1
|
Hamidi S, Abbaszadeh F, Kiani A, Farzaei MH, Fakhri S. Deciphering the antinociceptive and anti-inflammatory effects of pelargonidin through L-arginine/nitric oxide/cyclic GMP/ATP-sensitive potassium channel signaling pathway and gamma-aminobutyric acid/opioidergic receptors. Behav Pharmacol 2025:00008877-990000000-00133. [PMID: 40305373 DOI: 10.1097/fbp.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
There are complex dysregulated pathways behind the pathogenesis of pain and inflammation. Because most of the present drugs have certain side effects or are not effective enough, providing novel multitargeting and potent therapeutic agents is of particular importance. This study investigates the antinociceptive effects of pelargonidin, an anthocyanin derived from various plants, through the modulation of the L-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/ATP-sensitive potassium channel (KATP) signaling pathway. We also evaluated the anti-inflammatory role of pelargonidin passing through gamma-aminobutyric acid (GABA) and opioidergic receptors. Two experimental models were utilized. In the carrageenan model, 42 rats were divided into control, diclofenac, and three doses of pelargonidin (3, 6, and 9 mg/kg). In addition, two groups received pelargonidin 9 mg/kg + naloxone and pelargonidin 9 mg/kg + flumazenil. For the formalin model, 90 male mice were assigned to control, diclofenac, and three doses of pelargonidin, and 10 groups receiving L-arginine, S-nitroso-N-acetylpenicillamine (SNAP), N(gamma)-nitro-L-arginine methyl ester (L-NAME), glibenclamide, and sildenafil individually or alongside pelargonidin 9 mg/kg. Our results indicated that pelargonidin significantly decreased inflammation and pain in a dose-dependent manner. Notably, groups of pelargonidin 9 mg/kg + naloxone and pelargonidin 9 mg/kg + flumazenil diminished pelargonidin's anti-inflammatory effectiveness, underscoring the significant role of these receptors. Mechanistically, it was shown that the antinociceptive effects of pelargonidin were mediated by the NO signaling pathway. While L-NAME and glibenclamide reduced pelargonidin's antinociceptive efficacy, supplementation with sildenafil and SNAP enhanced the effect. This investigation demonstrated that pelargonidin possesses dose-dependent antinociceptive and anti-inflammatory actions through L-arginine/NO/cGMP/KATP pathways, and opioidergic and GABA receptors, respectively.
Collapse
Affiliation(s)
- Sona Hamidi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran
| | - Amir Kiani
- Regenerative Medicine Research Center, Health Technology Institute
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Masyita A, Hardinasinta G, Astuti AD, Firdayani F, Mayasari D, Hori A, Nisha INA, Nainu F, Kuraishi T. Natural pigments: innovative extraction technologies and their potential application in health and food industries. Front Pharmacol 2025; 15:1507108. [PMID: 39845791 PMCID: PMC11750858 DOI: 10.3389/fphar.2024.1507108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries. Special emphasis is placed on emerging technologies for natural pigment extraction (thermal technologies, non-thermal technologies, and supercritical fluid extraction), their pharmacological effects, and their potential application in intelligent food packaging and as food colorants. Natural pigments show several pharmaceutical prospects. For example, delphinidin (30 µM) significantly inhibited the growth of three cancer cell lines (B16-F10, EO771, and RM1) by at least 90% after 48 h. Furthermore, as an antioxidant agent, fucoxanthin at the highest concentration (50 μg/mL) significantly increased the ratio of glutathione to glutathione disulfide (p < 0.05). In the food industry, natural pigments have been used to improve the nutritional value of food without significantly altering the sensory experience. Moreover, the use of natural pH-sensitive pigments as food freshness indicators in intelligent food packaging is a cutting-edge technological advancement. This innovation could provide useful information to consumers, increase shelf life, and assist in evaluating the quality of packaged food by observing color variations over time. However, the use of natural pigments presents certain challenges, particularly regarding their stability and higher production costs compared to synthetic pigments. This situation underscores the need for further investigation into alternative pigment sources and improved stabilization methods. The instability of these natural pigments emphasizes their tendency to degrade and change color when exposed to various external conditions, including light, oxygen, temperature fluctuations, pH levels, and interactions with other substances in the food matrix.
Collapse
Affiliation(s)
- Ayu Masyita
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Gemala Hardinasinta
- Department of Agricultural Engineering, Faculty of Agricultural, Hasanuddin University, Makassar, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Dian Mayasari
- Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ira Nur Ainun Nisha
- Department of Biological Sciences, Faculty of Teacher Training and Education, Muslim Maros University, Maros, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Fang S, Zhang K, Liu D, Yang Y, Xi H, Xie W, Diao K, Rao Z, Wang D, Yang W. Polyphenol-based polymer nanoparticles for inhibiting amyloid protein aggregation: recent advances and perspectives. Front Nutr 2024; 11:1408620. [PMID: 39135555 PMCID: PMC11317421 DOI: 10.3389/fnut.2024.1408620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.
Collapse
Affiliation(s)
- Shuzhen Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea, Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Danqing Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Yulong Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Hu Xi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Wenting Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Ke Diao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhihong Rao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
4
|
Zhang L, Zhou T, Su Y, He L, Wang Z. Involvement of histone methylation in the regulation of neuronal death. J Physiol Biochem 2023; 79:685-693. [PMID: 37544979 DOI: 10.1007/s13105-023-00978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Tai Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Su
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li He
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Aguirre López LO, Cuéllar Pérez JR, Santerre A, Moreno YS, Hernández De Anda Y, Bañuelos Pineda J. Effect of consumption of blue maize tortilla on anxiety-like behaviour, learning, memory and hippocampal BDNF expression in a chronic stress model in rats. Nutr Neurosci 2023; 26:1058-1067. [PMID: 36173025 DOI: 10.1080/1028415x.2022.2126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Pigmented maize consumption is of much interest because of its high anthocyanin content and multiple health benefits. OBJETIVES This study was aimed to assess the effect of consuming blue maize tortillas on the anxiolytic capacity, preserve emotional memory, and the expression of brain-derived neurotrophic factor (BDNF) in rats subjected to chronic stress. METHODS Sixty-four 3-month-old male Wistar rats were used, divided into eight groups (n = 8). Four groups were subjected to chronic stress by movement restriction (7 h/daily/7 consecutive days) and the remaining four groups were subjected to standard management. The treatments were commercial food, blue tortilla, anthocyanin extract, or white tortilla, administered for nine weeks to stressed or unstressed animals. In the eighth week, the animals were subjected to the restraint stress model. Subsequently, anxiety-like behaviour was assessed using the elevated plus-maze, and memory and emotional learning were evaluated by the step-down passive avoidance test. The animals were then sacrificed to quantify the relative expression of hippocampal BDNF by RT-qPCR. RESULTS The consumption of anthocyanin extract or tortilla made with blue corn decreased anxiety-like behaviours, additionally, it improved the ability to retain emotionally relevant information, and it upregulated BDNF mRNA expression. PERSPECTIVE Thus, the analyse of the impact of blue tortilla consumption on the nervous system is now necessary to guarantee the nutraceutical value of this food.
