1
|
Taylor B, Ofori KF, Parsaeimehr A, Akdemir Evrendilek G, Attarwala T, Ozbay G. Exploring the Complexities of Seafood: From Benefits to Contaminants. Foods 2025; 14:1461. [PMID: 40361542 PMCID: PMC12071223 DOI: 10.3390/foods14091461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Seafood plays a vital role in human diets worldwide, serving as an important source of high-quality protein, omega-3 fatty acids, and essential vitamins and minerals that promote health and prevent various chronic conditions. The health benefits of seafood consumption are well documented, including a reduced risk of cardiovascular diseases, improved cognitive function, and anti-inflammatory effects. However, the safety of seafood is compromised by multiple hazards that can pose significant health risks. Pathogenic microorganisms, including bacteria, viruses, and parasites, in addition to microbial metabolites, are prominent causes of the foodborne diseases linked to seafood consumption, necessitating reliable detection and monitoring systems. Molecular biology and digital techniques have emerged as essential tools for the rapid and accurate identification of these foodborne pathogens, enhancing seafood safety protocols. Additionally, the presence of chemical contaminants such as heavy metals (e.g., mercury and lead), microplastics, and per- and polyfluoroalkyl substances (PFASs) in seafood is of increasing concern due to their potential to accumulate in the food chain and adversely affect human health. The biogenic amines formed during the microbial degradation of the proteins and allergens present in certain seafood species also contribute to food safety challenges. This review aims to address the nutritional value and health-promoting effects of seafood while exploring the multifaceted risks associated with microbial contamination, chemical pollutants, and naturally occurring substances. Emphasis is placed on enhanced surveillance, seafood traceability, sustainable aquaculture practices, and regulatory harmonization as effective strategies for controlling the risks associated with seafood consumption and thereby contributing to a safer seafood supply chain.
Collapse
Affiliation(s)
- Bettina Taylor
- Human Ecology Department, Delaware State University, Dover, DE 19901, USA;
| | - Kelvin Fynn Ofori
- Integrative PhD Program in Agriculture, Food and Environmental Sciences, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Ali Parsaeimehr
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| | | | - Tahera Attarwala
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| | - Gulnihal Ozbay
- Human Ecology Department, Delaware State University, Dover, DE 19901, USA;
- Integrative PhD Program in Agriculture, Food and Environmental Sciences, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| |
Collapse
|
2
|
Zou Y, Lu B, Feng Z, Chen H, Zhang C, Peng C, Ou L, Wei R, Yao M, Chen Q, Chen Y. Anti Helicobacter pylori activity and gastrointestinal protective effects of Terminalia bellirica: Mechanistic insights from in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119569. [PMID: 40054639 DOI: 10.1016/j.jep.2025.119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia bellirica (Gaertn.) Roxb. (Combretaceae) (T. bellirica) is a longstanding medicinal plant traditionally referenced in both Indian and Tibetan medical practices. Currently, approximately 50% of the global population is infected with Helicobacter pylori (H. pylori). To curb antibiotic overuse, asymptomatic patients might require alternative therapy to mitigate the intestinal side effects commonly associated with excessive antibiotic usage. AIM OF THE STUDY Preliminary screening conducted by our team revealed that T. bellirica had excellent anti-H. pylori action in vitro. However, further research elucidating the mechanism behind T. bellirica's impact on H. pylori infection and its protective effects against related gastrointestinal diseases is yet to be explored. MATERIALS AND METHODS To assess the specific effect and underlying mechanism, we employed a comprehensive range of methodologies, including UPLC-MS/MS, in vitro and in vivo antibacterial assays, 5R 16S, molecular dynamics simulation and RT-qPCR. RESULTS Phytochemical analysis revealed abundant phenolic contents in T. bellirica, including chebulagic acid, chebulinic acid, corilagin, gallic acid, and ellagic acid. In vitro antibacterial evaluations demonstrated significant efficacy of T. bellirica against H. pylori, with a minimum inhibitory concentration (MIC) of 160 μg/mL, effectively inhibiting critical bacterial defense such as urease, adhesion and gene vacA. In vivo animal experiments showed that in addition to its anti-H. pylori effect, T. bellirica exhibited mild influence on gastric microbiota, with the composition restoring to normal levels after administration. CONCLUSIONS T. bellirica exerts potent anti-H. pylori activity both in vitro and in vivo, indicating its potential as an alternative therapeutic strategy for managing H. pylori infections while exerting minimal impact on gastric microbial balance. Further studies are warranted to elucidate additional pathways involved and to validate its clinical applications.
Collapse
Affiliation(s)
- Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Bingyun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518000, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Haobo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chuqiu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ruixia Wei
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Qingchang Chen
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599.
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
3
|
Matar Z, Zainon Noor Z, Al-Hindi A, Yuliarto B. Recent Advances in Paper-Based Nano-Biosensors for Waterborne Pathogen Detection: Challenges and Solutions. Chem Biodivers 2025:e202403451. [PMID: 40071492 DOI: 10.1002/cbdv.202403451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
Ensuring safe access to water and public health requires the availability of sensitive and fast response detection tools. Traditional detection tools present challenges of duration, procedure intricacy, and the need for trained staff. An advanced approach involves utilizing biosensors and nanomaterials, which have the capacity to detect the target analyte with high sensitivity and specificity in a short time. To date, researchers have created new techniques and materials to improve the sensitivity, detection limit, durability, and real-time analytical capabilities of biosensors. This critical review provides a thorough analysis of recent advances in paper-based nano-biosensors used for detecting waterborne pathogens, along with challenges faced in entering the market and potential solutions. The objective is to provide a comprehensive understanding of the capabilities of biosensors in detecting waterborne diseases, by evaluating technologies based on their range of concentrations and limits of detection. The review analyzed multiple biosensors and evaluated the underlying mechanisms that contribute to their effectiveness in detecting waterborne diseases. The discussion also addressed the influence of including nanomaterials on enhancing the performance of biosensors, specifically in relation to specificity, selectivity, and durability. Additionally, the challenges of translating the proof-of-concept biosensor into market products are discussed with potential solutions. The major findings reveal various biosensor technologies with distinct advantages and limitations. The thorough examination of biosensor technologies and the integration of nanomaterials offers valuable insights for academics, professionals, and policymakers involved in water quality monitoring. Additionally, it advocates for additional research to improve the performance of biosensors and address existing challenges.
Collapse
Affiliation(s)
- Zainab Matar
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- Centre for Environmental Sustainability & Water Security (IPASA), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Adnan Al-Hindi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University of Gaza, Gaza, Palestine
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
4
|
Zhang YL, Shi YJ, Duan BJ, Wang XH. One-pot hydrothermal synthesis of polyethyleneimine-coated magnetic nanoparticles for high-efficient DNA extraction of pathogenic bacteria. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124435. [PMID: 39746294 DOI: 10.1016/j.jchromb.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
For separation of deoxyribonucleic acid (DNA), positively charged amino-modified magnetic nanoparticles (MN) can effectively adsorb negatively charged DNA through electrostatic interaction. However, the reported preparation of amino-modified MN is usually tedious and time-consuming. Therefore, a simple synthesis method of amino-modified MN is necessary for DNA extraction. Herein, a novel polyethyleneimine-coated MN (PMN) was fabricated by one-pot hydrothermal synthesis for high-efficient DNA extraction. The fabricated PMN showed numerous exposed amino groups, which not only could effectively capture DNA through electrostatic interaction, but also limited the aggregation of PMN during application. Under optimized adsorption conditions, the maximum adsorption capacity of PMN for DNA could reach 192.4 μg m g-1. Shigella flexneri (S. flexneri) has the highest mortality rate among Shigella species and has been selected as target model pathogenic bacteria. Based on the optimized extraction conditions, PMN-based magnetic solid-phase microextraction (MSPE) and quantitative real-time PCR (qPCR) were integrated for detection of S. flexneri. The limit of detection of the proposed strategy was 2.4 × 102 CFU mL-1 and obviously lower than the commercial kit. To prove the practicability, the PMN-based MSPE combined qPCR strategy was successfully used in the determination of S. flexneri in spiked real sample, and the recovery values were in the range of 95.1 % to 102.1 % for apple juice, 60.4 % to 85.7 % for pickled vegetable, 97.8 % to 99.5 % for pig liver and 95.1 % to 102.1 % for pig colon, respectively. Therefore, we believe that the resultant PMN have great potential to become a universal magnetic adsorbent for high-efficient DNA extraction from complex biological samples.
