1
|
Wang D, Yang Z, Wu P, Li Q, Yu C, Yang Y, Du Y, Jiang M, Ma J. Adrenomedullin 2 attenuates anxiety-like behaviors by increasing IGF-II in amygdala and re-establishing blood-brain barrier. Transl Psychiatry 2025; 15:10. [PMID: 39809730 PMCID: PMC11733292 DOI: 10.1038/s41398-025-03229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice. Based on transcriptome analysis and biochemical analyses, we found that ADM2 facilitates the expression of insulin-like growth factor 2 (IGF-II), which then triggers the activation of the AKT-GSK3β-mTOR signaling pathway via the IGF-II receptor (IGF-IIR), rather than the IGF-I receptor (IGF-IR). Furthermore, as evidenced by increased Evans blue staining and decreased VE-cadherin levels, the BBB exhibited dysfunction in ADM2 knockout mice with anxiety-like behaviors. In in vitro studies, ADM2 administration promoted the expression of VE-cadherin and decreased IGF-II leakage through the endothelial barrier in a BBB model. Taken together, ADM2 may alleviate anxiety-like behavior and social deficits by enhancing BBB integrity and increasing IGF-II levels in the brain. These findings highlight the potential of ADM2 as a therapeutic target for anxiety and related mental disorders.
Collapse
Affiliation(s)
- Denian Wang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengfei Wu
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Yu
- Frontiers Science Center for Disease-related Molecular Network, Laboratory of Omics Technology and Bioinformatics. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Yang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuefan Du
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengwei Jiang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Department of Neurosurgery, West China Tianfu Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Chen R, Lu X, Xiao A, Ma J. Role of insulin-like growth factor-2 in Alzheimer's disease induced memory impairment and underlying mechanisms. Front Cell Neurosci 2025; 18:1520253. [PMID: 39830039 PMCID: PMC11739150 DOI: 10.3389/fncel.2024.1520253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Treatments for AD do not reverse the loss of brain function; rather, they decrease the rate of cognitive deterioration. Current treatments are ineffective in part because they do not address neurotrophic mechanisms, which are believed to be critical for functional recovery. Given that structural losses are assumed to be the root cause of cognitive impairment in AD, strengthening neurotrophic pathways may be a useful preventative therapeutic approach. Insulin-like growth factor-2 (IGF2), which is widely expressed in the central nervous system (CNS), has emerged as a crucial mechanism of synaptic plasticity and learning and memory, and many studies have indicated that this neurotrophic peptide is a viable candidate for treating and preventing AD-induced cognitive decline. An increase in IGF2 levels improves memory in healthy animals and alleviates several symptoms associated with neurodegenerative disorders. These effects are primarily caused by the IGF2 receptor, which is widely expressed in neurons and controls protein trafficking, synthesis, and degradation. However, the use of IGF2 as a potential target for the development of novel pharmaceuticals to treat AD-induced memory impairment needs further investigation. We compiled recent studies on the role of IGF2 in AD-associated memory issues and summarized the current knowledge regarding IGF2 expression and function in the brain, specifically in AD-induced memory impairment.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xing Lu
- Department of Gynecological Nursing, West China Second Hospital, Sichuan University, Chengdu, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Tianfu Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Romero-Zerbo SY, Valverde N, Claros S, Zamorano-Gonzalez P, Boraldi F, Lofaro FD, Lara E, Pavia J, Garcia-Fernandez M, Gago B, Martin-Montañez E. New molecular mechanisms to explain the neuroprotective effects of insulin-like growth factor II in a cellular model of Parkinson's disease. J Adv Res 2025; 67:349-359. [PMID: 38341032 PMCID: PMC11725160 DOI: 10.1016/j.jare.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION One of the hallmarks of Parkinsońs Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.
Collapse
Affiliation(s)
- Silvana-Yanina Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Silvia Claros
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Pablo Zamorano-Gonzalez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Francesco-Demetrio Lofaro
- Dipartimento di Scienze Della Vita. Patologia Generale, Universita di Modena e Reggio Emilia 4112, Italy
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain.
| | - Belen Gago
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| | - Elisa Martin-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga 29010, Spain
| |
Collapse
|
4
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
5
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Zanetti A, Tomanin R. Targeting Neurological Aspects of Mucopolysaccharidosis Type II: Enzyme Replacement Therapy and Beyond. BioDrugs 2024; 38:639-655. [PMID: 39177874 PMCID: PMC11358193 DOI: 10.1007/s40259-024-00675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare, pediatric, neurometabolic disorder due to the lack of activity of the lysosomal hydrolase iduronate 2-sulfatase (IDS), normally degrading heparan sulfate and dermatan sulfate within cell lysosomes. The deficit of activity is caused by mutations affecting the IDS gene, leading to the pathological accumulation of both glycosaminoglycans in the lysosomal compartment and in the extracellular matrix of most body districts. Although a continuum of clinical phenotypes is described, two main forms are commonly recognized-attenuated and severe-the latter being characterized by an earlier and faster clinical progression and by a progressive impairment of central nervous system (CNS) functions. However, attenuated forms have also been recently described as presenting some neurological involvement, although less deep, such as deficits of attention and hearing loss. The main treatment for the disease is represented by enzyme replacement therapy (ERT), applied in several countries since 2006, which, albeit showing partial efficacy on some peripheral organs, exhibited a very poor efficacy on bones and heart, and a total inefficacy on CNS impairment, due to the inability of the recombinant enzyme to cross the blood-brain barrier (BBB). Together with ERT, whose design enhancements, performed in the last few years, allowed a possible brain penetration of the drug through the BBB, other therapeutic approaches aimed at targeting CNS involvement in MPS II were proposed and evaluated in the last decades, such as intrathecal ERT, intracerebroventricular ERT, ex vivo gene therapy, or adeno-associated viral vector (AAV) gene therapy. The aim of this review is to summarize the main clinical aspects of MPS II in addition to current therapeutic options, with particular emphasis on the neurological ones and on the main CNS-targeted therapeutic approaches explored through the years.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy.
