1
|
Cai J, Chen Y, She Y, He X, Feng H, Sun H, Yin M, Gao J, Sheng C, Li Q, Xiao M. Aerobic exercise improves astrocyte mitochondrial quality and transfer to neurons in a mouse model of Alzheimer's disease. Brain Pathol 2025; 35:e13316. [PMID: 39462160 PMCID: PMC11961210 DOI: 10.1111/bpa.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction is a well-established hallmark of Alzheimer's disease (AD). Despite recent documentation of transcellular mitochondrial transfer, its role in the pathogenesis of AD remains unclear. In this study, we report an impairment of mitochondrial quality within the astrocytes and neurons of adult 5 × FAD mice. Following treatment with mitochondria isolated from aged astrocytes induced by exposure to amyloid protein or extended cultivation, cultured neurons exhibited an excessive generation of reactive oxygen species and underwent neurite atrophy. Notably, aerobic exercise enhanced mitochondrial quality by upregulating CD38 within hippocampal astrocytes of 5 × FAD mice. Conversely, the knockdown of CD38 diminished astrocytic-neuronal mitochondrial transfer, thereby abolishing the ameliorative effects of aerobic exercise on neuronal oxidative stress, β-amyloid plaque deposition, and cognitive dysfunction in 5 × FAD mice. These findings unveil an unexpected mechanism through which aerobic exercise facilitates the transference of healthy mitochondria from astrocytes to neurons, thus countering the AD-like progression.
Collapse
Affiliation(s)
- Jiachen Cai
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Yan Chen
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Yuzhu She
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Xiaoxin He
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Hu Feng
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Huaiqing Sun
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengmei Yin
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Junying Gao
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Department of AnatomyNanjing Medical UniversityNanjingChina
| | - Chengyu Sheng
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Qian Li
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Ming Xiao
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Sant'ana JF, Tureta EF, Rosa RLDA, Calegari-Alves YP, Faustino AM, Marques AL, Bobermin LD, Quincozes-Santos A, Varela APM, Sesterheim P, Berger M, Peña RD, Souza DO, Roehe P, Guimarães JA, Campos AR, Santi L, Beys-DA-Silva WO. Zika virus infection in a non-neural cell host promotes differential expression of proteins associated with neurological conditions. AN ACAD BRAS CIENC 2025; 97:e20240849. [PMID: 40197952 DOI: 10.1590/0001-3765202520240849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/09/2024] [Indexed: 04/10/2025] Open
Abstract
The Zika Virus (ZIKV) is a Flavivirus that caused a recent outbreak worldwide resulting in different neurological outcomes that are still poorly characterized and understood. Concerning this issue, in vitro and in vivo models are being applied to improve the molecular understanding of ZIKV infection. In this work, applying shotgun proteomics we revealed the differential ZIKV infection proteome in Vero cells, a non-neural cell model. A dramatic change resulting from infection was found including the differential expression of several proteins previously associated with brain diseases. The molecular alterations caused by this pathogen were further characterized through bioinformatics such as Gene Ontology and protein-protein interaction network of resulting differential proteome. Our findings identified molecular markers that were differentially expressed during ZIKV infection and had been previously linked to neurological conditions and infections caused by ZIKV and/or SARS-CoV-2. The results presented in this article highlight molecular markers associated with neurological dysfunctions, demonstrating that ZIKV infection can dysregulate neural-specific genes, even in non-neural cells.
Collapse
Affiliation(s)
- Júlia F Sant'ana
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
| | - Emanuela Fernanda Tureta
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
| | - Rafael L DA Rosa
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Rua Ramiro Barcelos, 2350, 90035-007 Porto Alegre, RS, Brazil
| | - Yohana P Calegari-Alves
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Rua Ramiro Barcelos, 2350, 90035-007 Porto Alegre, RS, Brazil
| | - Aline M Faustino
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
| | - Ana Luiza Marques
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos, 2600, Suite 625, 90035-003 Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Ana Paula M Varela
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Centro de Cardiologia Experimental, Rua Domingos Crescêncio, 132, 90650-090 Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Centro de Cardiologia Experimental, Rua Domingos Crescêncio, 132, 90650-090 Porto Alegre, RS, Brazil
| | - Markus Berger
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Rua Ramiro Barcelos, 2350, 90035-007 Porto Alegre, RS, Brazil
| | - Ramon D Peña
- Sanford Burnham Prebys Medical Discovery Institute, Proteomics Core, 10901N, Torrey Pines Road, 92037, La Jolla, CA, USA
| | - Diogo O Souza
- Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Paulo Roehe
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Instituto de Ciências Básicas da Saúde, Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Jorge A Guimarães
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Rua Ramiro Barcelos, 2350, 90035-007 Porto Alegre, RS, Brazil
| | - Alexandre R Campos
- Sanford Burnham Prebys Medical Discovery Institute, Proteomics Core, 10901N, Torrey Pines Road, 92037, La Jolla, CA, USA
| | - Lucélia Santi
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Walter Orlando Beys-DA-Silva
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, suite 709, 90160-093 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kaur S, Verma H, Dhiman M, Mantha AK. Activation of multifunctional DNA repair APE1/Ref-1 enzyme by the dietary phytochemical Ferulic acid protects human neuroblastoma SH-SY5Y cells against Aβ(25-35)-induced oxidative stress and inflammatory responses. Mitochondrion 2024; 79:101947. [PMID: 39151817 DOI: 10.1016/j.mito.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder associated with the amyloid beta (Aβ) and tau hallmarks. The molecular insights into how neuroinflammation is initially triggered and how it affects neuronal cells are yet at the age of infancy. In this study, SH-SY5Y cells were used as a model for neurons by differentiating and were co-cultured with differentiated THP1 cells (microglia model) as well as treated with Aβ(25-35) and with antioxidant FA to study inflammatory, oxidative stress responses and their effects on co-cultured neurons. Neurons co-cultured with microglial cells showed pronounced increase in ROS levels, NOS expression, truncated N-terminal form (34 kDa) of APE1 expression and AIF's translocation in the nucleus. The pre-treatment of FA, on the other hand reversed these effects. It was further evaluated how FA/Aβ treatment altered microglial phenotype that in turn affected the neurons. Microglial cells showed M1 phenotype upon Aβ(25-35) stress, while FA induced M2 phenotype against Aβ stress, suggesting that FA alleviated Aβ induced phenotype and its associated effects in the co-cultured neurons by altering the phenotype of microglial cells and induced expression of full length (37 kDa) APE1 enzyme and inhibiting AIF's nuclear translocation, thus inhibiting apoptosis. This is the first study that revealed Aβ induced cleavage of APE1 enzyme in differentiated neurons, suggesting that APE1 may be the potential early target of Aβ that loses its function and exacerbates AD pathology. FA activated a fully functional form of APE1 against Aβ stress. The impaired function of APE1 could be the initial mechanism by which Aβ induces oxidative and inflammatory responses and dietary phytochemical FA can be a potential therapeutic strategy in managing the disease by activating APE1 that not only repairs oxidative DNA base damage but also maintains mitochondrial function and alleviates neuroinflammatory responses.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India.