Collapse
Affiliation(s)
| | - Yu-Jun Shi
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bao-Jian Duan
- Pharmaceutical and Cosmetic Evaluation and Inspection Center, Tianjin 300074, China
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Liu S, Yan P, Naveed S, Zhu Y, Fu T, Wu R, Wu Y. Colorimetric sensor array for sensitive detection and identification of bacteria based on the etching of triangular silver nanoparticles regulated by Cl - at various concentrations. Mikrochim Acta 2024; 192:2. [PMID: 39621163 DOI: 10.1007/s00604-024-06855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 01/19/2025]
Abstract
A colorimetric sensor array is proposed for ultrasensitive detection and identification of bacteria by using Cl- at various concentrations as sensing elements and triangular silver nanoparticles (T-AgNPs) as a single sensing nanoprobe. T-AgNPs are easily etched by Cl-. However, in the presence of bacteria, the etching process will be hindered. Different bacteria have differential protective effects on T-AgNPs due to their interactions, resulting in different etching degrees of T-AgNPs by Cl-, and visual color changes. By adjusting the antagonistic action between bacteria protection on T-AgNPs and the etching by using Cl- at various concentrations, different bacteria had their own color response patterns. Combined with linear discriminant analysis (LDA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), the bacteria could be identified. The method was also used for bacteria mixtures identification and showed high sensitivity (OD600 = 1.0 × 10-6) for V. parahaemolyticus detection. Finally, the sensor array was successfully utilized in the identification of bacteria in pure and mineral bottled water. The method is low-cost, simple, sensitive, visual, and has potential application in point-of-care testing of bacteria.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng Yan
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| | - Shahzad Naveed
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuheng Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruijing Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yayan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
7
|
Salvador-Erro J, Pastor Y, Gamazo C. A Recombinant Shigella flexneri Strain Expressing ETEC Heat-Labile Enterotoxin B Subunit Shows Promise for Vaccine Development via OMVs. Int J Mol Sci 2024; 25:12535. [PMID: 39684252 DOI: 10.3390/ijms252312535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Diarrheal diseases caused by Shigella and enterotoxigenic Escherichia coli (ETEC) are significant health burdens, especially in resource-limited regions with high child mortality. In response to the lack of licensed vaccines and rising antibiotic resistance for these pathogens, this study developed a recombinant Shigella flexneri strain with the novel incorporation of the eltb gene for the heat-labile enterotoxin B (LTB) subunit of ETEC directly into Shigella's genome, enhancing stability and consistent production. This approach combines the immunogenic potential of LTB with the antigen delivery properties of S. flexneri outer membrane vesicles (OMVs), aiming to provide cross-protection against both bacterial pathogens in a stable, non-replicating vaccine platform. We confirmed successful expression through GM1-capture ELISA, achieving levels comparable to ETEC. Additionally, proteomic analysis verified that the isolated vesicles from the recombinant strains contain the LTB protein and the main outer membrane proteins and virulence factors from Shigella, including OmpA, OmpC, IcsA, SepA, and Ipa proteins, and increased expression of Slp and OmpX. Thus, our newly designed S. flexneri OMVs, engineered to carry ETEC's LTB toxin, represent a promising strategy to be considered as a subunit vaccine candidate against S. flexneri and ETEC.
Collapse
Affiliation(s)
- Josune Salvador-Erro
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Yadira Pastor
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Huang M, Zhang X, Luo C, Xu H, Qiu Y, Yang J. Genome and antibiotic resistance characteristics of Shigella clinical isolates in Fujian Province, Southeast China, 2005-2019. Microb Genom 2024; 10:001325. [PMID: 39565081 PMCID: PMC11893363 DOI: 10.1099/mgen.0.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Shigellosis is a serious public health issue in many developing countries. The emergence of multidrug-resistant (MDR) Shigella isolates has deepened the treatment difficulty and health burden of shigellosis. China is the largest developing country in the world, but so far, the genome of MDR Shigella isolates has not been well characterized. In this study, 60 clinical isolates of Shigella spp. in Fujian Province, southeast China, from 2005 to 2019 were characterized for drug resistance phenotype, whole-genome sequencing and bioinformatics analysis. The results showed that the MDR rate of Shigella isolates was 100%, among which the resistance rates of cefotaxime, ciprofloxacin and azithromycin were 36.67, 21.67 and 10.00 %, respectively. The positive rate of extended-spectrum beta-lactamase (ESBL)-producing strains was 23.33%. The resistance profiles of Shigella flexneri and Shigella sonnei to some antimicrobials differed. The MDR isolates carried multiple antimicrobial resistance genes, among which blaCTX-M-14 and blaCTX-M-15 mediated ESBL resistance. 'ISEcp1 -blaCTX-M -IS903' (type I) and 'ISEcp1 -blaCTX-M' (type II) were the most common genetic environments around the blaCTX-M genes, and plasmids containing these structures included IncFII, IncI1, IncI2 and IncN. The double gene mutation pattern of gyrA and parC resulted in a significant decrease in the sensitivity of S. flexneri to ciprofloxacin. The overall resistance phenotype and genotype concordance rate was 88.50%, and the sensitivity and specificity of the genotype antimicrobial susceptibility test (AST) were 93.35 and 82.53 %, respectively. However, inconsistency occurred between phenotypic and genotype profiles for a few antibiotics. Phylogenomic investigation with core genome multi-locus sequence typing (cgMLST) and SNPs were used to characterize the endemic transmission of these infections in Fujian and their evolutionary origin within the global context. For S. flexneri, Fujian isolates were all limited to PG3 and could be divided into three phylogenetic clusters. The ciprofloxacin-resistant strains were mainly F2a and FXv and assigned to the three clusters with different quinolone resistance-determining region mutation patterns. For S. sonnei, most Fujian strains belonged to Lineage III with genotype 3.7.6, except three isolates of Lineage I with genotype 1.3. The strains carrying the blaCTX-M genes were dispersed, indicating different origins of gene acquisition. Most of the circulating isolates in Fujian Province were not related to major international outbreak lineages and were only endemic to the country. In conclusion, multi-drug resistance of Shigella isolates in Fujian Province was serious, and genome-based laboratory surveillance will be crucial to the clinical treatment and public health measures for shigellosis.
Collapse
Affiliation(s)
- Mengying Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Xiaoxuan Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Chaochen Luo
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Haibin Xu
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Yufeng Qiu
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Jinsong Yang
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, PR China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, PR China
| |
Collapse
|
9
|
Caradonna V, Pinto M, Alfini R, Giannelli C, Iturriza M, Micoli F, Rossi O, Mancini F. High-Throughput Luminescence-Based Serum Bactericidal Assay Optimization and Characterization to Assess Human Sera Functionality Against Multiple Shigella flexneri Serotypes. Int J Mol Sci 2024; 25:11123. [PMID: 39456904 PMCID: PMC11508014 DOI: 10.3390/ijms252011123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Shigellosis represents a significant global health concern particularly affecting children under 5 years in low- and middle-income countries (LMICs) and is associated with stunting and antimicrobial resistance. There is a critical need for an effective vaccine offering broad protection against the different Shigella serotypes. A correlate of protection has not yet been established but there is a general consensus about the relevant role of anti-O-Antigen-specific IgG and its functionality evaluated by the Serum Bactericidal Assay (SBA). This study aims to characterize a high-throughput luminescence-based SBA (L-SBA) against seven widespread Shigella serotypes. The assay was previously developed and characterized for S. sonnei and S. flexneri 1b, 2a, and 3a and has now been refined and extended to an additional five serotypes (S. flexneri 4a, 5b, 6, X, and Y). The characterization of the assay with human sera confirmed the repeatability, intermediate precision, and linearity of the assays; both homologous and heterologous specificity were verified as well; finally, limit of detection and quantification were established for all assays. Moreover, different sources of baby rabbit complement showed to have no impact on L-SBA output. The results obtained confirm the possibility of extending the L-SBA to multiple Shigella serotypes, thus enabling analysis of the functional response induced by natural exposure to Shigella in epidemiological studies and the ability of candidate vaccines to elicit cross-functional antibodies able to kill a broad panel of prevalent Shigella serotypes in a complement-mediated fashion.
