1
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Gao S, Wang X, Huang Y, You L. Calreticulin-driven autophagy enhances cell proliferation in laryngeal squamous cell carcinoma. Tissue Cell 2024; 91:102603. [PMID: 39550898 DOI: 10.1016/j.tice.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Calreticulin (CALR) is a multifunctional calcium-binding protein. Recent studies have revealed that CALR contributes to tumor development and promotes cancer cell proliferation. However, how CALR affects the development of laryngeal squamous cell carcinoma (LSCC) remains mysterious. Thus, this study aimed to explore the effect of CALR on LSCC development and uncover its underlying mechanisms. METHODS CALR expression in LSCC cell lines and tissues was examined by qRT-PCR and western blot analysis and its functional role was detected via in vivo and in vitro assays. Cell proliferation was discriminated with CCK-8 and colony formation assays, while apoptosis was analyzed using flow cytometry. Autophagy levels were measured via LC3 immunofluorescence, and western blot assay was conducted to assess apoptosis- and autophagy-related proteins. Additionally, a mouse xenograft model was employed to determine the impact of CALR knockdown on tumor growth. RESULTS We found that CALR knockdown reduced LSCC cell viability and proliferation while enhancing apoptosis, whereas CALR overexpression showed opposite effects. In vivo experiments verified that CALR knockdown suppressed tumor growth. In addition, elevated CALR expression induced autophagy in LSCC cells, while autophagy inhibitor 3-MA (2.5 mM) reversed the anti-apoptosis effects of CALR overexpression. CONCLUSION Our study identifies CALR as an oncogene in LSCC, where it promotes tumor progression by inducing autophagy and inhibiting apoptosis. Targeting CALR or modulating autophagy may represent novel therapeutic strategies for LSCC.
Collapse
Affiliation(s)
- Shufeng Gao
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Xintao Wang
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Yun Huang
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Longgui You
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
3
|
Dutra MJ, Malta IS, de Almeida Lança ML, de Vasconcellos LMR, Adorno-Farias D, Jara JA, Kaminagakura E. Effects of artemisinin and cisplatin on the malignant progression of oral leukoplakia. In vitro and in vivo study. J Cancer Res Clin Oncol 2024; 150:390. [PMID: 39154308 PMCID: PMC11330948 DOI: 10.1007/s00432-024-05924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.
Collapse
Affiliation(s)
- Mateus José Dutra
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Isabella Souza Malta
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Maria Leticia de Almeida Lança
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Daniela Adorno-Farias
- Oral Medicine and Pathology Department, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Antonio Jara
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
| |
Collapse
|
4
|
Williams A, Cooper E, Clark B, Perry L, Ponassi M, Iervasi E, Brullo C, Greenhough A, Ladomery M. Anticancer Effects of the Novel Pyrazolyl-Urea GeGe-3. Int J Mol Sci 2024; 25:5380. [PMID: 38791418 PMCID: PMC11121338 DOI: 10.3390/ijms25105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2+-binding protein calreticulin. We further explored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3 (prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervix epithelioid carcinoma). At concentrations in the range of 10 μM, GeGe-3 significantly restricted cell proliferation and metabolism. GeGe-3 also reduced PC3 cell migration in a standard wound closure and trans-well assay. Together, these results confirm the anticancer potential of GeGe-3 and underline the need for more detailed pre-clinical investigations into its molecular targets and mechanisms of action.
Collapse
Affiliation(s)
- Ashleigh Williams
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Emma Cooper
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Bethany Clark
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Laura Perry
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Marco Ponassi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, L.go. R. Benzi 10, 16132 Genova, Italy
| | - Erika Iervasi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, L.go. R. Benzi 10, 16132 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Medicinal Chemistry Section, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy;
| | - Alexander Greenhough
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Michael Ladomery
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
5
|
Chen S, Zhang W, Li X, Cao Z, Liu C. DNA polymerase beta connects tumorigenicity with the circadian clock in liver cancer through the epigenetic demethylation of Per1. Cell Death Dis 2024; 15:78. [PMID: 38245510 PMCID: PMC10799862 DOI: 10.1038/s41419-024-06462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
The circadian-controlled DNA repair exhibits a strong diurnal rhythm. Disruption in circadian clock and DNA repair is closely linked with hepatocellular carcinoma (HCC) progression, but the mechanism remains unknown. Here, we show that polymerase beta (POLB), a critical enzyme in the DNA base excision repair pathway, is rhythmically expressed at the translational level in mouse livers. Hepatic POLB dysfunction dampens clock homeostasis, whereas retards HCC progression, by mediating the methylation of the 4th CpG island on the 5'UTR of clock gene Per1. Clinically, POLB is overexpressed in human HCC samples and positively associated with poor prognosis. Furthermore, the hepatic rhythmicity of POLB protein expression is orchestrated by Calreticulin (CALR). Our findings provide important insights into the molecular mechanism underlying the synergy between clock and food signals on the POLB-driven BER system and reveal new clock-dependent carcinogenetic effects of POLB. Therefore, chronobiological modulation of POLB may help to promote precise interventions for HCC.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xiao Li
- Department of Pathology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China.
| |
Collapse
|
6
|
Bharadwaj AG, Okura GC, Woods JW, Allen EA, Miller VA, Kempster E, Hancock MA, Gujar S, Slibinskas R, Waisman DM. Identification and characterization of calreticulin as a novel plasminogen receptor. J Biol Chem 2024; 300:105465. [PMID: 37979915 PMCID: PMC10770727 DOI: 10.1016/j.jbc.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Calreticulin (CRT) was originally identified as a key calcium-binding protein of the endoplasmic reticulum. Subsequently, CRT was shown to possess multiple intracellular functions, including roles in calcium homeostasis and protein folding. Recently, several extracellular functions have been identified for CRT, including roles in cancer cell invasion and phagocytosis of apoptotic and cancer cells by macrophages. In the current report, we uncover a novel function for extracellular CRT and report that CRT functions as a plasminogen-binding receptor that regulates the conversion of plasminogen to plasmin. We show that human recombinant or bovine tissue-derived CRT dramatically stimulated the conversion of plasminogen to plasmin by tissue plasminogen activator or urokinase-type plasminogen activator. Surface plasmon resonance analysis revealed that CRT-bound plasminogen (KD = 1.8 μM) with moderate affinity. Plasminogen binding and activation by CRT were inhibited by ε-aminocaproic acid, suggesting that an internal lysine residue of CRT interacts with plasminogen. We subsequently show that clinically relevant CRT variants (lacking four or eight lysines in carboxyl-terminal region) exhibited decreased plasminogen activation. Furthermore, CRT-deficient fibroblasts generated 90% less plasmin and CRT-depleted MDA MB 231 cells also demonstrated a significant reduction in plasmin generation. Moreover, treatment of fibroblasts with mitoxantrone dramatically stimulated plasmin generation by WT but not CRT-deficient fibroblasts. Our results suggest that CRT is an important cellular plasminogen regulatory protein. Given that CRT can empower cells with plasmin proteolytic activity, this discovery may provide new mechanistic insight into the established role of CRT in cancer.