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy.
| |
Collapse
|
7
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, von Zastrow M, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. Mol Syst Biol 2024; 20:952-971. [PMID: 38951684 PMCID: PMC11297269 DOI: 10.1038/s44320-024-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Proximity labeling (PL) via biotinylation coupled with mass spectrometry (MS) captures spatial proteomes in cells. Large-scale processing requires a workflow minimizing hands-on time and enhancing quantitative reproducibility. We introduced a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. Combining this with optimized quantitative MS based on data-independent acquisition (DIA), we increased sample throughput and improved protein identification and quantification reproducibility. We applied this pipeline to delineate subcellular proteomes across various compartments. Using the 5HT2A serotonin receptor as a model, we studied temporal changes of proximal interaction networks induced by receptor activation. In addition, we modified the pipeline for reduced sample input to accommodate CRISPR-based gene knockout, assessing dynamics of the 5HT2A network in response to perturbation of selected interactors. This PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, enhancing throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA.
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Gauthier C, El Cheikh K, Basile I, Daurat M, Morère E, Garcia M, Maynadier M, Morère A, Gary-Bobo M. Cation-independent mannose 6-phosphate receptor: From roles and functions to targeted therapies. J Control Release 2024; 365:759-772. [PMID: 38086445 DOI: 10.1016/j.jconrel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-M6PR) is a ubiquitous transmembrane receptor whose main intracellular role is to direct enzymes carrying mannose 6-phosphate moieties to lysosomal compartments. Recently, the small membrane-bound portion of this receptor has appeared to be implicated in numerous pathophysiological processes. This review presents an overview of the main ligand partners and the roles of CI-M6PR in lysosomal storage diseases, neurology, immunology and cancer fields. Moreover, this membrane receptor has already been noted for its strong potential in therapeutic applications thanks to its cellular internalization activity and its ability to address pathogenic factors to lysosomes for degradation. A number of therapeutic delivery approaches using CI-M6PR, in particular with enzymes, antibodies or nanoparticles, are currently being proposed.
Collapse
Affiliation(s)
- Corentin Gauthier
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Elodie Morère
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Alain Morère
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
9
|
Arcos J, Grunenwald F, Sepulveda D, Jerez C, Urbina V, Huerta T, Troncoso-Escudero P, Tirado D, Perez A, Diaz-Espinoza R, Nova E, Kubitscheck U, Rodriguez-Gatica JE, Hetz C, Toledo J, Ahumada P, Rojas-Rivera D, Martín-Montañez E, Garcia-Fernandez M, Vidal RL. IGF2 prevents dopaminergic neuronal loss and decreases intracellular alpha-synuclein accumulation in Parkinson's disease models. Cell Death Discov 2023; 9:438. [PMID: 38042807 PMCID: PMC10693583 DOI: 10.1038/s41420-023-01734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common late-onset neurodegenerative disease and the predominant cause of movement problems. PD is characterized by motor control impairment by extensive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This selective dopaminergic neuronal loss is in part triggered by intracellular protein inclusions called Lewy bodies, which are composed mainly of misfolded alpha-synuclein (α-syn) protein. We previously reported insulin-like growth factor 2 (IGF2) as a key protein downregulated in PD patients. Here we demonstrated that IGF2 treatment or IGF2 overexpression reduced the α-syn aggregates and their toxicity by IGF2 receptor (IGF2R) activation in cellular PD models. Also, we observed IGF2 and its interaction with IGF2R enhance the α-syn secretion. To determine the possible IGF2 neuroprotective effect in vivo we used a gene therapy approach in an idiopathic PD model based on α-syn preformed fibrils intracerebral injection. IGF2 gene therapy revealed a significantly preventing of motor impairment in idiopathic PD model. Moreover, IGF2 expression prevents dopaminergic neuronal loss in the SN together with a decrease in α-syn accumulation (phospho-α-syn levels) in the striatum and SN brain region. Furthermore, the IGF2 neuroprotective effect was associated with the prevention of synaptic spines loss in dopaminergic neurons in vivo. The possible mechanism of IGF2 in cell survival effect could be associated with the decrease of the intracellular accumulation of α-syn and the improvement of dopaminergic synaptic function. Our results identify to IGF2 as a relevant factor for the prevention of α-syn toxicity in both in vitro and preclinical PD models.
Collapse
Affiliation(s)
- Javiera Arcos
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carolina Jerez
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Valentina Urbina
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Tomas Huerta
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Molecular Diagnostic and Biomarkers Laboratory, Department of Pathology, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Daniel Tirado
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
| | - Angela Perez
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Nova
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jorge Toledo
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
| | - Pablo Ahumada
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Diego Rojas-Rivera
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Universidad Mayor, Santiago, Chile
- Center for Biomedicine, Universidad Mayor, Santiago, Chile
| | - Elisa Martín-Montañez
- Department of Pharmacology, Faculty of Medicine, Biomedical Research Institute of Malaga, University of Malaga, Malaga, Spain
| | - María Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Biomedical Research Institute of Malaga, University of Malaga, Malaga, Spain
| | - René L Vidal
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile.