Collapse
Affiliation(s)
- Valentina Caradonna
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Marika Pinto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Miren Iturriza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| |
Collapse
|
10
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F, Moodi Ghalibaf A. The Role of Microbiome and Probiotics in Chemo-Radiotherapy-Induced Diarrhea: A Narrative Review of the Current Evidence. Cancer Rep (Hoboken) 2024; 7:e70029. [PMID: 39410854 PMCID: PMC11480522 DOI: 10.1002/cnr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND In this article, we review the most recent research on probiotics effects on diarrhea in both human and animal models of the condition along with the therapeutic potential of these compounds based on their findings. RECENT FINDINGS Nearly 50%-80% of cancer patients experience chemotherapy-induced diarrhea (CID), serious gastrointestinal toxicity of chemotherapeutic and radiation regimens that leads to prolonged hospitalizations, cardiovascular problems, electrolyte imbalances, disruptions in cancer treatment, poor cancer prognosis, and death. CID is typically categorized as osmotic diarrhea. The depletion of colonic crypts and villi by radiotherapy and chemotherapy agents interferes with the absorptive function of the intestine, thereby decreasing the absorption of chloride and releasing water into the intestinal lumen. Probiotic supplements have been found to be able to reverse the intestinal damage caused by chemo-radiation therapy by promoting the growth of crypt and villi and reducing inflammatory pathways. In addition, they support the modulation of immunological and angiogenesis responses in the gut as well as the metabolism of certain digestive enzymes by altering the gut microbiota. CONCLUSION Beyond the benefits of probiotics, additional clinical research is required to clarify the most effective strain combinations and dosages for preventing chemotherapy and radiotherapy diarrhea.
Collapse
Affiliation(s)
| | - Sara Abbasifar
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mohammad Yousefi
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Farzad Fayedeh
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | | |
Collapse
|
11
|
Evangeline WP, Rajalakshmi E, Mahalakshmi S, Ramya V, Devkiran B, Saranya E, Ramya M. Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen. Arch Microbiol 2024; 206:384. [PMID: 39168903 DOI: 10.1007/s00203-024-04108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Shigella flexneri is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol's antibacterial effects and mechanisms of action against S. flexneri and its impact on biofilm formation. We observed significant growth suppression of S. flexneri with eugenol concentrations of 8-10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (yebL), quorum sensing (rcsC, sdiA), and EPS production (s0482) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by S. flexneri.
Collapse
Affiliation(s)
- Wilson Pearl Evangeline
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Elumalai Rajalakshmi
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Singaravel Mahalakshmi
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Vasudevan Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Banik Devkiran
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Elangovan Saranya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Mohandass Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
12
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
13
|
Ahmed MH, Khan K, Tauseef S, Jalal K, Haroon U, Uddin R, Abdellattif MH, Khan A, Al-Harrasi A. Identification of therapeutic drug target of Shigella Flexneri serotype X through subtractive genomic approach and in-silico screening based on drug repurposing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105611. [PMID: 38823431 DOI: 10.1016/j.meegid.2024.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Shigellosis, induced by Shigella flexneri, constitutes a significant health burden in developing nations, particularly impacting socioeconomically disadvantaged communities. Designated as the second most prevalent cause of diarrheal illness by the World Health Organization (WHO), it precipitates an estimated 212,000 fatalities annually. Within the spectrum of S. flexneri strains, serotype X is notably pervasive and resilient, yet its comprehensive characterization remains deficient. The present investigation endeavors to discern potential pharmacological targets and repurpose existing drug compounds against S. flexneri serotype X. Employing the framework of subtractive genomics, the study interrogates the reference genome of S. flexneri Serotype X (strain 2,002,017; UP000001884) to delineate its proteome into categories of non-homologous, non-paralogous, essential, virulent, and resistant constituents, thereby facilitating the identification of therapeutic targets. Subsequently, a screening of approximately 9000 compounds from the FDA library against the identified drug target aims to delineate efficacious agents for combating S. flexneri serotype X infections. The application of subtractive genomics methodology yields prognostic insights, unveiling non-paralogous proteins (n = 4122), non-homologues (n = 1803), essential (n = 1246), drug-like (n = 389), resistant (n = 167), alongside 42 virulent proteins within the reference proteome. This iterative process culminates in the identification of Serine O-acetyltransferase as a viable drug target. Subsequent virtual screening endeavors to unearth FDA-approved medicinal compounds capable of inhibiting Serine O-acetyltransferase. Noteworthy candidates such as DB12983, DB15085, DB16098, DB16185, and DB16262 emerge, exhibiting potential for mitigating S. flexneri Serotype X. Despite the auspicious findings, diligent scrutiny is imperative to ascertain the efficacy and safety profile of the proposed drug candidates vis-à-vis S. flexneri.
Collapse
Affiliation(s)
- Muhammad Hassan Ahmed
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Saba Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Urooj Haroon
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
14
|
Manthey CF, Epple HJ, Keller KM, Lübbert C, Posovszky C, Ramharter M, Reuken P, Suerbaum S, Vehreschild M, Weinke T, Addo MM, Stallmach A, Lohse AW. S2k-Leitlinie Gastrointestinale Infektionen der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1090-1149. [PMID: 38976986 DOI: 10.1055/a-2240-1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Carolin F Manthey
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Gemeinschaftspraxis Innere Medizin Witten, Witten, Deutschland
| | - Hans-Jörg Epple
- Antibiotic Stewardship, Vorstand Krankenversorgung, Universitätsmedizin Berlin, Berlin, Deutschland
| | - Klaus-Michael Keller
- Klinik für Kinder- und Jugendmedizin, Helios Dr. Horst Schmidt Kliniken, Klinik für Kinder- und Jugendmedizin, Wiesbaden, Deutschland
| | - Christoph Lübbert
- Bereich Infektiologie und Tropenmedizin, Medizinische Klinik I (Hämatologie, Zelltherapie, Infektiologie und Hämostaseologie), Universitätsklinikum Leipzig, Leipzig, Deutschland
| | | | - Michael Ramharter
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Philipp Reuken
- Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie, Zentrale Endoskopie), Universitätsklinikum Jena, Jena, Deutschland
| | - Sebastian Suerbaum
- Universität München, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, München, Deutschland
| | - Maria Vehreschild
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Weinke
- Klinik für Gastroenterologie und Infektiologie, Klinikum Ernst von Bergmann, Potsdam, Deutschland
| | - Marylyn M Addo
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Institut für Infektionsforschung und Impfstoffentwicklung Sektion Infektiologie, I. Med. Klinik, Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Andreas Stallmach
- Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie, Zentrale Endoskopie), Universitätsklinikum Jena, Jena, Deutschland
| | - Ansgar W Lohse
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
15
|
Han A, Yang M, Chen B, Cao G, Xu J, Meng T, Liu Y, Wang Z, Zhou Y, Xu N, Han W, Sun H, Mei Q, Zhu L, Xiong M. Microbiome and its relevance to indigenous inflammatory bowel diseases in China. Gene 2024; 909:148257. [PMID: 38367851 DOI: 10.1016/j.gene.2024.148257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract with an unknown etiology. Although dysbiosis is implicated in its pathogenesis, deep sequencing and oral microbiota study in Chinese IBD patients is absent. AIM To explore the role of oral / intestinal microbiota in patients with IBD and the potential associations therein. METHODS Clinical data, fecal and saliva samples were harvested from 80 patients with IBD (Crohn's disease, CD, n = 69; Ulcerative colitis, UC, n = 11) and 24 normal controls. Microbiomics (16S rRNA sequencing and 16S rRNA full-length sequencing) were used to detect and analyze the difference between IBD patients and normal control. RESULTS Compared with normal controls, a higher abundance of the intestinal Shigella spp. (Shigella flexneri and Shigella sonnei, which were positively relate to the severity of IBD), lower abundance of intestinal probiotics (Prevotella, Faecalibacterium and Roseburia), and higher abundance of oral Neisseria were present in IBD patients with microbiome. The higher inflammation-related markers, impaired hepatic and renal function, and dyslipidaemia were present in patients with IBD. A higher intake of red meat and increased abundance of Clostridium in the gut were found in CD patients, while the elevated abundance of Ruminococcus in the gut was showed in UC ones. The bacterial composition of saliva and fecal samples was completely different, yet there was some correlation in the distribution of dominant probiotics. CONCLUSION Enteric dysbacteriosis and the infections of pathogenic bacteria (Shigella) may associate with the occurrence or development of IBD.
