptional signature with aged human microglia. Furthermore, transcriptome profiles of the entire telencephali isolated from young Grn-deficient animals showed remarkable similarities with the profiles of the telencephali isolated from aged wildtype animals. Additionally, 50% of differentially regulated genes during aging were regulated in the telencephalon of young Grn-deficient animals compared to their wildtype littermates. Importantly, the telencephalon transcriptome in young Grn-deficent animals changed only mildly with aging, further suggesting premature aging of Grn-deficient brain. Indeed, Grn loss led to decreased neurogenesis and oligodendrogenesis, and to shortening of telomeres at young ages, to an extent comparable to that observed during aging. Altogether, our data demonstrate a role of Grn in regulating aging kinetics in the zebrafish telencephalon, thus providing a valuable tool for the development of new therapeutic approaches to treat age-associated pathologies.
Collapse
Affiliation(s)
- Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| | - Özge Pelin Burhan
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80134 Naples, Italy;
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| |
Collapse
|
32
|
Progranulin deficiency leads to enhanced age-related cardiac hypertrophy through complement C1q-induced β-catenin activation. J Mol Cell Cardiol 2019; 138:197-211. [PMID: 31866375 DOI: 10.1016/j.yjmcc.2019.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/15/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Abstract
AIMS Age-related cardiac hypertrophy and subsequent heart failure are predicted to become increasingly serious problems in aging populations. Progranulin (PGRN) deficiency is known to be associated with accelerated aging in the brain. We aimed to evaluate the effects of PGRN deficiency on cardiac aging, including left ventricular hypertrophy. METHODS AND RESULTS Echocardiography was performed on wild-type (WT) and PGRN-knockout (KO) mice every 3 months from 3 to 18 months of age. Compared to that of WT mice, PGRN KO mice exhibited age-dependent cardiac hypertrophy and cardiac dysfunction at 18 months. Morphological analyses showed that the heart weight to tibia length ratio and cross-sectional area of cardiomyocytes at 18 months were significantly increased in PGRN KO mice relative to those in WT mice. Furthermore, accumulation of lipofuscin and increases in senescence markers were observed in the hearts of PGRN KO mice, suggesting that PGRN deficiency led to enhanced aging of the heart. Enhanced complement C1q (C1q) and activated β-catenin protein expression levels were also observed in the hearts of aged PGRN KO mice. Treatment of PGRN-deficient cardiomyocytes with C1q caused β-catenin activation and cardiac hypertrophy. Blocking C1q-induced β-catenin activation in PGRN-depleted cardiomyocytes attenuated hypertrophic changes. Finally, we showed that C1 inhibitor treatment reduced cardiac hypertrophy and dysfunction in old KO mice, possibly by reducing β-catenin activation. These results suggest that C1q is a crucial regulator of cardiac hypertrophy induced by PGRN ablation. CONCLUSION The present study demonstrates that PGRN deficiency enhances age-related cardiac hypertrophy via C1q-induced β-catenin activation. PGRN is a potential therapeutic target to prevent cardiac hypertrophy and dysfunction.
Collapse
|
33
|
Yoo W, Lee J, Noh KH, Lee S, Jung D, Kabir MH, Park D, Lee C, Kwon KS, Kim JS, Kim S. Progranulin attenuates liver fibrosis by downregulating the inflammatory response. Cell Death Dis 2019; 10:758. [PMID: 31591383 PMCID: PMC6779917 DOI: 10.1038/s41419-019-1994-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 12/29/2022]
Abstract
Progranulin (PGRN) is a cysteine-rich secreted protein expressed in endothelial cells, immune cells, neurons, and adipocytes. It was first identified for its growth factor-like properties, being implicated in tissue remodeling, development, inflammation, and protein homeostasis. However, these findings are controversial, and the role of PGRN in liver disease remains unknown. In the current study, we examined the effect of PGRN in two different models of chronic liver disease, methionine‐choline‐deficient diet (MCD)-induced non-alcoholic steatohepatitis (NASH) and carbon tetrachloride (CCl4)-induced liver fibrosis. To induce long-term expression of PGRN, PGRN-expressing adenovirus was delivered via injection into the tibialis anterior. In the CCl4-induced fibrosis model, PGRN showed protective effects against hepatic injury, inflammation, and fibrosis via inhibition of nuclear transcription factor kappa B (NF-κB) phosphorylation. PGRN also decreased lipid accumulation and inhibited pro-inflammatory cytokine production and fibrosis in the MCD-induced NASH model. In vitro treatment of primary macrophages and Raw 264.7 cells with conditioned media from hepatocytes pre-treated with PGRN prior to stimulation with tumor necrosis factor (TNF)-α or palmitate decreased their expression of pro-inflammatory genes. Furthermore, PGRN suppressed inflammatory and fibrotic gene expression in a cell culture model of hepatocyte injury and primary stellate cell activation. These observations increase our understanding of the role of PGRN in liver injury and suggest PGRN delivery as a potential therapeutic strategy in chronic inflammatory liver disease.
