1
|
Ikpeama EU, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Nwaogazie IL, Orisakwe OE. Selenium and zinc protect against heavy metal mixture-induced, olfactory bulb and hippocampal damage by augmenting antioxidant capacity and activation of Nrf2-Hmox-1 signaling in male rats. Int J Neurosci 2025; 135:242-256. [PMID: 38108304 DOI: 10.1080/00207454.2023.2295227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE/AIM OF THE STUDY Heavy metals and metalloids have been implicated in neurodenerative diseases. Present study has evaluated the potential protective effects of Se and Zn on heavy metals and metalloids mixture-induced (Cd, Pb, Hg and As) toxicity in the hippocampus and olfactory bulb in male rats. MATERIALS AND METHODS Five groups of Wistar rats were randomly divided in to: controls, toxic metals mixture (TMM) exposed rats (PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1 and NaAsO3, 10 mg·kg-1)), TMM + Zn, TMM + Se and TMM-+Zn + Se groups and were orally treated for 60 days. RESULTS We found that in hippocampus and olfactory bulb, TMM generated increased lipid peroxidation and diminished antioxidant capacity. These adverse effects induced by TMM were alleviated by Zn and Se co-treatment; moreover, essential trace elements (Zn and Se) decreased activity of acetylcholinesterase, reduced Cd, Pb, Hg and As bioaccumulation in hippocampus and olfactory bulb and decreased levels of TNF-α in the hippocampus. TMM treated rats had lower levels of Hmox-1 (hippocampus), higher levels of Nrf2 (olfactory bulb and hippocampus) and NF-kB (olfactory bulb). TMM treated rats showed significantly highest time in locating the escape hole. Histopathological examination revealed hypertrophied granule cells in OB of TMM exposed rats. CONCLUSION Zn and Se supplementation can reverse quaternary mixture-induced (Cd, Pb, Hg and As) toxicity in hippocampus and OB in male albino rats.
Collapse
Affiliation(s)
- Evelyn U Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| |
Collapse
|
2
|
Löser A, Schwarz M, Kipp AP. NRF2 and Thioredoxin Reductase 1 as Modulators of Interactions between Zinc and Selenium. Antioxidants (Basel) 2024; 13:1211. [PMID: 39456464 PMCID: PMC11505002 DOI: 10.3390/antiox13101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Selenium and zinc are essential trace elements known to regulate cellular processes including redox homeostasis. During inflammation, circulating selenium and zinc concentrations are reduced in parallel, but underlying mechanisms are unknown. Accordingly, we modulated the zinc and selenium supply of HepG2 cells to study their relationship. METHODS HepG2 cells were supplied with selenite in combination with a short- or long-term zinc treatment to investigate intracellular concentrations of selenium and zinc together with biomarkers describing their status. In addition, the activation of the redox-sensitive transcription factor NRF2 was analyzed. RESULTS Zinc not only increased the nuclear translocation of NRF2 after 2 to 6 h but also enhanced the intracellular selenium content after 72 h, when the cells were exposed to both trace elements. In parallel, the activity and expression of the selenoprotein thioredoxin reductase 1 (TXNRD1) increased, while the gene expression of other selenoproteins remained unaffected or was even downregulated. The zinc effects on the selenium concentration and TXNRD activity were reduced in cells with stable NRF2 knockdown in comparison to control cells. CONCLUSIONS This indicates a functional role of NRF2 in mediating the zinc/selenium crosstalk and provides an explanation for the observed unidirectional behavior of selenium and zinc.
Collapse
Affiliation(s)
- Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Anna Patricia Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| |
Collapse
|
3
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
4
|
Igual Gil C, Löser A, Lossow K, Schwarz M, Weber D, Grune T, Kipp AP, Klaus S, Ost M. Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense. Front Endocrinol (Lausanne) 2023; 14:1277866. [PMID: 37941910 PMCID: PMC10627798 DOI: 10.3389/fendo.2023.1277866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tilman Grune
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Raupbach J, Müller SK, Schnell V, Friedrich S, Hellwig A, Grune T, Henle T. The Effect of Free and Protein-Bound Maillard Reaction Products N-ε-Carboxymethyllysine, N-ε-Fructosyllysine, and Pyrraline on Nrf2 and NFκB in HCT 116 Cells. Mol Nutr Food Res 2023; 67:e2300137. [PMID: 37465844 DOI: 10.1002/mnfr.202300137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Indexed: 07/20/2023]
Abstract
SCOPE Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.