Collapse
Affiliation(s)
- Anqi Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Mingya Yang
- Department of Haematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Junrui Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Yu Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Zhenzhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Yangliu Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Na Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Haiyi Sun
- Clinical Medical Collage, Anhui Medical University, Hefei 230020, PR China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Lixin Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
16
|
Lin Z, Zhou Z, Shuai X, Zeng G, Bao R, Chen H. Landscape of plasmids encoding β-lactamases in disinfection residual Enterobacteriaceae from wastewater treatment plants. WATER RESEARCH 2024; 255:121549. [PMID: 38564891 DOI: 10.1016/j.watres.2024.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Conventional disinfection processes, such as chlorination and UV radiation, are ineffective in controling antibiotic-resistant bacteria, especially disinfection residual Enterobacteriaceae (DRE) encoding β-lactamases, some of which have been classified as "critical priority pathogens" by the World Health Organization. However, few studies have focused on the transferability, phenotype, and genetic characteristics of DRE-derived plasmids encoding β-lactamases, especially extended-spectrum β-lactamases and carbapenemases. In this study, we isolated 10 typical DRE harboring plasmid-mediated blaNDM, blaCTX-M, or blaTEM in post-disinfection effluent from two wastewater treatment plants (WWTPs), with transfer frequency ranging from 1.69 × 10-6 to 3.02 × 10-5. According to genomic maps of plasmids, all blaNDM and blaTEM were cascaded with IS26, and blaCTX-M was adjacent to ISEcp1 or IS26, indicating the important role of these elements in the movement of β-lactamase-encoding genes. The presence of intact class 1 integrons on pWTPN-01 and pWTPC-03 suggested the ability of these DRE-derived plasmids to integrate other exogenous antibiotic resistance genes (ARGs). The coexistence of antibiotic, disinfectant, and heavy metal resistance genes on the same plasmid (e.g., pWTPT-03) implied the facilitating role of disinfectants and heavy metals in the transmission of DRE-derived ARGs. Notably, two plasmid transconjugants exhibited no discernible competitive fitness cost, suggesting a heightened environmental persistence. Furthermore, enhanced virulence induced by β-lactamase-encoding plasmids in their hosts was confirmed using Galleria mellonella infection models, which might be attributed to plasmid-mediated virulence genes. Overall, this study describes the landscape of β-lactamase-encoding plasmids in DRE, and highlights the urgent need for advanced control of DRE to keep environmental and ecological security.
Collapse
Affiliation(s)
- Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangshu Zeng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruiqi Bao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China.
| |
Collapse
|
17
|
Zhang ZL, Meng YQ, Li JJ, Zhang XX, Li JT, Xu JR, Zheng PH, Xian JA, Lu YP. Effects of antimicrobial peptides from dietary Hermetia illucens larvae on the growth, immunity, gene expression, intestinal microbiota and resistance to Aeromonas hydrophila of juvenile red claw crayfish (Cherax quadricarinatus). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109437. [PMID: 38360192 DOI: 10.1016/j.fsi.2024.109437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.
Collapse
Affiliation(s)
- Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China
| | - Yong-Qi Meng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China.
| |
Collapse
|
18
|
Du Y, Wang Y, Geng J, Long J, Yang H, Duan G, Chen S. Molecular mechanism of Hfq-dependent sRNA1039 and sRNA1600 regulating antibiotic resistance and virulence in Shigella sonnei. Int J Antimicrob Agents 2024; 63:107070. [PMID: 38141834 DOI: 10.1016/j.ijantimicag.2023.107070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ya Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Song Y, Sun M, Mu G, Tuo Y. Exopolysaccharide produced by Lactiplantibacillus plantarum Y12 exhibits inhibitory effect on the Shigella flexneri genes expression related to biofilm formation. Int J Biol Macromol 2023; 253:127048. [PMID: 37748596 DOI: 10.1016/j.ijbiomac.2023.127048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Shigella is a specific enteric pathogen in humans, causing symptoms of bacterial dysentery. The biofilm formation of S. flexneri contributes to the emergence of multidrug resistance and facilitates the establishment of persistent chronic infections. This study investigated the regulatory effects of Lactiplantibacillus plantarum Y12 exopolysaccharide (L-EPS) on gene expression and its spatial hindrance effects in inhibiting the biofilm formation of S. flexneri. The transcriptome analysis revealed a significant impact of L-EPS on the gene expression profile of S. flexneri, with a total of 968 genes showing significant changes (507 up-regulated and 461 down-regulated). The significantly down-regulated KEGG metabolic pathway enriched in phosphotransferase system, Embden-Meyerhf-Parnas, Citrate cycle, Lipopolysaccharide biosynthesis, Cationic antimicrobial peptide resistance, Two-component system. Moreover, L-EPS significantly down-regulated the gene expression levels of fimbriae synthesis (fimF), lipopolysaccharide synthesis (lptE, lptB), anchor protein repeat domain (arpA), virulence factor (lpp, yqgB), antibiotic resistance (marR, cusB, mdtL, mdlB), heavy metal resistance (zraP), and polysaccharide synthesis (mtgA, mdoB, mdoC). The expression of biofilm regulator factor (bssS) and two-component system suppressor factor (mgrB) were significantly up-regulated. The RT-qPCR results indicated that a major component of L-EPS (L-EPS 2-1) exhibited the gene regulatory effect on the S. flexneri biofilm formation. Furthermore, electrophoresis and isothermal microtitration calorimetry demonstrated that the interaction between L-EPS 2-1 and eDNA is electrostatic dependent on the change in environmental pH, disrupting the stable spatial structure of S. flexneri biofilm. In conclusion, L-EPS inhibited the biofilm formation of S. flexneri through gene regulation and spatial obstruction effects.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
20
|
Prasad RS, Chikhale RV, Rai N, Akojwar NS, Purohit RA, Sharma P, Kulkarni O, Laloo D, Gurav SS, Itankar PR, Prasad SK. Rutin from Begonia roxburghii modulates iNOS and Sep A activity in treatment of Shigella flexneri induced diarrhoea in rats: An in vitro, in vivo and computational analysis. Microb Pathog 2023; 184:106380. [PMID: 37821049 DOI: 10.1016/j.micpath.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.
Collapse
Affiliation(s)
- Rupali S Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Rupesh V Chikhale
- Department of Pharmaceutical & Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | - Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Natasha S Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Raksha A Purohit
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Pravesh Sharma
- Birla Institute of Technology & Sciences, Pilani, Hyderabad Campus, Shameerpth, Hyderabad, 500078, India
| | - Onkar Kulkarni
- Birla Institute of Technology & Sciences, Pilani, Hyderabad Campus, Shameerpth, Hyderabad, 500078, India
| | - Damiki Laloo
- Girijananda Chowdhury Institute of Pharmaceutical Sciences, Guwahati, Assam, India
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panji, Goa, India
| | - Prakash R Itankar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India.
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India.
| |
Collapse
|
21
|
Miljkovic M, Lozano S, Castellote I, de Cózar C, Villegas-Moreno AI, Gamallo P, Jimenez-Alfaro Martinez D, Fernández-Álvaro E, Ballell L, Garcia GA. Novel inhibitors that target bacterial virulence identified via HTS against intra-macrophage survival of Shigella flexneri. mSphere 2023; 8:e0015423. [PMID: 37565760 PMCID: PMC10597453 DOI: 10.1128/msphere.00154-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023] Open
Abstract
Shigella flexneri is a facultative intracellular pathogen that causes shigellosis, a human diarrheal disease characterized by the destruction of the colonic epithelium. Novel antimicrobial compounds to treat infections are urgently needed due to the proliferation of bacterial antibiotic resistance and lack of new effective antimicrobials in the market. Our approach to find compounds that block the Shigella virulence pathway has three potential advantages: (i) resistance development should be minimized due to the lack of growth selection pressure, (ii) no resistance due to environmental antibiotic exposure should be developed since the virulence pathways are not activated outside of host infection, and (iii) the normal intestinal microbiota, which do not have the targeted virulence pathways, should be unharmed. We chose to utilize two phenotypic assays, inhibition of Shigella survival in macrophages and Shigella growth inhibition (minimum inhibitory concentration), to interrogate the 1.7 M compound screening collection subset of the GlaxoSmithKline drug discovery chemical library. A number of secondary assays on the hit compounds resulting from the primary screens were conducted, which, in combination with chemical, structural, and physical property analyses, narrowed the final hit list to 44 promising compounds for further drug discovery efforts. The rapid development of antibiotic resistance is a critical problem that has the potential of returning the world to a "pre-antibiotic" type of environment, where millions of people will die from previously treatable infections. One relatively newer approach to minimize the selection pressures for the development of resistance is to target virulence pathways. This is anticipated to eliminate any resistance selection pressure in environmental exposure to virulence-targeted antibiotics and will have the added benefit of not affecting the non-virulent microbiome. This paper describes the development and application of a simple, reproducible, and sensitive assay to interrogate an extensive chemical library in high-throughput screening format for activity against the survival of Shigella flexneri 2457T-nl in THP-1 macrophages. The ability to screen very large numbers of compounds in a reasonable time frame (~1.7 M compounds in ~8 months) distinguishes this assay as a powerful tool in further exploring new compounds with intracellular effect on S. flexneri or other pathogens with similar pathways of pathogenesis. The assay utilizes a luciferase reporter which is extremely rapid, simple, relatively inexpensive, and sensitive and possesses a broad linear range. The assay also utilized THP-1 cells that resemble primary monocytes and macrophages in morphology and differentiation properties. THP-1 cells have advantages over human primary monocytes or macrophages because they are highly plastic and their homogeneous genetic background minimizes the degree of variability in the cell phenotype (1). The intracellular and virulence-targeted selectivity of our methodology, determined via secondary screening, is an enormous advantage. Our main interest focuses on hits that are targeting virulence, and the most promising compounds with adequate physicochemical and drug metabolism and pharmacokinetic (DMPK) properties will be progressed to a suitable in vivo shigellosis model to evaluate the therapeutic potential of this approach. Additionally, compounds that act via a host-directed mechanism could be a promising source for further research given that it would allow a whole new, specific, and controlled approach to the treatment of diseases caused by some pathogenic bacteria.