Collapse
Affiliation(s)
- Alamelu G Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gillian C Okura
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John W Woods
- Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erica A Allen
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victoria A Miller
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark A Hancock
- McGill SPR-MS Facility, McGill University, Montréal, Québec, Canada
| | - Shashi Gujar
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rimantas Slibinskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - David M Waisman
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
7
|
Chen L, Lin J, Wen Y, Chen Y, Chen CB. Development and validation of a model based on immunogenic cell death related genes to predict the prognosis and immune response to bladder urothelial carcinoma. Front Oncol 2023; 13:1291720. [PMID: 38023241 PMCID: PMC10676223 DOI: 10.3389/fonc.2023.1291720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunogenic cell death (ICD) has been categorized as a variant of regulated cell death that is capable of inducing an adaptive immune response. A growing body of evidence has indicated that ICD can modify the tumor immune microenvironment by releasing danger signals or damage-associated molecular patterns (DAMPs), potentially enhancing the efficacy of immunotherapy. Consequently, the identification of biomarkers associated with ICD that can classify patients based on their potential response to ICD immunotherapy would be highly advantageous. Therefore the goal of the study is to better understand and identify what patients with bladder urothelial carcinoma (BLCA) will respond to immunotherapy by analyzing ICD signatures and investigate ICD-related prognostic factors in the context of BLCA. Methods The data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases regarding BLCA and normal samples was categorized based on ICD-related genes (IRGs). Specifically, we conducted an immunohistochemical (IHC) experiment to validate the expression levels of Calreticulin (CALR) in both tumor and adjacent tissues, and evaluated its prognostic significance using the Kaplan-Meier (KM) curve. Subsequently, the samples from TCGA were divided into two subtypes using consensus clustering. To obtain a more comprehensive comprehension of the biological functions, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The calculation of immune landscape between two subtypes was performed through ESTIMATE and CIBERSORT. Risk models were constructed using Cox and Lasso regression and their prognosis predictive ability was evaluated using nomogram, receiver operating characteristic (ROC), and calibration curves. Finally, Tumor Immune Dysfunction and Exclusion (TIDE) algorithms was utilized to predict the response to immunotherapy. Results A total of 34 IRGs were identified, with most of them exhibiting upregulation in BLCA samples. The expression of CALR was notably higher in BLCA compared to the adjacent tissue, and this increase was associated with an unfavorable prognosis. The differentially expressed genes (DEGs) associated with ICD were linked to various immune-related pathways. The ICD-high subtypes exhibited an immune-activated tumor microenvironment (TME) compared to the ICD-low subtypes. Utilizing three IRGs including CALR, IFNB1, and IFNG, a risk model was developed to categorize BLCA patients into high- and low-risk groups. The overall survival (OS) was considerably greater in the low-risk group compared to the high-risk group, as evidenced by both the TCGA and GEO cohorts. The risk score was identified as an independent prognostic parameter (all p < 0.001). Our model demonstrated good predictive ability (The area under the ROC curve (AUC), AUC1-year= 0.632, AUC3-year= 0.637, and AUC5-year =0.653). Ultimately, the lower risk score was associated with a more responsive immunotherapy group. Conclusion The potential of the ICD-based risk signature to function as a marker for evaluating the prognosis and immune landscape in BLCA suggests its usefulness in identifying the suitable population for effective immunotherapy against BLCA.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jiexiang Lin
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoming Wen
- Drug Development, Fujian Institute of Microbiology, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Liu S, Liang H, Lv L, Hu F, Liu Q, Wang Y, Zhu J, Chen Z, Li J, Wang Z, Chang YN, Li J, Ma X, Chen K, Xing G. 3D culture boosting fullerenol nanoparticles to induce calreticulin exposure on MCF-7 cells for enhanced macrophage-mediated cell removal. Colloids Surf B Biointerfaces 2023; 224:113204. [PMID: 36801743 DOI: 10.1016/j.colsurfb.2023.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Calreticulin (CRT) on the cell surface that acts as an "eat me" signal is vital for macrophage-mediated programmed cell removal. The polyhydroxylated fullerenol nanoparticle (FNP) has appeared as an effective inducer to cause CRT exposure on cancer cell surface, but it failed in treating some cancer cells such as MCF-7 cells based on previous findings. Here, we carried out the 3D culture of MCF-7 cells, and interestingly found that the FNP induced CRT exposure on cells in 3D spheres via re-distributing CRT from endoplasmic reticulum (ER) to cell surface. Phagocytosis experiments in vitro and in vivo illustrated the combination of FNP and anti-CD47 monoclonal antibody (mAb) further enhanced macrophage-mediated phagocytosis to cancer cells. The maximal phagocytic index in vivo was about three times higher than that of the control group. Moreover, in vivo tumorigenesis experiments in mice proved that FNP could regulate the progress of MCF-7 cancer stem-like cells (CSCs). These findings expand the application of FNP in tumor therapy of anti-CD47 mAb and 3D culture can be used as a screening tool for nanomedicine.
Collapse
Affiliation(s)
- Sen Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China; College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Haojun Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Fan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Qiuyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Junyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Jiacheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Xiancai Ma
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China.
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| |
Collapse
|
9
|
Serrano-Quintero A, Sequeda-Juárez A, Pérez-Hernández CA, Sosa-Delgado SM, Mendez-Tenorio A, Ramón-Gallegos E. Immunogenic analysis of epitope-based vaccine candidate induced by photodynamic therapy in MDA-MB-231 triple-negative breast cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103174. [PMID: 36602069 DOI: 10.1016/j.pdpdt.2022.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used to treat tumors through selective cytotoxic effects. PDT induces damage-associated molecular patterns (DAMPs) expression, which can cause an immunogenic death cell (IDC). In this study we identified potential immunogenic epitopes generated by PDT on triple-negative breast cancer cell line (MDA-MB-231). METHODS MDA-MB-231 cells were exposed to PDT using ALA (160 µg/mL)/630 nm at 8 J/cm2. Membrane proteins were extracted and separated by 2D PAGE. Proteins overexpressed were identified by LC-MS/MS and analyzed in silico through a peptide-HLA docking in order to identify the epitopes with more immunogenicity and antigenicity properties, as well as lower allergenicity and toxicity activity. The selected peptides were evaluated in response to macrophage activation and cytokine release by flow cytometry. RESULTS Differential proteins were overexpressed in the cells treated with PDT. A group of 16 peptides were identified from them, established in a rigorous selection by measuring antigenicity, immunogenicity, allergenicity, and toxicity in silico. The final selection was based on molecular dynamics, where 2 peptides showed the highest stability regarding to the RMSD value. These peptides were obtained from the proteins calreticulin and HSP90. The cytokine analysis evidenced macrophage activation by the releasing of TNF. CONCLUSION Two peptides were identified from calreticulin and HSP90; proteins induced by PDT in MDA-MB-231 cells. Both epitopes showed immunogenic potential as a peptide-based vaccine for triple-negative breast cancer.
Collapse
Affiliation(s)
- Alina Serrano-Quintero
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Alfonso Sequeda-Juárez
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - C Angélica Pérez-Hernández
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Sara M Sosa-Delgado
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico.
| |
Collapse
|
10
|
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022; 13:1017400. [PMID: 36466838 PMCID: PMC9712455 DOI: 10.3389/fimmu.2022.1017400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.
Collapse
Affiliation(s)
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Serrano Del Valle A, Beltrán-Visiedo M, de Poo-Rodríguez V, Jiménez-Alduán N, Azaceta G, Díez R, Martínez-Lázaro B, Izquierdo I, Palomera L, Naval J, Anel A, Marzo I. Ecto-calreticulin expression in multiple myeloma correlates with a failed anti-tumoral immune response and bad prognosis. Oncoimmunology 2022; 11:2141973. [PMID: 36338146 PMCID: PMC9629093 DOI: 10.1080/2162402x.2022.2141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunogenic cell death (ICD) has been proposed to be a crucial process for antitumor immunosurveillance. ICD is characterized by the exposure and emission of Damage Associated Molecular Patterns (DAMP), including calreticulin (CRT). A positive correlation between CRT exposure or total expression and improved anticancer immunosurveillance has been found in certain cancers, usually accompanied by favorable patient prognosis. In the present study, we sought to evaluate CRT levels in the plasma membrane of CD38+ bone marrow mononuclear cells (BMMCs) isolated from 71 patients with varying degrees of multiple myeloma (MM) disease and examine the possible relationship between basal CRT exposure and the bone marrow immune microenvironment, as well as its connection with different clinical markers. Data show that increased levels of cell surface-CRT were associated with more aggressive clinical features and with worse clinical prognosis in MM. High CRT expression in MM cells was associated with increased infiltration of NK cells, CD8+ T lymphocytes and dendritic cells (DC), indicative of an active anti-tumoral immune response, but also with a significantly higher presence of immunosuppressive Treg cells and increased expression of PD-L1 in myeloma cells.
Collapse
Affiliation(s)
| | - Manuel Beltrán-Visiedo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Victoria de Poo-Rodríguez
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Nelia Jiménez-Alduán
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Beatriz Martínez-Lázaro
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Isabel Izquierdo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,CONTACT Isabel Marzo Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| |
Collapse
|
12
|
Liu YS, Chang YC, Kuo WW, Chen MC, Wang TF, Chen TS, Lin YM, Li CC, Liao PH, Huang CY. Calreticulin nuclear translocalization alleviates CaM/CaMKII/CREB signaling pathway to enhance chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Aging (Albany NY) 2022; 14:5097-5115. [PMID: 35724265 PMCID: PMC9271289 DOI: 10.18632/aging.204131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Calreticulin (CRT) is located in the endoplasmic reticulum (ER), it helps proteins fold correctly inside the ER, and acts as a modulator of Ca2+ homeostasis. Aberrant expression of CRT is implicated in several cancer types, qualifying CRT as a potential therapeutic target. However, it remains unclear how CRT affects specific oncogenic pathways. In this study, we used histone deacetylase inhibitors (HDACis) to establish drug-resistant liver cancer cells and further analyzed the molecular mechanism of development of drug resistance in those cells. The 2D gel electrophoresis and RT-PCR data showed that CRT was downregulated in HDACis-resistant cells by comparing with HA22T parental cells. We previously elucidated the development of drug-resistance in HCC cells via activation of PP1-eIF2α pathway, but not via ER stress pathway. Here, we show that thapsigargin induced ER stress through mechanism other than ER stress downstream protein GRP78-PERK to regulate CRT expression in HDACis-R cells. Moreover, the expression level of CRT was not the main cause of apoptosis in HDACis-resistant cells. Mechanistic studies identified the apoptosis factors in the nucleus-the HDACis-mediated overexpression of CRT, CRT translocation to the cell nucleus, and reduced CaM/CaMKII/CREB pathway-that led to chemosensitivity in HDACis-R HCC cells.