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
10
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - Evidence from human neuronal cell models. Neurosci Biobehav Rev 2023; 153:105330. [PMID: 37516219 DOI: 10.1016/j.neubiorev.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signalling play a central role in the development and maintenance of neurons in the brain, and human neurodevelopmental as well as neuropsychiatric disorders have been linked to impaired insulin and IGF1 signalling. This review focuses on the impairments of the insulin and IGF1 signalling cascade in the context of neurodevelopmental and neuropsychiatric disorders, based on evidence from human neuronal cell models. Clear evidence was obtained for impaired insulin and IGF1 receptor downstream signalling in neurodevelopmental disorders, while the evidence for its role in neuropsychiatric disorders was less substantial. Human neuronal model systems can greatly add to our knowledge about insulin/IGF1 signalling in the brain, its role in restoring dendritic maturity, and complement results from clinical studies and animal models. Moreover, they represent a useful model for the development of new therapeutic strategies. Further research is needed to systematically investigate the exact role of the insulin/IGF1 signalling cascades in neurodevelopmental and neuropsychiatric disorders, and to elucidate the respective therapeutic implications.
Collapse
Affiliation(s)
- János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Katalin Vincze
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dorothea Schall
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Neurosciences (IZN), Heidelberg University, Germany.
| |
Collapse
|
12
|
Dou M, Azad MAK, Cheng Y, Ding S, Liu Y, Song B, Kong X. Expressions of Insulin-like Growth Factor System among Different Breeds Impact Piglets' Growth during Weaning. Animals (Basel) 2023; 13:3011. [PMID: 37835617 PMCID: PMC10571838 DOI: 10.3390/ani13193011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigated the insulin-like growth factors (IGFs) and their receptors and binding proteins among three pig breeds during weaning. Sixty Duroc (DR), Taoyuan black (TYB), and Xiangcun black (XCB) piglets (20 piglets per breed) were selected at 21 and 24 (3 days of post-weaning) days of age to analyze organ indices, plasma concentrations of IGF and IGF-binding proteins (IGFBPs) using ELISA kits, and gene expression of IGF-system-related components in different tissues. The plasma IGFBP-3 concentration in TYB piglets was higher (p > 0.05) than in the XCB and DR piglets at 21 days of age. At 21 days of age, compared with the DR piglets, the IGF-1 expression was lower (p < 0.05) in the kidney, but it was higher (p < 0.05) in the spleen of XCB and TYB piglets. At 24 days of age, the IGF-1 expression was higher (p < 0.05) in the kidney of TYB piglets than in the XCB and DR piglets, while IGFBP-3 in the stomach and IGFBP-4 in the liver of XCB and TYB piglets were lower (p < 0.05) compared with the DR piglets. Weaning down-regulated (p < 0.05) IGF-1 expression in the jejunum, spleen, and liver of piglets, while it up-regulated (p < 0.05) IGFBP-3 expression in the stomach, IGFBP-4 in the liver, IGFBP-5 in the ileum, and IGFBP-6 in the jejunum of DR piglets. Spearman's correlation analysis showed a negative correlation (p < 0.05) between plasma IGFBP-2 and IGFBP-5 concentration and the organ indices of piglets. Collectively, there were significant differences in the IGF system components among the three pig breeds. The IGF system components were altered during weaning, which might be involved in weaning stress to decrease the growth of piglets.
Collapse
Affiliation(s)
- Mengying Dou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yating Cheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
| | - Bo Song
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
13
|
Vimercati A, Tannorella P, Orlandini E, Calzari L, Moro M, Guzzetti S, Selicorni A, Crippa M, Larizza L, Bonati MT, Russo S. Case report: atypical Silver-Russell syndrome patient with hand dystonia: the valuable support of the consensus statement to the wide syndromic spectrum. Front Genet 2023; 14:1198821. [PMID: 37529781 PMCID: PMC10387531 DOI: 10.3389/fgene.2023.1198821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Abstract
The amount of Insulin Growth Factor 2 (IGF2) controls the rate of embryonal and postnatal growth. The IGF2 and adjacent H19 are the imprinted genes of the telomeric cluster in the 11p15 chromosomal region regulated by differentially methylated regions (DMRs) or imprinting centers (ICs): H19/IGF2:IG-DMR (IC1). Dysregulation due to IC1 Loss-of-Methylation (LoM) or Gain-of-Methyaltion (GoM) causes Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS) disorders associated with growth retardation or overgrowth, respectively. Specific features define each of the two syndromes, but isolated asymmetry is a common cardinal feature, which is considered sufficient for a diagnosis in the BWS spectrum. Here, we report the case of a girl with right body asymmetry, which suggested BWS spectrum. Later, BWS/SRS molecular analysis identified IC1_LoM revealing the discrepant diagnosis of SRS. A clinical re-evaluation identified a relative macrocephaly and previously unidentified growth rate at lower limits of normal at birth, feeding difficulties, and asymmetry. Interestingly, and never previously described in IC1_LoM SRS patients, since the age of 16, she has developed hand-writer's cramps, depression, and bipolar disorder. Trio-WES identified a VPS16 heterozygous variant [NM_022575.4:c.2185C>G:p.Leu729Val] inherited from her healthy mother. VPS16 is involved in the endolysosomal system, and its dysregulation is linked to autosomal dominant dystonia with incomplete penetrance and variable expressivity. IGF2 involvement in the lysosomal pathway led us to speculate that the neurological phenotype of the proband might be triggered by the concurrent IGF2 deficit and VPS16 alteration.