Collapse
Affiliation(s)
- Wonbeak Yoo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jaemin Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Mohammad Humayun Kabir
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Incepta Vaccine Limited, Dhamrai, Kalampur, Dhaka, 1351, Bangladesh
| | - Dongmin Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Ji-Su Kim
- National Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk, 56212, Republic of Korea.
| | - Seokho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
34
|
Klemm P, Assmann G, Preuss KD, Fadle N, Regitz E, Martin T, Pfreundschuh M, Thurner L. Progranulin autoantibodies in systemic sclerosis and autoimmune connective tissue disorders: A preliminary study. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:271-275. [PMID: 31502765 PMCID: PMC6842819 DOI: 10.1002/iid3.270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study aimed to investigate progranulin autoantibodies in systemic sclerosis and autoimmune connective tissue disorders. Progranulin is a physiologic tumor necrosis factor (TNF) antagonist. Progranulin antibodies decrease progranulin levels. METHODS Serum samples of 123 patients with systemic sclerosis and various autoimmune connective tissue disorders (Sjoegren's syndrome [SjS], mixed connective tissue disorder, polymyositis [PM] and dermatomyositis [DM], antiphospholipid syndrome [APLS], and undifferentiated connective tissue disease [UCTD]) were tested for progranulin antibodies using enzyme-linked immunosorbent assay. RESULTS Progranulin antibodies were found in 34 of 123 (27.6%) patients at least once during their disease. In detail, 2 of 8 (25%) patients with limited cutaneous systemic sclerosis, 10 of 31 (32.3%) patients with diffuse cutaneous systemic sclerosis, 9 of 22 (40.9%) patients with SjS, 1 of 3 (33.33%) patients with mixed connective tissue disease, 4 of 33 (12.1%) patients with DM or PM, 6 of 15 (40%) patients with APLS, and 2 of 11 (18.2%) patients with UCTD were positive for progranulin antibodies during the course of disease. CONCLUSIONS Progranulin antibodies are frequently present in patients with systemic sclerosis and other autoimmune connective tissue disorders. Despite the lack of specificity for a given autoimmune disease, progranulin antibodies might not only indicate a potential subtype but also play a pathogenic role in patients with autoimmune connective disorders. Given the important role of TNF-α in inflammatory processes in autoimmune connective tissue disorders, progranulin antibodies might support the proinflammatory environment by neutralizing the TNF blocker progranulin.
Collapse
Affiliation(s)
- Philipp Klemm
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany.,Department of Rheumatology and Immunology, Justus Liebig University Gießen, Campus Kerckhoff, Bad Nauheim, Germany
| | - Gunter Assmann
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany
| | - Klaus-Dieter Preuss
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany
| | - Natalie Fadle
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany
| | - Evi Regitz
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany
| | - Thierry Martin
- CNRS, UPR3572, IBMC, Hopitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Michael Pfreundschuh
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany
| | - Lorenz Thurner
- Saarland University Medical School, José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Homburg/Saar, Germany
| |
Collapse
|
35
|
Yang T, Zhang X, Chen A, Xiao Y, Sun S, Yan J, Cao Y, Chen J, Li F, Zhang Q, Huang K. Progranulin Promotes Bleomycin-Induced Skin Sclerosis by Enhancing Transforming Growth Factor–β/Smad3 Signaling through Up-Regulation of Transforming Growth Factor–β Type I Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1582-1593. [DOI: 10.1016/j.ajpath.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
|
36
|
Zhou X, Paushter DH, Pagan MD, Kim D, Nunez Santos M, Lieberman RL, Overkleeft HS, Sun Y, Smolka MB, Hu F. Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS One 2019; 14:e0212382. [PMID: 31291241 PMCID: PMC6619604 DOI: 10.1371/journal.pone.0212382] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Mutation in the GRN gene, encoding the progranulin (PGRN) protein, shows a dose-dependent disease correlation, wherein haploinsufficiency results in frontotemporal lobar degeneration (FTLD) and complete loss results in neuronal ceroid lipofuscinosis (NCL). Although the exact function of PGRN is unknown, it has been increasingly implicated in lysosomal physiology. Here we report that PGRN interacts with the lysosomal enzyme, glucocerebrosidase (GCase), and is essential for proper GCase activity. GCase activity is significantly reduced in tissue lysates from PGRN-deficient mice. This is further evidence that reduced lysosomal hydrolase activity may be a pathological mechanism in cases of GRN-related FTLD and NCL.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
| | - Daniel H. Paushter
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
| | - Mitchell D. Pagan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
| | - Mariela Nunez Santos
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, NW, Atlanta, GA, United States of America
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, RA Leiden, Netherlands
| | - Ying Sun
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
37
|