Collapse
Affiliation(s)
| | | | - Anne Santerre
- Laboratorio de Biomarcadores Moleculares en Biomedicina y Ecología, Universidad de Guadalajara, Zapopan, México
| | - Yolanda Salinas Moreno
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tepatitlán, México
| | | | | |
Collapse
|
6
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
7
|
Liu XJ, Wang HJ, Wang XY, Ning YX, Gao J. GABABR1 in DRN mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Neurochem Int 2021; 150:105180. [PMID: 34509561 DOI: 10.1016/j.neuint.2021.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
The identity of the mechanism that controls aggressive behavior in rodents is unclear. Serotonin (5-HT) and GABA are associated with aggressive behavior in rodents. However, the regulatory relationship between these chemicals in the different brain regions of rats has not been fully defined. This study aimed to clarify the role of GABABR1 in DRN-mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Rat models of highly and less aggressive behavior were established through social isolation plus resident intruder. On this basis, GABA content in the DRN and 5-HT contents in the PFC, hypothalamus, hippocampus and DRN were detected using ELISA. Co-expression of 5-HT and GB1 in the DRN was detected by immunofluorescence and immunoelectron microscopy at the tissue and subcellular levels, respectively. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN by stereotaxic injection. Changes in 5-HT levels in the PFC, hypothalamus and hippocampus were detected afterward. After modeling, rats with highly aggressive behavior exhibited higher aggressive behavior scores, shorter latencies of aggression, and higher total distances in the open field test than rats with less aggressive behavior. The contents of 5-HT in the PFC, hypothalamus and hippocampus of rats with high and low aggressive behavior (no difference between the two groups) were significantly decreased, but the change in GABA content in the DRN was the opposite. GB1 granules could be found on synaptic membranes containing 5-HT granules, which indicated that 5-HT neurons in the DRN co-expressed with GB1, which also occurred in double immunofluorescence results. At the same time, we found that the expression of GB1 in the DRN of rats with high and low aggressive behavior was significantly increased, and the expression of GB1 in the DRN of rats with low aggressive behavior was significantly higher than that in rats with high aggressive behavior. Nevertheless, the expression of 5-HT in DRN was opposite in these two groups. After microinjection of baclofen into the DRN, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group decreased significantly. In contrast, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group increased significantly after injection with CGP35348. The significant increase in GABA in the DRN combined with the significant increase in GB1 in the DRN further mediated the synaptic inhibition effect, which reduced the 5-HT level of 5-HT neurons in the DRN, resulting in a significant decrease in 5-HT levels in the PFC, hypothalamus and hippocampus. Therefore, GB1-mediated GABA regulation of 5-HT levels in the PFC, hypothalamus and hippocampus is one of the mechanisms of highly and less aggressive behavior originating in the DRN. The increased GB1 level in the DRN of LA-behavior rats exhibited a greater degree of change than in the HA-group rats, which indicated that differently decreased 5-HT levels in the DRN may be the internal mechanisms of high and low aggression behaviors.
Collapse
Affiliation(s)
- Xiao-Ju Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hai-Juan Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Xiao-Yu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Yin-Xia Ning
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jie Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
8
|
|
9
|
Savici J, Cristina RT, Brezovan D, Radulov I, Balta C, Boldura OM, Muselin F. Aronia melanocarpa Ameliorates Adrenal Cytoarchitecture Against the Hexavalent Chromium-Induced Injury. Biol Trace Elem Res 2021; 199:2936-2944. [PMID: 33001412 PMCID: PMC8222023 DOI: 10.1007/s12011-020-02401-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Hexavalent chromium is a toxin that penetrates the cell, triggering reactive oxygen species (ROS) production. Aronia melanocarpa, due to its proanthocyanidins, anthocyanins, and phenolic acid contents, is a valuable antioxidant. The aim was to observe the influence of hexavalent chromium Cr(VI) on the adrenal gland, and if this impact can be recovered by the administration of A. melanocarpa. Accordingly, 36 rats were divided into six groups: control; Aronia; Cr receiving Cr(VI) in distilled water for 3 months; CrA receiving a mix of Cr(VI) and A. melanocarpa at 2.5% aqueous extract for 3 months; Cr2 receiving, for 3 months, Cr(VI) in distilled water, and next, for 1 month, only distilled water; and respectively, CrA2 receiving, for 3 months, Cr(VI) in distilled water, followed by 1 month of Aronia at 2.5% extract administration. The adrenal gland samples were examined toward histological and molecular assessment, and results were statistically analyzed (ANOVA). Hexavalent chromium induced changes in the adrenal cortex expressed by focal or diffuse hypertrophies, cytoplasmic vacuolization (due to lipidic accumulation), and cells' shape and size alteration, including necrosis. These structural alterations were carried by Bax and Bcl2 gene expression: the Bax gene expression levels, increased significantly (p < 0.001) in all experimental groups, except the Aronia group, compared with control. In the Cr2, CrA, and CrA2 groups, notable reduction of Bax gene expression (p < 0.001) was reported compared with the Cr group. Regarding the Bcl2 gene expression (p < 0.001), a significant increase was observed in the experimental groups, compared with the control. The Bcl2 expression level had a similar pattern to Bax gene, consequently trying to compensate its overexpression. Aronia administered concomitantly, or after Cr(VI), diminished structural changes and expression of the studied genes, thus reducing the Bax/Bcl2 ratio and suggesting that the active ingredients from Aronia are capable of blocking apoptotic cascade induced by the pathway of Bax and Bcl2 proteins.
Collapse
Affiliation(s)
- Jelena Savici
- Faculty of Veterinary Medicine, Department of Histology and Cell biology, Banat University of Agriculture and Veterinary Medicine "King Michael I of Romania" from Timisoara (BUAVM), Calea Aradului 119, 300645, Timișoara, Romania
| | - Romeo Teodor Cristina
- Faculty of Veterinary Medicine, Department of Pharmacoogy and Pharmacy, Banat University of Agriculture and Veterinary Medicine "King Michael I of Romania" from Timisoara (BUAVM), Calea Aradului 119, 300645, Timișoara, Romania.