Collapse
Affiliation(s)
- Alessandro Vimercati
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Pierpaola Tannorella
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Eleonora Orlandini
- Specialty School of Pediatrics, Alma Mater University of Bologna, Bologna, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Mirella Moro
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Sara Guzzetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | | | - Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Maria Teresa Bonati
- Unit of Medical Genetics, Institute for Maternal and Child Health Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofalo, Trieste, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
14
|
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci 2023; 46:488-502. [PMID: 37031050 PMCID: PMC10192130 DOI: 10.1016/j.tins.2023.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Insulin-like growth factor 2 (IGF2) emerged as a critical mechanism of synaptic plasticity and learning and memory. Deficits in IGF2 in the brain, serum, or cerebrospinal fluid (CSF) are associated with brain diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Increasing IGF2 levels enhances memory in healthy animals and reverses numerous symptoms in laboratory models of aging, neurodevelopmental disorders, and neurodegenerative diseases. These effects occur via the IGF2 receptor (IGF2R) - a receptor that is highly expressed in neurons and regulates protein trafficking, synthesis, and degradation. Here, I summarize the current knowledge regarding IGF2 expression and functions in the brain, particularly in memory, and propose a novel conceptual model for IGF2/IGF2R mechanisms of action in brain health and diseases.
Collapse
|
15
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
17
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
18
|
Zhu Y, Chen L, Song B, Cui Z, Chen G, Yu Z, Song B. Insulin-like Growth Factor-2 (IGF-2) in Fibrosis. Biomolecules 2022; 12:1557. [PMID: 36358907 PMCID: PMC9687531 DOI: 10.3390/biom12111557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
The insulin family consists of insulin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), their receptors (IR, IGF-1R and IGF-2R), and their binding proteins. All three ligands are involved in cell proliferation, apoptosis, protein synthesis and metabolism due to their homologous sequences and structural similarities. Insulin-like growth factor 2, a member of the insulin family, plays an important role in embryonic development, metabolic disorders, and tumorigenesis by combining with three receptors with different degrees of affinity. The main pathological feature of various fibrotic diseases is the excessive deposition of extracellular matrix (ECM) after tissue and organ damage, which eventually results in organic dysfunction because scar formation replaces tissue parenchyma. As a mitogenic factor, IGF-2 is overexpressed in many fibrotic diseases. It can promote the proliferation of fibroblasts significantly, as well as the production of ECM in a time- and dose-dependent manner. This review aims to describe the expression changes and fibrosis-promoting effects of IGF-2 in the skin, oral cavity, heart, lung, liver, and kidney fibrotic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
19
|
Insulin-like Growth Factor 2 Promotes Tissue-Specific Cell Growth, Proliferation and Survival during Development of Helicoverpa armigera. Cells 2022; 11:cells11111799. [PMID: 35681494 PMCID: PMC9180042 DOI: 10.3390/cells11111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
During development, cells constantly undergo fate choices by differentiating, proliferating, and dying as part of tissue remodeling. However, we only begin to understand the mechanisms of these different fate choices. Here, we took the lepidopteran insect Helicoverpa armigera, the cotton bollworm, as a model to reveal that insulin-like growth factor 2 (IGF-2-like) prevented cell death by promoting cell growth and proliferation. Tissue remodeling occurs during insect metamorphosis from larva to adult under regulation by 20-hydroxyecdysone (20E), a steroid hormone. An unknown insulin-like peptide in the genome of H. armigera was identified as IGF-2-like by sequence analysis using human IGFs. The expression of Igf-2-like was upregulated by 20E. IGF-2-like was localized in the imaginal midgut during tissue remodeling, but not in larval midgut that located nearby. IGF-2-like spread through the fat body during fat body remodeling. Cell proliferation was detected in the imaginal midgut and some fat body cells expressing IGF-2-like. Apoptosis was detected in the larval midgut and some fat body cells that did not express IGF-2-like, suggesting the IGF-2-like was required for cell survival, and IGF-2-like and apoptosis were exclusive, pointing to a survival requirement. Knockdown of Igf-2-like resulted in repression of growth and proliferation of the imaginal midgut and fat body. Our results suggested that IGF-2-like promotes cell growth and proliferation in imaginal tissues, promoting cell death avoidance and survival of imaginal cells during tissue remodeling. It will be interesting to determine whether the mechanism of action of steroid hormones on insulin growth factors is conserved in other species.
Collapse
|
20
|
Insulin-like Growth Factor II Prevents MPP+ and Glucocorticoid Mitochondrial-Oxidative and Neuronal Damage in Dopaminergic Neurons. Antioxidants (Basel) 2021; 11:antiox11010041. [PMID: 35052545 PMCID: PMC8773450 DOI: 10.3390/antiox11010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Stress seems to contribute to Parkinson’s disease (PD) neuropathology, probably by dysregulation of the hypothalamic–pituitary–adrenal axis. Key factors in this pathophysiology are oxidative stress and mitochondrial dysfunction and neuronal glucocorticoid-induced toxicity. The insulin-like growth factor II (IGF-II), a pleiotropic hormone, has shown antioxidant and neuroprotective effects in some neurodegenerative disorders. Our aim was to examine the protective effect of IGF-II on a dopaminergic cellular combined model of PD and mild to moderate stress measuring oxidative stress parameters, mitochondrial and neuronal markers, and signalling pathways. IGF-II counteracts the mitochondrial-oxidative damage produced by the toxic synergistic effect of corticosterone and 1-methyl-4-phenylpyridinium, protecting dopaminergic neurons from death and neurodegeneration. IGF-II promotes PKC activation and nuclear factor (erythroid-derived 2)-like 2 antioxidant response in a glucocorticoid receptor-dependent pathway, preventing oxidative cell damage and maintaining mitochondrial function. Thus, IGF-II is a potential therapeutic tool for treatment and prevention of disease progression in PD patients suffering mild to moderate emotional stress.