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India.
| |
Collapse
|
5
|
Sanabria-Castro A, Alape-Girón A, Flores-Díaz M, Echeverri-McCandless A, Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev Neurosci 2024; 35:355-371. [PMID: 38163257 DOI: 10.1515/revneuro-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune debilitating disease of the central nervous system caused by a mosaic of interactions between genetic predisposition and environmental factors. The pathological hallmarks of MS are chronic inflammation, demyelination, and neurodegeneration. Oxidative stress, a state of imbalance between the production of reactive species and antioxidant defense mechanisms, is considered one of the key contributors in the pathophysiology of MS. This review is a comprehensive overview of the cellular and molecular mechanisms by which oxidant species contribute to the initiation and progression of MS including mitochondrial dysfunction, disruption of various signaling pathways, and autoimmune response activation. The detrimental effects of oxidative stress on neurons, oligodendrocytes, and astrocytes, as well as the role of oxidants in promoting and perpetuating inflammation, demyelination, and axonal damage, are discussed. Finally, this review also points out the therapeutic potential of various synthetic antioxidants that must be evaluated in clinical trials in patients with MS.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Departamento de Farmacología, Toxicología y Farmacodependencia, Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Ann Echeverri-McCandless
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
| | - Alexander Parajeles-Vindas
- Servicio de Neurología, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Servicio de Neurología, Hospital Clínica Bíblica, San José, 10104, Costa Rica
| |
Collapse
|
6
|
Pfeifer GP. DNA Damage and Parkinson's Disease. Int J Mol Sci 2024; 25:4187. [PMID: 38673772 PMCID: PMC11050701 DOI: 10.3390/ijms25084187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology underlying most sporadic Parkinson's' disease (PD) cases is unknown. Environmental exposures have been suggested as putative causes of the disease. In cell models and in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms of how these chemicals cause the death of neurons is not understood. Several of these agents are mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction of the respiratory chain, in combination with the presence of redox active dopamine molecules in these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons. Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to well over a megabase. It is predictable that such long genes will contain large numbers of damaged DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II, which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually leading to the death of these cells during a human lifetime.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
7
|
Zhang JF, Fang ZT, Zhao JN, Liu GP, Shen X, Jiang GF, Liu Q. Acetylated tau exacerbates apoptosis by disturbing mitochondrial dynamics in HEK293 cells. J Neurochem 2024; 168:288-302. [PMID: 38275215 DOI: 10.1111/jnc.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
An increase in tau acetylation at K274 and K281 and abnormal mitochondrial dynamics have been observed in the brains of Alzheimer's disease (AD) patients. Here, we constructed three types of tau plasmids, TauKQ (acetylated tau mutant, by mutating its K274/K281 into glutamine to mimic disease-associated lysine acetylation), TauKR (non-acetylated tau mutant, by mutating its K274/K281 into arginine), and TauWT (wild-type human full-length tau). By transfecting these tau plasmids in HEK293 cells, we found that TauWT and TauKR induced mitochondrial fusion by increasing the level of mitochondrial fusion proteins. Conversely, TauKQ induced mitochondrial fission by reducing mitochondrial fusion proteins, exacerbating mitochondrial dysfunction and apoptosis. BGP-15 ameliorated TauKQ-induced mitochondrial dysfunction and apoptosis by improving mitochondrial dynamics. Our findings suggest that acetylation of K274/281 represents an important post-translational modification site regulating mitochondrial dynamics, and that BGP-15 holds potential as a therapeutic agent for mitochondria-associated diseases such as AD.
Collapse
Affiliation(s)
- Jun-Fei Zhang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Ting Fang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Shen
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Gao-Feng Jiang
- Center for Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Baumanns S, Schmitt F, Spahn C, Ringelmann AE, Beis DM, Eckert GP, Wenzel U. Caprylic acid attenuates amyloid-β proteotoxicity by supplying energy via β-oxidation in an Alzheimer's disease model of the nematode Caenorhabditis elegans. Nutr Neurosci 2024; 27:252-261. [PMID: 36800228 DOI: 10.1080/1028415x.2023.2180870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Computer-based analysis of motility was used as a measure of amyloid-β (Aβ) proteotoxicity in the transgenic strain GMC101, expressing human Aβ1-42 in body wall muscle cells. Aβ-aggregation was quantified to relate the effects of caprylic acid (CA) to the amount of the proteotoxic protein. Gene knockdowns were induced through RNA-interference (RNAi). Moreover, the estimation of adenosine triphosphate (ATP) levels, the mitochondrial membrane potential (MMP) and oxygen consumption served the evaluation of mitochondrial function. CA improved the motility of GMC101 nematodes and reduced Aβ aggregation. Whereas RNAi for orthologues encoding key enzymes for α-lipoic acid and ketone bodies synthesis did not affect motility stimulation by CA, knockdown of orthologues involved in β-oxidation of fatty acids diminished its effects. The efficient energy gain by application of CA was finally proven by the increase of ATP levels in association with increased oxygen consumption and MMP. In conclusion, CA attenuates Aβ proteotoxicity by supplying energy via FAO. Since especially glucose oxidation is disturbed in Alzheimer´s disease, CA could potentially serve as an alternative energy fuel.
Collapse
Affiliation(s)
- Stefan Baumanns
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Fabian Schmitt
- Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Christopher Spahn
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Anne E Ringelmann
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Daniel M Beis
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Gunter P Eckert
- Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
9
|
Reichert F, Zohar K, Lezmi E, Eliyahu T, Rotshenker S, Linial M, Weinstock M. Ladostigil Reduces the Adenoside Triphosphate/Lipopolysaccharide-Induced Secretion of Pro-Inflammatory Cytokines from Microglia and Modulate-Immune Regulators, TNFAIP3, and EGR1. Biomolecules 2024; 14:112. [PMID: 38254713 PMCID: PMC10813603 DOI: 10.3390/biom14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a decline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-inflammatory cytokines, TNFα, IL1β, and IL6 in the brain and microglial cultures. Primary cultures of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP) were used to determine the concentration of ladostigil that reduces the secretion of these cytokine proteins. Ladostigil (1 × 10-11 M), a concentration compatible with the blood of aging rats in, prevented memory decline and reduced secretion of IL1β and IL6 by ≈50%. RNA sequencing analysis showed that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.
Collapse
Affiliation(s)
- Fanny Reichert
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (F.R.); (S.R.)
| | - Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.); (M.L.)
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.); (M.L.)
| | - Shlomo Rotshenker
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (F.R.); (S.R.)
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.); (M.L.)