Morenas-Rodríguez E, Alcolea D, Suárez-Calvet M, Muñoz-Llahuna L, Vilaplana E, Sala I, Subirana A, Querol-Vilaseca M, Carmona-Iragui M, Illán-Gala I, Ribosa-Nogué R, Blesa R, Haass C, Fortea J, Lleó A. Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer's disease. Sci Rep 2019; 9:7803. [PMID: 31127154 PMCID: PMC6534578 DOI: 10.1038/s41598-019-44173-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
The role of innate immunity in dementia with Lewy bodies (DLB) has been little studied. We investigated the levels in cerebrospinal fluid (CSF) of glial proteins YKL-40, soluble TREM2 (sTREM2) and progranulin in DLB and their relationship with Alzheimer's disease (AD) biomarkers. We included patients with DLB (n = 37), prodromal DLB (prodDLB, n = 23), AD dementia (n = 50), prodromal AD (prodAD, n = 53), and cognitively normal subjects (CN, n = 44). We measured levels of YKL-40, sTREM2, progranulin, Aβ1-42, total tau (t-tau) and phosphorylated tau (p-tau) in CSF. We stratified the group DLB according to the ratio t-tau/Aβ1-42 (≥0.52, indicative of AD pathology) and the A/T classification. YKL-40, sTREM2 and progranulin levels did not differ between DLB groups and CN. YKL-40 levels were higher in AD and prodAD compared to CN and to DLB and prodDLB. Patients with DLB with a CSF profile suggestive of AD copathology had higher levels of YKL-40, but not sTREM2 or PGRN, than those without. T+ DLB patients had also higher YKL-40 levels than T-. Of these glial markers, only YKL-40 correlated with t-tau and p-tau in DLB and in prodDLB. In contrast, in prodAD, sTREM2 and PGRN also correlated with t-tau and p-tau. In conclusion, sTREM2 and PGRN are not increased in the CSF of DLB patients. YKL-40 is only increased in DLB patients with an AD biomarker profile, suggesting that the increase is driven by AD-related neurodegeneration. These data suggest a differential glial activation between DLB and AD.
Collapse
Affiliation(s)
- Estrella Morenas-Rodríguez
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marc Suárez-Calvet
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Laia Muñoz-Llahuna
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Eduard Vilaplana
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Isabel Sala
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrea Subirana
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Querol-Vilaseca
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - María Carmona-Iragui
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Roser Ribosa-Nogué
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Juan Fortea
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
38
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|
39
|
Abstract
Progranulin (PGRN) has been reported to be associated with cell proliferation, cell growth, wound healing, and inflammation. PGRN mutations are known to be related to dementia. However, the association between PGRN and atherosclerosis remains to be elucidated. Therefore, we generated PGRN-/-ApoE-/- mice to analyze the effect of PGRN on the development of atherosclerosis.
Collapse
|
40
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
41
|
Amado DA, Rieders JM, Diatta F, Hernandez-Con P, Singer A, Mak JT, Zhang J, Lancaster E, Davidson BL, Chen-Plotkin AS. AAV-Mediated Progranulin Delivery to a Mouse Model of Progranulin Deficiency Causes T Cell-Mediated Toxicity. Mol Ther 2019; 27:465-478. [PMID: 30559071 PMCID: PMC6369714 DOI: 10.1016/j.ymthe.2018.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/16/2022] Open
Abstract
Adeno-associated virus-mediated gene replacement is emerging as a safe and effective means of correcting single-gene mutations affecting the CNS. AAV-mediated progranulin gene (GRN) delivery has been proposed as a treatment for GRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis, and recent studies using intraparenchymal AAV-Grn delivery to brain have shown moderate success in histopathologic and behavioral rescue in mouse models. Here, we used AAV9 to deliver GRN to the lateral ventricle to achieve widespread expression in the Grn null mouse brain. We found that, despite a global increase in progranulin, overexpression resulted in dramatic and selective hippocampal toxicity and degeneration affecting neurons and glia. Hippocampal degeneration was preceded by T cell infiltration and perivascular cuffing. GRN delivery with an ependymal-targeting AAV for selective secretion of progranulin into the cerebrospinal fluid similarly resulted in T cell infiltration, as well as ependymal hypertrophy. Interestingly, overexpression of GRN in wild-type animals also provoked T cell infiltration. These results call into question the safety of GRN overexpression in the CNS, with evidence for both a region-selective immune response and cellular proliferative response. Our results highlight the importance of careful consideration of target gene biology and cellular response to overexpression prior to progressing to the clinic.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne M Rieders
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA
| | - Fortunay Diatta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pilar Hernandez-Con
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adina Singer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T Mak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junxian Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA.