Collapse
Affiliation(s)
- Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine Tzu Chi University, Hualien 97004, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
13
|
Wang L, Chen J, Zuo Q, Wu C, Yu T, Zheng P, Huang H, Deng J, Fang L, Liu H, Li C, Yu P, Zou Q, Zheng J. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis 2022; 11:29. [PMID: 35641480 PMCID: PMC9156786 DOI: 10.1038/s41389-022-00405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023] Open
Abstract
The latest study shows that gastric cancer (GC) ranked the fifth most common cancer (5.6%) with over 1 million estimated new cases annually and the fourth most common cause of cancer death (7.7%) globally in 2020. Metastasis is the leading cause of GC treatment failure. Therefore, clarifying the regulatory mechanisms for GC metastatic process is necessary. In the current study, we discovered that calreticulin (CALR) was highly expressed in GC tissues and related to lymph node metastasis and patient’s terrible prognosis. The introduction of CALR dramatically promoted GC cell migration in vitro and in vivo, while the repression of CALR got the opposite effects. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT) and is related to adhesion of cells. Additionally, we observed that CALR inhibition or overexpression regulated the expression of EMT markers (E-cadherin, ZO-1, Snail, N-cadherin, and ZEB1) and cellular adhesive moleculars (Fibronectin, integrin β1and MMP2). Mechanistically, our data indicated that CALR could mediate DNA methylation of E-cadherin promoter by interacting with G9a, a major euchromatin methyltransferase responsible for methylation of histone H3 on lysine 9(H3K9me2) and recruiting G9a to the E-cadherin promoter. Knockdown of G9a in CALR overexpressing models restored E-cadherin expression and blocked the stimulatory effects of CALR on GC cell migration. Taken together, these findings not only reveal critical roles of CALR medicated GC metastasis but also provide novel treatment strategies for GC.
Collapse
Affiliation(s)
- Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Chen
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chunmei Wu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Ting Yu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Pengfei Zheng
- Department of medicinal chemistry, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chenghong Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Peiwu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| |
Collapse
|
14
|
Ramírez-Rico G, Drago-Serrano ME, León-Sicairos N, de la Garza M. Lactoferrin: A Nutraceutical with Activity against Colorectal Cancer. Front Pharmacol 2022; 13:855852. [PMID: 35264972 PMCID: PMC8899398 DOI: 10.3389/fphar.2022.855852] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Homeostasis in the human body results from the tight regulation of several events, since too little inflammation disrupts the process of tissue repair and remodeling, whereas too much exerts a collateral effect by causing tissue damage with life-threatening consequences. In some clinical conditions, such as inflammatory bowel disease (IBD), inflammation functions as a double-edged sword by either enabling or inhibiting cancer development and progression. Generally, cancer develops through evasion mechanisms that regulate cell growth, causing a high rate of uncontrolled proliferation, and mechanisms for evading cell death, such as apoptosis. Moreover, chronic inflammation is a factor that contributes to colorectal cancer (CRC), as observed in individuals with IBD; all these conditions favor an increased rate of angiogenesis and eventual metastasis. Lactoferrin (Lf) is a mammalian iron-binding multifunctional glycoprotein regarded as a natural compound that up- and downregulates both humoral and cellular components of immunity involved in regulating the inflammatory response and maintaining gut homeostasis. Human and bovine Lf share high sequence homology and have very similar antimicrobial, anti-inflammatory, and immunomodulatory activities. Bovine Lf from milk is considered a safe molecule and is commercially available in large quantities. This review mainly focuses on the regulatory effects of orally administered bovine Lf on the inflammatory response associated with CRC; this approach indicates that CRC is one of the most frequently diagnosed cancers and affects the intestinal tract with high clinical and epidemiologic relevance. Thus, this review may provide foundations for the potential use of bovine Lf alone or as a natural adjunct agent to increase the effectiveness and reduce the side effects of anticancer chemotherapy.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Nidia León-Sicairos
- Centro de Investigación Aplicada a La Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
- *Correspondence: Mireya de la Garza,
| |
Collapse
|
15
|
Morretta E, Belvedere R, Petrella A, Spallarossa A, Rapetti F, Bruno O, Brullo C, Monti MC. Novel insights on the molecular mechanism of action of the anti-angiogenic pyrazolyl-urea GeGe-3 by functional proteomics. Bioorg Chem 2021; 115:105168. [PMID: 34284173 DOI: 10.1016/j.bioorg.2021.105168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
In recent years, 5-pyrazolyl-ureas have mostly been known for their attractive poly-pharmacological outline and, in particular, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl) ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a capable anti-angiogenic compound. This paper examines its interactome by functional proteomics using a label-free mass spectrometry based platform, coupling Drug Affinity Responsive Target Stability and targeted Limited Proteolysis-Multiple Reaction Monitoring. Calreticulin has been recognized as the GeGe-3 principal target and this evidence has been supported by immunoblotting and in silico molecular docking. Furthermore, cell studies have shown that GeGe-3 lowers cell calcium mobilization, cytoskeleton organization and focal adhesion kinase expression, thus linking its biological potential to calreticulin binding and, ultimately, shedding light on the reasonable action mechanism of this molecule as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Federica Rapetti
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Olga Bruno
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
16
|
Zhu LM, Shi HX, Sugimoto M, Bandow K, Sakagami H, Amano S, Deng HB, Ye QY, Gai Y, Xin XL, Xu ZY. Feiyanning Formula Induces Apoptosis of Lung Adenocarcinoma Cells by Activating the Mitochondrial Pathway. Front Oncol 2021; 11:690878. [PMID: 34277435 PMCID: PMC8284078 DOI: 10.3389/fonc.2021.690878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Feiyanning formula (FYN) is a traditional Chinese medicine (TCM) prescription used for more than 20 years in the treatment of lung cancer. FYN is composed of Astragalus membranaceus, Polygonatum sibiricum, Atractylodes macrocephala, Cornus officinalis, Paris polyphylla, and Polistes olivaceous, etc. All of them have been proved to have anti-tumor effect. In this study, we used the TCM network pharmacological analysis to perform the collection of compound and disease target, the prediction of compound target and biological signal and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. It was found that the activation of mitochondrial pathway might be the molecular mechanism of the anti-lung cancer effect of FYN. The experimental results showed that FYN had an inhibitory effect on the growth of lung cancer cells in a dose-dependent and time-dependent manner. Moreover, FYN induced G2/M cell cycle arrest and apoptotic cell death as early as 6 h after treatment. In addition, FYN significantly induced mitochondrial membrane depolarization and increased calreticulin expression. Metabolomics analysis showed the increase of ATP utilization (assessed by a significant increase of the AMP/ATP and ADP/ATP ratio, necessary for apoptosis induction) and decrease of polyamines (that reflects growth potential). Taken together, our study suggested that FYN induced apoptosis of lung adenocarcinoma cells by promoting metabolism and changing the mitochondrial membrane potential, further supporting the validity of network pharmacological prediction.
Collapse
Affiliation(s)
- Li-Min Zhu
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Xia Shi
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Shinjuku, Japan
| | - Kenjiro Bandow
- Division of Biochemistry, Meikai University School of Dentistry, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Shigeru Amano
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Hai-Bin Deng
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing-Yu Ye
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Gai
- Department of Oncology, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Xin
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Ye Xu
- Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Kanduła Z, Lewandowski K. Calreticulin – a multifaced protein. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calreticulin (CALR) is a highly conserved multi-function protein that primarily localizes within
the lumen of the endoplasmic reticulum (ER). It participates in various processes in the cells,
including glycoprotein chaperoning, regulation of Ca2+ homeostasis, antigen processing and
presentation for adaptive immune response, cell adhesion/migration, cell proliferation, immunogenic
cell death, gene expression and RNA stability. The role of CALR in the assembly,
retrieval and cell surface expression of MHC class I molecules is well known. A fraction of
the total cellular CALR is localized in the cytosol, following its retro-translocation from the
ER. In the cell stress conditions, CALR is also expressed on the cell surface via an interaction
with phosphatidylserine localized on the inner leaflet of the plasma membrane. The abovementioned
mechanism is relevant for the recognition of the cells, as well as immunogenicity
and phagocytic uptake of proapoptotic and apoptotic cells.
Lastly, the presence of CALR exon 9 gene mutations was confirmed in patients with myeloproliferative
neoplasms. Their presence results in an abnormal CALR structure due to the
loss of its ER-retention sequence, CALR extra-ER localisation, the formation of a complex
with thrombopoietin receptor, and oncogenic transformation of hematopoietic stem cells. It
is also known that CALR exon 9 mutants are highly immunogenic and induce T cell response.
Despite this fact, CALR mutant positive hematopoietic cells emerge. The last phenomenon is
probably the result of the inhibition of phagocytosis of the cancer cells exposing CALR mutant
protein by dendritic cells.
Collapse
Affiliation(s)
- Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| |
Collapse
|
18
|
Song D, Liu H, Wu J, Gao X, Hao J, Fan D. Insights into the role of ERp57 in cancer. J Cancer 2021; 12:2456-2464. [PMID: 33758622 PMCID: PMC7974888 DOI: 10.7150/jca.48707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jian Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoliang Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
19
|
Bone Marrow-Derived Mesenchymal Stem Cells Differentially Affect Glioblastoma Cell Proliferation, Migration, and Invasion: A 2D-DIGE Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4952876. [PMID: 33628783 PMCID: PMC7892224 DOI: 10.1155/2021/4952876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) display high tumor tropism and cause indirect effects through the cytokines they secrete. However, the effects of BM-MSCs on the biological behaviors of glioblastoma multiforme remain unclear. In this study, the conditioned medium from BM-MSCs significantly inhibited the proliferation of C6 cells (P < 0.05) but promoted their migration and invasion (P < 0.05). Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) proteomic analysis revealed 17 proteins differentially expressed in C6 cells exposed to the BM-MSC-conditioned medium including five upregulated proteins and 12 downregulated proteins. Among these, six differentially expressed proteins (Calr, Set, Oat, Npm1, Ddah1, and Tardbp) were closely related to cell proliferation and differentiation, and nine proteins (Pdia6, Sphk1, Anxa4, Vim, Tuba1c, Actr1b, Actn4, Rap2c, and Tpm2) were associated with motility and the cytoskeleton, which may modulate the invasion and migration of tumor cells. Above all, by identifying the differentially expressed proteins using proteomics and bioinformatics analysis, BM-MSCs could be genetically modified to specifically express tumor-suppressive factors when BM-MSCs are to be used as tumor-selective targeting carriers in the future.