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
10
|
Zhou W, Tong D, Tian D, Yu Y, Huang L, Zhang W, Yu Y, Lu L, Zhang X, Pan W, Shen J, Shi W, Liu G. Exposure to Polystyrene Nanoplastics Led to Learning and Memory Deficits in Zebrafish by Inducing Oxidative Damage and Aggravating Brain Aging. Adv Healthc Mater 2023; 12:e2301799. [PMID: 37611966 DOI: 10.1002/adhm.202301799] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Nanoplastics (NPs) may pass through the blood-brain barrier, giving rise to serious concerns about their potential toxicity to the brain. In this study, the effects of NPs exposure on learning and memory, the primary cognitive functions of the brain, are assessed in zebrafish with classic T-maze exploration tasks. Additionally, to reveal potential affecting mechanisms, the impacts of NPs exposure on brain aging, oxidative damage, energy provision, and the cell cycle are evaluated. The results demonstrate that NP-exposed zebrafish takes significantly longer for their first entry and spends markedly less time in the reward zone in the T-maze task, indicating the occurrence of learning and memory deficits. Moreover, higher levels of aging markers (β-galactosidase and lipofuscin) are detected in the brains of NP-exposed fish. Along with the accumulation of reactive free radicals, NP-exposed zebrafish suffer significant levels of brain oxidative damage. Furthermore, lower levels of Adenosine triphosphate (ATP) and cyclin-dependent kinase 2 and higher levels of p53 are observed in the brains of NP-exposed zebrafish, suggesting that NPs exposure also results in a shortage of energy supply and an arrestment of the cell cycle. These findings suggest that NPs exposure may pose a severe threat to brain health, which deserves closer attention.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wangqi Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiawei Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
11
|
Mishra E, Thakur MK. Mdivi-1 Rescues Memory Decline in Scopolamine-Induced Amnesic Male Mice by Ameliorating Mitochondrial Dynamics and Hippocampal Plasticity. Mol Neurobiol 2023; 60:5426-5449. [PMID: 37314656 DOI: 10.1007/s12035-023-03397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Memory loss, often known as amnesia, is common in the elderly population and refers to forgetting facts and experiences. It is associated with increased mitochondrial fragmentation, though the contribution of mitochondrial dynamics in amnesia is poorly understood. Therefore, the present study is aimed at elucidating the role of Mdivi-1 in mitochondrial dynamics, hippocampal plasticity, and memory during scopolamine (SC)-induced amnesia. The findings imply that Mdivi-1 significantly increased the expression of Arc and BDNF proteins in the hippocampus of SC-induced amnesic mice, validating improved recognition and spatial memory. Moreover, an improved mitochondrial ultrastructure was attributed to a decline in the percentage of fragmented and spherical-shaped mitochondria after Mdivi-1 treatment in SC-induced mice. The significant downregulation of p-Drp1 (S616) protein and upregulation of Mfn2, LC3BI, and LC3BII proteins in Mdivi-1-treated SC-induced mice indicated a decline in fragmented mitochondrial number and healthy mitochondrial dynamics. Mdivi-1 treatment alleviated ROS production and Caspase-3 activity and elevated mitochondrial membrane potential, Vdac1 expression, ATP production, and myelination, resulting in reduced neurodegeneration in SC mice. Furthermore, the decline of pro-apoptotic protein cytochrome-c and increase of anti-apoptotic proteins Procaspase-9 and Bcl-2 in Mdivi-1-treated SC-induced mice suggested improved neuronal health. Mdivi-1 also increased the dendritic arborization and spine density, which was further corroborated by increased expression of synaptophysin and PSD95. In conclusion, the current study suggests that Mdivi-1 treatment improves mitochondrial ultrastructure and function through the regulation of mitochondrial dynamics. These changes further improve neuronal cell density, myelination, dendritic arborization, and spine density, decrease neurodegeneration, and improve recognition and spatial memory. Schematic presentation depicts that Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
12
|
Babylon L, Meißner J, Eckert GP. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease. Int J Mol Sci 2023; 24:10029. [PMID: 37373177 PMCID: PMC10297858 DOI: 10.3390/ijms241210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by excessive formation of beta-amyloid peptides (Aβ), mitochondrial dysfunction, enhanced production of reactive oxygen species (ROS), and altered glycolysis. Since the disease is currently not curable, preventive and supportive approaches are in the focus of science. Based on studies of promising single substances, the present study used a mixture (cocktail, SC) of compounds consisting of hesperetin (HstP), magnesium-orotate (MgOr), and folic acid (Fol), as well as the combination (KCC) of caffeine (Cof), kahweol (KW) and cafestol (CF). For all compounds, we showed positive results in SH-SY5Y-APP695 cells-a model of early AD. Thus, SH-SY5Y-APP695 cells were incubated with SC and the activity of the mitochondrial respiration chain complexes were measured, as well as levels of ATP, Aβ, ROS, lactate and pyruvate. Incubation of SH-SY5Y-APP695 cells with SC significantly increased the endogenous respiration of mitochondria and ATP levels, while Aβ1-40 levels were significantly decreased. Incubation with SC showed no significant effects on oxidative stress and glycolysis. In summary, this combination of compounds with proven effects on mitochondrial parameters has the potential to improve mitochondrial dysfunction in a cellular model of AD.
Collapse
Affiliation(s)
| | | | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University, Schubertstr. 81, 35392 Giessen, Germany; (L.B.); (J.M.)
| |
Collapse
|
13
|
Torres AK, Jara C, Llanquinao J, Lira M, Cortés-Díaz D, Tapia-Rojas C. Mitochondrial Bioenergetics, Redox Balance, and Calcium Homeostasis Dysfunction with Defective Ultrastructure and Quality Control in the Hippocampus of Aged Female C57BL/6J Mice. Int J Mol Sci 2023; 24:ijms24065476. [PMID: 36982549 PMCID: PMC10056753 DOI: 10.3390/ijms24065476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Aging is a physiological process that generates progressive decline in many cellular functions. There are many theories of aging, and one of great importance in recent years is the mitochondrial theory of aging, in which mitochondrial dysfunction that occurs at advanced age could be responsible for the aged phenotype. In this context, there is diverse information about mitochondrial dysfunction in aging, in different models and different organs. Specifically, in the brain, different studies have shown mitochondrial dysfunction mainly in the cortex; however, until now, no study has shown all the defects in hippocampal mitochondria in aged female C57BL/6J mice. We performed a complete analysis of mitochondrial function in 3-month-old and 20-month-old (mo) female C57BL/6J mice, specifically in the hippocampus of these animals. We observed an impairment in bioenergetic function, indicated by a decrease in mitochondrial membrane potential, O2 consumption, and mitochondrial ATP production. Additionally, there was an increase in ROS production in the aged hippocampus, leading to the activation of antioxidant signaling, specifically the Nrf2 pathway. It was also observed that aged animals had deregulation of calcium homeostasis, with more sensitive mitochondria to calcium overload and deregulation of proteins related to mitochondrial dynamics and quality control processes. Finally, we observed a decrease in mitochondrial biogenesis with a decrease in mitochondrial mass and deregulation of mitophagy. These results show that during the aging process, damaged mitochondria accumulate, which could contribute to or be responsible for the aging phenotype and age-related disabilities.
Collapse
Affiliation(s)
- Angie K. Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
- Correspondence:
| |
Collapse
|
14
|
Terracina S, Petrella C, Francati S, Lucarelli M, Barbato C, Minni A, Ralli M, Greco A, Tarani L, Fiore M, Ferraguti G. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int J Mol Sci 2022; 23:15674. [PMID: 36555317 PMCID: PMC9778814 DOI: 10.3390/ijms232415674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Huang Y, Driedonks TAP, Cheng L, Rajapaksha H, Turchinovich A, Routenberg DA, Nagaraj R, Redding-Ochoa J, Arab T, Powell BH, Pletnikova O, Troncoso JC, Zheng L, Hill AF, Mahairaki V, Witwer KW. Relationships of APOE Genotypes With Small RNA and Protein Cargo of Brain Tissue Extracellular Vesicles From Patients With Late-Stage AD. Neurol Genet 2022; 8:e200026. [PMID: 36405397 PMCID: PMC9667865 DOI: 10.1212/nxg.0000000000200026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives Variants of the apolipoprotein E (APOE) gene are the greatest known risk factors for sporadic Alzheimer disease (AD). Three major APOE isoform alleles, ε2, ε3, and ε4, encode and produce proteins that differ by only 1-2 amino acids but have different binding partner interactions. Whereas APOE ε2 is protective against AD relative to ε3, ε4 is associated with an increased risk for AD development. However, the role of APOE in gene regulation in AD pathogenesis has remained largely undetermined. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells to dispose of unwanted materials and mediate intercellular communication, and they are implicated in AD pathophysiology. Brain-derived EVs (bdEVs) could act locally in the tissue and reflect cellular changes. To reveal whether APOE genotype affects EV components in AD brains, bdEVs were separated from patients with AD with different APOE genotypes for parallel small RNA and protein profile. Methods bdEVs from late-stage AD brains (BRAAK stages 5-6) from patients with APOE genotypes ε2/3 (n = 5), ε3/3 (n = 5), ε3/4 (n = 6), and ε4/4 (n = 6) were separated using our published protocol into a 10,000g pelleted extracellular fraction (10K) and a further purified EV fraction. Counting, sizing, and multiomic characterization by small RNA sequencing and proteomic analysis were performed for 10K, EVs, and source tissue. Results Comparing APOE genotypes, no significant differences in bdEV total particle concentration or morphology were observed. Overall small RNA and protein profiles of 10K, EVs, and source tissue also did not differ substantially between different APOE genotypes. However, several differences in individual RNAs (including miRNAs and tRNAs) and proteins in 10K and EVs were observed when comparing the highest and lowest risk groups (ε4/4 and ε2/3). Bioinformatic analysis and previous publications indicate a potential regulatory role of these molecules in AD. Discussion For patients with late-stage AD in this study, only a few moderate differences were observed for small RNA and protein profiles between APOE genotypes. Among these, several newly identified 10K and EV-associated molecules may play roles in AD progression. Possibly, larger genotype-related differences exist and are more apparent in or before earlier disease stages.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tom A P Driedonks
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lesley Cheng
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Harinda Rajapaksha
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrey Turchinovich
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - David A Routenberg
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajini Nagaraj
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Javier Redding-Ochoa
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bonita H Powell
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Olga Pletnikova
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Juan C Troncoso
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew F Hill
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vasiliki Mahairaki
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology (Y.H., T.A.P.D., T.A., B.H.P., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biochemistry and Chemistry (L.C., H.R., A.F.H.), La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; Molecular Epidemiology (A.T.), German Cancer Research Center DKFZ, Heidelberg, Germany; SciBerg e.Kfm (A.T.), Mannheim, Germany; Meso Scale Diagnostics (D.A.R., R.N.), LLC, Rockville, MD; Department of Pathology (J.R.-O., O.P., J.C.T.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Anatomical Sciences (O.P.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Neurology (J.C.T., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Laboratory Medicine (L.Z.), Institute of Health and Sport (A.F.H.), Victoria University, Melbourne, Australia; Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Genetic Medicine (V.M.); and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease (V.M., K.W.W.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Secondary Mitochondrial Dysfunction as a Cause of Neurodegenerative Dysfunction in Lysosomal Storage Diseases and an Overview of Potential Therapies. Int J Mol Sci 2022; 23:ijms231810573. [PMID: 36142486 PMCID: PMC9503973 DOI: 10.3390/ijms231810573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher’s disease, Niemann–Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients’ needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.