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Abstract
Frontotemporal dementia (FTD) is a common young-onset dementia presenting with heterogeneous and distinct syndromes. It is characterized by progressive deficits in behavior, language, and executive function. The disease may exhibit similar characteristics to many psychiatric disorders owing to its prominent behavioral features. The concept of precision medicine has recently emerged, and it involves neurodegenerative disease treatment that is personalized to match an individual's specific pattern of neuroimaging, neuropathology, and genetic variability. In this paper, the pathophysiology underlying FTD, which is characterized by the selective degeneration of the frontal and temporal cortices, is reviewed. We also discuss recent advancements in FTD research from the perspectives of clinical, imaging, molecular characterizations, and treatment. This review focuses on the approach of precision medicine to manage the clinical and biological complexities of FTD.
Collapse
Affiliation(s)
- Mu-N Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, Memory and Aging Centre, University of California, San Francisco, San Francisco, CA, United States
| | - Chi-Ieong Lau
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
43
|
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci 2018; 12:488. [PMID: 30618635 PMCID: PMC6305407 DOI: 10.3389/fncel.2018.00488] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia represent a specialized population of macrophages-like cells in the central nervous system (CNS) considered immune sentinels that are capable of orchestrating a potent inflammatory response. Microglia are also involved in synaptic organization, trophic neuronal support during development, phagocytosis of apoptotic cells in the developing brain, myelin turnover, control of neuronal excitability, phagocytic debris removal as well as brain protection and repair. Microglial response is pathology dependent and affects to immune, metabolic. In this review, we will shed light on microglial activation depending on the disease context and the influence of factors such as aging, environment or cell-to-cell interaction.
Collapse
Affiliation(s)
- Sara Bachiller
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Itzia Jiménez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Agnes Paulus
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
44
|
Dastpeyman M, Bansal PS, Wilson D, Sotillo J, Brindley PJ, Loukas A, Smout MJ, Daly NL. Structural Variants of a Liver Fluke Derived Granulin Peptide Potently Stimulate Wound Healing. J Med Chem 2018; 61:8746-8753. [PMID: 30183294 DOI: 10.1021/acs.jmedchem.8b00898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Granulins are a family of growth factors involved in cell proliferation. The liver-fluke granulin, Ov-GRN-1, isolated from a carcinogenic liver fluke Opisthorchis viverrini, can significantly accelerate wound repair in vivo and in vitro. However, it is difficult to express Ov-GRN-1 in recombinant form at high yield, impeding its utility as a drug lead. Previously we reported that a truncated analogue ( Ov-GRN12-35_3s) promotes healing of cutaneous wounds in mice. NMR analysis of this analogue indicates the presence of multiple conformations, most likely as a result of proline cis/ trans isomerization. To further investigate whether the proline residues are involved in adopting the multiple confirmations, we have synthesized analogues involving mutation of the proline residues. We have shown that the proline residues have a significant influence on the structure, activity, and folding of Ov-GRN12-35_3s. These results provide insight into improving the oxidative folding yield and bioactivity of Ov-GRN12-35_3s and might facilitate the development of a novel wound healing agent.