Collapse
|
20
|
Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:13-25. [PMID: 34050860 DOI: 10.1007/978-3-030-67696-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca2+ regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich β-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a β-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca2+ and cover the upper β-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C106 and C137 of human Calr, which lies in a polypeptide-binding site. The lower β-sheet has several conserved residues, comprised of a characteristic triad, D166-H170-D187, Tyr172 and the free C163. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca2+-binding C-terminal tail is transformed into a polybasic sequence.
Collapse
|
21
|
Chen H, Yang H, Cheng QX, Ge YP, Peng QL, Zhang YM, Cheng GH, Wang GC, Lu X. A novel autoantibody targeting calreticulin is associated with cancer in patients with idiopathic inflammatory myopathies. Clin Transl Immunology 2020; 9:e1195. [PMID: 33082955 PMCID: PMC7558046 DOI: 10.1002/cti2.1195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/15/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives To investigate the prevalence and clinical significance of anti‐calreticulin autoantibodies (anti‐CRT Ab) in a large cohort of idiopathic inflammatory myopathy (IIM) patients. Methods Sera from 469 patients with IIM, 196 patients with other connective tissue diseases, 28 patients with solid tumors and 81 healthy controls were screened for anti‐CRT Ab by enzyme‐linked immunosorbent assay using human recombinant CRT protein. Sera from 35 IIM patients were tested using an immunoprecipitation assay to confirm the presence of anti‐CRT Ab. Subsequently, IIM–cancer patients were identified and divided into new‐onset, remission and recurrent groups based on their cancer status. The relationships between anti‐CRT Ab levels and IIM disease activity were also investigated. Results Serum anti‐CRT Ab was detected positive in 81 of the 469 (17.3%) IIM patients. Immunoprecipitated bands were observed at a molecular weight of 60 kDa corresponding to the CRT protein. The IIM patients with anti‐CRT Ab more frequently had cancers compared to the patients without anti‐CRT Ab. Moreover, the prevalence of anti‐CRT Ab differed according to the cancer status. The IIM patients with recurrent cancers had a much higher prevalence of anti‐CRT Ab than those with cancers in remission. Also, serum anti‐CRT Ab levels positively correlated with disease activity at baseline and at follow‐up visits. Conclusion We report the existence of serum anti‐CRT Ab in IIM patients and demonstrate the possible association of anti‐CRT Ab with malignancy in IIM patients. Serum anti‐CRT Ab could serve as a novel candidate marker of cancer in IIM patients.
Collapse
Affiliation(s)
- He Chen
- Department of Rheumatology China-Japan Friendship Hospital Beijing 100029 China
| | - Heng Yang
- Center for Systems Medicine Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 China.,Suzhou Institute of Systems Medicine Suzhou Jiangsu 215123 China
| | - Qiu-Xiang Cheng
- Center for Systems Medicine Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 China.,Suzhou Institute of Systems Medicine Suzhou Jiangsu 215123 China
| | - Yong-Peng Ge
- Department of Rheumatology China-Japan Friendship Hospital Beijing 100029 China
| | - Qing-Lin Peng
- Department of Rheumatology China-Japan Friendship Hospital Beijing 100029 China
| | - Ya-Mei Zhang
- Department of Rheumatology China-Japan Friendship Hospital Beijing 100029 China
| | - Gen-Hong Cheng
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles CA 90095 USA
| | - Guo-Chun Wang
- Department of Rheumatology China-Japan Friendship Hospital Beijing 100029 China
| | - Xin Lu
- Department of Rheumatology China-Japan Friendship Hospital Beijing 100029 China
| |
Collapse
|
22
|
Calreticulin promotes EMT in pancreatic cancer via mediating Ca 2+ dependent acute and chronic endoplasmic reticulum stress. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:209. [PMID: 33028359 PMCID: PMC7542892 DOI: 10.1186/s13046-020-01702-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Background Our previous study showed that calreticulin (CRT) promoted EGF-induced epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) via Integrin/EGFR-ERK/MAPK signaling. We next investigated the novel signal pathway and molecular mechanism involving the oncogenic role of CRT in PC. Methods We investigated the potential role and mechanism of CRT in regulating intracellular free Ca2+ dependent acute and chronic endoplasmic reticulum stress (ERS)-induced EMT in PC in vitro and vivo. Results Thapsigargin (TG) induced acute ERS via increasing intracellular free Ca2+ in PC cells, which was reversed by CRT silencing. Additionally, CRT silencing inhibited TG-induced EMT in vitro by reversing TG-induced changes of the key proteins in EMT signaling (ZO-1, E-cadherin and Slug) and ERK/MAPK signaling (pERK). TG-promoted cell invasion and migration was also rescued by CRT silencing but enhanced by IRE1α silencing (one of the key stressors in unfolded protein response). Meanwhile, CRT was co-immunoprecipitated and co-localized with IRE1α in vitro and its silencing led to the chronic ERS via upregulating IRE1α independent of IRE1-XBP1 axis. Moreover, CRT silencing inhibited IRE1α silencing-promoted EMT, including inhibiting the activation of EMT and ERK/MAPK signaling and the promotion of cell mobility. In vivo, CRT silencing decreased subcutaneous tumor size and distant liver metastasis following with the increase of IRE1α expression. A negative relationship between CRT and IRE1α was also observed in clinical PC samples, which coordinately promoted the advanced clinical stages and poor prognosis of PC patients. Conclusions CRT promotes EMT in PC via mediating intracellular free Ca2+ dependent TG-induced acute ERS and IRE1α-mediated chronic ERS via Slug and ERK/MAPK signaling.
Collapse
|
23
|
Protein Oxidative Damage in UV-Related Skin Cancer and Dysplastic Lesions Contributes to Neoplastic Promotion and Progression. Cancers (Basel) 2020; 12:cancers12010110. [PMID: 31906275 PMCID: PMC7017152 DOI: 10.3390/cancers12010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.
Collapse
|
24
|
De A, Beligala DH, Birkholz TM, Geusz ME. Anticancer Properties of Curcumin and Interactions With the Circadian Timing System. Integr Cancer Ther 2019. [PMCID: PMC6902383 DOI: 10.1177/1534735419889154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The phytochemical curcumin is a major component of turmeric. It has recognized activity against cancer cells and affects several intracellular signaling pathways. Many molecules targeted by curcumin also regulate the circadian timing system that has effects on carcinogenesis, tumor growth, and metastasis. Although the circadian clock within cells may be suppressed in tumors, cancer cells are subjected to daily hormonal and neural activity that should be considered when timing optimal curcumin treatments. Rapid curcumin degradation in blood and tissues provides a challenge to maintaining sustained levels suitable for inducing cancer cell death, increasing the need to identify when during the circadian cycle rhythmically expressed molecular targets are present. Curcumin is well tolerated by individuals ingesting it for possible cancer prevention or in combination with conventional cancer therapies, and it shows low toxicity toward noncancerous cells at low dosages. In contrast, curcumin is particularly effective against cancer stem cells, which are treatment-resistant, aggressive, and tumor-initiating. Although curcumin has poor bioavailability, more stable curcumin analogs retain the anti-inflammatory, antioxidant, antimitotic, and pro-apoptotic benefits of curcumin. Anticancer properties are also present in congeners of curcumin in turmeric and after curcumin reduction by intestinal microbes. Various commercial curcuminoid products are highly popular dietary supplements, but caution is warranted. Although antioxidant properties of curcumin may prevent carcinogenesis, studies suggest curcumin interferes with certain chemotherapeutic agents. This review delves into the complex network of curcuminoid effects to identify potential anticancer strategies that may work in concert with daily physiological cycles controlled by the circadian timing system.
Collapse
Affiliation(s)
- Arpan De
- Bowling Green State University, Bowling Green, OH, USA
| | | | | | | |
Collapse
|
25
|
Calreticulin regulates vascular endothelial growth factor-A mRNA stability in gastric cancer cells. PLoS One 2019; 14:e0225107. [PMID: 31725767 PMCID: PMC6855450 DOI: 10.1371/journal.pone.0225107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) and vascular endothelial growth factor-A (VEGF-A) are crucial for angiogenesis, and mediate multiple malignant behaviors in gastric cancer. In this study, we report that CRT is positively correlated with VEGF-A in gastric cancer patients. Moreover, high expressions of both CRT and VEGF-A are markedly associated with the pathological stage, progression, and poor prognosis in the patients. Therefore, we sought to elucidate the mechanism by which CRT affects VEGF-A in gastric cancer. Firstly, we demonstrate the novel finding that knockdown of CRT reduced VEGF-A mRNA stability in two gastric cancer cell lines, AGS and MKN45. The AU-Rich element (ARE) is believed to play a crucial role in the maintenance of VEGF-A mRNA stability. Luciferase reporter assay shows that knockdown of CRT significantly decreased the activity of renilla luciferase with VEGF-A ARE sequence. Additionally, competition results from RNA-binding/electrophoretic mobility shift assay indicate that CRT forms an RNA-protein complex with the VEGF-A mRNA by binding to the ARE. In addition, the proliferation rate of human umbilical vein endothelial cells (HUVEC) was significantly reduced when treated with conditioned medium from CRT knockdown cells; this was rescued by exogenous VEGF-A recombinant protein. Our results demonstrate that CRT is involved in VEGF-A ARE binding protein complexes to stabilize VEGF-A mRNA, thereby promoting the angiogenesis, and progression of gastric cancer.