| | - Diana Brezovan
- Faculty of Veterinary Medicine, Department of Histology and Cell biology, Banat University of Agriculture and Veterinary Medicine "King Michael I of Romania" from Timisoara (BUAVM), Calea Aradului 119, 300645, Timișoara, Romania
| | - Isidora Radulov
- Faculty of Veterinary Medicine, Department of Chemistry, Banat University of Agriculture and Veterinary Medicine "King Michael I of Romania" from Timisoara (BUAVM), Calea Aradului 119, 300645, Timișoara, Romania
| | - Cornel Balta
- "Vasile Goldis" Western University Arad, Revolutiei Blvd. No, 94, Arad, Romania
| | - Oana Maria Boldura
- Faculty of Veterinary Medicine, Department of Biochemistry, Banat University of Agriculture and Veterinary Medicine "King Michael I of Romania" from Timisoara (BUAVM), Calea Aradului 119, 300645, Timișoara, Romania
| | - Florin Muselin
- Faculty of Veterinary Medicine, Department of Toxicology, Banat University of Agriculture and Veterinary Medicine "King Michael I of Romania" from Timisoara (BUAVM), Calea Aradului 119, 300645, Timișoara, Romania
| |
Collapse
|
10
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
11
|
Fujii C, Zorumski CF, Izumi Y. Ethanol, neurosteroids and cellular stress responses: Impact on central nervous system toxicity, inflammation and autophagy. Neurosci Biobehav Rev 2021; 124:168-178. [PMID: 33561510 DOI: 10.1016/j.neubiorev.2021.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/19/2021] [Indexed: 01/21/2023]
Abstract
Alcohol intake can impair brain function, in addition to other organs such as the liver and kidney. In the brain ethanol can be detrimental to memory formation, through inducing the integrated stress response/endoplasmic reticulum stress/unfolded protein response and the molecular mechanisms linking stress to other events such as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammation and autophagy. This literature review aims to provide an overview of our current understanding of the molecular mechanisms involved in ethanol-induced damage with endoplasmic reticulum stress, integrated stress response, NLRP3 inflammation and autophagy, while discussing the impact of neurosteroids and oxysterols, including allopregnanolone, 25-hydroxycholesterol and 24S-hydroxycholesterol, on the central nervous system.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
12
|
Wu Z, Wang P, Pan D, Zeng X, Guo Y, Zhao G. Effect of adzuki bean sprout fermented milk enriched in γ-aminobutyric acid on mild depression in a mouse model. J Dairy Sci 2020; 104:78-91. [PMID: 33162095 DOI: 10.3168/jds.2020-19154] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
This study focused on the ability of adzuki bean (Vigna angularis) sprout fermented milk, which is rich in γ-aminobutyric acid (GABA), to relieve anxiety and mild depression. A high-yield GABA-producing strain, Lactobacillus brevis J1, from a healthy cow was screened, and its physiological and probiotic properties were evaluated. The effect of adzuki bean sprout fermented milk was investigated in vivo in a chronic depression mouse model. The results showed that Lb. brevis J1 had excellent probiotic properties, grew well at low pH and 3% NaCl, and adhered to the surface of HT-29 cells. The GABA-enriched (241.30 ± 1.62 µg/mL) adzuki bean sprout fermented milk prepared with Streptococcus thermophilus, Lactobacillus bulgaricus, and Lactobacillus plantarum, and Lb. brevis J1 can reduce and possibly prevent mild depression-like symptoms in mice (C57/B6) by increasing social interaction and enhancing the pleasure derived from movement. The research revealed that the GABAB-cyclic AMP-protein kinase A-cAMP-response element binding protein (GABAB-cAMP-PKA-CREB) signaling pathway was related to the depression-like symptoms and that levels of 5-hydroxytryptamine, norepinephrine, and dopamine in the hippocampus of mice increased after treatment with the adzuki bean sprout fermented milk. Our results suggest that GABA-enriched dairy products have the potential to prevent or treat mild depression-like symptoms in mice, which suggests a new approach for a dietary therapy to treat chronic social stress.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| | - Pengyu Wang
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China; School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, P. R. China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxing Guo
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Guangsheng Zhao
- Hangzhou New Hope Shuangfeng Dairy Co., Hangzhou, Zhejiang 310000, P. R. China
| |
Collapse
|
13
|
Salehi B, Sharifi-Rad J, Cappellini F, Reiner Ž, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, Al-Sayed E, Martorell M, Tonelli C, Petroni K, Docea AO, Calina D, Maroyi A. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front Pharmacol 2020; 11:1300. [PMID: 32982731 PMCID: PMC7479177 DOI: 10.3389/fphar.2020.01300] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are natural phenolic pigments with biological activity. They are well-known to have potent antioxidant and antiinflammatory activity, which explains the various biological effects reported for these substances suggesting their antidiabetic and anticancer activities, and their role in cardiovascular and neuroprotective prevention. This review aims to comprehensively analyze different studies performed on this class of compounds, their bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection, neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Debora Zorzan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
14
|
Zhang J, Shao X, Zhao B, Zhai L, Liu N, Gong F, Ma X, Pan X, Zhao B, Yuan Z, Zhang X. Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114471. [PMID: 32268227 DOI: 10.1016/j.envpol.2020.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widely used synthetic industrial chemical which accumulates in ecosystems and organisms. Our study have investigated the neurobehavioral effects of PFOA and the alleviation effects of PFOA-induced neurotoxicity by blueberry anthocyanins (ANT) in Dugesia japonica. The planarians were exposed to PFOA and ANT for ten days. Researchs showed that exposure to PFOA affected locomotor behavior and ANT significantly alleviated the reduction in locomotion induced by PFOA. The regeneration of eyespots and auricles was suppressed by PFOA and was promoted by ANT. Following exposure to PFOA, acetylcholinesterase activity continually decreased and was unaffected in the ANT group, but was elevated after combined administration of PFOA and ANT. Oxidative DNA damage was found in planarians exposed to PFOA and was attenuated after administration of ANT by the alkaline comet assay. Concentrations of three neurotransmitters increased following exposure to PFOA and decreased after administration of ANT. Furthermore, ANT promoted and PFOA inhibited neuronal regeneration. DjotxA, DjotxB, DjFoxG, DjFoxD and Djnlg associated with neural processes were up-regulated following exposure to PFOA. Our findings indicate that PFOA is a neurotoxicant while ANT can attenuate these detrimental effects.
Collapse
Affiliation(s)
- Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xinxin Shao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Liming Zhai
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Na Liu
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Fangbin Gong
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xue Ma
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiaolu Pan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| |
Collapse
|
15
|
Lossi L, Merighi A, Novello V, Ferrandino A. Protective Effects of Some Grapevine Polyphenols against Naturally Occurring Neuronal Death. Molecules 2020; 25:E2925. [PMID: 32630488 PMCID: PMC7356852 DOI: 10.3390/molecules25122925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
The interest in the biological properties of grapevine polyphenols (PPs) in neuroprotection is continuously growing in the hope of finding translational applications. However, there are several concerns about the specificity of action of these molecules that appear to act non-specifically on the permeability of cellular membranes. Naturally occurring neuronal death (NOND) during cerebellar maturation is a well characterized postnatal event that is very useful to investigate the death and rescue of neurons. We here aimed to establish a baseline comparative study of the potential to counteract NOND of certain grapevine PPs of interest for the oenology. To do so, we tested ex vivo the neuroprotective activity of peonidin- and malvidin-3-O-glucosides, resveratrol, polydatin, quercetin-3-O-glucoside, (+)-taxifolin, and (+)-catechin. The addition of these molecules (50 μM) to organotypic cultures of mouse cerebellum explanted at postnatal day 7, when NOND reaches a physiological peak, resulted in statistically significant (two-tailed Mann-Whitney test-p < 0.001) reductions of the density of dead cells (propidium iodide+ cells/mm2) except for malvidin-3-O-glucoside. The stilbenes were less effective in reducing cell death (to 51-60%) in comparison to flavanols, (+)-taxifolin and quercetin 3-O-glucoside (to 69-72%). Thus, molecules with a -OH group in ortho position (taxifolin, quercetin 3-O-glucoside, (+)-catechin, and peonidin 3-O-glucoside) have a higher capability to limit death of cerebellar neurons. As NOND is apoptotic, we speculate that PPs act by inhibiting executioner caspase 3.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Vittorino Novello
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| |
Collapse
|
16
|
Jin W, Sun M, Yuan B, Wang R, Yan H, Qiao X. Neuroprotective Effects of Grape Seed Procyanidins on Ethanol-Induced Injury and Oxidative Stress in Rat Hippocampal Neurons. Alcohol Alcohol 2020; 55:357-366. [DOI: 10.1093/alcalc/agaa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Aims
Ethanol is a small molecule capable of interacting with numerous targets in the brain, the mechanisms of which are complex and still poorly understood. Studies have revealed that ethanol-induced hippocampal neuronal injury is associated with oxidative stress. Grape seed procyanidin (GSP) is a new type of antioxidant that is believed to scavenge free radicals and be anti-inflammatory. This study evaluated the ability and mechanism by which the GSP improves ethanol-induced hippocampal neuronal injury.
Methods
Primary cultures of hippocampal neurons were exposed to ethanol (11, 33 and 66 mM, 1, 4, 8, 12 and 24 h) and the neuroprotective effects of GSP were assessed by evaluating the activity of superoxide dismutase (SOD), the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and cell morphology.
Results
Our results indicated that GSP prevented ethanol-induced neuronal injury by reducing the levels of MDA and LDH, while increasing the activity of SOD. In addition, GSP increased the number of primary dendrites and total dendritic length per cell.