Collapse
|
17
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
18
|
Effects of Combining Biofactors on Bioenergetic Parameters, Aβ Levels and Survival in Alzheimer Model Organisms. Int J Mol Sci 2022; 23:ijms23158670. [PMID: 35955803 PMCID: PMC9368976 DOI: 10.3390/ijms23158670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Increased amyloid beta (Aβ) levels and mitochondrial dysfunction (MD) in the human brain characterize Alzheimer disease (AD). Folic acid, magnesium and vitamin B6 are essential micro-nutrients that may provide neuroprotection. Bioenergetic parameters and amyloid precursor protein (APP) processing products were investigated in vitro in human neuroblastoma SH-SY5Y-APP695 cells, expressing neuronal APP, and in vivo, in the invertebrate Caenorhabditis elegans (CL2006 & GMC101) expressing muscular APP. Model organisms were incubated with either folic acid and magnesium-orotate (ID63) or folic acid, magnesium-orotate and vitamin B6 (ID64) in different concentrations. ID63 and ID64 reduced Aβ, soluble alpha APP (sAPPα), and lactate levels in SH-SY5Y-APP695 cells. The latter might be explained by enhanced expression of lactate dehydrogenase (LDHA). Micronutrient combinations had no effects on mitochondrial parameters in SH-SY5Y-APP695 cells. ID64 showed a significant life-prolonging effect in C. elegans CL2006. Incubation of GMC101 with ID63 significantly lowered Aβ aggregation. Both combinations significantly reduced paralysis and thus improved the phenotype in GMC101. Thus, the combinations of the tested biofactors are effective in pre-clinical models of AD by interfering with Aβ related pathways and glycolysis.
Collapse
|
19
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
20
|
Stepanov YV, Golovynska I, Zhang R, Golovynskyi S, Stepanova LI, Gorbach O, Dovbynchuk T, Garmanchuk LV, Ohulchanskyy TY, Qu J. Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer's disease. Alzheimers Res Ther 2022; 14:84. [PMID: 35717405 PMCID: PMC9206341 DOI: 10.1186/s13195-022-01022-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/11/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Low-intensity light can decelerate neurodegenerative disease progression and reduce amyloid β (Aβ) levels in the cortex, though the cellular and molecular mechanisms by which photobiomodulation (PBM) protects against neurodegeneration are still in the early stages. Microglia cells play a key role in the pathology of Alzheimer's disease by causing chronic inflammation. We present new results concerning the PBM of both oxidative stress and microglia metabolism associated with the activation of metabolic processes by 808 nm near-infrared light. METHODS The studies were carried out using healthy male mice to obtain the microglial cell suspension from the hippocampus. Oligomeric β-amyloid (1-42) was prepared and used to treat microglia cells. Light irradiation of cells was performed using diode lasers emitting at 808 nm (30 mW/cm2 for 5 min, resulting in a dose of 10 J/cm2). Mitochondrial membrane potential, ROS level studies, cell viability, apoptosis, and necrosis assays were performed using epifluorescence microscopy. Phagocytosis, nitric oxide and H2O2 production, arginase, and glucose 6-phosphate dehydrogenase activities were measured using standard assays. Cytokines, glucose, lactate, and ATP were measurements with ELISA. As our data were normally distributed, two-way ANOVA test was used. RESULTS The light induces a metabolic shift from glycolysis to mitochondrial activity in pro-inflammatory microglia affected by oligomeric Aβ. Thereby, the level of anti-inflammatory microglia increases. This process is accompanied by a decrease in pro-inflammatory cytokines and an activation of phagocytosis. Light exposure decreases the Aβ-induced activity of glucose-6-phosphate dehydrogenase, an enzyme that regulates the rate of the pentose phosphate pathway, which activates nicotinamide adenine dinucleotide phosphate oxidases to further produce ROS. During co-cultivation of neurons with microglia, light prevents the death of neurons, which is caused by ROS produced by Aβ-altered microglia. CONCLUSIONS These original data clarify reasons for how PBM protects against neurodegeneration and support the use of light for therapeutic research in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yurii V Stepanov
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Renlong Zhang
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Oleksandr Gorbach
- Laboratory of Experimental Oncology, National Cancer Institute of Ukraine, Kyiv, 03022, Ukraine
| | - Taisa Dovbynchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Liudmyla V Garmanchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
21
|
Kalia V, Niedzwiecki MM, Bradner JM, Lau FK, Anderson FL, Bucher ML, Manz KE, Schlotter AP, Fuentes ZC, Pennell KD, Picard M, Walker DI, Hu WT, Jones DP, Miller GW. Cross-species metabolomic analysis of tau- and DDT-related toxicity. PNAS NEXUS 2022; 1:pgac050. [PMID: 35707205 PMCID: PMC9186048 DOI: 10.1093/pnasnexus/pgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
Exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of Alzheimer's disease (AD), a disease also associated with hyperphosphorylated tau (p-tau) protein aggregation. We investigated whether exposure to DDT can exacerbate tau protein toxicity in Caenorhabditiselegans using a transgenic strain that expresses human tau protein prone to aggregation by measuring changes in size, swim behavior, respiration, lifespan, learning, and metabolism. In addition, we examined the association between cerebrospinal fluid (CSF) p-tau protein-as a marker of postmortem tau burden-and global metabolism in both a human population study and in C. elegans, using the same p-tau transgenic strain. From the human population study, plasma and CSF-derived metabolic features associated with p-tau levels were related to drug, amino acid, fatty acid, and mitochondrial metabolism pathways. A total of five metabolites overlapped between plasma and C. elegans, and four between CSF and C. elegans. DDT exacerbated the inhibitory effect of p-tau protein on growth and basal respiration. In the presence of p-tau protein, DDT induced more curling and was associated with reduced levels of amino acids but increased levels of uric acid and adenosylselenohomocysteine. Our findings in C. elegans indicate that DDT exposure and p-tau aggregation both inhibit mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory effects of p-tau aggregation. Further, biological pathways associated with exposure to DDT and p-tau protein appear to be conserved between species.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Faith L Anderson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Alexa Puri Schlotter
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, 02912 USA
| | - Martin Picard
- Department of Neurology, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032 USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, 08901 USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30322 USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
22
|
Walnut Oil Reduces Aβ Levels and Increases Neurite Length in a Cellular Model of Early Alzheimer Disease. Nutrients 2022; 14:nu14091694. [PMID: 35565661 PMCID: PMC9099939 DOI: 10.3390/nu14091694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Mitochondria are the cells' main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer's disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean diet, including walnuts, seems to prevent age-related neurodegeneration. Walnuts are a rich source of α-linolenic acid (ALA), an essential n3-fatty acid and the precursor for n3-long-chain polyunsaturated fatty acids (n3-PUFA), which might potentially improve mitochondrial function. (2) Methods: We tested whether a lipophilic walnut extract (WE) affects mitochondrial function and other parameters in human SH-SY5Y cells transfected with the neuronal amyloid precursor protein (APP695). Walnut lipids were extracted using a Soxhlet Extraction System and analyzed using GC/MS and HPLC/FD. Adenosine triphosphate (ATP) concentrations were quantified under basal conditions in cell culture, as well as after rotenone-induced stress. Neurite outgrowth was investigated, as well as membrane integrity, cellular reactive oxygen species, cellular peroxidase activity, and citrate synthase activity. Beta-amyloid (Aβ) was quantified using homogenous time-resolved fluorescence. (3) Results: The main constituents of WE are linoleic acid, oleic acid, α-linolenic acid, and γ- and δ-tocopherol. Basal ATP levels following rotenone treatment, as well as citrate synthase activity, were increased after WE treatment. WE significantly increased cellular reactive oxygen species but lowered peroxidase activity. Membrane integrity was not affected. Furthermore, WE treatment reduced Aβ1-40 and stimulated neurite growth. (4) Conclusions: WE might increase ATP production after induction of mitochondrial biogenesis. Decreased Aβ1-40 formation and enhanced ATP levels might enhance neurite growth, making WE a potential agent to enhance neuronal function and to prevent the development of AD. In this sense, WE could be a promising agent for the prevention of AD.