Collapse
Affiliation(s)
- Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stephan K Müller
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Suse Friedrich
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Anne Hellwig
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische, Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
6
|
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy. Int J Mol Sci 2023; 24:ijms24020902. [PMID: 36674417 PMCID: PMC9864911 DOI: 10.3390/ijms24020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.
Collapse
|
7
|
Jia C, Wang R, Long T, Xu Y, Zhang Y, Peng R, Zhang X, Guo H, Yang H, Wu T, He M. NRF2 Genetic Polymorphism Modifies the Association of Plasma Selenium Levels With Incident Coronary Heart Disease Among Individuals With Type 2 Diabetes. Diabetes 2022; 71:2009-2019. [PMID: 35713896 DOI: 10.2337/db21-1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 11/13/2022]
Abstract
Plasma selenium and NRF2 promoter variants (e.g., rs6721961) are associated with cardiovascular disease risk in the general population. However, epidemiological evidence on the interaction between plasma selenium and NRF2 genetic susceptibility in relation to incident coronary heart disease (CHD) risk remains scarce, especially among individuals with type 2 diabetes (T2D). Thus, we examined whether rs6721961 in the NRF2 gene might modify the association between plasma selenium levels and incident CHD risk among people with T2D. During a mean (SD) follow-up period of 6.90 (2.96) years, 798 incident CHD cases were identified among 2,251 T2D cases. Risk-allele carriers of rs6721961 had a higher risk of incident CHD among people with T2D (adjusted hazard ratio [HR] 1.17; 95% CI 1.02-1.35) versus nonrisk-allele carriers. Each 22.8-μg/L increase in plasma selenium levels was associated with a reduced risk of incident CHD among risk-allele carriers with T2D (HR 0.80; 95% CI 0.71-0.89), whereas no association was found in those without risk alleles (P for interaction = 0.004), indicating that the NRF2 promoter polymorphism might modify the association between plasma selenium levels and incident CHD risk among people with T2D. Our study findings suggest redox-related genetic variants should be considered to identify populations that might benefit most from selenium supplementation. More mechanistic studies are warranted.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Long
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Xu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Peng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Hoffmann H, Ott C, Raupbach J, Andernach L, Renz M, Grune T, Hanschen FS. Assessing Bioavailability and Bioactivity of 4-Hydroxythiazolidine-2-Thiones, Newly Discovered Glucosinolate Degradation Products Formed During Domestic Boiling of Cabbage. Front Nutr 2022; 9:941286. [PMID: 35938125 PMCID: PMC9354954 DOI: 10.3389/fnut.2022.941286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Glucosinolates are plant secondary metabolites found in cruciferous vegetables (Brassicaceae) that are valued for their potential health benefits. Frequently consumed representatives of these vegetables, for example, are white or red cabbage, which are typically boiled before consumption. Recently, 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were identified as a class of thermal glucosinolate degradation products that are formed during the boiling of cabbage. Since these newly discovered compounds are frequently consumed, this raises questions about their potential uptake and their possible bioactive functions. Therefore, 3-allyl-4-hydroxythiazolidine-2-thione (allyl HTT) and 4-hydroxy-3-(4-(methylsulfinyl) butyl)thiazolidine-2-thione (4-MSOB HTT) as degradation products of the respective glucosinolates sinigrin and glucoraphanin were investigated. After consumption of boiled red cabbage broth, recoveries of consumed amounts of the degradation products in urine collected for 24 h were 18 ± 5% for allyl HTT and 21 ± 4% for 4-MSOB HTT (mean ± SD, n = 3). To investigate the stability of the degradation products during uptake and to elucidate the uptake mechanism, both an in vitro stomach and an in vitro intestinal model were applied. The results indicate that the uptake of allyl HTT and 4-MSOB HTT occurs by passive diffusion. Both compounds show no acute cell toxicity, no antioxidant potential, and no change in NAD(P)H dehydrogenase quinone 1 (NQO1) activity up to 100 μM. However, inhibition of glycogen synthase kinases-3 (GSK-3) in the range of 20% for allyl HTT for the isoform GSK-3β and 29% for 4-MSOB HTT for the isoform GSK-3α at a concentration of 100 μM was found. Neither health-promoting nor toxic effects of 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were found in the four tested assays carried out in this study, which contrasts with the properties of other glucosinolate degradation products, such as isothiocyanates.