Conclusion
Together with previous findings, these results lend further support to the significance of developing GSP as a therapeutic tool for use in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Wenyang Jin
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Yuan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Peroxiredoxin II Maintains the Mitochondrial Membrane Potential against Alcohol-Induced Apoptosis in HT22 Cells. Antioxidants (Basel) 2019; 9:antiox9010001. [PMID: 31861323 PMCID: PMC7023630 DOI: 10.3390/antiox9010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive alcohol intake can significantly reduce cognitive function and cause irreversible learning and memory disorders. The brain is particularly vulnerable to alcohol-induced ROS damage; the hippocampus is one of the most sensitive areas of the brain for alcohol neurotoxicity. In the present study, we observed significant increasing of intracellular ROS accumulations in Peroxiredoxin II (Prx II) knockdown HT22 cells, which were induced by alcohol treatments. We also found that the level of ROS in mitochondrial was also increased, resulting in a decrease in the mitochondrial membrane potential. The phosphorylation of GSK3β (Ser9) and anti-apoptotic protein Bcl2 expression levels were significantly downregulated in Prx II knockdown HT22 cells, which suggests that Prx II knockdown HT22 cells were more susceptible to alcohol-induced apoptosis. Scavenging the alcohol-induced ROS with NAC significantly decreased the intracellular ROS levels, as well as the phosphorylation level of GSK3β in Prx II knockdown HT22 cells. Moreover, NAC treatment also dramatically restored the mitochondrial membrane potential and the cellular apoptosis in Prx II knockdown HT22 cells. Our findings suggest that Prx II plays a crucial role in alcohol-induced neuronal cell apoptosis by regulating the cellular ROS levels, especially through regulating the ROS-dependent mitochondrial membrane potential. Consequently, Prx II may be a therapeutic target molecule for alcohol-induced neuronal cell death, which is closely related to ROS-dependent mitochondria dysfunction.
Collapse
|
18
|
Chen Y, Chen H, Zhang W, Ding Y, Zhao T, Zhang M, Mao G, Feng W, Wu X, Yang L. Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats. Food Funct 2019; 10:6052-6061. [PMID: 31486446 DOI: 10.1039/c9fo00871c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthocyanins (ANCs) are phytochemicals with several health effects and undergo significant degradation and subsequent biotransformation during complex metabolic processes. The aim of the present study was to determine the bioaccessibility and biotransformation of cyanidin-3-glucoside (C3G) during the simulated gastric-intestinal digestion in vitro and the metabolism in rats in vivo. Characterization of C3G and its metabolites was conducted by HPLC-ESI-MS/MS. After gastric-intestinal digestion, C3G was detected with a recovery of 88.31% in the gastric-digestive system, and a small amount of methylated-C3G occurred. In the intestinal-digestive system, C3G occurred with a recovery of 6.05%, and mainly decomposed into protocatechuic acid (PCA) and 2,4,6-trihydroxybenzaldehyde. The pharmacokinetic trial of C3G in rats showed rapid elimination in plasma. In tissues, C3G underwent rapid absorption and metabolism into phenolic acids or their derivatives. C3G and methylated-C3G passed through the blood-brain barrier and caused rapid distribution of C3G in the brain. Understanding the conversion of C3G and its metabolites helps in the future design of dietary interventions and the exploration of biological activities of ACNs.
Collapse
Affiliation(s)
- Yao Chen
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Hui Chen
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Guanghua Mao
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Weiwei Feng
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
19
|
Zhang J, Wu J, Liu F, Tong L, Chen Z, Chen J, He H, Xu R, Ma Y, Huang C. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. Eur J Pharmacol 2019; 858:172500. [PMID: 31238064 DOI: 10.1016/j.ejphar.2019.172500] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/02/2023]
Abstract
Anthocyanins, a class of water soluble flavonoids extracted from plants like berries and soybean seed, have been shown to display obvious anti-oxidative, anti-inflammatory, and anti-apoptotic activities. They are recommended as a supplementation for prevention and/or treatment of disorders ranging from cardiovascular disease, metabolic syndrome, and cancer. In the central nervous system (CNS), anthocyanins and its major component cyanidin-3-O-glucoside (C3G) have been reported to produce preventive and/or therapeutic activities in a wide range of disorders, such as cerebral ischemia, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma. Both anthocyanins and C3G can also affect some important processes in aging, including neuronal apoptosis and death as well as learning and memory impairment. Further, the anthocyanins and C3G have been shown to prevent neuro-toxicities induced by different toxic factors, such as lipopolysaccharide, hydrogen peroxide, ethanol, kainic acid, acrolein, glutamate, and scopolamine. Mechanistic studies have shown that inhibition of oxidative stress and neuroinflammation are two critical mechanisms by which anthocyanins and C3G produce protective effects in CNS disorder prevention and/or treatment. Other mechanisms, including suppression of c-Jun N-terminal kinase (JNK) activation, amelioration of cellular degeneration, activation of the brain-derived neurotrophic factor (BDNF) signaling, and restoration of Ca2+ and Zn2+ homeostasis, may also mediate the neuroprotective effects of anthocyanins and C3G. In this review, we summarize the pharmacological effects of anthocyanins and C3G in CNS disorders as well as their possible mechanisms, aiming to get a clear insight into the role of anthocyanins in the CNS.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, #30 Tongyang North Road, Nantong, 226361, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215021, Jiangsu, China
| | - Fengguo Liu
- Department of Neurology, Danyang People's Hospital, Danyang, 212300, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Rong Xu
- Department of Pharmacy and Medical Technology, Nantong Health College of Jiangsu Province, #288, Zhenxing East Road, Nantong Economic Development Zone, Nantong, 226009, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
20
|
Cyanidin-3-O-glucoside promotes progesterone secretion by improving cells viability and mitochondrial function in cadmium-sulfate-damaged R2C cells. Food Chem Toxicol 2019; 128:97-105. [DOI: 10.1016/j.fct.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
|
21
|
Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In neurodegenerative disorders, including Alzheimer's and Parkinson's disease, neuroprotection by diet and natural bioactive compounds has been proposed to prevent the onset and progress of neurodegeneration by modification of pathogenic factors. Plant food-derived phytochemicals protect neurons via targeting oxidative stress, mitochondrial dysfunction, neurotrophic factor deficit, apoptosis and abnormal protein accumulation. This review presents the molecular mechanism of neuroprotection by phytochemicals: direct regulation of mitochondrial apoptotic machinery, modification of cellular signal pathways, induction of antiapoptotic Bcl-2 protein family and prosurvival neurotrophic factors, such as brain- and glial cell line-derived neurotrophic factor, and prevention of protein aggregation. Multitargeted neuroprotective agents are under development based on the structure of blood–brain barrier-permeable phytochemicals to ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masayo Shamoto-Nagai
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Wakako Maruyama
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
22
|
Zhu YS, Xiong YF, Luo FQ, Min J. Dexmedetomidine protects rats from postoperative cognitive dysfunction via regulating the GABA B R-mediated cAMP-PKA-CREB signaling pathway. Neuropathology 2018; 39:30-38. [PMID: 30592096 DOI: 10.1111/neup.12530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/28/2022]
Abstract
This work attempts to discuss whether dexmedetomidine (Dex) can protect rats from postoperative cognitive dysfunction (POCD) through regulating the γ-aminobutyric acid-B receptor (GABAB R)-mediated cyclic adenosine monophosphate (cAMP) - protein kinase A (PKA) - cAMP-response element binding (cAMP-PKA-CREB) signaling pathway. Sprague-Dawley rats were divided into a non-surgical group (Control), a surgical group (Model), a surgical group treated with Dex (Model + Dex), a surgical group treated with GABAB R antagonist (Model + CGP 35348) and a surgical group treated with Dex and GABAB R agonist (Model + Dex + Baclofen). Cognitive and memory functions were evaluated by Y-maze test and open-field test. The neuronal morphology of the hippocampus was observed by hematoxylin and eosin staining and neuronal apoptosis was by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling method. Inflammatory factors and cAMP levels were detected by enzyme-linked immunosorbent assay while expressions of GABAB R and PKA-CREB pathway-related molecules by Western blot. Compared with control rats, the model rats exhibited reduced alternation rates with a prolonged time spent in the central zone; meanwhile, levels of tumor necrosis factor-α and interleukin-1β and the apoptotic index, as well as GABAB R1 and GABAB R2 expressions were increased in the model rats, but the cAMP-PKA-CREB pathway was inhibited (all P < 0.05). When treated with either Dex or CGP 35348, the surgical rats displayed an opposite tendency concerning the above factors as compared to the model rats (all P < 0.05). Furthermore, Baclofen, the agonist of GABAB R, could reverse the protective effect of Dex against POCD in rats. Dex protects rats from POCD possibly via suppressing GABAB R to up-regulate the cAMP-PKA-CREB signaling pathway, thereby alleviating the hippocampal inflammation caused by surgical trauma.