Collapse
|
23
|
Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022; 14:nu14030529. [PMID: 35276888 PMCID: PMC8838971 DOI: 10.3390/nu14030529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Collapse
|
24
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
25
|
Hundal S, Green J. Experience of Western Herbal Medicine practitioners in supporting brain health in mid-life and older patients: a qualitative research study. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Rajha HN, Paule A, Aragonès G, Barbosa M, Caddeo C, Debs E, Dinkova R, Eckert GP, Fontana A, Gebrayel P, Maroun RG, Napolitano A, Panzella L, Pasinetti GM, Stevens JF, Schieber A, Edeas M. Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Mol Nutr Food Res 2021; 66:e2100670. [PMID: 34806294 DOI: 10.1002/mnfr.202100670] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Indexed: 01/02/2023]
Abstract
Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.
Collapse
Affiliation(s)
| | - Armelle Paule
- International Society of Antioxidants in Nutrition and Health, Paris, France
| | | | | | | | | | - Rada Dinkova
- University of Food Technologies, Plovdiv, Bulgaria
| | | | | | - Prisca Gebrayel
- International Society of Antioxidants in Nutrition and Health, Paris, France
| | | | | | | | | | | | | | - Marvin Edeas
- University de Paris, Institut Cochin, Inserm, Paris, 1016, France
| |
Collapse
|
27
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
28
|
Ghosh A, Singh S. Regulation Of Microtubule: Current Concepts And Relevance To Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:656-679. [PMID: 34323203 DOI: 10.2174/1871527320666210728144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are abnormalities linked to neuronal structure and irregularities associated with the proliferation of cells, transportation, and differentiation. NDD also involves synaptic circuitry and neural network alterations known as synaptopathies. Microtubules (MTs) and MTs-associated proteins help to maintain neuronal health as well as their development. The microtubular dynamic structure plays a crucial role in the division of cells and forms mitotic spindles, thus take part in initiating stages of differentiation and polarization for various types of cells. The MTs also take part in the cellular death but MT-based cellular degenerations are not yet well excavated. In the last few years, studies have provided the protagonist activity of MTs in neuronal degeneration. In this review, we largely engrossed our discussion on the change of MT cytoskeleton structure, describing their organization, dynamics, transportation, and their failure causing NDDs. At end of this review, we are targeting the therapeutic neuroprotective strategies on clinical priority and also try to discuss the clues for the development of new MT-based therapy as a new pharmacological intervention. This will be a new potential site to block not only neurodegeneration but also promotes the regeneration of neurons.
Collapse
Affiliation(s)
- Anirban Ghosh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
29
|
Hesperetin Nanocrystals Improve Mitochondrial Function in a Cell Model of Early Alzheimer Disease. Antioxidants (Basel) 2021; 10:antiox10071003. [PMID: 34201544 PMCID: PMC8300699 DOI: 10.3390/antiox10071003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction represents a hallmark of both brain aging and age-related neurodegenerative disorders including Alzheimer disease (AD). AD-related mitochondrial dysfunction is characterized by an impaired electron transport chain (ETC), subsequent decreased adenosine triphoshpate (ATP) levels, and elevated generation of reactive oxygen species (ROS). The bioactive citrus flavanone hesperetin (Hst) is known to modulate inflammatory response, to function as an antioxidant, and to provide neuroprotective properties. The efficacy in improving mitochondrial dysfunction of Hst nanocrystals (HstN) with increased bioavailability has not yet been investigated. Human SH-SY5Y cells harboring neuronal amyloid precursor protein (APP695) acted as a model for the initial phase of AD. MOCK-transfected cells served as controls. The energetic metabolite ATP was determined using a luciferase-catalyzed bioluminescence assay. The activity of mitochondrial respiration chain complexes was assessed by high-resolution respirometry using a Clarke electrode. Expression levels of mitochondrial respiratory chain complex genes were determined using quantitative real-time polymerase chain reaction (qRT-PCR). The levels of amyloid β-protein (Aβ1-40) were measured using homogeneous time-resolved fluorescence (HTRF). ROS levels, peroxidase activity, and cytochrome c activity were determined using a fluorescence assay. Compared to pure Hst dissolved in ethanol (HstP), SH-SY5Y-APP695 cells incubated with HstN resulted in significantly reduced mitochondrial dysfunction: ATP levels and respiratory chain complex activity significantly increased. Gene expression levels of RCC I, IV, and V were significantly upregulated. In comparison, the effects of HstN on SY5Y-MOCK control cells were relatively small. Pure Hst dissolved in ethanol (HstP) had almost no effect on both cell lines. Neither HstN nor HstP led to significant changes in Aβ1-40 levels. HstN and HstP were both shown to lower peroxidase activity significantly. Furthermore, HstN significantly reduced cytochrome c activity, whereas HstP had a significant effect on reducing ROS in SH-SY5Y-APP695 cells. Thus, it seems that the mechanisms involved may not be linked to altered Aβ production. Nanoflavonoids such as HstN have the potential to prevent mitochondria against dysfunction. Compared to its pure form, HstN showed a greater effect in combatting mitochondrial dysfunction. Further studies should evaluate whether HstN protects against age-related mitochondrial dysfunction and thus may contribute to late-onset AD.