Collapse
|
21
|
Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM, Kuehne AI, Mittler E, Jangra RK, Teruya J, Dye JM, Lai JR, Chandran K. Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Front Immunol 2021; 12:729851. [PMID: 34721393 PMCID: PMC8551868 DOI: 10.3389/fimmu.2021.729851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Teruya
- Antibody Discovery and Research group, Mapp Biopharmaceutical, San Diego, CA, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
22
|
Martín-Montañez E, Valverde N, Ladrón de Guevara-Miranda D, Lara E, Romero-Zerbo YS, Millon C, Boraldi F, Ávila-Gámiz F, Pérez-Cano AM, Garrido-Gil P, Labandeira-Garcia JL, Santin LJ, Pavia J, Garcia-Fernandez M. Insulin-like growth factor II prevents oxidative and neuronal damage in cellular and mice models of Parkinson's disease. Redox Biol 2021; 46:102095. [PMID: 34418603 PMCID: PMC8379511 DOI: 10.1016/j.redox.2021.102095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Oxidative distress and mitochondrial dysfunction, are key factors involved in the pathophysiology of Parkinson's disease (PD). The pleiotropic hormone insulin-like growth factor II (IGF-II) has shown neuroprotective and antioxidant effects in some neurodegenerative diseases. In this work, we demonstrate the protective effect of IGF-II against the damage induced by 1-methyl-4-phenylpyridinium (MPP+) in neuronal dopaminergic cell cultures and a mouse model of progressive PD. In the neuronal model, IGF-II counteracts the oxidative distress produced by MPP + protecting dopaminergic neurons. Improved mitochondrial function, increased nuclear factor (erythroid-derived 2)-like2 (NRF2) nuclear translocation along with NRF2-dependent upregulation of antioxidative enzymes, and modulation of mammalian target of rapamycin (mTOR) signalling pathway were identified as mechanisms leading to neuroprotection and the survival of dopaminergic cells. The neuroprotective effect of IGF-II against MPP + -neurotoxicity on dopaminergic neurons depends on the specific IGF-II receptor (IGF-IIr). In the mouse model, IGF-II prevents behavioural dysfunction and dopaminergic nigrostriatal pathway degeneration and mitigates neuroinflammation induced by MPP+. Our work demonstrates that hampering oxidative stress and normalising mitochondrial function through the interaction of IGF-II with its specific IGF-IIr are neuroprotective in both neuronal and mouse models. Thus, the modulation of the IGF-II/IGF-IIr signalling pathway may be a useful therapeutic approach for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Elisa Martín-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Yanina S Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Carmelo Millon
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze della Vita. Patologia Generale.Universita di Modena e Reggio Emilia. 41125, Italy
| | - Fabiola Ávila-Gámiz
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Ana M Pérez-Cano
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Pablo Garrido-Gil
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) y Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED-Madrid). Universidad de Santiago de Compostela, 15782 Spain
| | - Jose Luis Labandeira-Garcia
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) y Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED-Madrid). Universidad de Santiago de Compostela, 15782 Spain
| | - Luis J Santin
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain.
| |
Collapse
|
23
|
Zhang Z, Mou Z, Xu C, Wu S, Dai X, Chen X, Ou Y, Chen Y, Yang C, Jiang H. Autophagy-associated circular RNA hsa_circ_0007813 modulates human bladder cancer progression via hsa-miR-361-3p/IGF2R regulation. Cell Death Dis 2021; 12:778. [PMID: 34365465 PMCID: PMC8349354 DOI: 10.1038/s41419-021-04053-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNAs) drive several cellular processes including proliferation, survival, and differentiation. Here, we identified a circRNA hsa_circ_0007813, whose expression was upregulated in bladder cancer. High hsa_circ_0007813 expression was associated with larger tumor size, higher primary tumor T stage, and higher pathologic grade. Survival analysis showed that patients with high hsa_circ_0007813 expression levels had a poorer prognosis. Based on these findings from clinical tissue samples and cell lines, we assumed that hsa_circ_0007813 functioned a vital role in bladder cancer progression. Next, functional experiments revealed that knockdown of hsa_circ_0007813 inhibited proliferation, migration, and invasiveness of bladder cancer cells both in vitro and in vivo. Through extensive bioinformatic prediction and RNA pull-down assays, we identified hsa-miR-361-3p as a competing endogenous RNA of hsa_circ_0007813. Further bioinformatic studies narrowed targets to 35 possible downstream genes. We then found that knockdown of hsa_circ_0007813 led to altered cell autophagy, bringing our attention to IGF2R, one of the possible downstream genes. IGF2R was also known as cation-independent mannose-6-phosphate receptor (CI-M6PR), was discovered to participate in both autophagy and tumor biology. Regarding autophagy has a dominant role in the survival of tumor cells overcoming cellular stress and correlates with tumor progression, investigations were made to prove that hsa_circ_0007813 could regulate IGF2R expression via hsa-miR-361-3p sponging. The potential of hsa_circ_0007813 in regulating IGF2R expression explained its influence on cell behavior and clinical outcomes. Collectively, our data could offer new insight into the biology of circRNA in bladder cancer.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab 2021; 52:101245. [PMID: 33962049 PMCID: PMC8513159 DOI: 10.1016/j.molmet.2021.101245] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The insulin-like growth factor family of ligands (IGF-I, IGF-II, and insulin), receptors (IGF-IR, M6P/IGF-IIR, and insulin receptor [IR]), and IGF-binding proteins (IGFBP-1-6) play critical roles in normal human physiology and disease states. SCOPE OF REVIEW Insulin and insulin receptors are the focus of other chapters in this series and will therefore not be discussed further. Here we review the basic components of the IGF system, their role in normal physiology and in critical pathology's. While this review concentrates on the role of IGFs in human physiology, animal models have been essential in providing understanding of the IGF system, and its regulation, and are briefly described. MAJOR CONCLUSIONS IGF-I has effects via the circulation and locally within tissues to regulate cellular growth, differentiation, and survival, thereby controlling overall body growth. IGF-II levels are highest prenatally when it has important effects on growth. In adults, IGF-II plays important tissue-specific roles, including the maintenance of stem cell populations. Although the IGF-IR is closely related to the IR it has distinct physiological roles both on the cell surface and in the nucleus. The M6P/IGF-IIR, in contrast, is distinct and acts as a scavenger by mediating internalization and degradation of IGF-II. The IGFBPs bind IGF-I and IGF-II in the circulation to prolong their half-lives and modulate tissue access, thereby controlling IGF function. IGFBPs also have IGF ligand-independent cell effects.