Collapse
|
26
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
27
|
Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biol 2019; 17:e3000402. [PMID: 31568485 PMCID: PMC6768457 DOI: 10.1371/journal.pbio.3000402] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) is a high-capacity Ca2+ protein whose expression is up-regulated during cellular transformation and is associated with disease progression in multiple types of malignancies. At the same time, CRT has been characterized as an important stress-response protein capable of inducing immunogenic cell death (ICD) when translocated to the cell surface. It remains unclear why CRT expression is preserved by malignant cells during the course of transformation despite its immunogenic properties. In this study, we identify a novel, critical function of CRT as a cell survival factor in multiple types of human solid-tissue malignancies. CRT knockdown activates p53, which mediates cell-death response independent of executioner caspase activity and accompanied full-length poly ADP ribose polymerase (PARP) cleavage. Mechanistically, we show that down-regulation of CRT results in mitochondrial Ca2+ overload and induction of mitochondria permeability transition pore (mPTP)-dependent cell death, which can be significantly rescued by the mPTP inhibitor, Cyclosporin A (CsA). The clinical importance of CRT expression was revealed in the analysis of the large cohort of cancer patients (N = 2,058) to demonstrate that high levels of CRT inversely correlates with patient survival. Our study identifies intracellular CRT as an important therapeutic target for tumors whose survival relies on its expression. This study reveals a novel role for the calcium-binding protein calreticulin in the survival of cancer cells; downregulation of calreticulin leads to mitochondrial calcium overload and an induction of non-apoptotic cell death. Calreticulin levels inversely correlate with the survival of patients diagnosed with various types of solid cancers.
Collapse
|
28
|
Han Y, Liao Q, Wang H, Rao S, Yi P, Tang L, Tian Y, Oyang L, Wang H, Shi Y, Zhou Y. High expression of calreticulin indicates poor prognosis and modulates cell migration and invasion via activating Stat3 in nasopharyngeal carcinoma. J Cancer 2019; 10:5460-5468. [PMID: 31632490 PMCID: PMC6775705 DOI: 10.7150/jca.35362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Emerging evidence suggests that calreticulin (CALR) has great impacts on the tumor formation and progression of various cancers, but the role of CALR remains controversial. We investigated the expression and clinical significance of CALR in nasopharyngeal carcinoma (NPC). Methods: Immunohistochemistry was used to detect the expression of CALR in NPC tissues, and the correlation of CALR with clinicopathological characteristics and prognosis were analyzed. The cell functions of CALR in NPC cells were also performed in vitro. Results: Compared with non-tumor nasopharyngeal epithelium (NPE) tissues, CALR expression was markedly up-regulated in NPC tissues (P < 0.001), and the high expression of CALR was positively associated with advanced clinical stage (P=0.003) and metastasis (P=0.023). Compared to the patients with low expression of CALR, patients who displayed high expression of CALR may achieve a poorer progression-free survival (PFS) and overall survival (OS) (P < 0.001). Furthermore, multivariate analysis showed that high expression of CALR was an independent predictor of poor prognosis. In addition, we found that knockdown of CALR significantly inhibited the proliferation, migration and invasion of CNE2 and HONE1 cells in vitro, and the mechanism might be associated with inactivation of Stat3 signaling pathway. Conclusion: CALR may promote NPC progression and metastasis via involving Stat3 signaling pathway, and can be regarded as an effective potential predictor for progression and prognosis of NPC.
Collapse
Affiliation(s)
- Yaqian Han
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Pin Yi
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yutong Tian
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Linda Oyang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
29
|
Malik UU, Siddiqui IA, Ilyas A, Hashim Z, Staunton L, Kwasnik A, Pennington SR, Zarina S. Identification of Differentially Expressed Proteins from Smokeless Tobacco Addicted Patients Suffering from Oral Squamous Cell Carcinoma. Pathol Oncol Res 2019; 26:1489-1497. [PMID: 31446608 DOI: 10.1007/s12253-019-00724-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the eight most common malignancy worldwide with an incidence rate of 40% in south-east Asia. Lack of effective diagnostic tools at early stage and disease recurrence despite extensive treatments are main reasons for high mortality and low survival rates. The aim of current study was to identify differentially expressed proteins to explore potential candidate biomarkers having diagnostic significance. We performed comparative proteomic analysis of paired protein samples (cancerous buccal mucosa and adjacent normal tissue) from OSCC patients using a combination of two dimensional gel electrophoresis and Mass spectrometric analysis. On the basis of spot intensity, seventeen proteins were found to be consistently differentially expressed among most of the samples which were identified through mass spectrometry. For validation of identified proteins, expression level of stratifin was determined using immuno-histochemistry and Western blot analysis. All identified proteins were analyzed by STRING to explore their interaction. Among uniquely identified proteins in this study, at least two candidate markers (Ig Kappa chain C region and Isoform 2 of fructose bisphosphate aldolase A) were found to be novel with respect to OSCC which can be explored further. Results presented in current study are likely to contribute in understanding the involvement of these molecules in carcinogenesis apart from their plausible role as diagnostic/prognostic markers.
Collapse
Affiliation(s)
- Uzma Urooj Malik
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Amber Ilyas
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Hashim
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Lisa Staunton
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Anna Kwasnik
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen R Pennington
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
30
|
Calreticulin as A Novel Potential Metastasis-Associated Protein in Myxoid Liposarcoma, as Revealed by Two-Dimensional Difference Gel Electrophoresis. Proteomes 2019; 7:proteomes7020013. [PMID: 30974841 PMCID: PMC6631384 DOI: 10.3390/proteomes7020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Myxoid liposarcoma (MLS) is a mesenchymal malignancy. To identify innovate seeds for clinical applications, we examined the proteomes of primary tumor tissues from 10 patients with MLS with different statuses of postoperative metastasis. The protein expression profiles of tumor tissues were created, and proteins with differential expression associated with postoperative metastasis were identified by two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry. The validation was performed using specific antibodies and in vitro analyses. Using 2D-DIGE, we observed 1726 protein species and identified proteins with unique expression levels in metastatic MLS. We focused on the overexpression of calreticulin in metastatic MLS. The higher expression of calreticulin was confirmed by Western blotting, and gene silencing assays demonstrated that reduced expression of calreticulin inhibited cell growth and invasion. Our findings suggested the important roles of calreticulin in MLS metastasis and supported its potential utility as a prognostic biomarker in MLS. Further investigations of the functional properties of calreticulin and other proteins identified in this study will improve our understanding of the biology of MLS and facilitate novel clinical applications.
Collapse
|
31
|
Wu L, Wang T, He D, Li X, Jiang Y. EVI‑1 acts as an oncogene and positively regulates calreticulin in breast cancer. Mol Med Rep 2019; 19:1645-1653. [PMID: 30592274 PMCID: PMC6390023 DOI: 10.3892/mmr.2018.9796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022] Open
Abstract
Ecotropic viral integration site‑1 (EVI‑1) is an important transcription factor involved in oncogenesis. Aberrant EVI‑1 expression has been reported to be a characteristic of multiple types of malignancies; however, very little is known about how EVI‑1 regulates breast cancer. Current knowledge of how target genes mediate the biological function of EVI‑1 remains limited. In the present study, overexpression of EVI‑1 promoted cell proliferation, migration, and invasion, and inhibited apoptosis in breast cancer. By contrast, silencing of EVI‑1 inhibited cell proliferation, migration and invasion, and enhanced apoptosis in breast cancer. In addition, the results also revealed that the aberrant expression of EVI‑1 regulates genes associated with the apoptotic pathway in breast cancer. Furthermore, EVI‑1 was also likely to target the promoter region of calreticulin (CRT) in vitro. It was concluded that EVI‑1 can affect epithelial mesenchymal transition‑associated genes by regulating the expression of CRT in breast cancer. The results revealed that EVI‑1 may be a potential effective therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Lei Wu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianyi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dongning He
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xiaoxi Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Youhong Jiang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Li G, Yang Q, Yang Y, Yang G, Wan J, Ma Z, Du L, Sun Y, Ζhang G. Laminar shear stress alters endothelial KCa2.3 expression in H9c2 cells partially via regulating the PI3K/Akt/p300 axis. Int J Mol Med 2019; 43:1289-1298. [PMID: 30664154 PMCID: PMC6365081 DOI: 10.3892/ijmm.2019.4063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
In cardiac tissues, myoblast atrial myocytes continue to be exposed to mechanical forces including shear stress. However, little is known about the effects of shear stress on atrial myocytes, particularly on ion channel function, in association with disease. The present study demonstrated that the Ca2+-activated K+ channel (KCa)2.3 serves a vital role in regulating arterial tone. As increased intracellular Ca2+ levels and activation of histone acetyltransferase p300 (p300) are early responses to laminar shear stress (LSS) that result in the transcriptional activation of genes, the role of p300 and the phosphoinositide3-kinase (PI3K)/protein kinase B (Akt) pathway, an intracellular pathway that promotes the growth and proliferation rather than the differentiation of adult cells, in the LSS-dependent regulation of KCa2.3 in cardiac myoblasts was examined. In cultured H9c2 cells, exposure to LSS (15 dyn/cm2) for 12 h markedly increased KCa2.3 mRNA expression. Inhibiting PI3K attenuated the LSS-induced increases in the expression and channel activity of KCa2.3, and decreased the phosphorylation levels of p300. The upregulation of these channels was abolished by the inhibition of Akt through decreasing p300 phosphorylation. ChIP assays indicated that p300 was recruited to the promoter region of the KCa2.3 gene. Therefore, the PI3K/Akt/p300 axis serves a crucial role in the LSS-dependent induction of KCa2.3 expression, by regulating cardiac myoblast function and adaptation to hemodynamic changes. The key novel insights gained from the present study are: i) KCa2.3 was upregulated in patients with atrial fibrillation (AF) and in patients with AF combined with mitral value disease; ii) LSS induced a profound upregulation of KCa2.3 mRNA and protein expression in H9c2 cells; iii) PI3K activation was associated with LSS-induced upregulation of the KCa2.3 channel; iv) PI3K activation was mediated by PI3K/Akt-dependent Akt activation; and v) LSS induction of KCa2.3 involved the binding of p300 to transcription factors in the promoter region of the KCa2.3 gene.