Collapse
Affiliation(s)
- Holger Hoffmann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Lars Andernach
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Matthias Renz
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- *Correspondence: Franziska S. Hanschen
| |
Collapse
|
9
|
Critical Role of Maternal Selenium Nutrition in Neurodevelopment: Effects on Offspring Behavior and Neuroinflammatory Profile. Nutrients 2022; 14:nu14091850. [PMID: 35565817 PMCID: PMC9104078 DOI: 10.3390/nu14091850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content—i.e., optimal, sub-optimal, and deficient—and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.
Collapse
|
10
|
Huang J, Feng X, Zeng J, Zhang S, Zhang J, Guo P, Yu H, Sun M, Wu J, Li M, Li Y, Wang X, Hu L. Aberrant HO-1/NQO1-Reactive Oxygen Species-ERK Signaling Pathway Contributes to Aggravation of TPA-Induced Irritant Contact Dermatitis in Nrf2-Deficient Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1424-1433. [PMID: 35197329 DOI: 10.4049/jimmunol.2100577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023]
Abstract
NF-erythroid 2-related factor 2 (Nrf2) is a major transcription factor to protect cells against reactive oxygen species (ROS) and reactive toxicants. Meanwhile, Nrf2 can inhibit contact dermatitis through redox-dependent and -independent pathways. However, the underlying mechanisms of how Nrf2 mediates irritant contact dermatitis (ICD) are still unclear. In this article, we elucidated the role of Nrf2 in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute ICD. Our study demonstrated that the ear thickness, redness, swelling, and neutrophil infiltration were significantly increased, accompanied by increased expression of inflammatory cytokines (IL-1α, IL-1β, IL-6, etc.) and decreased expression of antioxidant genes (HO-1 and NQO1) in Nrf2 knockout mice. Moreover, ERK phosphorylation was elevated in mouse embryonic fibroblasts (MEFs) from Nrf2 knockout mouse. Inhibition of ERK significantly alleviated TPA-induced cutaneous inflammation and ROS accumulation in MEFs derived from mouse. Conversely, ROS scavenging inhibited the ERK activation and TPA-induced inflammation in MEFs. Taken together, the findings illustrate the key role of the Nrf2/ROS/ERK signaling pathway in TPA-induced acute ICD.
Collapse
Affiliation(s)
- Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Xiaoyue Feng
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Jie Zeng
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Shuchang Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Pan Guo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Mengke Sun
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Jiangmei Wu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Mengyan Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China.,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| | - Xiaohua Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China; .,Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; and
| |
Collapse
|
11
|
Wolfram T, Weidenbach LM, Adolf J, Schwarz M, Schädel P, Gollowitzer A, Werz O, Koeberle A, Kipp AP, Koeberle SC. The Trace Element Selenium Is Important for Redox Signaling in Phorbol Ester-Differentiated THP-1 Macrophages. Int J Mol Sci 2021; 22:11060. [PMID: 34681720 PMCID: PMC8539332 DOI: 10.3390/ijms222011060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Physiological selenium (Se) levels counteract excessive inflammation, with selenoproteins shaping the immunoregulatory cytokine and lipid mediator profile. How exactly differentiation of monocytes into macrophages influences the expression of the selenoproteome in concert with the Se supply remains obscure. THP-1 monocytes were differentiated with phorbol 12-myristate 13-acetate (PMA) into macrophages and (i) the expression of selenoproteins, (ii) differentiation markers, (iii) the activity of NF-κB and NRF2, as well as (iv) lipid mediator profiles were analyzed. Se and differentiation affected the expression of selenoproteins in a heterogeneous manner. GPX4 expression was substantially decreased during differentiation, whereas GPX1 was not affected. Moreover, Se increased the expression of selenoproteins H and F, which was further enhanced by differentiation for selenoprotein F and diminished for selenoprotein H. Notably, LPS-induced expression of NF-κB target genes was facilitated by Se, as was the release of COX- and LOX-derived lipid mediators and substrates required for lipid mediator biosynthesis. This included TXB2, TXB3, 15-HETE, and 12-HEPE, as well as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Our results indicate that Se enables macrophages to accurately adjust redox-dependent signaling and thereby modulate downstream lipid mediator profiles.
Collapse
Affiliation(s)
- Theresa Wolfram
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Leonie M. Weidenbach
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Johanna Adolf
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, 07743 Jena, Germany; (P.S.); (O.W.)
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (A.G.); (A.K.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, 07743 Jena, Germany; (P.S.); (O.W.)
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (A.G.); (A.K.)