Collapse
|
30
|
Saleem U, Akhtar R, Anwar F, Shah MA, Chaudary Z, Ayaz M, Ahmad B. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab Brain Dis 2021; 36:889-900. [PMID: 33570733 DOI: 10.1007/s11011-021-00683-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease affects daily routine due to loss of memory and decline in cognition. In vitro data showed acetylcholine esterase inhibition activity of Malva neglecta but no in vivo evidence is available. The current study aims to investigate the anti-Alzheimer's activity of Malva neglecta methanolic extract in the AlCl3-induced Alzheimer disease rats' model. Thirty Wistar rats were divided into six groups and respective doses were given orally for 21 days. Behavioural observations were recorded and biochemical analysis was performed on brain homogenate. Improvement in memory and cognition was noted in treated rats as compared to disease control. A dose-dependent decrease (0.530 ± 0.009 at 200 mg/kg, 0.212 ± 0.007 at 400 mg/kg, 0.173 ± 0.005 at 600 mg/kg) in AChE activity was noted in the treatment groups with reference to disease control value (1.572 ± 0.013). This decrease in AChE activity is linked with an increase in acetylcholine in the brain which plays a key role in retaining memory. Oxidative stress biomarkers; GSH (66.77 ± 0.01 at 600 mg/kg), SOD (26.60 ± 0.10 at 600 mg/kg), CAT (21.46 ± 0.01 at 600 mg/kg) levels were increased with a decrease in MDA (103.33 ±0.49 at 600 mg/kg) level in a dose-dependently manner in the treatment groups as compared to disease control respective values. It is concluded that Malva neglecta could ameliorate Alzheimer's symptoms possibly by decreasing AChE activity and oxidative stress.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rubina Akhtar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Zunera Chaudary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, 54000, Pakistan
| |
Collapse
|
31
|
Mukherjee T, Soppina V, Ludovic R, Mély Y, Klymchenko AS, Collot M, Kanvah S. Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe. Org Biomol Chem 2021; 19:3389-3395. [PMID: 33555275 DOI: 10.1039/d0ob02378g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Visualization of sub-cellular organelles allows the determination of various cellular processes and the underlying mechanisms. Herein, we report a fluorescent probe, bearing push-pull substituents emitting at 600 nm and its application in cellular imaging. The probe shows dual imaging of mitochondria and nucleoli and maps mitochondrial viscosity in live cells under various physiological variations and show minimum cytotoxicity. Nucleolar staining is confirmed by RNAase digestion.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Richert Ludovic
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| |
Collapse
|
32
|
Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, von Haehling S, Jamialahmadi T, Sahebkar A. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle 2021; 12:237-251. [PMID: 33511728 PMCID: PMC8061391 DOI: 10.1002/jcsm.12654] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Statins are a family of drugs that are used for treating hyperlipidaemia with a recognized capacity to prevent cardiovascular disease events. They inhibit β-hydroxy β-methylglutaryl-coenzyme A reductase, i.e. the rate-limiting enzyme in mevalonate pathway, reduce endogenous cholesterol synthesis, and increase low-density lipoprotein clearance by promoting low-density lipoprotein receptor expression mainly in the hepatocytes. Statins have pleiotropic effects including stabilization of atherosclerotic plaques, immunomodulation, anti-inflammatory properties, improvement of endothelial function, antioxidant, and anti-thrombotic action. Despite all beneficial effects, statins may elicit adverse reactions such as myopathy. Studies have shown that mitochondria play an important role in statin-induced myopathies. In this review, we aim to report the mechanisms of action of statins on mitochondrial function. Results have shown that statins have several effects on mitochondria including reduction of coenzyme Q10 level, inhibition of respiratory chain complexes, induction of mitochondrial apoptosis, dysregulation of Ca2+ metabolism, and carnitine palmitoyltransferase-2 expression. The use of statins has been associated with the onset of additional pathological conditions like diabetes and dementia as a result of interference with mitochondrial pathways by various mechanisms, such as reduction in mitochondrial oxidative phosphorylation, increase in oxidative stress, decrease in uncoupling protein 3 concentration, and interference in amyloid-β metabolism. Overall, data reported in this review suggest that statins may have major effects on mitochondrial function, and some of their adverse effects might be mediated through mitochondrial pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
- Natural Products and Medicinal Plants Research CenterNorth Khorasan University of Medical SciencesBojnurdIran
| | - Erfan Tavana
- Student Research Committee, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Giovanni Fanni
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Simona Bo
- Department of Medical Sciences, AOU Città della Salute e della Scienza di TorinoUniversity of TurinTurinItaly
| | - Maciej Banach
- Department of HypertensionWAM University Hospital in LodzMedical University of Lodz, LodzPoland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), LodzPoland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Tannaz Jamialahmadi
- Department of Food Science and TechnologyIslamic Azad UniversityQuchanQuchanIran
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
- Halal Research Center of IRIFDATehranIran
| |
Collapse
|
33
|
Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020; 50:801-814. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aging process is accompanied by critical changes in cellular and molecular functions, which upset the homeostatic balance in the central nervous system. Accumulation of metals renders the brain susceptible to neurotoxic insults by mechanisms such as mitochondrial dysfunction, neuronal calcium-ion dyshomeostasis, buildup of damaged molecules, compromised DNA repair, reduction in neurogenesis, and impaired energy metabolism. These hallmarks have been identified to be responsible for neuronal injuries, resulting in several neurological disorders. Various studies have shown solid associations between metal accumulation, abnormal protein expressions, and pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. This review highlights metals (such as manganese, zinc, iron, copper, and nickel) for their accumulation, and consequences in the development of neurological disorders, in relation to the aging brain.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology, Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
34
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
35
|
Gauba E, Sui S, Tian J, Driskill C, Jia K, Yu C, Rughwani T, Wang Q, Kroener S, Guo L, Du H. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse model of Alzheimer's pathology. Neurobiol Aging 2020; 98:63-77. [PMID: 33254080 DOI: 10.1016/j.neurobiolaging.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
Abstract
Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aβ) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aβ-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Shaomei Sui
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kun Jia
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Chunxiao Yu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Tripta Rughwani
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Qi Wang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lan Guo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
36
|
Dong Y, Brewer GJ. Global Metabolic Shifts in Age and Alzheimer's Disease Mouse Brains Pivot at NAD+/NADH Redox Sites. J Alzheimers Dis 2020; 71:119-140. [PMID: 31356210 PMCID: PMC6839468 DOI: 10.3233/jad-190408] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Age and Alzheimer’s disease (AD) share some common features such as cognitive impairments, memory loss, metabolic disturbances, bioenergetic deficits, and inflammation. Yet little is known on how systematic shifts in metabolic networks depend on age and AD. In this work, we investigated the global metabolomic alterations in non-transgenic (NTg) and triple-transgenic (3xTg-AD) mouse brain hippocampus as a function of age by using untargeted Ultrahigh Performance Liquid Chromatography-tandem Mass Spectroscopy (UPLC-MS/MS). We observed common metabolic patterns with aging in both NTg and 3xTg-AD brains involved in energy-generating pathways, fatty acids oxidation, glutamate, and sphingolipid metabolism. We found age-related downregulation of metabolites from reactions in glycolysis that consumed ATP and in the TCA cycle, especially at NAD+/NADH-dependent redox sites, where age- and AD-associated limitations in the free NADH may alter reactions. Conversely, metabolites increased in glycolytic reactions in which ATP is produced. With age, inputs to the TCA cycle were increased including fatty acid β-oxidation and glutamine. Overall age- and AD-related changes were > 2-fold when comparing the declines of upstream metabolites of NAD+/NADH-dependent reactions to the increases of downstream metabolites (p = 10-5, n = 8 redox reactions). Inflammatory metabolites such as ceramides and sphingosine-1-phosphate also increased with age. Age-related decreases in glutamate, GABA, and sphingolipid were seen which worsened with AD genetic load in 3xTg-AD brains, possibly contributing to synaptic, learning- and memory-related deficits. The data support the novel hypothesis that age- and AD-associated metabolic shifts respond to NAD(P)+/NAD(P)H redox-dependent reactions, which may contribute to decreased energetic capacity.
Collapse
Affiliation(s)
- Yue Dong
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,MIND Institute, Center for Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Li KY, Xiang XJ, Song L, Chen J, Luo B, Wen QX, Zhong BR, Zhou GF, Deng XJ, Ma YL, Hu LT, Chen GJ. Mitochondrial TXN2 attenuates amyloidogenesis via selective inhibition of BACE1 expression. J Neurochem 2020; 157:1351-1365. [PMID: 32920833 DOI: 10.1111/jnc.15184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Thioredoxin-2 (TXN2) is a mitochondrial protein and represents one of the intrinsic antioxidant enzymes. It has long been recognized that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Alzheimer's disease (AD). We hypothesized that mitochondrial TXN2 might play a role in AD-like pathology. In this study, we found that in SH-SY5Y and HEK cells stably express full-length human amyloid-β precursor protein (HEK-APP), TXN2 silencing or over-expression selectively increased or decreased the transcription of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), respectively, without altering the protein levels of others enzymes involved in the catalytic processing of APP. As a result, β-amyloid protein (Aβ) levels were significantly decreased by TXN2. In addition, in cells treated with 3-nitropropionic acid (3-NP) that is known to increase reactive oxygen species (ROS) and promote mitochondrial dysfunction, TXN2 silencing resulted in further enhancement of BACE1 protein levels, suggesting a role of TXN2 in ROS removal. The downstream signaling might involve NFκB, as TXN2 reduced the phosphorylation of p65 and IκBα; and p65 knockdown significantly attenuated TXN2-mediated regulation of BACE1. Concomitantly, the levels of cellular ROS, apoptosis-related proteins and cell viability were altered by TXN2 silencing or over-expression. In APPswe/PS1E9 mice, an animal model of AD, the cortical and hippocampal TXN2 protein levels were decreased at 12 months but not at 6 months, suggesting an age-dependent decline. Collectively, TXN2 regulated BACE1 expression and amyloidogenesis via cellular ROS and NFκB signaling. TXN2 might serve as a potential target especially for early intervention of AD.