Collapse
Affiliation(s)
- Yun-Sheng Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying-Fen Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fo-Quan Luo
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Min
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Meng L, Xin G, Li B, Li D, Sun X, Yan T, Li L, Shi L, Cao S, Meng X. Anthocyanins Extracted from Aronia melanocarpa Protect SH-SY5Y Cells against Amyloid-beta (1-42)-Induced Apoptosis by Regulating Ca 2+ Homeostasis and Inhibiting Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12967-12977. [PMID: 30415542 DOI: 10.1021/acs.jafc.8b05404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the cytoprotective effects of anthocyanins in Aronia melanocarpa against apoptosis induced by Aβ1-42, a key mediator of AD pathophysiology. We measured intracellular calcium with a colorimetric kit, cellular apoptosis with DAPI, intracellular ROS with the fluorescent marker 2,3-dimethoxy-1,4-naphthoquinone, mitochondrial membrane potential with JC-1, and ATP with a colorimetric kit. Gene transcription and protein expression levels of calmodulin, cytochrome c, caspase-9, cleaved caspase-3, Bcl-2, and Bax were analyzed by RT-PCR and Western blotting. The results showed that pretreatment with anthocyanins significantly inhibited Aβ1-42-induced apoptosis, decreased intracellular calcium and ROS, and increased ATP and mitochondrial membrane potential. RT-PCR and Western blotting revealed that anthocyanins upregulated the gene transcription and protein expression of calmodulin and Bcl-2 and downregulated those of cytochrome c, caspase-9, cleaved caspase-3, and Bax. A. melanocarpa anthocyanins protected SH-SY5Y cells against Aβ1-42-induced apoptosis by regulating Ca2+ homeostasis and apoptosis-related genes and inhibiting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lingshuai Meng
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Guang Xin
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Bin Li
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Dongnan Li
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Xiyun Sun
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Tingcai Yan
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Li Li
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Lin Shi
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| | - Sen Cao
- School of Food and Pharmaceutical Engineering , Guiyang College , Guiyang , Guizhou 550000 , P. R. China
| | - Xianjun Meng
- College of Food Science , Shenyang Agricultural University , Shenyang , Liaoning 110866 , P. R. China
| |
Collapse
|
24
|
Adnyana IMO, Sudewi AR, Samatra DP, Suprapta DN. Neuroprotective Effects of Purple Sweet Potato Balinese Cultivar in Wistar Rats With Ischemic Stroke. Open Access Maced J Med Sci 2018; 6:1959-1964. [PMID: 30559843 PMCID: PMC6290418 DOI: 10.3889/oamjms.2018.435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Purple sweet potato (Ipomoea Batatas L.) is one of the sources for anthocyanin, which promotes the health through antioxidant, anti-inflammatory, anti-cancer, neuroprotection, and anti-apoptosis activities. Oxidative stress has been shown to be the cause of apoptosis in ischemic stroke. AIM: The objective of this research was to delineate the pleiotropic effects of anthocyanin for neuroprotection during an acute stroke event. METHODS: Anthocyanin was extracted from Balinese cultivar of purple sweet potato and subsequently administered to rat models of induced ischemic stroke (labelled as treatment group), as well as a placebo (labelled as a control group). Several parameters were in turn evaluated, i.e. the activities of anti-apoptotic (Bcl-2) as well as pro-apoptotic (cytochrome c, caspase-3) molecules, and apoptosis rate. Bcl-2 levels were determined using the histochemical method, cytochrome c and caspase-3 via ELISA method, while apoptosis rate was measured by TdT-medicated Dutp-Nick End Labeling (TUNEL) assay. RESULTS: Bcl-2 expression demonstrated significantly higher Bcl-2 expression in the treatment compared with control group (median 31.2 vs. 1.1; p = 0.001). Accordingly, pro-apoptotic cytochrome c and caspase-3 levels were also found significantly lower in the treatment as opposed to control group (mean 4.17 vs. 8.06; p = 0.001; mean 3.81 vs. 8.02; p = 0.001). Ultimately, apoptosis rate was found markedly lower among treatment than control groups (mean 3.81 vs. control 21.97; p = 0.003). CONCLUSION: The results of this study indicated a significant neuroprotective effect of anthocyanin derived from Balinese cultivar of PSP. Anthocyanin was able to increase and reduce anti-apoptotic and pro-apoptotic protein levels, respectively, resulting in lesser cellular apoptotic rate when compared with placebo. The potential mechanism was thought mainly due to its anti-oxidant properties.
Collapse
Affiliation(s)
- I Made Oka Adnyana
- Neurology Department, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Aa Raka Sudewi
- Neurology Department, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Dpg Purwa Samatra
- Neurology Department, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - D N Suprapta
- Biopesticide Laboratory, Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
| |
Collapse
|
25
|
Ariza MT, Forbes-Hernández TY, Reboredo-Rodríguez P, Afrin S, Gasparrini M, Cervantes L, Soria C, Martínez-Ferri E, Battino M, Giampieri F. Strawberry and Achenes Hydroalcoholic Extracts and Their Digested Fractions Efficiently Counteract the AAPH-Induced Oxidative Damage in HepG2 Cells. Int J Mol Sci 2018; 19:E2180. [PMID: 30049933 PMCID: PMC6121376 DOI: 10.3390/ijms19082180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.