Collapse
Affiliation(s)
- Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff M P Holly
- Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, Australia
| |
Collapse
|
25
|
Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed Pharmacother 2021; 137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
|
26
|
Miller JJ, Bohnsack RN, Olson LJ, Ishihara M, Aoki K, Tiemeyer M, Dahms NM. Tissue plasminogen activator is a ligand of cation-independent mannose 6-phosphate receptor and consists of glycoforms that contain mannose 6-phosphate. Sci Rep 2021; 11:8213. [PMID: 33859256 PMCID: PMC8050316 DOI: 10.1038/s41598-021-87579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Plasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.
Collapse
Affiliation(s)
- James J Miller
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
27
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
28
|
Cruz E, Descalzi G, Steinmetz A, Scharfman HE, Katzman A, Alberini CM. CIM6P/IGF-2 Receptor Ligands Reverse Deficits in Angelman Syndrome Model Mice. Autism Res 2021; 14:29-45. [PMID: 33108069 PMCID: PMC8579913 DOI: 10.1002/aur.2418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 11/12/2022]
Abstract
Angelman syndrome (AS), a genetic disorder that primarily affects the nervous system, is characterized by delayed development, intellectual disability, severe speech impairment, and problems with movement and balance (ataxia). Most affected children also have recurrent seizures (epilepsy). No existing therapies are capable of comprehensively treating the deficits in AS; hence, there is an urgent need to identify new treatments. Here we show that insulin-like growth factor 2 (IGF-2) and mannose-6-phosphate (M6P), ligands of two independent binding sites of the cation-independent M6P/IGF-2 receptor (CIM6P/IGF-2R), reverse most major deficits of AS modeled in mice. Subcutaneous injection of IGF-2 or M6P in mice modeling AS restored cognitive impairments as assessed by measurements of contextual and recognition memories, motor deficits assessed by rotarod and hindlimb clasping, and working memory/flexibility measured by Y-maze. IGF-2 also corrected deficits in marble burying and significantly attenuated acoustically induced seizures. An observational battery of tests confirmed that neither ligand changed basic functions including physical characteristics, general behavioral responses, and sensory reflexes, indicating that they are relatively safe. Our data provide strong preclinical evidence that targeting CIM6P/IGF-2R is a promising approach for developing novel therapeutics for AS. LAY SUMMARY: There is no effective treatment for the neurodevelopmental disorder Angelman syndrome (AS). Using a validated AS mouse model, the Ube3am-/p+ , in this study we show that systemic administration of ligands of the cation independent mannose-6-phosphate receptor, also known as insulin-like growth factor 2 receptor (CIM6P/IGF-2R) reverses cognitive impairment, motor deficits, as well as seizures associated with AS. Thus, ligands that activate the CIM6P/IGF-2R may represent novel, potential therapeutic targets for AS.
Collapse
Affiliation(s)
- Emmanuel Cruz
- Center for Neural Science, New York University, New York, New York, USA
| | - Giannina Descalzi
- Center for Neural Science, New York University, New York, New York, USA
| | - Adam Steinmetz
- Center for Neural Science, New York University, New York, New York, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Neuroscience and Physiology, New York University Langone Health, New York, New York, USA
- Department of Psychiatry, New York University Langone Health, New York, New York, USA
| | - Aaron Katzman
- Center for Neural Science, New York University, New York, New York, USA
| | | |
Collapse
|
29
|
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020; 9:cells9092027. [PMID: 32899119 PMCID: PMC7563527 DOI: 10.3390/cells9092027] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver.
Collapse
|
30
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
31
|
Ivanova MM, Dao J, Kasaci N, Adewale B, Fikry J, Goker-Alpan O. Rapid Clathrin-Mediated Uptake of Recombinant α-Gal-A to Lysosome Activates Autophagy. Biomolecules 2020; 10:E837. [PMID: 32486191 PMCID: PMC7356514 DOI: 10.3390/biom10060837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
Enzyme replacement therapy (ERT) with recombinant alpha-galactosidase A (rh-α-Gal A) is the standard treatment for Fabry disease (FD). ERT has shown a significant impact on patients; however, there is still morbidity and mortality in FD, resulting in progressive cardiac, renal, and cerebrovascular pathology. The main pathway for delivery of rh-α-Gal A to lysosome is cation-independent mannose-6-phosphate receptor (CI-M6PR) endocytosis, also known as insulin-like growth factor 2 receptor (IGF2R) endocytosis. This study aims to investigate the mechanisms of uptake of rh-α-Gal-A in different cell types, with the exploration of clathrin-dependent and caveolin assisted receptor-mediated endocytosis and the dynamics of autophagy-lysosomal functions. rh-α-Gal-A uptake was evaluated in primary fibroblasts, urine originated kidney epithelial cells, and peripheral blood mononuclear cells derived from Fabry patients and healthy controls, and in cell lines HEK293, HTP1, and HUVEC. Uptake of rh-α-Gal-A was more efficient in the cells with the lowest endogenous enzyme activity. Chloroquine and monensin significantly blocked the uptake of rh-α-Gal-A, indicating that the clathrin-mediated endocytosis is involved in recombinant enzyme delivery. Alternative caveolae-mediated endocytosis coexists with clathrin-mediated endocytosis. However, clathrin-dependent endocytosis is a dominant mechanism for enzyme uptake in all cell lines. These results show that the uptake of rh-α-Gal-A occurs rapidly and activates the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA; (J.D.); (N.K.); (B.A.); (J.F.); (O.G.-A.)