Collapse
Affiliation(s)
- Guojian Li
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Qionghui Yang
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650200, P.R. China
| | - Yong Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Guokai Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Zhenhuan Ma
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Lingjuan Du
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Guimin Ζhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| |
Collapse
|
33
|
Cruz-Ramos E, Sandoval-Hernández A, Tecalco-Cruz AC. Differential expression and molecular interactions of chromosome region maintenance 1 and calreticulin exportins in breast cancer cells. J Steroid Biochem Mol Biol 2019; 185:7-16. [PMID: 29981820 DOI: 10.1016/j.jsbmb.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
Chromosome region maintenance 1 (CRM-1) and calreticulin (CALR) are two proteins that act as exportins for some nuclear receptors, in addition to other critical functions for cellular homeostasis. In several cancer types, CRM-1 and CALR are upregulated suggesting an imbalance in their functions. However, the regulation of CRM-1 and CALR, and their biological implications, are not completely known. Here, we evaluated the interplay between the levels of CRM-1 and CALR, and estrogen receptor alpha (ERα) status, in breast cancer cells. CRM-1 and CALR were upregulated in mammary tumors relative to normal mammary tissue. Furthermore, the mRNA and protein levels of CRM-1 and CALR were higher in breast cancer cells lacking ERα, in comparison with those that express ERα. Additionally, both proteins were distributed in the nucleus and cytoplasm in the two cell types. Importantly, we identified novel interactions for these exportins. First, we showed an interaction between CRM-1 and CALR, and then we identified that SUN1 and SUN2, two proteins localized in the nuclear envelop, were able to interact specifically with CRM-1, but not CALR. Interestingly, SUN1 and SUN2 expression seemed to be decreased in breast cancer, thereby affecting the interactions of these proteins with CRM-1, and possibly its actions as an exportin. Thus, our data suggest that expression levels for CRM-1 and CALR, the interaction between these exportins, and specific interactions of SUN1 and SUN2 with CRM-1 but not CALR, may be central elements in nucleo-cytoplasmic transport. Furthermore, deregulation of these elements may have serious implications in the progression of breast and other types of cancer.
Collapse
Affiliation(s)
- Eduardo Cruz-Ramos
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico
| | - Antonio Sandoval-Hernández
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico
| | - Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico.
| |
Collapse
|
34
|
Chen Y, Ma D, Wang X, Fang J, Liu X, Song J, Li X, Ren X, Li Q, Li Q, Wen S, Luo L, Xia J, Cui J, Zeng G, Chen L, Cheng B, Wang Z. Calnexin Impairs the Antitumor Immunity of CD4 + and CD8 + T Cells. Cancer Immunol Res 2018; 7:123-135. [PMID: 30401678 DOI: 10.1158/2326-6066.cir-18-0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
Elucidation of the mechanisms of T-cell-mediated antitumor responses will provide information for the rational design and development of cancer immunotherapies. Here, we found that calnexin, an endoplasmic reticulum (ER) chaperone protein, is significantly upregulated in oral squamous cell carcinoma (OSCC). Upregulation of its membranous expression on OSCC cells is associated with inhibited T-cell infiltration in tumor tissues and correlates with poor survival of patients with OSCC. We found that calnexin inhibits the proliferation of CD4+ and CD8+ T cells isolated from the whole blood of healthy donors and patients with OSCC and inhibits the secretion of IFNγ, TNFα, and IL2 from these cells. Furthermore, in a melanoma model, knockdown of calnexin enhanced the infiltration and effector functions of T cells in the tumor microenvironment and conferred better control of tumor growth, whereas treatment with a recombinant calnexin protein impaired the infiltration and effector functions of T cells and promoted tumor growth. We also found that calnexin enhanced the expression of PD-1 on CD4+ and CD8+ T cells by restraining the DNA methylation status of a CpG island in the PD-1 promoter. Thus, this work uncovers a mechanism by which T-cell antitumor responses are regulated by calnexin in tumor cells and suggests that calnexin might serve as a potential target for the improvement of antitumor immunotherapy.
Collapse
Affiliation(s)
- Yichen Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Da Ma
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Fang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xiangqi Liu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jingjing Song
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xinye Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xianyue Ren
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qiusheng Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunxing Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shuqiong Wen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Liqun Luo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Juan Xia
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lieping Chen
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University, New Haven, Connecticut
| | - Bin Cheng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
35
|
Pérez-Trujillo JJ, Robles-Rodríguez OA, Garza-Morales R, García-García A, Rodríguez-Rocha H, Villanueva-Olivo A, Segoviano-Ramírez JC, Esparza-González SC, Saucedo-Cárdenas O, Montes-de-Oca-Luna R, Loera-Arias MJ. Antitumor Response by Endoplasmic Reticulum-Targeting DNA Vaccine Is Improved by Adding a KDEL Retention Signal. Nucleic Acid Ther 2018; 28:252-261. [DOI: 10.1089/nat.2017.0717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- José J. Pérez-Trujillo
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Olivia A. Robles-Rodríguez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Rodolfo Garza-Morales
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Humberto Rodríguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Juan C. Segoviano-Ramírez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
- Unidad de Bioimagen, Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | - Odila Saucedo-Cárdenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
- Division de Genetica, Centro de Investigacion Biomedica del Noreste, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - María J. Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| |
Collapse
|
36
|
Lin YC, Chen CC, Chen WM, Lu KY, Shen TL, Jou YC, Shen CH, Ohbayashi N, Kanaho Y, Huang YL, Lee H. LPA 1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1305-1315. [PMID: 30053596 DOI: 10.1016/j.bbalip.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Yueh-Chien Lin
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Wei-Min Chen
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Ying Lu
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuan-Li Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hsinyu Lee
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
37
|
Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia 2018; 33:122-131. [PMID: 29946189 DOI: 10.1038/s41375-018-0181-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/01/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022]
Abstract
Studies have previously shown that mutant calreticulin (CALR), found in a subset of patients with myeloproliferative neoplasms (MPNs), interacts with and subsequently promotes the activation of the thrombopoietin receptor (MPL). However, the molecular mechanism behind the activity of mutant CALR remains unknown. Here we show that mutant, but not wild-type, CALR interacts to form a homomultimeric complex. This intermolecular interaction among mutant CALR proteins depends on their carboxyl-terminal domain, which is generated by a unique frameshift mutation found in patients with MPN. With a competition assay, we demonstrated that the formation of mutant CALR homomultimers is required for the binding and activation of MPL. Since association with MPL is required for the oncogenicity of mutant CALR, we propose a model in which the constitutive activation of the MPL downstream pathway by mutant CALR multimers induces the development of MPN. This study provides a potential novel therapeutic strategy against mutant CALR-dependent tumorigenesis via targeting the intermolecular interaction among mutant CALR proteins.