Collapse
Affiliation(s)
- María Teresa Ariza
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Patricia Reboredo-Rodríguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Lucía Cervantes
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Carmen Soria
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Elsa Martínez-Ferri
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
26
|
Anthocyanins Improve Hippocampus-Dependent Memory Function and Prevent Neurodegeneration via JNK/Akt/GSK3β Signaling in LPS-Treated Adult Mice. Mol Neurobiol 2018; 56:671-687. [PMID: 29779175 DOI: 10.1007/s12035-018-1101-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
Abstract
Microglia plays a critical role in the brain and protects neuronal cells from toxins. However, over-activation of microglia leads to deleterious effects. Lipopolysaccharide (LPS) has been reported to affect neuronal cells via activation of microglia as well as directly to initiate neuroinflammation. In the present study, we evaluated the anti-inflammatory and anti-oxidative effect of anthocyanins against LPS-induced neurotoxicity in an animal model and in cell cultures. Intraperitoneal injections of LPS (250 μg/kg/day for 1 week) induce ROS production and promote neuroinflammation and neurodegeneration which ultimately leads to memory impairment. However, anthocyanins treatment at a dose of 24 mg/kg/day for 2 weeks (1 week before and 1 week co-treated with LPS) prevented ROS production, inhibited neuroinflammation and neurodegeneration, and improved memory functions in LPS-treated mice. Both histological and immunoblot analysis indicated that anthocyanins reversed the activation of JNK, prevented neuroinflammation by lowering the levels of inflammatory markers (p-NF-kB, TNF-α, and IL-1β), and reduced neuronal apoptosis by reducing the expression of Bax, cytochrome c, cleaved caspase-3, and cleaved PARP-1, while increasing the level of survival proteins p-Akt, p-GSK3β, and anti-apoptotic Bcl-2 protein. Anthocyanins treatment increased the levels of memory-related pre- and post-synaptic proteins and improved the hippocampus-dependent memory in the LPS-treated mice. Overall, this data suggested that consumption of naturally derived anti-oxidant agent such as anthocyanins ameliorated several pathological events in the LPS-treated animal model and we believe that anthocyanins would be a safe therapeutic agent for slowing the inflammation-induced neurodegeneration in the brain against several diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
|
27
|
Alvarez-Suarez JM, Giampieri F, Gasparrini M, Mazzoni L, Santos-Buelga C, González-Paramás AM, Forbes-Hernández TY, Afrin S, Páez-Watson T, Quiles JL, Battino M. The protective effect of acerola (Malpighia emarginata) against oxidative damage in human dermal fibroblasts through the improvement of antioxidant enzyme activity and mitochondrial functionality. Food Funct 2018; 8:3250-3258. [PMID: 28815233 DOI: 10.1039/c7fo00859g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acerola fruits (Malpighia emarginata DC.) from the central region of Cuba were analyzed to determine their chemical composition and protective capacity against oxidative damage using an in vitro human dermal fibroblast (HDFa) model. The chemical composition analyses showed a high content of vitamin C, total polyphenols, β-carotene and folates in the acerola fruit. From the HPLC-DAD/ESI-MSn analyses, two anthocyanins (cyanidin 3-O-rhamnoside and pelargonidin 3-O-rhamnoside), three hydroxycinnamoyl derivatives (caffeoyl hexoside, dihydrocaffeoylquinic acid and coumaroyl hexoside) and fifteen flavonols (mostly glycosylated forms of quercetin and kaempferol) were detected. HDFa were pre-incubated with an acerola crude extract (ACExt) and subsequently subjected to oxidative stress induced by AAPH. Apoptosis, intracellular ROS and the biomarkers of lipid and protein oxidation significantly increased after inducing stress, while the activities of the antioxidant enzyme catalase and superoxide dismutase and mitochondrial functionality were markedly affected. However, ACExt was able to protect against oxidative damage through decreasing apoptosis, intracellular ROS levels and lipid and protein damage, besides improving antioxidant enzyme activities and mitochondrial functionality. The obtained results support acerola fruits as relevant sources of functional compounds with promising effects on human health.
Collapse
Affiliation(s)
- José M Alvarez-Suarez
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2017; 55:6076-6093. [PMID: 29170981 DOI: 10.1007/s12035-017-0798-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Well-established studies have shown an elevated level of reactive oxygen species (ROS) that induces oxidative stress in the Alzheimer's disease (AD) patient's brain and an animal model of AD. Herein, we investigated the underlying anti-oxidant neuroprotective mechanism of natural dietary supplementation of anthocyanins extracted from Korean black beans in the amyloid precursor protein/presenilin-1 (APP/PS1) mouse model of AD. Both in vivo (APP/PS1 mice) and in vitro (mouse hippocampal HT22 cells) results demonstrated that anthocyanins regulate the phosphorylated-phosphatidylinositol 3-kinase-Akt-glycogen synthase kinase 3 beta (p-PI3K/Akt/GSK3β) pathways and consequently attenuate amyloid beta oligomer (AβO)-induced elevations in ROS level and oxidative stress via stimulating the master endogenous anti-oxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (Nrf2/HO-1) pathways and prevent apoptosis and neurodegeneration by suppressing the apoptotic and neurodegenerative markers such as activation of caspase-3 and PARP-1 expression as well as the TUNEL and Fluoro-Jade B-positive neuronal cells in the APP/PS1 mice. In vitro ApoTox-Glo™ Triplex assay results also showed that anthocyanins act as a potent anti-oxidant neuroprotective agent and reduce AβO-induced neurotoxicity in the HT22 cells via PI3K/Akt/Nrf2 signaling. Importantly, anthocyanins improve memory-related pre- and postsynaptic protein markers and memory functions in the APP/PS1 mice. In conclusion, our data suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Taehyun Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Sohail Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Faiz Ul Amin
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mehtab Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
29
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|
30
|
Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ 1-42-induced neuroinflammation and neurodegeneration via the NF- KB /JNK/GSK3β signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2533-2544. [PMID: 28736294 DOI: 10.1016/j.nano.2017.06.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
Abstract
Amyloid-beta (Aβ1-42) plaques and neurofibrillary tangles (NFTs) are the main hallmarks considered to be associated with neuroinflammation in Alzheimer's disease (AD). Recently, nanoparticle-based targeted drug delivery approaches have been found to be a useful tool in the neurotherapeutics field. Therefore, we examined and compared the neuroprotective effect of anthocyanins alone and anthocyanin-loaded poly (ethylene glycol)-gold nanoparticles (PEG-AuNPs) in Aβ1-42-injected mouse and in vitro models of AD. We determined that anthocyanins alone or conjugated with PEG-AuNPs (AnPEG-AuNPs) reduced Aβ1-42-induced neuroinflammatory and neuroapoptotic markers via inhibiting the p-JNK/NF-κB/p-GSK3β pathway in both in vivo and in vitro AD models. However, anthocyanins loaded with PEG-AuNPs were more effective compared to anthocyanins alone. Taken together, these results demonstrate that PEG-coated gold anthocyanins nanoparticles could be a new therapeutic agent in the field of nanomedicine to prevent neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Shafiq Ur Rehman
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
31
|
Ganesan K, Xu B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients 2017; 9:E455. [PMID: 28471393 PMCID: PMC5452185 DOI: 10.3390/nu9050455] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/23/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Polyphenols are plant secondary metabolites containing antioxidant properties, which help to protect chronic diseases from free radical damage. Dietary polyphenols are the subject of enhancing scientific interest due to their possible beneficial effects on human health. In the last two decades, there has been more interest in the potential health benefits of dietary polyphenols as antioxidant. Black soybeans (Glycine max L. Merr) are merely a black variety of soybean containing a variety of phytochemicals. These phytochemicals in black soybean (BSB) are potentially effective in human health, including cancer, diabetes, cardiovascular diseases, cerebrovascular diseases, and neurodegenerative diseases. Taking into account exploratory study, the present review aims to provide up-to-date data on health benefit of BSB, which helps to explore their therapeutic values for future clinical settings. All data of in vitro and in vivo studies of BSB and its impact on human health were collected from a library database and electronic search (Science Direct, PubMed, and Google Scholar). The different pharmacological information was gathered and orchestrated in a suitable spot on the paper.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519085, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519085, China.