| | | | | | | | | | | |
Collapse
|
32
|
Yu XW, Pandey K, Katzman AC, Alberini CM. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. eLife 2020; 9:54781. [PMID: 32369018 PMCID: PMC7200152 DOI: 10.7554/elife.54781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Cation-independent mannose-6-phosphate receptor, also called insulin-like growth factor two receptor (CIM6P/IGF2R), plays important roles in growth and development, but is also extensively expressed in the mature nervous system, particularly in the hippocampus, where its functions are largely unknown. One of its major ligands, IGF2, is critical for long-term memory formation and strengthening. Using CIM6P/IGF2R inhibition in rats and neuron-specific knockdown in mice, here we show that hippocampal CIM6P/IGF2R is necessary for hippocampus-dependent memory consolidation, but dispensable for learning, memory retrieval, and reconsolidation. CIM6P/IGF2R controls the training-induced upregulation of de novo protein synthesis, including increase of Arc, Egr1, and c-Fos proteins, without affecting their mRNA induction. Hippocampal or systemic administration of mannose-6-phosphate, like IGF2, significantly enhances memory retention and persistence in a CIM6P/IGF2R-dependent manner. Thus, hippocampal CIM6P/IGF2R plays a critical role in memory consolidation by controlling the rate of training-regulated protein metabolism and is also a target mechanism for memory enhancement.
Collapse
Affiliation(s)
- Xiao-Wen Yu
- Center for Neural Science, New York University, New York, United States
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, United States
| | - Aaron C Katzman
- Center for Neural Science, New York University, New York, United States
| | | |
Collapse
|
33
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
34
|
Kasprzak A, Adamek A. Insulin-Like Growth Factor 2 (IGF2) Signaling in Colorectal Cancer-From Basic Research to Potential Clinical Applications. Int J Mol Sci 2019; 20:ijms20194915. [PMID: 31623387 PMCID: PMC6801528 DOI: 10.3390/ijms20194915] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in men and women worldwide as well as is the leading cause of death in the western world. Almost a third of the patients has or will develop liver metastases. While genetic as well as epigenetic mechanisms are important in CRC pathogenesis, the basis of the most cases of cancer is unknown. High spatial and inter-patient variability of the molecular alterations qualifies this cancer in the group of highly heterogeneous tumors, which makes it harder to elucidate the mechanisms underlying CRC progression. Determination of highly sensitive and specific early diagnosis markers and understanding the cellular and molecular mechanism(s) of cancer progression are still a challenge of the current era in oncology of solid tumors. One of the accepted risk factors for CRC development is overexpression of insulin-like growth factor 2 (IGF2), a 7.5-kDa peptide produced by liver and many other tissues. IGF2 is the first gene discovered to be parentally imprinted. Loss of imprinting (LOI) or aberrant imprinting of IGF2 could lead to IGF2 overexpression, increased cell proliferation, and CRC development. IGF2 as a mitogen is associated with increased risk of developing colorectal neoplasia. Higher serum IGF2 concentration as well as its tissue overexpression in CRC compared to control are associated with metastasis. IGF2 protein was one of the three candidates for a selective marker of CRC progression and staging. Recent research indicates dysregulation of different micro- and long non-coding RNAs (miRNAs and lncRNAs, respectively) embedded within the IGF2 gene in CRC carcinogenesis, with some of them indicated as potential diagnostic and prognostic CRC biomarkers. This review systematises the knowledge on the role of genetic and epigenetic instabilities of IGF2 gene, free (active form of IGF2) and IGF-binding protein (IGFBP) bound (inactive form), paracrine/autocrine secretion of IGF2, as well as mechanisms of inducing dysplasia in vitro and tumorigenicity in vivo. We have tried to answer which molecular changes of the IGF2 gene and its regulatory mechanisms have the most significance in initiation, progression (including liver metastasis), prognosis, and potential anti-IGF2 therapy in CRC patients.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznan, Poland.
| |
Collapse
|
35
|
Huang J, Dong J, Shi X, Chen Z, Cui Y, Liu X, Ye M, Li L. Dual-Functional Titanium(IV) Immobilized Metal Affinity Chromatography Approach for Enabling Large-Scale Profiling of Protein Mannose-6-Phosphate Glycosylation and Revealing Its Predominant Substrates. Anal Chem 2019; 91:11589-11597. [PMID: 31398006 PMCID: PMC7293878 DOI: 10.1021/acs.analchem.9b01698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mannose-6-phosphate (M6P) glycosylation is an important post-translational modification (PTM) and plays a crucial role in transferring lysosomal hydrolases to lysosome, and is involved in several other biological processes. Aberrant M6P modifications have been implicated in lysosomal storage diseases and numerous other disorders including Alzheimer's disease and cancer. Research on profiling of intact M6P glycopeptides remains challenging due to its extremely low stoichiometry. Here we propose a dual-mode affinity approach to enrich M6P glycopeptides by dual-functional titanium(IV) immobilized metal affinity chromatography [Ti(IV)-IMAC] materials. In combination with state-of-the-art mass spectrometry and database search engine, we profiled 237 intact M6P glycopeptides corresponding to 81 M6P glycoproteins in five types of tissues in mouse, representing the first large-scale profiling of M6P glycosylation in mouse samples. The analysis of M6P glycoforms revealed the predominant glycan substrates of this PTM. Gene ontology analysis showed that overrepresented M6P glycoproteins were lysosomal-associated proteins. However, there were still substantial M6P glycoproteins that possessed different subcellular locations and molecular functions. Deep mining of their roles implicated in lysosomal and nonlysosomal function can provide new insights into functional roles of this important yet poorly studied modification.