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Solveigh C. Koeberle
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Wandt VK, Winkelbeiner N, Lossow K, Kopp JF, Schwarz M, Alker W, Nicolai MM, Simon L, Dietzel C, Hertel B, Pohl G, Ebert F, Schomburg L, Bornhorst J, Haase H, Kipp AP, Schwerdtle T. Ageing-associated effects of a long-term dietary modulation of four trace elements in mice. Redox Biol 2021; 46:102083. [PMID: 34371368 PMCID: PMC8358688 DOI: 10.1016/j.redox.2021.102083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Trace elements (TEs) are essential for diverse processes maintaining body function and health status. The complex regulation of the TE homeostasis depends among others on age, sex, and nutritional status. If the TE homeostasis is disturbed, negative health consequences can result, e.g., caused by impaired redox homeostasis and genome stability maintenance. Based on age-related shifts in TEs which have been described in mice well-supplied with TEs, we aimed to understand effects of a long-term feeding with adequate or suboptimal amounts of four TEs in parallel. As an additional intervention, we studied mice which received an age-adapted diet with higher concentrations of selenium and zinc to counteract the age-related decline of both TEs. We conducted comprehensive analysis of diverse endpoints indicative for the TE and redox status, complemented by analysis of DNA (hydroxy)methylation and markers denoting genomic stability maintenance. TE concentrations showed age-specific alterations which were relatively stable and independent of their nutritional supply. In addition, hepatic DNA hydroxymethylation was significantly increased in the elderly mice and markers indicative for the redox status were modulated. The reduced nutritional supply with TEs inconsistently affected their status, with most severe effects regarding Fe deficiency. This may have contributed to the sex-specific differences observed in the alterations related to the redox status and DNA repair activity. Overall, our results highlight the complexity of factors impacting on the TE status and its physiological consequences. Alterations in TE supply, age, and sex proved to be important determinants that need to be taken into account when considering TE interventions for improving general health and supporting convalescence in the clinics. Trace element profiles differ by age and sex under moderately modulated TE supply. Maintenance of age-related trace element shifts through all feeding groups. Cu/Zn ratio and DNA hydroxymethylation emerge as appropriate murine ageing markers.
Collapse
Affiliation(s)
- Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Kristina Lossow
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany; German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Maria Schwarz
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Wiebke Alker
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Chair of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Luise Simon
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Caroline Dietzel
- Chair of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Barbara Hertel
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Lutz Schomburg
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Hajo Haase
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Chair of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Anna P Kipp
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
13
|
Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021; 10:1030. [PMID: 34202320 PMCID: PMC8300779 DOI: 10.3390/antiox10071030] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.
Collapse
Affiliation(s)
- Tabitha Jenkins
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
14
|
Liu P, Dodson M, Li H, Schmidlin CJ, Shakya A, Wei Y, Garcia JGN, Chapman E, Kiela PR, Zhang QY, White E, Ding X, Ooi A, Zhang DD. Non-canonical NRF2 activation promotes a pro-diabetic shift in hepatic glucose metabolism. Mol Metab 2021; 51:101243. [PMID: 33933676 PMCID: PMC8164084 DOI: 10.1016/j.molmet.2021.101243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Objective NRF2, a transcription factor that regulates cellular redox and metabolic homeostasis, plays a dual role in human disease. While it is well known that canonical intermittent NRF2 activation protects against diabetes-induced tissue damage, little is known regarding the effects of prolonged non-canonical NRF2 activation in diabetes. The goal of this study was to determine the role and mechanisms of prolonged NRF2 activation in arsenic diabetogenicity. Methods To test this, we utilized an integrated transcriptomic and metabolomic approach to assess diabetogenic changes in the livers of wild type, Nrf2−/−, p62−/−, or Nrf2−/−; p62−/− mice exposed to arsenic in the drinking water for 20 weeks. Results In contrast to canonical oxidative/electrophilic activation, prolonged non-canonical NRF2 activation via p62-mediated sequestration of KEAP1 increases carbohydrate flux through the polyol pathway, resulting in a pro-diabetic shift in glucose