| |
Collapse
|
32
|
17β-Estradiol via SIRT1/Acetyl-p53/NF-kB Signaling Pathway Rescued Postnatal Rat Brain Against Acute Ethanol Intoxication. Mol Neurobiol 2017; 55:3067-3078. [PMID: 28466267 DOI: 10.1007/s12035-017-0520-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Growing evidences reveal that 17β-estradiol has a wide variety of neuroprotective potential. Recently, it has been shown that 17β-estradiol can limit ethanol-induced neurotoxicity in neonatal rats. Whether it can stimulate SIRT1 signaling against ethanol intoxicity in developing brain remain elusive. Here, we report for the first time that 17β-estradiol activated SIRT1 to deacetylate p53 proteins against acute ethanol-induced oxidative stress, neuroinflammation, and neurodegeneration. A single subcutaneous injection of ethanol-induced oxidative stress triggered phospho c-jun N terminal kinase (p-JNK) and phospho mammalian target of rapamycin (p-mTOR) accompanied by neuroinflammation and widespread neurodegeneration. In contrast, 17β-estradiol cotreatment positively regulated SIRT1, inhibited p53 acetylation, reactive oxygen species (ROS) production, p-JNK, and p-mTOR activation and reduced neuroinflammation and neuronal cell death in the postnatal rat brain. Interestingly, SIRT1 inhibition with its inhibitor, i.e., EX527 further enhanced ethanol intoxication and also abolished the beneficial effects of 17β-estradiol against ethanol in the young rat's brain. Indeed, 17β-estradiol treatment increased the cell viability (HT22 cells), inhibited ROS production via the SIRT1/Acetyl-p53 pathway, and reduced the nuclear translocation of phospho-nuclear factor kappa B (p-NF-kB) in the BV2 microglia cells. Taken together, these results show that 17β-estradiol can be used as a potential neuroprotective agent against acute ethanol intoxication.
Collapse
|
33
|
Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer's disease neuropathological deficits. Mol Psychiatry 2017; 22:407-416. [PMID: 27001618 PMCID: PMC5322276 DOI: 10.1038/mp.2016.23] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/22/2022]
Abstract
Extensive evidence has indicated that a high rate of cholesterol biogenesis and abnormal neuronal energy metabolism play key roles in Alzheimer's disease (AD) pathogenesis. Here, for we believe the first time, we used osmotin, a plant protein homolog of mammalian adiponectin, to determine its therapeutic efficacy in different AD models. Our results reveal that osmotin treatment modulated adiponectin receptor 1 (AdipoR1), significantly induced AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1) activation and reduced SREBP2 (sterol regulatory element-binding protein 2) expression in both in vitro and in vivo AD models and in Adipo-/- mice. Via the AdipoR1/AMPK/SIRT1/SREBP2 signaling pathway, osmotin significantly diminished amyloidogenic Aβ production, abundance and aggregation, accompanied by improved pre- and post-synaptic dysfunction, cognitive impairment, memory deficits and, most importantly, reversed the suppression of long-term potentiation in AD mice. Interestingly, AdipoR1, AMPK and SIRT1 silencing not only abolished osmotin capability but also further enhanced AD pathology by increasing SREBP2, amyloid precursor protein (APP) and β-secretase (BACE1) expression and the levels of toxic Aβ production. However, the opposite was true for SREBP2 when silenced using small interfering RNA in APPswe/ind-transfected SH-SY5Y cells. Similarly, osmotin treatment also enhanced the non-amyloidogenic pathway by activating the α-secretase gene that is, ADAM10, in an AMPK/SIRT1-dependent manner. These results suggest that osmotin or osmotin-based therapeutic agents might be potential candidates for AD treatment.
Collapse
Affiliation(s)
- S A Shah
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - G H Yoon
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - S S Chung
- Department of Physiology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - M N Abid
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - T H Kim
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - H Y Lee
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - M O Kim
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea,Neuroscience Pioneer Research Center, Department of Biology, College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea. E-mail:
| |
Collapse
|
34
|
Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation 2016; 13:286. [PMID: 27821173 PMCID: PMC5100309 DOI: 10.1186/s12974-016-0752-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. Methods PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. Results A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. Conclusions Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0752-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Faiz Ul Amin
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mehtab Khan
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Noman Abid
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Tae Hyun Kim
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Min Woo Kim
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Neuroscience Pioneer Research Center, Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
35
|
Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav Brain Res 2016; 312:39-54. [DOI: 10.1016/j.bbr.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
|
36
|
Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci Ther 2016; 23:33-44. [PMID: 27421686 DOI: 10.1111/cns.12588] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Lipopolysaccharide (LPS) induces oxidative stress and neuroinflammation both in vivo and in vitro. Here, we provided the first detailed description of the mechanism of melatonin neuroprotection against LPS-induced oxidative stress, acute neuroinflammation, and neurodegeneration in the hippocampal dentate gyrus (DG) region of the postnatal day 7 (PND7) rat brain. METHODS The neuroprotective effects of melatonin against LPS-induced neurotoxicity were analyzed using multiple research techniques, including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISAs) in PND7 rat brain homogenates and BV2 cell lysates in vitro. We also used EX527 to inhibit silent information regulator transcript-1 (SIRT1). RESULTS A single intraperitoneal (i.p) injection of LPS to PND7 rats significantly induced glial cell activation, acute neuroinflammation, reactive oxygen species (ROS) production and apoptotic neurodegeneration in hippocampal DG region after 4 h. However, the coadministration of melatonin significantly inhibited both LPS-induced acute neuroinflammation and apoptotic neurodegeneration and improved synaptic dysfunction in the hippocampal DG region of PND7 rats. Most importantly, melatonin stimulated the SIRT1/Nrf2 (nuclear factor-erythroid 2-related factor 2) signaling pathway to reduce LPS-induced ROS generation. The beneficial effects of melatonin were further confirmed in LPS-stimulated BV2 microglia cell lines in vitro using EX527 as an inhibitor of SIRT1. LPS-induced oxidative stress, Nrf2 inhibition, and neuroinflammation are SIRT1-dependent in BV2 microglia cell lines. CONCLUSION These results demonstrated that melatonin treatment rescued the hippocampal DG region of PND7 rat brains against LPS-induced oxidative stress damage, acute neuroinflammation, and apoptotic neurodegeneration via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mehtab Khan
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeung-Hoon Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
37
|
Fornasaro S, Ziberna L, Gasperotti M, Tramer F, Vrhovšek U, Mattivi F, Passamonti S. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Sci Rep 2016; 6:22815. [PMID: 26965389 PMCID: PMC4786809 DOI: 10.1038/srep22815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023] Open
Abstract
Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19-355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans.
Collapse
Affiliation(s)
- Stefano Fornasaro
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Lovro Ziberna
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mattia Gasperotti
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Federica Tramer
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Urška Vrhovšek
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sabina Passamonti
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
38
|
Anthocyanins Reversed D-Galactose-Induced Oxidative Stress and Neuroinflammation Mediated Cognitive Impairment in Adult Rats. Mol Neurobiol 2016; 54:255-271. [DOI: 10.1007/s12035-015-9604-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
|
39
|
Abstract
Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.