Collapse
Affiliation(s)
- Marija Miljkovic
- Department of Medical Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- GSK Global Health Unit, Madrid, Spain
| | | | | | | | | | | | | | | | | | - George A. Garcia
- Department of Medical Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
23
|
Zakir Hossain AKM, Zahid Hasan M, Mina SA, Sultana N, Chowdhury AMMA. Occurrence of shigellosis in pediatric diarrheal patients in Chattogram, Bangladesh: A molecular based approach. PLoS One 2023; 18:e0275353. [PMID: 37319254 PMCID: PMC10270574 DOI: 10.1371/journal.pone.0275353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Shigellaa Gram-negative, non-motile bacillus, is the primary causative agent of the infectious disease shigellosis, which kills 1.1 million people worldwideevery year. The children under the age of five are primarily the victims of this disease. This study has been conducted to assess the prevalence of shigellosis through selective plating, biochemical test and conventional PCR assays, where the samples were collected from suspected diarrheoal patients. Invasive plasmid antigen H (ipaH) and O-antigenic rfc gene were used to identify Shigella spp. and S. flexneri respectively. For validation of these identification, PCR product of ipaH gene of a sample (Shigella flexneri MZS 191) has been sequenced and submitted to NCBI database (GenBank accession no- MW774908.1). Further this strain has been used as positive control. Out of 204, around 14.2% (n = 29)(P> 0.01) pediatric diarrheoal cases were screened as shigellosis. Another interesting finding was that most of shigellosis affected children were 7 months to 1 year (P> 0.01).The significance of this study lies in the analyses of the occurrenceand the molecular identification of Shigellaspp. and S. flexneri that can be utilized in improving the accurate identification and the treatment of the most severe and alarming shigellosis.
Collapse
Affiliation(s)
- A. K. M. Zakir Hossain
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| | - Md. Zahid Hasan
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| | - Sohana Akter Mina
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| | - Nahid Sultana
- Department of Microbiology, Chattogram Maa-O-Shishu Hospital Medical College, Chattogram, Bangladesh
| | - A. M. Masudul Azad Chowdhury
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| |
Collapse
|
24
|
Nisa I, Driessen A, Nijland J, Rahman H, Mattner J, Qasim M. Novel plasmids in multidrug-resistant Shigella flexneri serotypes from Pakistan. Arch Microbiol 2023; 205:175. [PMID: 37027063 DOI: 10.1007/s00203-023-03523-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Shigellosis is the main cause of food and waterborne diarrhea and is an emerging threat to human health. The current study characterized the indigenous multidrug-resistant Shigella flexneri serotypes for their plasmid profiles and genetic diversity, to characterize the plasmid evolutionary patterns and distribution. In total, 199 identified S. flexneri isolates belonging to six different serotypes were analyzed for plasmid profiling, followed by an analysis of whole genome sequencing. All isolates of S. flexneri resistant to antibiotics harbored multiple copies of plasmids with sizes ranging from 1.25 kbp to 9.4 kbp. These isolates were clustered into 22 distinct plasmid patterns, labeled as p1-p22. Among these, p1 (24%) and p10 (13%) were the predominant plasmid profiles. All S. flexneri strains were grouped into 12 clades with a 75% similarity level. Also, a significant association was observed among the plasmid patterns, p23 and p17 with the drug-resistant patterns AMC, SXT, C (19.5%) and OFX, AMC, NA, CIP (13.5%), respectively. Moreover, the most widespread plasmid patterns p4, p10, and p1 showed a significant association with the serotypes 1b (29.16%), 2b (36%), and 7a (100%), respectively. After plasmid sequence assembly and annotation analysis, a variety of small plasmids that vary in size from 973 to 6200 bp were discovered. Many of these plasmids displayed high homology and coverage with plasmids from non-S. flexneri. Several novel plasmids of small size were discovered in multidrug-resistant S. flexneri. The data also showed that plasmid profile analysis is more consistent than antibiotic susceptibility pattern analysis for identifying epidemic strains of S. flexneri isolated in Pakistan.
Collapse
Affiliation(s)
- Iqbal Nisa
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan
- Department of Microbiology, Women University Swabi, Swabi, Pakistan
| | - Arnold Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jeroen Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie Und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, Pakistan.
| |
Collapse
|
25
|
Muzembo BA, Kitahara K, Mitra D, Ohno A, Khatiwada J, Dutta S, Miyoshi SI. Shigellosis in Southeast Asia: A systematic review and meta-analysis. Travel Med Infect Dis 2023; 52:102554. [PMID: 36792021 DOI: 10.1016/j.tmaid.2023.102554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Southeast Asia is attractive for tourism. Unfortunately, travelers to this region are at risk of becoming infected with Shigella. We conducted a meta-analysis to provide updates on Shigella prevalence in Southeast Asia, along with their serogroups and serotypes. METHODS We conducted a systematic search using PubMed, EMBASE, and Web of Science for peer-reviewed studies from 2000 to November 2022. We selected studies that detected Shigella in stools by culture or polymerase chain reaction (PCR). Two reviewers extracted the data using a standardized form and performed quality assessments using the Joanna Briggs Institute checklist. The random effects model was used to estimate the pooled prevalence of Shigella. RESULTS During our search, we identified 4376 studies. 29 studies (from six Southeast Asian countries) were included in the systematic review, 21 each in the meta-analysis of the prevalence of Shigella (Sample size: 109545) and the prevalence of Shigella serogroups. The pooled prevalence of Shigella was 4% (95% CI: 4-5%) among diarrhea cases. Shigella sonnei was the most abundant serogroup in Thailand (74%) and Vietnam (57%), whereas Shigella flexneri was dominant in Indonesia (72%) and Cambodia (71%). Shigella dysenteriae and Shigella boydii were uncommon (pooled prevalence of 1% each). The pooled prevalence of Shigella was 5% (95% CI: 4-6%) in children aged <5 years. The pooled prevalence showed a decreasing trend comparing data collected between 2000-2013 (5%; 95% CI: 4-6%) and between 2014-2022 (3%; 95% CI: 2-4%). Shigella prevalence was 6% in studies that included participants with mixed pathogens versus 3% in those without. Shigella flexneri serotype 2a was the most frequently isolated (33%), followed by 3a (21%), 1b (10%), 2b (3%), and 6 (3%). CONCLUSIONS This study provides compelling evidence for the development of effective Shigella vaccines for residents of endemic regions and travellers to these areas.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | - Debmalya Mitra
- Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | - Ayumu Ohno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
26
|
Marinas IC, Oprea E, Gaboreanu DM, Gradisteanu Pircalabioru G, Buleandra M, Nagoda E, Badea IA, Chifiriuc MC. Chemical and Biological Studies of Achillea setacea Herba Essential Oil-First Report on Some Antimicrobial and Antipathogenic Features. Antibiotics (Basel) 2023; 12:antibiotics12020371. [PMID: 36830282 PMCID: PMC9952371 DOI: 10.3390/antibiotics12020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The essential oil of Achillea setacea was isolated by hydrodistillation and characterized by GC-MS. The antioxidant and antimicrobial activity of Achillea setacea essential oil was evaluated, as well as its biocompatibility (LDH and MTT methods). DPPH, FRAP, and CUPRAC methods were applied for antioxidant activity evaluation, while qualitative and quantitative assays (inhibition zone diameter, minimum inhibitory concentration, and minimum fungicidal concentration), NO release (by nitrite concentration determination), and microbial adhesion capacity to the inert substrate (the biofilm microtiter method) were used to investigate the antimicrobial potential. A total of 52 compounds were identified by GC-MS in A. setacea essential oil, representing 97.43% of the total area. The major constituents were borneol (32.97%), 1,8-cineole (14.94%), camphor (10.13%), artemisia ketone (4.70%), α-terpineol (3.23%), and γ-eudesmol (3.23%). With MICs ranging from 0.78 to 30 μg/mL, the A. setacea essential oil proved to inhibit the microbial adhesion and induce the NO release. To the best of our knowledge, the present study reports for the first time the antimicrobial activity of A. setacea EO against clinically and biotechnologically important microbial strains, such as Shigella flexneri, Listeria ivanovii, L. innocua, Saccharomyces cerevisiae, Candida glabrata, Aspergillus niger, Rhizopus nigricans, Cladosporium cladosporioides, and Alternaria alternata, demonstrating its antimicrobial applications beyond the clinical field.