Collapse
|
38
|
Das T, Prodhan C, Patsa S, Ray JG, Chaudhuri K. Identification of over expressed proteins in oral submucous fibrosis by proteomic analysis. J Cell Biochem 2018; 119:4361-4371. [DOI: 10.1002/jcb.26423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Tapasi Das
- Molecular Genetics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Chandraday Prodhan
- Molecular Genetics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Santanu Patsa
- Department of Oral PathologyDr. R Ahmed Dental College and HospitalKolkataIndia
| | - Jay Gopal Ray
- Department of Oral PathologyDr. R Ahmed Dental College and HospitalKolkataIndia
| | - Keya Chaudhuri
- Molecular Genetics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| |
Collapse
|
39
|
Aberrant Glycosylation Augments the Immuno-Stimulatory Activities of Soluble Calreticulin. Molecules 2018; 23:molecules23030523. [PMID: 29495436 PMCID: PMC6017544 DOI: 10.3390/molecules23030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
Calreticulin (CRT), a luminal resident calcium-binding glycoprotein of the cell, is a tumor-associated antigen involved in tumorigenesis and also an autoantigen targeted by autoantibodies found in patients with various autoimmune diseases. We have previously shown that prokaryotically expressed recombinant murine CRT (rCRT) exhibits strong stimulatory activities against monocytes/macrophages in vitro and potent immunogenicity in vivo, which is partially attributable to self-oligomerization of soluble rCRT. However, even in oligomerized form native CRT (nCRT) isolated from mouse liver is much less active than rCRT, arguing against the possibility that self-oligomerization alone would license potent pro-inflammatory properties to nCRT. Since rCRT differs from nCRT in its lack of glycosylation, we wondered if aberrant glycosylation of eukaryotically expressed CRT (eCRT) would significantly enhance its immunological activity. In the present study, tunicamycin, an N-glycosyltransferase inhibitor, was employed to treat CHO cells (CHO-CRT) stably expressing full-length recombinant mouse CRT in secreted form for preparation of aberrantly glycosylated eCRT (tun-eCRT). Our biochemical and immunological analysis results indicate that eCRT produced by CHO-CRT cells is similar to nCRT in terms of glycosylation level, lack of self-oligomerization, relatively poor immunogenicity and weak macrophage-stimulatory activity, while tun-eCRT shows reduced glycosylation yet much enhanced ability to elicit specific humoral responses in mice and TNF-α and nitric oxide production by macrophages in vitro. Given that abberant glycosylation of proteins is a hallmark of cancer cells and also related to the development of autoimmune disorders in humans, our data may provide useful clues for better understanding of potentiating roles of dysregulated glycosylation of molecules such as CRT in tumorigenesis and autoimmunity.
Collapse
|
40
|
Fischer CR, Mikami M, Minematsu H, Nizami S, Lee HG, Stamer D, Patel N, Soung DY, Back JH, Song L, Drissi H, Lee FY. Calreticulin inhibits inflammation-induced osteoclastogenesis and bone resorption. J Orthop Res 2017; 35:2658-2666. [PMID: 28460421 PMCID: PMC8996436 DOI: 10.1002/jor.23587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 04/07/2017] [Indexed: 02/04/2023]
Abstract
Osteoclasts play key roles in bone remodeling and pathologic osteolytic disorders such as inflammation, infection, bone implant loosening, rheumatoid arthritis, metastatic bone cancers, and pathological fractures. Osteoclasts are formed by the fusion of monocytes in response to receptor activators of NF-κB-ligand (RANKL) and macrophage colony stimulating factor 1 (M-CSF). Calreticulin (CRT), a commonly known intracellular protein as a calcium-binding chaperone, has an unexpectedly robust anti-osteoclastogenic effect when its recombinant form is applied to osteoclast precursors in vitro or at the site of bone inflammation externally in vivo. Externally applied Calreticulin was internalized inside the cells. It inhibited key pro-osteoclastogenic transcription factors such as c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1)-in osteoclast precursor cells that were treated with RANKL in vitro. Recombinant human Calreticulin (rhCRT) inhibited lipopolysaccharide (LPS)-induced inflammatory osteoclastogenesis in the mouse calvarial bone in vivo. Cathepsin K molecular imaging verified decreased Cathepsin K activity when rhCalreticulin was applied at the site of LPS application in vivo. Recombinant forms of intracellular proteins or their derivatives may act as novel extracellular therapeutic agents. We anticipate our findings to be a starting point in unraveling hidden extracellular functions of other intracellular proteins in different cell types of many organs for new therapeutic opportunities. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2658-2666, 2017.
Collapse
Affiliation(s)
- Charla R. Fischer
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Maya Mikami
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Hiroshi Minematsu
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Saqib Nizami
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Heon Goo Lee
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Danielle Stamer
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Care, Yale University School of Medicine, 47 College Street, New Haven, New York
| | - Neel Patel
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Care, Yale University School of Medicine, 47 College Street, New Haven, New York
| | - Do Yu Soung
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Jung-ho Back
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Care, Yale University School of Medicine, 47 College Street, New Haven, New York
| | - Lee Song
- Robert Carroll and Jane Chace Carroll Laboratories, College of Surgeons and Physicians of Columbia University, 650 W. 168th Street, BB14-1412, New York, NY 10032
| | - Hicham Drissi
- Department of Orthopedic Surgery, Emory School of Medicine, Atlanta, GA
| | - Francis Y. Lee
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Care, Yale University School of Medicine, 47 College Street, New Haven, New York
| |
Collapse
|
41
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
42
|
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2017; 193:25-34. [PMID: 29175313 DOI: 10.1016/j.imlet.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022]
Abstract
The death of cancer cells can be categorized as either immunogenic (ICD) or nonimmunogenic, depending on the initiating stimulus. The immunogenic processes of immunogenic cell death are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface exposure of calreticulin (CRT), secretion of adenosine triphosphate (ATP), release of non-histone chromatin protein high-mobility group box 1 (HMGB1) and the production of type I interferons (IFNs). DAMPs are recognized by various receptors that are expressed by antigen-presenting cells (APCs) and potentiate the presentation of tumor antigens to T lymphocytes. Accumulating evidence indicates that CRT exposure constitutes one of the major checkpoints, that determines the immunogenicity of cell death both in vitro and in vivo in mouse models. Moreover, recent studies have identified CRT expression on tumor cells not only as a marker of ICD and active anti-tumor immune reactions but also as a major predictor of a better prognosis in various cancers. Here, we discuss the recent information on the CRT capacity to activate anticancer immune response as well as its prognostic and predictive role for the clinical outcome in cancer patients.
Collapse
Affiliation(s)
- Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Lenka Kasikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Iva Truxova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Jan Laco
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Petr Skapa
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ales Ryska
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic.
| |
Collapse
|
43
|
Yamamoto M, Ikezaki M, Toujima S, Iwahashi N, Mizoguchi M, Nanjo S, Minami S, Ihara Y, Ino K. Calreticulin Is Involved in Invasion of Human Extravillous Trophoblasts Through Functional Regulation of Integrin β1. Endocrinology 2017; 158:3874-3889. [PMID: 28938427 DOI: 10.1210/en.2016-1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
Abstract
Calreticulin (CRT), a molecular chaperone in the endoplasmic reticulum (ER), plays a variety of roles in cell growth, differentiation, apoptosis, immunity, and cancer biology. It has been reported that CRT is expressed in the human placenta, although its function in placental development is poorly understood. Appropriate invasion of extravillous trophoblasts (EVTs) into the maternal decidua is necessary for successful pregnancy. The objective of the present study was to investigate the expression and functional role of CRT in EVTs using the human EVT cell line HTR8/SVneo, in which CRT gene expression was knocked down. We found that CRT was highly expressed in the human placenta in the early stage of pregnancy and localized to the EVTs. CRT knockdown markedly suppressed the invasion ability of HTR8/SVneo cells. Furthermore, the adhesion to fibronectin was suppressed in the CRT-knockdown cells via the dysfunction of integrin α5β1. In the CRT-knockdown cells, terminal sialylation and fucosylation were decreased, and the core galactose-containing structure was increased in the N-glycans of integrin β1. In addition, the expression levels of several critical glycosyltransferases were changed in the CRT-knockdown cells, consistent with the changes in the N-glycans. These results showed that CRT regulates the function of integrin β1 by affecting the synthesis of N-glycans in HTR8/SVneo cells. Collectively, the results of the present study demonstrate that the ER chaperone CRT plays a regulatory role in the invasion of EVTs, suggesting the importance of CRT expression in placental development during early pregnancy.