Collapse
Affiliation(s)
- Mohadeseh Dastpeyman
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| | - Paramjit S Bansal
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| | - David Wilson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences , George Washington University , Washington, D.C. 20052 , United States
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| | - Michael J Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , QLD 4870 , Australia
| |
Collapse
|
45
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
46
|
The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 2018; 136:1-17. [PMID: 29744576 DOI: 10.1007/s00401-018-1861-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Progranulin (PGRN), encoded by the GRN gene in humans, is a secreted growth factor implicated in a multitude of processes ranging from regulation of inflammation to wound healing and tumorigenesis. The clinical importance of PGRN became especially evident in 2006, when heterozygous mutations in the GRN gene, resulting in haploinsufficiency, were found to be one of the main causes of frontotemporal lobar degeneration (FTLD). FTLD is a clinically heterogenous disease that results in the progressive atrophy of the frontal and temporal lobes of the brain. Despite significant research, the exact function of PGRN and its mechanistic relationship to FTLD remain unclear. However, growing evidence suggests a role for PGRN in the lysosome-most striking being that homozygous GRN mutation leads to neuronal ceroid lipofuscinosis, a lysosomal storage disease. Since this discovery, several links between PGRN and the lysosome have been established, including the existence of two independent lysosomal trafficking pathways, intralysosomal processing of PGRN into discrete functional peptides, and direct and indirect regulation of lysosomal hydrolases. Here, we summarize the cellular functions of PGRN, its roles in the nervous system, and its link to multiple neurodegenerative diseases, with a particular focus dedicated to recent lysosome-related mechanistic developments.
Collapse
|
47
|
Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J Cell Physiol 2018; 233:6524-6543. [PMID: 29663416 DOI: 10.1002/jcp.26583] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
The balance between synthesis and degradation is crucial to maintain cellular homeostasis and different mechanisms are known to keep this balance. In this review, we will provide a short overview on autophagy as an intracellular homeostatic degradative machinery. We will also describe the involvement of downregulation of autophagy in numerous diseases including neurodegenerative diseases, cancer, aging, metabolic disorders, and other infectious diseases. Therefore, modulation of autophagic processes can represent a promising way of intervention in different diseases including neurodegeneration and cancer. Trehalose, also known as mycose, is a natural disaccharide found extensively but not abundantly among several organisms. It is described that trehalose can work as an important autophagy modulator and can be proficiently used in the control several diseases in which autophagy plays an important role. On these bases, we describe here the role of trehalose as an innovative drug in the treatment of neurodegenerative diseases and other illnesses opening a new scenario of intervention in conditions difficult to be treated.
Collapse
Affiliation(s)
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Amirhossein Sahebkar
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
49
|
Portbury SD, Hare DJ, Sgambelloni C, Perronnes K, Portbury AJ, Finkelstein DI, Adlard PA. Trehalose Improves Cognition in the Transgenic Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 60:549-560. [PMID: 28869469 PMCID: PMC5611803 DOI: 10.3233/jad-170322] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study assessed the therapeutic utility of the autophagy enhancing stable disaccharide trehalose in the Tg2576 transgenic mouse model of Alzheimer’s disease (AD) via an oral gavage of a 2% trehalose solution for 31 days. Furthermore, as AD is a neurodegenerative condition in which the transition metals, iron, copper, and zinc, are understood to be intricately involved in the cellular cascades leading to the defining pathologies of the disease, we sought to determine any parallel impact of trehalose treatment on metal levels. Trehalose treatment significantly improved performance in the Morris water maze, consistent with enhanced learning and memory. The improvement was not associated with significant modulation of full length amyloid-β protein precursor or other amyloid-β fragments. Trehalose had no effect on autophagy as assessed by western blot of the LC3-1 to LC3-2 protein ratio, and no alteration in biometals that might account for the improved cognition was observed. Biochemical analysis revealed a significant increase in the hippocampus of both synaptophysin, a synaptic vesicle protein and surrogate marker of synapses, and doublecortin, a reliable marker of neurogenesis. The growth factor progranulin was also significantly increased in the hippocampus and cortex with trehalose treatment. This study suggests that trehalose might invoke a suite of neuroprotective mechanisms that can contribute to improved cognitive performance in AD that are independent of more classical trehalose-mediated pathways, such as Aβ reduction and activation of autophagy. Thus, trehalose may have utility as a potential AD therapeutic, with conceivable implications for the treatment of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Stuart D Portbury
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia.,University of Technology Sydney, Elemental Bio-imaging, Broadway, Australia
| | - Charlotte Sgambelloni
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - Kali Perronnes
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley J Portbury
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Dastpeyman M, Smout MJ, Wilson D, Loukas A, Daly NL. Folding of granulin domains. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mohadeseh Dastpeyman
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine, James Cook University; Cairns Queensland Australia
| | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine, James Cook University; Cairns Queensland Australia
| | - David Wilson
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine, James Cook University; Cairns Queensland Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine, James Cook University; Cairns Queensland Australia
| | - Norelle L. Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine, James Cook University; Cairns Queensland Australia
| |
Collapse
|