Collapse
Affiliation(s)
- Ioana Cristina Marinas
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research and Development Department of S.C. Sanimed International Impex SRL, Șos. București-Giurgiu (DN5), No. 6, 087040 Călugăreni, Romania
| | - Eliza Oprea
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
- Correspondence: ; Tel.: +40-723-250-470
| | - Diana Madalina Gaboreanu
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 3rd Ilfov Street, 051157 Bucharest, Romania
| | - Mihaela Buleandra
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| | - Eugenia Nagoda
- Garden “D. Brandza”, University of Bucharest, 32 Sos. Cotroceni, 060114 Bucharest, Romania
| | - Irinel Adriana Badea
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research and Development Department of S.C. Sanimed International Impex SRL, Șos. București-Giurgiu (DN5), No. 6, 087040 Călugăreni, Romania
- The Romanian Academy, Biological Sciences Division, Calea Victoriei 125, 010071 Bucharest, Romania
| |
Collapse
|
27
|
Dietary Supplementation with Chlorogenic Acid Enhances Antioxidant Capacity, Which Promotes Growth, Jejunum Barrier Function, and Cecum Microbiota in Broilers under High Stocking Density Stress. Animals (Basel) 2023; 13:ani13020303. [PMID: 36670842 PMCID: PMC9854556 DOI: 10.3390/ani13020303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chlorogenic acids (CGA) are widely used as feed additives for their ability to improve growth performance and intestinal health in poultry. However, whether dietary CGAs could reverse the impaired intestinal condition caused by high stocking density (HD) in broiler chickens is unknown. We determined the effect of dietary CGA on growth, serum antioxidant levels, jejunum barrier function, and the microbial community in the cecum of broilers raised under normal (ND) or HD conditions. HD stress significantly decreased growth and body weight, which was restored by CGA. The HD group showed increased serum malondialdehyde, an oxidative byproduct, and decreased SOD and GSH-Px activity. CGA reduced malondialdehyde and restored antioxidant enzyme activity. HD stress also significantly decreased jejunal villus length and increased crypt depth. Compared with ND, the expression of tight-junction genes was significantly decreased in the HD group, but this decrease was reversed by CGA. HD also significantly upregulated TNF-α. Compared with ND, the cecal microbiota in the HD group showed lower alpha diversity with increases in the harmful bacteria Turicibacter and Shigella. This change was altered in the HD + CGA group, with enrichment of Blautia, Akkermansia, and other beneficial bacteria. These results demonstrated that HD stress decreased serum antioxidant capacity, inhibited the development of jejunal villi, and downregulated expression of tight-junction genes, which increased intestinal permeability during the rapid growth period (21 to 35 days). Dietary CGA enhanced antioxidant capacity, improved intestinal integrity, and enhanced beneficial gut bacteria in chickens raised under HD conditions.
Collapse
|
28
|
Gu X, Miao Z, Wang Y, Yang Y, Yang T, Xu Y. New Baitouweng decoction combined with fecal microbiota transplantation alleviates DSS-induced colitis in rats by regulating gut microbiota metabolic homeostasis and the STAT3/NF-κB signaling pathway. BMC Complement Med Ther 2022; 22:307. [PMID: 36424592 PMCID: PMC9686021 DOI: 10.1186/s12906-022-03766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
AIM OF THE STUDY We aimed to elucidate the synergistic effect and potential mechanism of New Baitouweng Decoction (NBD) combined with fecal microbiota transplantation (FMT) in rats with DSS-induced ulcerative colitis (UC). MATERIALS AND METHODS Colitis was induced by 5% (w/v) dextran sulfate sodium (DSS) in drinking water for 7 days. NBD or NBD combined with FMT were administered to the colitis rats. Body weight and disease activity index were measured, and the colon histological change was imaged to further examine the efficacy of NBD and FMT. The specific effects of NBD on STAT3/NF-κB signaling pathway and gut microbiota in rats with UC were also investigated. RESULTS The efficacy of NBD in combination with FMT was demonstrated by the lower disease activity index scores; increased tight junction proteins expression; and a lower expression of macrophage marker (F4/80) in colon tissues. NBD combined with FMT elevated the concentrations of short-chain fatty acids and inhibited activation of the JAK2/STAT3/NF-κB related proteins. Furthermore, 16SrDNA sequencing indicated that the gut microbiota in rats with UC was perturbed, in contrast to that in healthy rats. After treatment with NBD and FMT, the diversity and abundance of intestinal flora showed clear improvements. Spearman correlation analysis indicated a strong correlation between specific microbiota and fecal concentrations of acetate, propionate and butyrate. CONCLUSIONS The protective mechanism of NBD combined with FMT may be linked to regulation NF-κB/STAT3 and restoration of the intestinal flora.
Collapse
Affiliation(s)
- Xin Gu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhiwei Miao
- grid.410745.30000 0004 1765 1045Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yantian Wang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Yang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Tongtong Yang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yi Xu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
30
|
Meron-Sudai S, Reizis A, Goren S, Bialik A, Hochberg A, Cohen D. Pentraxin 3 and Shigella LPS and IpaB Antibodies Interplay to Defeat Shigellosis. J Clin Med 2022; 11:jcm11154384. [PMID: 35956001 PMCID: PMC9368894 DOI: 10.3390/jcm11154384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Shigella causes moderate to severe diarrhea or dysentery after invading the colon mucosa. Long Pentraxin 3 (PTX3) is recognized as the humoral component of the innate immune response to bacterial pathogens. We examined the interplay between levels of PTX3 and levels of anti-Shigella lipopolysaccharide (LPS) and anti-Shigella type 3 secretion system protein-IpaB antibodies in children during acute shigellosis and after recovery. PTX3 concentrations in serum and stool extracts were determined by sandwich ELISA using commercial anti-PTX3 antibodies. Serum IgG, IgM, and IgA anti-S. sonnei LPS or anti-S. sonnei IpaB were measured using in house ELISA. Children with acute shigellosis (n = 60) had elevated PTX3 levels in serum and stools as compared with recovered subjects (9.6 ng/mL versus 4.7 ng/mL, p < 0.009 in serum and 16.3 ng/g versus 1.1 ng/g in stool, p = 0.011). Very low levels of PTX3 were detected in stools of healthy children (0.3 ng/g). Increased serum levels of PTX3 correlated with high fever accompanied by bloody or numerous diarrheal stools characteristic of more severe shigellosis while short pentraxin; C-Reactive Protein (CRP) did not show such a correlation. PTX3 decreased in convalescence while anti-Shigella antibodies increased, switching the response from innate to adaptive toward the eradication of the invasive organism. These data can inform the development of Shigella vaccines and treatment options.
Collapse
Affiliation(s)
- Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.R.); (S.G.); (A.B.)
| | - Arava Reizis
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.R.); (S.G.); (A.B.)
| | - Sophy Goren
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.R.); (S.G.); (A.B.)
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.R.); (S.G.); (A.B.)
| | - Amit Hochberg
- Newborn and Neonatal Care Department, Hillel Yaffe Medical Center, Hadera 38100, Israel;
| | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.R.); (S.G.); (A.B.)
- Correspondence:
| |
Collapse
|
31
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
YfiB: An Outer Membrane Protein Involved in the Virulence of Shigella flexneri. Microorganisms 2022; 10:microorganisms10030653. [PMID: 35336228 PMCID: PMC8948675 DOI: 10.3390/microorganisms10030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
The intracellular pathogen Shigella flexneri, which is the causative agent of bacillary dysentery, significantly influences the worldwide implication of diarrheal infections, consequentially causing about 1.1 million deaths each year. Due to a nonavailability of an authorized vaccine and the upsurge of multidrug resistance amongst Shigella strains, there has been a huge demand for further genetic analyses which could help in the advancement of new/improved drugs, and finding vaccine candidates against the pathogen. The present study aims to illustrate the role of the yfiB gene in Shigella virulence, part of the periplasmic YfiBNR tripartite signalling system. This system is involved in the regulation of cyclic-di-GMP levels inside the bacterial cells, a vital messenger molecule impacting varied cellular processes such as biofilm formation, cytotoxicity, motility, synthesis of exopolysaccharide, and other virulence mechanisms such as adhesion and invasion of the bacteria. Through a combination of genetic, biochemical, and virulence assays, we show how knocking out the yfiB gene can disrupt the entire YfiBNR system and affect the native c-di-GMP levels. We found that this subsequently causes a negative effect on the biofilm formation, bacterial invasion, host–surface attachment, and the overall virulence of Shigella. This study also carried out a structural and functional assessment of the YfiB protein and determined critical amino acid residues, essential for proper functioning of this signalling system. The present work improves our understanding of the in vivo persistence and survival of Shigella, brings light to the c-di-GMP led regulation of Shigella virulence, and provides a prospective new target to design anti-infection drugs and vaccines against S. flexneri and other bacterial pathogens.