Collapse
Affiliation(s)
- Kun-Yi Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, the Second People's Hospital of Chengdu, Chengdu, China
| | - Xiao-Jiao Xiang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Bi-Rou Zhong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li-Tian Hu
- Department of Neurology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
38
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
39
|
Nikbin S, Derakhshideh A, Kanozi F, Hozouri Tarighe M, Niknia S, Khojasteh Z, Barzegar Rahatlo M, Mousavi N, Ghodousi Johari E, Arabi Y, Afshar T, Tousi H, Jameie SB, Azarbayjani MA. Combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by chlorpyrifos. Mol Biol Rep 2020; 47:5985-5996. [PMID: 32780254 DOI: 10.1007/s11033-020-05672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by CPF. 64 adult male albino rats were randomly selected and devided into eight groups of eight including: control, exercise (EXE), chlorpyrifos (CPF), Control + Oil (Co + Oil), Control + DMSO (Co + DMSO), chlorpyrifos + eugenol (CPF + Sup), chlorpyrifos + exercise (CPF + Exe) and, chlorpyrifos + exercise + eugenol (CPF + Exe + Eu). Four experimental groups received intraperitoneal injection (5 days a week) of 3.0 mg/kg body weight CPF in DMSO for 6 consecutive weeks. The exercise groups performed aerobic 5 days per week over 4 weeks. Eugenol were administered by gavage. Finally, the animals were sacrificed using CO2 gas (a half of the rats were anesthetized with ketamine and xylazine and then perfused) to evaluate hippocampus histology and parameters. The results of this study showed that CPF injection significantly decreased BDNF, AChE and ATP in CA1 area of the hippocampus (p ˂ 0.05). Also, CA1 apoptosis by tunnel assay, it was found that CPF receiving groups with different dosage, showed a significant increase compared to other groups, which was confirmed by increasing cytochrome C and procaspase-3 in CPF groups (p ˂ 0.05). The result of this study show that 4 weeks of exercise training and eugenol supplementation does not improve the destructive effects of CPF in CA1 area of the hippocampus. As a result, it is recommended that future studies longer periods for treatment with exercise and eugenol supplementation.
Collapse
Affiliation(s)
- Sina Nikbin
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Armin Derakhshideh
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Foad Kanozi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Mahsa Hozouri Tarighe
- Department of Exercise Physiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Somayeh Niknia
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Zohreh Khojasteh
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Mosa Barzegar Rahatlo
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Niloufar Mousavi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Elham Ghodousi Johari
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Yasaman Arabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Tayebeh Afshar
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran
| | - Hedyeh Tousi
- Department of Exercise Physiology, Islamic Azad University, Bushehr Branch, Bushehr, Iran
| | | | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Central Tehran Branch, Post Office Box 1955847781, Tehran, Iran.
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research.
Collapse
Affiliation(s)
- Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
41
|
Nazir N, Zahoor M, Nisar M, Karim N, Latif A, Ahmad S, Uddin Z. Evaluation of neuroprotective and anti-amnesic effects of Elaeagnus umbellata Thunb. On scopolamine-induced memory impairment in mice. BMC Complement Med Ther 2020; 20:143. [PMID: 32397979 PMCID: PMC7216467 DOI: 10.1186/s12906-020-02942-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Elaeagnus umbellata is abundantly found in Himalayan regions of Pakistan which is traditionally used to treat various health disorders. However, the experimental evidence supporting the anti-amnesic effect is limited. Therefore the study was aimed to evaluate the prospective beneficial effect of E. umbellata on learning and memory in mice. OBJECTIVES To assess neuroprotective and anti-amnesic effects of E. umbellata fruit extracts and isolated compounds on the central nervous system. METHODS Major phytochemical groups present in methanolic extract of E. umbellata were qualitatively determined. The total phenolic and flavonoid contents were also determined in extract/fractions of E. umbellata. On the basis of in vitro promising anticholinesterases (AChE & BChE) and antioxidant activities observed for CHF. Ext and isolated compound-I (Chlorogenic acid = CGA), they were further evaluated for learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Y maze and Novel object recognition using standard procedures. The test sample were further assessed for in vivo anticholinesterases (AChE & BChE) and DPPH free radical scavenging activities in mice brain sample and finally validated by molecular docking study using GOLD software. RESULTS The extract/fractions and isolated compounds were tested for their anticholinesterase and antioxidant potentials. The CHF. Ext and CGA showed maximum % inhibition of tested cholinesterases and free radicals. The CHF. Ext and CGA reversed the effects of scopolamine in mice. The CHF. Ext and CGA significantly increased the alternate arm returns and % spontaneous alteration performance while escape latency times (second) significantly decreased in Y maze test. The CHF. Ext and CGA significantly increased the time spent with novel object and also increased the discrimination index in the Novel object recognition test. Furthermore, molecular docking was used to validate the mechanism of cholinesterases inhibition of isolated compounds. CONCLUSION The data obtained from behavioral and biochemical studies (AChE/BChE and DPPH/ABTS inhibition) have shown that E. umbellata possessed significant memory enhancing potency. These results suggest that E. umbellata extract possess potential antiamnesic effects and amongst the isolated compounds, compound I could be more effective anti-amnesic therapeutics. However, further studies are needed to identify the exact mechanism of action.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Nasiara Karim
- Department of Pharmacy, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, Sarhad University of Information Technology, Peshawar, Pakistan
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
42
|
Eckert GP, Eckert SH, Eckmann J, Hagl S, Muller WE, Friedland K. Olesoxime improves cerebral mitochondrial dysfunction and enhances Aβ levels in preclinical models of Alzheimer's disease. Exp Neurol 2020; 329:113286. [PMID: 32199815 DOI: 10.1016/j.expneurol.2020.113286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Approved drugs for Alzheimer's disease (AD) only have a symptomatic effects and do not intervene causally in the course of the disease. Olesoxime (TRO19622) has been tested in AD disease models characterized by improved amyloid precursor protein processing (AβPP) and mitochondrial dysfunction. METHODS Three months old Thy-1-AβPPSL (tg) and wild type mice (wt) received TRO19622 (100 mg/kg b.w.) in supplemented food pellets for 15 weeks (tg TRO19622). Mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels were determined in dissociated brain cells (DBC). Respiration was analyzed in mitochondria isolated from brain tissue. Citrate synthase (CS) activity and beta-amyloid peptide (Aβ1-40) levels were determined in brain tissue. Malondialdehyde (MDA) levels were determined as an indicator for lipid peroxidation. DBC and brain homogenates were additionally stressed with Rotenone and FeCl2, respectively. Mitochondrial respiration and Aβ1-40 levels were also determined in HEK-AβPPsw-cells. RESULTS Treatment of mice did not affect the body weight. TRO19622 was absorbed after oral treatment (plasma levels: 6,2 μg/ml). Mitochondrial respiration was significantly reduced in brains of tg-mice. Subsequently, DBC isolated from brains of tg-mice showed significantly lower MMP but not ATP levels. TRO19622 increased the activity of respiratory chain complexes and reversed complex IV (CIV) activity and MMP. Moreover, DBC isolated from brains of tg TRO19622 mice were protected from Rotenone induced inhibition of complex I activity. TRO19622 also increased the respiratory activity in HEKsw-cells. MDA basal levels were significantly higher in brain homogenates isolated from tg-mice. TRO19622 treatment had no effects on lipid peroxidation. TRO19622 increased cholesterol levels but did not change membrane fluidity of synaptosomal plasma and mitochondrial membranes isolated from brain of mice. TRO19622 significantly increased levels of Aβ1-40 in both, in brains of tg TRO19622 mice and in HEKsw cells. CONCLUSIONS TRO19622 improves mitochondrial dysfunction but enhances Aβ levels in disease models of AD. Further studies must evaluate whether TRO19622 offers benefits at the mitochondrial level despite the increased formation of Aβ, which could be harmful.