Collapse
Affiliation(s)
- Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Xudong Shi
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
37
|
Holly JMP, Biernacka K, Perks CM. Systemic Metabolism, Its Regulators, and Cancer: Past Mistakes and Future Potential. Front Endocrinol (Lausanne) 2019; 10:65. [PMID: 30809194 PMCID: PMC6380210 DOI: 10.3389/fendo.2019.00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
There has been a resurgence of interest in cancer metabolism; primarily in the resetting of metabolism within malignant cells. Metabolism within cells has always been a tightly regulated process; initially in protozoans due to metabolic enzymes, and the intracellular signaling pathways that regulate these, being directly sensitive to the availability of nutrients. With the evolution of metazoans many of these controls had been overlaid by extra-cellular regulators that ensured coordinated regulation of metabolism within the community of cells that comprised the organism. Central to these systemic regulators is the insulin/insulin-like growth factor (IGF) system that throughout evolution has integrated the control of tissue growth with metabolic status. Oncological interest in the main systemic metabolic regulators greatly subsided when pharmaceutical strategies designed to treat cancers failed in the clinic. During the same period, however the explosion of new information from genetics has revealed the complexity and heterogeneity of advanced cancers and helped explain the problems of managing cancer when it reaches such a stage. Evidence has also accumulated implying that the setting of the internal environment determines whether cancers progress to advanced disease and metabolic status is clearly an important component of this local ecology. We are in the midst of an epidemic of metabolic disorders and there is considerable research into strategies for controlling metabolism. Integrating these new streams of information suggests new possibilities for cancer prevention; both primary and secondary.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
38
|
Liu Y, Shen J, Yang X, Sun Q, Yang X. Folic Acid Reduced Triglycerides Deposition in Primary Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13162-13172. [PMID: 30484310 DOI: 10.1021/acs.jafc.8b05193] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abdominal fat or fatty liver cause huge economic losses in the poultry industry, and nonalcoholic fatty liver disease (NAFLD) is also a global health issue in humans. More than 90% of de novo lipogenesis in humans and chickens is undertaken by the liver, which is proved to be full of lipids in new-born chickens. Folic acid was thought to have correlation with lipid metabolism. Primary hepatocytes from new-born chickens were employed as a natural model of early stage fatty liver in vitro and further to explore whether folic acid could prevent fatty liver in the current study. We found that folic acid addition reduced triglyceride deposition by suppressing de novo fatty acid synthesis and coordinately promoting triglyceride hydrolysis and exportation in primary chicken hepatocytes from new-born chickens. In addition, lipogenesis suppression was through the PI3K/AKT/SREBP pathway mediated by weakening insulin/IGF signal. Our data suggested that folic acid may be considered as a precautionary strategy for abdominal fat deposition in broilers or fatty liver in laying hens and humans. In addition, mechanism regulation also implied that an IGF2 inhibitor and PI3K inhibitor may be used for the NAFLD precautionary measure to reduce TG deposition.
Collapse
Affiliation(s)
- Yanli Liu
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Jing Shen
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xin Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Qingzhu Sun
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xiaojun Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
39
|
Lim PH, Wert SL, Tunc-Ozcan E, Marr R, Ferreira A, Redei EE. Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression. Behav Brain Res 2018; 353:242-249. [PMID: 29490235 DOI: 10.1016/j.bbr.2018.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Aging and major depressive disorder are risk factors for dementia, including Alzheimer's Disease (AD), but the mechanism(s) linking depression and dementia are not known. Both AD and depression show greater prevalence in women. We began to investigate this connection using females of the genetic model of depression, the inbred Wistar Kyoto More Immobile (WMI) rat. These rats consistently display depression-like behavior compared to the genetically close control, the Wistar Kyoto Less Immobile (WLI) strain. Hippocampus-dependent contextual fear memory did not differ between young WLI and WMI females, but, by middle-age, female WMIs showed memory deficits compared to same age WLIs. This deficit, measured as duration of freezing in the fear provoking-context was not related to activity differences between the strains prior to fear conditioning. Hippocampal expression of AD-related genes, such as amyloid precursor protein, amyloid beta 42, beta secretase, synucleins, total and dephosphorylated tau, and synaptophysin, did not differ between WLIs and WMIs in either age group. However, hippocampal transcript levels of catalase (Cat) and hippocampal and frontal cortex expression of insulin-like growth factor 2 (Igf2) and Igf2 receptor (Igf2r) paralleled fear memory differences between middle-aged WLIs and WMIs. This data suggests that chronic depression-like behavior that is present in this genetic model is a risk factor for early spatial memory decline in females. The molecular mechanisms of this early memory decline likely involve the interaction of aging processes with the genetic components responsible for the depression-like behavior in this model.
Collapse
Affiliation(s)
- Patrick H Lim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Stephanie L Wert
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Elif Tunc-Ozcan
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Robert Marr
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Adriana Ferreira
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
40
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.).
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
41
|
Fei X, Zavorka ME, Malik G, Connelly CM, MacDonald RG, Berkowitz DB. General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor. Org Lett 2017; 19:4267-4270. [PMID: 28753028 PMCID: PMC6208139 DOI: 10.1021/acs.orglett.7b01914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Megan E. Zavorka
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Guillaume Malik
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Christopher M. Connelly
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Richard G. MacDonald
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
42
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|