Collapse
|
33
|
Song Y, Ma F, Sun M, Mu G, Tuo Y. The Chemical Structure Properties and Promoting Biofilm Activity of Exopolysaccharide Produced by Shigella flexneri. Front Microbiol 2022; 12:807397. [PMID: 35185832 PMCID: PMC8854994 DOI: 10.3389/fmicb.2021.807397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Shigella flexneri is a waterborne and foodborne pathogen that can damage human health. The exopolysaccharides (S-EPS) produced by S. flexneri CMCC51574 were found to promote biofilm formation and virulence. In this research, the crude S-EPS produced by S. flexneri CMCC51574 were separated into three main different fractions, S-EPS 1-1, S-EPS 2-1, and S-EPS 3-1. The structure of the S-ESP 2-1 was identified by FT-IR, ion chromatography analysis, methylation analysis, and NMR analysis. The main chain of S-EPS 2-1 was α-Manp-(1 → 3)-α-Manp-[(1 → 2,6)-α-Manp]15-[(1 → 2)-Manf-(1→]8; there were two branched-chain R1 and R2 with a ratio of 4:1, R1: α-Manp-(1 → 6)- and R2: α-Manp-(1 → 6)- Glc-(1 → 6)- were linked with (1 → 2,6)-α-Manp. It was found that S-EPS 2-1 exhibited the highest promoting effect on biofilm formation of S. flexneri. The S-EPS 2-1 was identified to interact with extracellular DNA (eDNA) of S. flexneri, indicating that the S-EPS 2-1 was the specific polysaccharide in the spatial structure of biofilm formation. Our research found the important role of S-EPS in S. flexneri biofilm formation, which will help us to understand the underlining mechanisms of the biofilm formation and find effective ways to prevent S. flexneri biofilm infection.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yanfeng Tuo,
| |
Collapse
|
34
|
Wang Z, Xu Q, Liu S, Liu Y, Gao Y, Wang M, Zhang L, Chang H, Wei Q, Sui Z. Rapid and multiplexed quantification of Salmonella, Escherichia coli O157:H7, and Shigella flexneri in ground beef using flow cytometry. Talanta 2022; 238:123005. [PMID: 34857336 DOI: 10.1016/j.talanta.2021.123005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Salmonella, Escherichia coli O157:H7 (E. coli O157:H7) and Shigella flexneri (S. flexneri) might contaminate similar types of meat products and cause deadly diseases in humans. In reality, ground beef samples may carry more than one pathogen and a rapid and accurate detection method for the simultaneous identification of multiple specific pathogenic strains in ground beef is crucial. In this study, a sample pretreatment protocol and a flow cytometry method were developed for rapid and multiplexed quantification of the three pathogens without cultural enrichment in ground beef. The whole process of sample pretreatment, staining, and instrument analysis can be accomplished within 1 h. The three bacteria upon sample pretreatment were demonstrated good recoveries (93.8%-101.2%). The quantitative detection range of the mothed was 103 to 108 cells/g for all three pathogens, and the detection limit for Salmonella, E. coli O157:H7 and S. flexneri in ground beef were 3.1 × 103 cells/g, 2.1 × 103 cells/g and 2.3 × 103 cells/g, respectively. Therefore, the as-developed approach is a rapid and quantitative method for multiplexed detection of Salmonella, E. coli O157:H7, and S. flexneri in ground beef.
Collapse
Affiliation(s)
- Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Qian Xu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China; College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yingying Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Ying Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Ling Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
35
|
Safety and Immunogenicity of a Shigella Bivalent Conjugate Vaccine (ZF0901) in 3-Month- to 5-Year-Old Children in China. Vaccines (Basel) 2021; 10:vaccines10010033. [PMID: 35062694 PMCID: PMC8780113 DOI: 10.3390/vaccines10010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
No licensed Shigella vaccine is presently available globally. A double-blinded, randomized, placebo-controlled, age descending phase II clinical trial of a bivalent conjugate vaccine was studied in China. The vaccine ZF0901 consisted of O-specific polysaccharides purified and detoxified from lipopolysaccharide (LPS) of S. flexneri 2a and S. sonnei and covalently bonded to tetanus toxoid. A total of 224, 310, and 434 children, consented by parents or guardians, aged 3 to 6 and 6 to 12 months and 1 to 5 years old, respectively, were injected with half or full doses, with or without adjuvant or control Hib vaccine. There were no serious adverse reactions in all recipients of ZF0901 vaccine independent of age, dosage, number of injections, or the adjuvant status. Thirty days after the last injection, ZF0901 induced robust immune responses with significantly higher levels of type-specific serum antibodies (geometric mean concentrations (GMCs) of IgG anti-LPS) against both serotypes in all age groups compared with the pre-immune or the Hib control (p < 0.0001). Here, we demonstrated that ZF0901 bivalent Shigella conjugate vaccine is safe and immunogenic in infants and young children and is likely suitable for routine immunization.
Collapse
|
36
|
Rotramel HE, Zamir HS. Shigella Bacteremia in an Immunocompetent Patient. Cureus 2021; 13:e19778. [PMID: 34950556 PMCID: PMC8687798 DOI: 10.7759/cureus.19778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022] Open
Abstract
Isolation of Shigella in the bloodstream is a rare sequela of Shigella infections. Shigellemia typically occurs in patients with immature immune responses or in immunocompromised adults. Herein, we present a case of shigellemia in a 40-year-old male who presented with diabetic ketoacidosis (DKA), severe diarrhea, hypovolemic hyponatremia, and altered mental status. Stool cultures were found to be positive for Shigella, and broad-spectrum antibiotic therapy was initiated. Because of the patient’s reported sexual exposures, a rapid HIV point of care test was done and returned negative. In spite of intervention, the patient’s vitals, labs, and symptoms failed to improve, and he developed septic shock requiring pressor support in the intensive care unit. Further workup for the etiology of the patient’s sepsis included a CT abdomen and pelvis which showed findings concerning infectious colitis. Blood cultures later returned positive for Shigella, which was found to be resistant to multiple antibiotics. The patient was started on IV ceftriaxone with an improvement of and eventual resolution of symptoms. Shigellemia is a rare complication of infection with Shigella and necessitates further workup to avoid overlooking potential predisposing factors such as HIV or other immunocompromising conditions. Its susceptibilities should also be evaluated, as Shigella strains are more frequently becoming resistant to antibiotics that had previously been the therapies of choice.
Collapse
Affiliation(s)
- Hayden E Rotramel
- Internal Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, USA
| | - Harris S Zamir
- Internal Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, USA
| |
Collapse
|
37
|
Planas A. Peptidoglycan Deacetylases in Bacterial Cell Wall Remodeling and Pathogenesis. Curr Med Chem 2021; 29:1293-1312. [PMID: 34525907 DOI: 10.2174/0929867328666210915113723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
The bacterial cell wall peptidoglycan (PG) is a dynamic structure that is constantly synthesized, re-modeled and degraded during bacterial division and growth. Post-synthetic modifications modulate the action of endogenous autolysis during PG lysis and remodeling for growth and sporulation, but also they are a mechanism used by pathogenic bacteria to evade the host innate immune system. Modifica-tions of the glycan backbone are limited to the C-2 amine and the C-6 hydroxyl moieties of either Glc-NAc or MurNAc residues. This paper reviews the functional roles and properties of peptidoglycan de-N-acetylases (distinct PG GlcNAc and MurNAc deacetylases) and recent progress through genetic stud-ies and biochemical characterization to elucidate their mechanism of action, 3D structures, substrate specificities and biological functions. Since they are virulence factors in pathogenic bacteria, peptidogly-can deacetylases are potential targets for the design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià. University Ramon Llull, 08017 Barcelona. Spain
| |
Collapse
|
38
|
Holma T, Torvikoski J, Friberg N, Nevalainen A, Tarkka E, Antikainen J, Martelin JJ. Rapid molecular detection of pathogenic microorganisms and antimicrobial resistance markers in blood cultures: evaluation and utility of the next-generation FilmArray Blood Culture Identification 2 panel. Eur J Clin Microbiol Infect Dis 2021; 41:363-371. [PMID: 34350523 PMCID: PMC8831274 DOI: 10.1007/s10096-021-04314-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Rapid detection of pathogens causing bloodstream infections (BSI) directly from positive blood cultures is of highest importance in order to enable an adequate and timely antimicrobial therapy. In this study, the utility and performance of a recently launched next-generation fully automated test system, the Biofire FilmArray® Blood Culture Identification 2 (BCID2) panel, was evaluated using a set of 103 well-characterized microbial isolates including 29 antimicrobial resistance genes and 80 signal-positive and 23 signal-negative clinical blood culture samples. The results were compared to culture-based reference methods, MALDI-TOF, and/or 16S rDNA sequencing. Of the clinical blood culture samples, 68 were monomicrobial (85.0%) and 12 polymicrobial (15.0%). Six samples contained ESBL (blaCTX-M), two MRSA (mecA), and three MRSE (mecA) isolates. In overall, the FilmArray BCID2 panel detected well on-panel targets and resistance markers from mono- and polymicrobial samples. However, one Klebsiella aerogenes and one Bacteroides ovatus were undetected, and the assay falsely reported one Shigella flexneri as Escherichia coli. Hence, the sensitivity and specificity for detecting microbial species were 98.8% (95%CI, 95.8–99.9%) and 99.9% (95%CI, 99.8–99.9%), respectively. The sensitivity and specificity for detecting of resistance gene markers were 100%. The results were available within 70 min from signal-positive blood cultures with minimal hands-on time. In conclusion, the BCID2 test allows reliable and simplified detection of a vast variety of clinically relevant microbes causing BSI and the most common antimicrobial resistance markers present among these isolates.