Collapse
Affiliation(s)
- Gunter P Eckert
- Institute of Nutritional Sciences, Justus-Liebig-University, Giessen, Germany.
| | - Schamim H Eckert
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Janett Eckmann
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephanie Hagl
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Walter E Muller
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Kristina Friedland
- Institute of Pharmacology, Johannes-Gutenberg University, Mainz, Germany
| |
Collapse
|
43
|
Cieślik M, Czapski GA, Wójtowicz S, Wieczorek I, Wencel PL, Strosznajder RP, Jaber V, Lukiw WJ, Strosznajder JB. Alterations of Transcription of Genes Coding Anti-oxidative and Mitochondria-Related Proteins in Amyloid β Toxicity: Relevance to Alzheimer's Disease. Mol Neurobiol 2020; 57:1374-1388. [PMID: 31734880 PMCID: PMC7061023 DOI: 10.1007/s12035-019-01819-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
A growing body of evidence indicates that pathological forms of amyloid beta (Aβ) peptide contribute to neuronal degeneration and synaptic loss in Alzheimer's disease (AD). In this study, we investigated the impact of exogenous Aβ1-42 oligomers (AβO) and endogenously liberated Aβ peptides on transcription of genes for anti-oxidative and mitochondria-related proteins in cell lines (neuronal SH-SY5Y and microglial BV2) and in brain cortex of transgenic AD (Tg-AD) mice, respectively. Our results demonstrated significant AβO-evoked changes in transcription of genes in SH-SY5Y cells, where AβO enhanced expression of Sod1, Cat, mt-Nd1, Bcl2, and attenuated Sirt5, Sod2 and Sdha. In BV2 line, AβO increased the level of mRNA for Sod2, Dnm1l, Bcl2, and decreased for Gpx4, Sirt1, Sirt3, mt-Nd1, Sdha and Mfn2. Then, AβO enhanced free radicals level and impaired mitochondrial membrane potential only in SH-SY5Y cells, but reduced viability of both cell types. Inhibitor of poly(ADP-ribose)polymerase-1 and activator of sirtuin-1 more efficiently enhanced viability of SH-SY5Y than BV2 affected by AβO. Analysis of brain cortex of Tg-AD mice confirmed significant downregulation of Sirt1, Mfn1 and mt-Nd1 and upregulation of Dnm1l. In human AD brain, changes of microRNA pattern (miRNA-9, miRNA-34a, miRNA-146a and miRNA-155) seem to be responsible for decrease in Sirt1 expression. Overall, our results demonstrated a diverse response of neuronal and microglial cells to AβO toxicity. Alterations of genes encoding Sirt1, Mfn1 and Drp1 in an experimental model of AD suggest that modulation of mitochondria dynamics and Sirt1, including miRNA strategy, may be crucial for improvement of AD therapy.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Sylwia Wójtowicz
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Przemysław L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Bollinger Professor of Alzheimer's disease, LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Joanna B Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
44
|
Luchese C, Barth A, da Costa GP, Alves D, Novo DLR, Mesko MF, Wilhelm EA. Role of 7-chloro-4-(phenylselanyl) quinoline as an anti-aging drug fighting oxidative damage in different tissues of aged rats. Exp Gerontol 2020; 130:110804. [DOI: 10.1016/j.exger.2019.110804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/17/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
45
|
Lim JW, Lee J, Pae AN. Mitochondrial dysfunction and Alzheimer's disease: prospects for therapeutic intervention. BMB Rep 2020; 53:47-55. [PMID: 31818365 PMCID: PMC6999825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Indexed: 03/29/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research. [BMB Reports 2020; 53(1): 47-55].
Collapse
Affiliation(s)
- Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792,
Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133,
Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792,
Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
| |
Collapse
|
46
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
47
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
48
|
Teo E, Ravi S, Barardo D, Kim HS, Fong S, Cazenave-Gassiot A, Tan TY, Ching J, Kovalik JP, Wenk MR, Gunawan R, Moore PK, Halliwell B, Tolwinski N, Gruber J. Metabolic stress is a primary pathogenic event in transgenic Caenorhabditis elegans expressing pan-neuronal human amyloid beta. eLife 2019; 8:50069. [PMID: 31610847 PMCID: PMC6794093 DOI: 10.7554/elife.50069] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting the elderly worldwide. Mitochondrial dysfunction has been proposed as a key event in the etiology of AD. We have previously modeled amyloid-beta (Aβ)-induced mitochondrial dysfunction in a transgenic Caenorhabditis elegans strain by expressing human Aβ peptide specifically in neurons (GRU102). Here, we focus on the deeper metabolic changes associated with this Aβ-induced mitochondrial dysfunction. Integrating metabolomics, transcriptomics and computational modeling, we identify alterations in Tricarboxylic Acid (TCA) cycle metabolism following even low-level Aβ expression. In particular, GRU102 showed reduced activity of a rate-limiting TCA cycle enzyme, alpha-ketoglutarate dehydrogenase. These defects were associated with elevation of protein carbonyl content specifically in mitochondria. Importantly, metabolic failure occurred before any significant increase in global protein aggregate was detectable. Treatment with an anti-diabetes drug, Metformin, reversed Aβ-induced metabolic defects, reduced protein aggregation and normalized lifespan of GRU102. Our results point to metabolic dysfunction as an early and causative event in Aβ-induced pathology and a promising target for intervention.
Collapse
Affiliation(s)
- Emelyne Teo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Science Division, Yale-NUS College, Singapore, Singapore
| | - Sudharshan Ravi
- Department of Chemical and Biological Engineering, University of Buffalo, Buffalo, United States.,Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Diogo Barardo
- Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hyung-Seok Kim
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Sheng Fong
- Geriatric Medicine Senior Residency Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
| | - Tsze Yin Tan
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University of Buffalo, Buffalo, United States
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | | | - Jan Gruber
- Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
49
|
Zhang Y, Yang X, Wang S, Song S. Ginsenoside Rg3 Prevents Cognitive Impairment by Improving Mitochondrial Dysfunction in the Rat Model of Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10048-10058. [PMID: 31422666 DOI: 10.1021/acs.jafc.9b03793] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ginseng, the roots and rhizomes of Panax ginseng C. A. Meyer, is used not only as a herbal medicine but also as a functional food to support body functions. Ginsenoside Rg3 (GRg3) is a major bioactive component in ginseng. In this study, the beneficial effects of GRg3 on rats with Alzheimer's disease (AD) were evaluated via the behavioral experiment and antioxidant capacity. Moreover, metabolomic analysis based on UPLC-QTOF-MS/MS and apoptosis analysis was used to obtain the change between AD and GRg3-administrated rats to assess the underlying mechanisms on improving mitochondrial dysfunction. Results showed that GRg3 could prevent the cognitive impairment of AD rats by improving the mitochondrial dysfunction. The potential mechanisms were related to regulate the abnormality of energy metabolism, electron transport chain, amino acid metabolism, purine metabolism, and antiapoptosis. These findings support the exploitation of GRg3 as an effective complementary and functional food to prevent and delay AD.
Collapse
Affiliation(s)
| | - Xiaomei Yang
- Nutritional Department , Jilin Medical University Affiliated Hospital , Jilin 132013 , P. R. China
| | | | | |
Collapse
|
50
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2019; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|