Collapse
Affiliation(s)
- Madoka Yamamoto
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Mika Mizoguchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sakiko Nanjo
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sawako Minami
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
44
|
Yi L, Hu N, Yin J, Sun J, Mu H, Dai K, Ding D. Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays. PLoS One 2017; 12:e0182671. [PMID: 28931006 PMCID: PMC5607120 DOI: 10.1371/journal.pone.0182671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
The biological effects of low-dose or low-dose-rate ionizing radiation on normal tissues has attracted attention. Based on previous research, we observed the morphology of liver tissues of C57BL/6J mice that received <50, 50–500, and 500–1000 μGy/h of 137Cs radiation for 180 d. We found that the pathological changes in liver tissues were more obvious as the irradiation dose rates increased. Additionally, differential protein expression in liver tissues was analyzed using a proteomics approach. Compared with the matched group in the 2D gel analysis of the irradiated groups, 69 proteins had ≥ 1.5-fold changes in expression. Twenty-three proteins were selected based on ≥2.5-fold change in expression, and 22 of them were meaningful for bioinformatics and protein fingerprinting analysis. These molecules were relevant to cytoskeleton processes, cell metabolism, biological defense, mitochondrial damage, detoxification and tumorigenesis. The results from real-time PCR and western blot (WB) analyses showed that calreticulin (CRT) was up-regulated in the irradiated groups, which indicates that CRT may be relevant to stress reactions when mouse livers are exposed to low-dose irradiation and that low-dose-rate ionizing radiation may pose a cancer risk. The CRT protein can be a potential candidate for low-dose or low-dose-rate ionizing radiation early-warning biomarkers. However, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Jing Sun
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Hongxiang Mu
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Keren Dai
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- * E-mail:
| |
Collapse
|
45
|
Migliaccio AR, Uversky VN. Dissecting physical structure of calreticulin, an intrinsically disordered Ca 2+-buffering chaperone from endoplasmic reticulum. J Biomol Struct Dyn 2017; 36:1617-1636. [PMID: 28504081 DOI: 10.1080/07391102.2017.1330224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS) , New York , NY , USA.,b Department of Biomedical and Neuromotorial Sciences , Alma Mater University , Bologna , Italy
| | - Vladimir N Uversky
- c Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,d Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
46
|
Zhang XH, Zhang Y, Xie WP, Sun DS, Zhang YK, Hao YK, Tan GQ. Expression and significance of calreticulin in human osteosarcoma. Cancer Biomark 2017; 18:405-411. [PMID: 28106543 DOI: 10.3233/cbm-160266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xu-Hua Zhang
- Department of Clinical Chemistry, The Second Hospital of Shandong University, Jinan, Shandong, China
- Department of Clinical Chemistry, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Clinical Chemistry, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wen-Peng Xie
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - De-Sheng Sun
- Department of Orthopedics, The People's Hospital of Penglai City, Penglai, Shandong, China
| | - Yong-Kui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan-Ke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo-Qing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
47
|
Cai Q, Lin J, Zhang L, Lin J, Wang L, Chen D, Peng J. Comparative proteomics-network analysis of proteins responsible for ursolic acid-induced cytotoxicity in colorectal cancer cells. Tumour Biol 2017; 39:1010428317695015. [PMID: 28347227 DOI: 10.1177/1010428317695015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ursolic acid is a key active compound present in many medicinal herbs that have been widely used in traditional Chinese medicine for the clinical treatment of various cancers. However, the precise mechanisms of its antitumor activity have been poorly understood. To identify the cellular targets of ursolic acid, two-dimensional gel electrophoresis combined with mass spectrometry was performed in this study, which identified 15 proteins with significantly altered levels in protein expression. This demonstrated that ursolic acid-induced cytotoxicity in colorectal cancer cells involves dysregulation in protein folding, signal transduction, cell proliferation, cell cycle, and apoptosis. Corresponding protein regulation was also confirmed by Western blotting. Furthermore, the study of functional association between these 15 proteins revealed that 10 were closely related in a protein-protein interaction network, whereby the proteins either had a direct interaction with each other or were associated via only one intermediary protein. In this instance, the ATP5B/CALR/HSP90B1/HSPB1/HSPD1-signaling network was revealed as the predominant target which was associated with the majority of the observed protein-protein interactions. As a result, the identified targets may be useful in explaining the anticancer mechanisms of ursolic acid and as potential targets for colorectal cancer therapy.
Collapse
Affiliation(s)
- Qiaoyan Cai
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Lin
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ling Zhang
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiumao Lin
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Daxin Chen
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jun Peng
- 1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- 2 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
48
|
Vera CA, Oróstica L, Gabler F, Ferreira A, Selman A, Vega M, Romero CA. The nerve growth factor alters calreticulin translocation from the endoplasmic reticulum to the cell surface and its signaling pathway in epithelial ovarian cancer cells. Int J Oncol 2017; 50:1261-1270. [PMID: 28260038 DOI: 10.3892/ijo.2017.3892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/20/2017] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the seventh most common cancer among women worldwide, causing approximately 120,000 deaths every year. Immunotherapy, designed to boost the body's natural defenses against cancer, appears to be a promising option against ovarian cancer. Calreticulin (CRT) is an endoplasmic reticulum (ER) resident chaperone that, translocated to the cell membrane after ER stress, allows cancer cells to be recognized by the immune system. The nerve growth factor (NGF) is a pro-angiogenic molecule overexpressed in this cancer. In the present study, we aimed to determine weather NGF has an effect in CRT translocation induced by cytotoxic and ER stress. We treated A2780 ovarian cancer cells with NGF, thapsigargin (Tg), an ER stress inducer and mitoxantrone (Mtx), a chemotherapeutic drug; CRT subcellular localization was analyzed by immunofluorescence followed by confocal microscopy. In order to determine NGF effect on Mtx and Tg-induced CRT translocation from the ER to the cell membrane, cells were preincubated with NGF prior to Mtx or Tg treatment and CRT translocation to the cell surface was determined by flow cytometry. In addition, by western blot analyses, we evaluated proteins associated with the CRT translocation pathway, both in A2780 cells and human ovarian samples. We also measured NGF effect on cell apoptosis induced by Mtx. Our results indicate that Mtx and Tg, but not NGF, induce CRT translocation to the cell membrane. NGF, however, inhibited CRT translocation induced by Mtx, while it had no effect on Tg-induced CRT exposure. NGF also diminished cell death induced by Mtx. NGF effect on CRT translocation could have consequences in immunotherapy, potentially lessening the effectiveness of this type of treatment.
Collapse
Affiliation(s)
- Carolina Andrea Vera
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Lorena Oróstica
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Fernando Gabler
- Department of Pathology, School of Medicine, San Borja Arriarán Clinical Hospital, University of Chile, Santiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alberto Selman
- Department of Obstetrics and Gynecology, School of Medicine, Clinical Hospital, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Carmen Aurora Romero
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, University of Chile, Santiago, Chile
| |
Collapse
|
49
|
Perez-Trujillo JJ, Garza-Morales R, Barron-Cantu JA, Figueroa-Parra G, Garcia-Garcia A, Rodriguez-Rocha H, Garcia-Juarez J, Muñoz-Maldonado GE, Saucedo-Cardenas O, Montes-De-Oca-Luna R, Loera-Arias MDJ. DNA vaccine encoding human papillomavirus antigens flanked by a signal peptide and a KDEL sequence induces a potent therapeutic antitumor effect. Oncol Lett 2017; 13:1569-1574. [PMID: 28454292 PMCID: PMC5403354 DOI: 10.3892/ol.2017.5635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular immune responses play a critical role in the eradication of intracellular infections and malignant cells through the recognition and subsequent removal of the infection or malignant cells. Effective antigen presentation is crucial for stimulating the immune system against malignant cells. Calreticulin (CRT) has been used to improve antigen presentation. However, CRT overexpression has been previously associated with the development of pancreatic and breast cancer. The import and retention signals of CRT in the endoplasmic reticulum (ER) can be used to overcome CRT overexpression. The present study describes the potent antitumor effect of a DNA vaccine encoding human papillomavirus type 16 E6 and E7 antigens flanked by ER import and retention signals (SP-E6E7m-KDEL). The effect of this vaccine was compared with that of E6 and E7 antigens fused to human full-length CRT (hCRT-E6E7m). In the present study, the effectiveness of SP-E6E7m-KDEL for inducing an interferon-γ antigen-specific, response and its therapeutic effect against tumors was demonstrated, which was as effective as immunization against those antigens fused to CRT. This simplified strategy, using ER import and retention signal peptides to direct antigens to this organelle, provides an efficient alternative to traditional vaccines and, more importantly, a safe and potent system to induce a therapeutic antitumor response.
Collapse
Affiliation(s)
- Jose J Perez-Trujillo
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Rodolfo Garza-Morales
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Jose A Barron-Cantu
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Gabriel Figueroa-Parra
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Aracely Garcia-Garcia
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Humberto Rodriguez-Rocha
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Jaime Garcia-Juarez
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Gerardo E Muñoz-Maldonado
- General Surgery Service, University Hospital 'Dr Jose Eleuterio Gonzalez', Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Odila Saucedo-Cardenas
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México.,Division of Genetics, Northeast Biomedical Research Center, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon 64720, México
| | - Roberto Montes-De-Oca-Luna
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Maria De Jesus Loera-Arias
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| |
Collapse
|
50
|
Ling H, He J, Tan H, Yi L, Liu F, Ji X, Wu Y, Hu H, Zeng X, Ai X, Jiang H, Su Q. Identification of potential targets for differentiation in human leukemia cells induced by diallyl disulfide. Int J Oncol 2017; 50:697-707. [PMID: 28101575 DOI: 10.3892/ijo.2017.3839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Diallyl disulfide (DADS) is a primary component of garlic, which has chemopreventive potential. We previously found that moderate doses (15-120 µM) of DADS induced apoptosis and G2/M phase cell cycle arrest. In this study, we observed the effect of low doses (8 µM) of DADS on human leukemia HL-60 cells. We found that DADS could inhibit proliferation, migration and invasion in HL-60 cells, and arrested cells at G0/G1 stage. Then, cell differentiation was displayed by morphologic observation, NBT reduction activity and CD11b evaluation of cytometric flow. It showed that DADS induced differentiation, reduced the ability of NBT and increased CD11b expression. Likewise, DADS inhibited xenograft tumor growth and induced differentiation in vivo. In order to make sure how DADS induced differentiation, we compared the protein expression profile of DADS-treated cells with that of untreated control. Using high resolution mass spectrometry, we identified 18 differentially expressed proteins after treatment with DADS, including four upregulated and 14 downregulated proteins. RT-PCR and western blot assay showed that DJ-1, cofilin 1, RhoGDP dissociation inhibitor 2 (RhoGDI2), Calreticulin (CTR) and PCNA were decreased by DADS. These data suggest that the effects of DADS on leukemia may be due to multiple targets for intervention.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie He
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Tan
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxia Ji
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Youhua Wu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Ai
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hao Jiang
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi Su
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|