Collapse
Key Words
- AD, Alzheimer disease
- ALS, autophagy-lysosome system
- AMPK, adenosine 5′-monophosphate-activated protein kinase;
- ATG, autophagy-related
- CNS, central nervous system
- ER, endoplasmic reticulum
- FASD, fetal alcohol spectrum disorders
- FOXO3, forkhead box O3
- GSK3B, glycogen synthase kinase 3 β
- HD, Huntington disease, HNSCs, hippocampal neural stem cells
- LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin (serine/threonine kinase)
- MTORC1, MTOR complex 1
- NFE2L2, nuclear factor, erythroid 2-like 2
- NOX, NADPH oxidase
- PD, Parkinson disease
- PI3K, class I phosphoinositide 3-kinase
- ROS, reactive oxygen species
- SQSTM1/p62, sequestosome 1
- TSC1/2, tuberous sclerosis 1/ 2
- UPR, unfolded protein response
- alcohol
- alcoholism
- development
- fetal alcohol spectrum disorders
- neurodegeneration
- oxidative stress
- protein degradation
Collapse
Affiliation(s)
- Jia Luo
- a Department of Pharmacology and Nutritional Sciences ; University of Kentucky College of Medicine ; Lexington , KY USA
| |
Collapse
|
40
|
Shah SA, Yoon GH, Ahmad A, Ullah F, Ul Amin F, Kim MO. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice. NANOSCALE 2015; 7:15225-37. [PMID: 26315713 DOI: 10.1039/c5nr03598h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.
Collapse
Affiliation(s)
- Shahid Ali Shah
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences (RINS), Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
41
|
Giampieri F, Alvarez-Suarez JM, Mazzoni L, Forbes-Hernandez TY, Gasparrini M, Gonzàlez-Paramàs AM, Santos-Buelga C, Quiles JL, Bompadre S, Mezzetti B, Battino M. An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food Funct 2015; 5:1939-48. [PMID: 24956972 DOI: 10.1039/c4fo00048j] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigates the protective effect of the Sveva strawberry polyphenol-rich extract on human dermal fibroblasts against AAPH-induced oxidative stress. The HPLC-DAD/ESI-MS analysis was used for evaluating the phenolic composition of the fruits. Sveva strawberry presented a high anthocyanin content (639.79 mg per kg fresh fruit), representing ∼86.08% of the total phenolic content, with Pg-3-glc as the most abundant representative (611.18 mg per kg fresh fruit). Only one ellagitannin (agrimoniin) was identified, while two quercetins, three kaempherol derivates, and three ellagic acid derivatives were detected and quantified. Strawberry pre-treatment (0.5 mg ml(-1)) markedly increased human dermal fibroblast viability, with a significant reduction of apoptotic and dead cells, and suppressed AAPH-induced ROS generation, after only 30 minutes of incubation with the oxidizing agent, and lipid peroxidation, against a range of AAPH concentrations tested. Notably, the strawberry extract also improved the mitochondrial functionality: the basal respiratory performance after treatment was ∼1.59-fold higher compared to control cells, while pre-treatment with strawberry extract before oxidative damage increased ∼2.70-fold compared to stressed cells. Our results confirm that the strawberry possesses antioxidant properties, and may be useful for the prevention of free radical-induced skin damage.
Collapse
Affiliation(s)
- Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, 60131, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shah SA, Yoon GH, Kim HO, Kim MO. Vitamin C Neuroprotection Against Dose-Dependent Glutamate-Induced Neurodegeneration in the Postnatal Brain. Neurochem Res 2015; 40:875-84. [DOI: 10.1007/s11064-015-1540-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
|
43
|
Badshah H, Kim TH, Kim MO. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem Int 2014; 80:51-9. [PMID: 25451757 DOI: 10.1016/j.neuint.2014.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in recent world, characterized by increased production of amyloid beta in the nervous system with an ultimate effect of apoptotic neurodegeneration. This study was aimed to investigate the neuroprotective effect of black soybean anthocyanins in a neurodegenerative model of amyloid beta 1-42 (Aβ1-42). Aβ1-42 was treated to HT22 cell lines or adult male rats via intra-cerebro-ventricular injection to induce neurotoxicity in these experimental models. Anthocyanins were treated 0.2 mg/kg in case of cell lines or 4 mg/kg intragastrically to adult rats to protect against Aβ-induced neurodegeneration. Assay for cell viability, mitochondrial membrane potential (Ψm), intracellular free Ca(2+) and apoptotic cells (fluoro-jade B and TUNEL) were performed in vitro while western blot analyses were performed to the hippocampal proteins of adult rats. Our results showed that Aβ1-42 treatment reduced cell viability, disturbed the Ψm and Ca(2+) homeostasis in and out of the cell, and increased neuronal apoptosis. Treatment with anthocyanins for 12 hr retained the cell viability, normalized Ψm and Ca(2+) level, and decreased the neuronal cell death. In accordance, anthocyanins reversed Aβ-induced effect on protein expression of mitochondrial apoptotic pathway (Bax, cytochrome C, caspase-9 and caspase-3) and major Alzheimer's markers i.e. Aβ, APP, P-tau and BACE-1. Overall, our results showed that anthocyanins are potential candidates to treat neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Haroon Badshah
- Department of Biology and Applied Life Science (BK 21 plus), College of Natural Sciences (RINS), Gyeongsang National University, Jinju 660-701, South Korea
| | - Tae Hyun Kim
- Department of Biology and Applied Life Science (BK 21 plus), College of Natural Sciences (RINS), Gyeongsang National University, Jinju 660-701, South Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science (BK 21 plus), College of Natural Sciences (RINS), Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
44
|
Protection of the Developing Brain with Anthocyanins Against Ethanol-Induced Oxidative Stress and Neurodegeneration. Mol Neurobiol 2014; 51:1278-91. [DOI: 10.1007/s12035-014-8805-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
45
|
Badshah H, Kim TH, Kim MJ, Ahmad A, Ali T, Yoon GH, Naseer MI, Kim MO. Apomorphine attenuates ethanol-induced neurodegeneration in the adult rat cortex. Neurochem Int 2014; 74:8-15. [PMID: 24795108 DOI: 10.1016/j.neuint.2014.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
Apomorphine, therapeutically used for Parkinson's disease, is a dopamine D1/D2 receptor agonist that has been determined to be a potent antioxidant and to prevent the reaction of free radicals in the brain. Alcohol is a neurotoxic agent that induces neurodegeneration possibly through the generation of free radicals. In this study, we investigated the antioxidant potential of apomorphine upon ethanol-induced neurodegeneration in the cortex of adult rats. Ethanol-induced apoptotic neurodegeneration was measured via the suppression of Bcl-2, the induction of Bax, the release of cytochrome C and the activation of caspase-9 and caspase-3. Moreover, ethanol-induced elevated levels of cleaved PARP-1 indicated exaggerated neuronal DNA damage. Our results demonstrated the neuroprotective effect of apomorphine by reversing the ethanol-induced apoptotic trend as observed by the increased expression of Bcl-2, down regulation of Bax, inhibition of mitochondrial cytochrome C release and inhibition of activated caspase-9 and caspase-3. Moreover, apomorphine treatment further decreased the expression of cleaved PARP-1 to reveal a reduction in ethanol-induced neuronal damage. Immunohistochemical analysis and Nissl staining also revealed neuroprotective effect of apomorphine after ethanol-induced neuronal cell death. In this study, our results indicated that apomorphine at doses of 1 and 5mg/kg has neuroprotective effects for ethanol-induced neuronal damage. Finally, we can conclude that apomorphine has effective therapeutic potential to protect the brain against ethanol-induced neurotoxicity.
Collapse
Affiliation(s)
- Haroon Badshah
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Tae Hyun Kim
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Min Ju Kim
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ashfaq Ahmad
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Tahir Ali
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Gwang Ho Yoon
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine and Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Myeong Ok Kim
- Department of Biology, College of Natural Sciences (RINS) and Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
46
|
Argon gas: a potential neuroprotectant and promising medical therapy. Med Gas Res 2014; 4:3. [PMID: 24533741 PMCID: PMC3996095 DOI: 10.1186/2045-9912-4-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/11/2014] [Indexed: 12/16/2022] Open
Abstract
Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential.
Collapse
|