Collapse
Affiliation(s)
- Tanja Holma
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Jukka Torvikoski
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nathalie Friberg
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annika Nevalainen
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eveliina Tarkka
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jenni Antikainen
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jari J Martelin
- HUS Diagnostic Center, HUSLAB, Department of Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
39
|
Wu X, Chen Y, Zhang Y, Shan Y, Peng Z, Gu B, Yang H. Au Nanoclusters Ameliorate Shigella Infectious Colitis by Inducing Oxidative Stress. Int J Nanomedicine 2021; 16:4545-4557. [PMID: 34267512 PMCID: PMC8275169 DOI: 10.2147/ijn.s315481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Shigella infection has always been a global burden, and it particularly threatens children between the ages of 1 and 5 years. Economically underdeveloped countries are dominated by Shigella flexneri infection. The most effective method to treat Shigella is antibiotics, but with the abuse of antibiotics and the prevalence of multidrug resistance, we urgently need a relatively safe non-antibiotic treatment to replace it. Ultrasmall Au nanoclusters (NCs) have special physical and chemical properties and can better interact with and be internalized by bacteria to disrupt the metabolic balance. The purpose of this study was to explore whether Au NCs may be a substitute for antibiotics to treat Shigella infections. Methods Au NCs and Shigella Sf301, R2448, and RII-1 were cocultured in vitro to evaluate the bactericidal ability of Au NCs. The degree of damage and mode of action of Au NCs in Shigella were clearly observed in images of scanning electron microscopy (SEM). In vivo experiments were conducted to observe the changes in body weight, clinical disease activity index (DAI) and colon (including length and histopathological sections) of mice treated with Au NCs. The effect of Au NCs was analysed by measuring the content of lipocalin-2 (LCN2) and Shigella in faeces. Next, the changes in Shigella biofilm activity, the release of reactive oxygen species (ROS), the changes in metabolism-related and membrane-related genes, and the effect of Au NCs on the body weight of mice were determined to further analyse the mechanism of action and effect. Results Au NCs (100 μM) interfered with oxidative metabolism genes, induced a substantial increase in ROS levels, interacted with the cell membrane to destroy it, significantly killed Shigella, and effectively alleviated the intestinal damage caused by Shigella in mice. The activity of the biofilm formed by Shigella was reduced. Conclusion The effective antibacterial effect and good safety suggest that Au NCs represent a good potential alternative to antibiotics to treat Shigella infections.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yongyan Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital of Nanjing University School of Medicine, Nanjing, 210008, People's Republic of China
| | - Yunjie Shan
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhiyue Peng
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| |
Collapse
|
40
|
Hashemi SMB, Jafarpour D, Jouki M. Improving bioactive properties of peach juice using Lactobacillus strains fermentation: Antagonistic and anti-adhesion effects, anti-inflammatory and antioxidant properties, and Maillard reaction inhibition. Food Chem 2021; 365:130501. [PMID: 34247050 DOI: 10.1016/j.foodchem.2021.130501] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
The purpose of the current study was to evaluate the antimicrobial activity of Lactobacillus acidophilus PTCC 1643 and Lactobacillus fermentum PTCC 1744 against Shigella flexneri PTCC 1865 in fermented peach juice, as well as the anti-adhesion ability on epithelial Caco-2 cells. Moreover, the biological activities of peach juice were examined. We found that the studied Lactobacillus strains effectively inhibited the growth of S. flexneri during the peach juice fermentation. In addition, L. acidophilus revealed more anti-adhesion ability than L. fermentum. The inhibition of the Maillard reaction increased from 4.10% to 36.70% and 33.00% in L. acidophilus and L. fermentum treatments, respectively. Additionally, the ferrous reducing power, superoxide anion antiradical and anti-inflammatory activities of the beverage augmented during the fermentation period. These findings may be helpful for inhibition of foodborne pathogens by Lactobacillus strains and production of fruit-based fermented beverages with high functional and nutritional value.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa Branch, Islamic Azad University, Fasa, Iran.
| | - Mohammad Jouki
- Department of Food Science and Technology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
41
|
Li Y, Xia S, Jiang X, Feng C, Gong S, Ma J, Fang Z, Yin J, Yin Y. Gut Microbiota and Diarrhea: An Updated Review. Front Cell Infect Microbiol 2021; 11:625210. [PMID: 33937093 PMCID: PMC8082445 DOI: 10.3389/fcimb.2021.625210] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Diarrhea is a common problem to the whole world and the occurrence of diarrhea is highly associated with gut microbiota, such as bacteria, fungi, and viruses. Generally, diarrheal patients or animals are characterized by gut microbiota dysbiosis and pathogen infections may lead to diarrheal phenotypes. Of relevance, reprograming gut microbiota communities by dietary probiotics or fecal bacteria transplantation are widely introduced to treat or prevent diarrhea. In this review, we discussed the influence of the gut microbiota in the infection of diarrhea pathogens, and updated the research of reshaping the gut microbiota to prevent or treat diarrhea for the past few years. Together, gut microbiota manipulation is of great significance to the prevention and treatment of diarrhea, and further insight into the function of the gut microbiota will help to discover more anti-diarrhea probiotics.
Collapse
Affiliation(s)
- Yunxia Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Siting Xia
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaohan Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Can Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Saiming Gong
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jie Yin, ; Zhengfeng Fang,
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Jie Yin, ; Zhengfeng Fang,
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
42
|
Shad AA, Shad WA. Shigella sonnei: virulence and antibiotic resistance. Arch Microbiol 2021; 203:45-58. [PMID: 32929595 PMCID: PMC7489455 DOI: 10.1007/s00203-020-02034-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Shigella sonnei is the emerging pathogen globally, as it is the second common infectious species of shigellosis (bloody diarrhoea) in low- and middle-income countries (LMICs) and the leading one in developed world. The multifactorial processes and novel mechanisms have been identified in S. sonnei, that are collectively playing apart a substantial role in increasing its prevalence, while replacing the S. flexneri and other Gram-negative gut pathogens niche occupancy. Recently, studies suggest that due to improvement in sanitation S. sonnei has reduced cross-immunization from Plesiomonas shigelliodes (having same O-antigen as S. sonnei) and also found to outcompete the two major species of Enterobacteriaceae family (Shigella flexneri and Escherichia coli), due to encoding of type VI secretion system (T6SS). This review aimed to highlight S. sonnei as an emerging pathogen in the light of recent research with pondering aspects on its epidemiology, transmission, and pathogenic mechanisms. Additionally, this paper aimed to review S. sonnei disease pattern and related complications, symptoms, and laboratory diagnostic techniques. Furthermore, the available treatment reigns and antibiotic-resistance patterns of S. sonnei are also discussed, as the ciprofloxacin and fluoroquinolone-resistant S. sonnei has already intensified the global spread and burden of antimicrobial resistance. In last, prevention and controlling strategies are briefed to limit and tackle S. sonnei and possible future areas are also explored that needed more research to unravel the hidden mysteries surrounding S. sonnei.
Collapse
Affiliation(s)
- Ahtesham Ahmad Shad
- Institute of Microbiology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Wajahat Ahmed Shad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
43
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|