homeostasis. This p62- and NRF2-dependent increase in liver fructose metabolism and gluconeogenesis occurs through the upregulation of four novel NRF2 target genes, ketohexokinase (Khk), sorbitol dehydrogenase (Sord), triokinase/FMN cyclase (Tkfc), and hepatocyte nuclear factor 4 (Hnf4A). Conclusion We demonstrate that NRF2 and p62 are essential for arsenic-mediated insulin resistance and glucose intolerance, revealing a pro-diabetic role for prolonged NRF2 activation in arsenic diabetogenesis. The role of non-canonical activation of the Nrf2 signaling pathway in type II diabetes has not been determined. Chronic activation of Nrf2 promotes a pro-diabetic shift in the liver polyol pathway that increases blood glucose levels. Four newly identified Nrf2 target genes are responsible for the diabetogenic shift in liver carbohydrate metabolism.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Yongyi Wei
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Departments of Pediatrics and Immunology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Eileen White
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
15
|
Tauber S, Sieckmann MK, Erler K, Stahl W, Klotz LO, Steinbrenner H. Activation of Nrf2 by Electrophiles Is Largely Independent of the Selenium Status of HepG2 Cells. Antioxidants (Basel) 2021; 10:antiox10020167. [PMID: 33498683 PMCID: PMC7911449 DOI: 10.3390/antiox10020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoenzymes, whose activity depends on adequate selenium (Se) supply, and phase II enzymes, encoded by target genes of nuclear factor erythroid 2-related factor 2 (Nrf2), take part in governing cellular redox homeostasis. Their interplay is still not entirely understood. Here, we exposed HepG2 hepatoma cells cultured under Se-deficient, Se-adequate, or Se-supranutritional conditions to the Nrf2 activators sulforaphane, cardamonin, or diethyl maleate. Nrf2 protein levels and intracellular localization were determined by immunoblotting, and mRNA levels of Nrf2 target genes and selenoproteins were assessed by qRT-PCR. Exposure to electrophiles resulted in rapid induction of Nrf2 and its enrichment in the nucleus, independent of the cellular Se status. All three electrophilic compounds caused an enhanced expression of Nrf2 target genes, although with differences regarding extent and time course of their induction. Whereas Se status did not significantly affect mRNA levels of the Nrf2 target genes, gene expression of selenoproteins with a low position in the cellular "selenoprotein hierarchy", such as glutathione peroxidase 1 (GPX1) or selenoprotein W (SELENOW), was elevated under Se-supplemented conditions, as compared to cells held in Se-deficient media. In conclusion, no major effect of Se status on Nrf2 signalling was observed in HepG2 cells.
Collapse
Affiliation(s)
- Sarah Tauber
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Maria Katharina Sieckmann
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Katrin Erler
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, D-40001 Düsseldorf, Germany;
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (S.T.); (M.K.S.); (K.E.); (L.-O.K.)
- Correspondence: ; Tel.: +49-3641-949757
| |
Collapse
|
16
|
Wolfram T, Schwarz M, Reuß M, Lossow K, Ost M, Klaus S, Schwerdtle T, Kipp AP. N-Acetylcysteine as Modulator of the Essential Trace Elements Copper and Zinc. Antioxidants (Basel) 2020; 9:antiox9111117. [PMID: 33198336 PMCID: PMC7696987 DOI: 10.3390/antiox9111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
N-acetylcysteine (NAC) is a frequently prescribed drug and known for its metal chelating capability. However, to date it is not well characterized whether NAC intake affects the homeostasis of essential trace elements. As a precursor of glutathione (GSH), NAC also has the potential to modulate the cellular redox homeostasis. Thus, we aimed to analyze effects of acute and chronic NAC treatment on the homeostasis of copper (Cu) and zinc (Zn) and on the activity of the redox-sensitive transcription factor Nrf2. Cells were exposed to 1 mM NAC and were co-treated with 50 μM Cu or Zn. We showed that NAC treatment reduced the cellular concentration of Zn and Cu. In addition, NAC inhibited the Zn-induced Nrf2 activation and limited the concomitant upregulation of cellular GSH concentrations. In contrast, mice chronically received NAC via drinking water (1 g NAC/100 mL). Cu and Zn concentrations were decreased in liver and spleen. In the duodenum, NQO1, TXNRD, and SOD activities were upregulated by NAC. All of them can be induced by Nrf2, thus indicating a putative Nrf2 activation. Overall, NAC modulates the homeostasis of Cu and Zn both in vitro and in vivo and accordingly affects the cellular redox balance.
Collapse
Affiliation(s)
- Theresa Wolfram
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
| | - Michaela Reuß
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
| | - Mario Ost
- German Institute of Human Nutrition, 14558 Nuthetal, Germany; (M.O.); (S.K.)
| | - Susanne Klaus
- German Institute of Human Nutrition, 14558 Nuthetal, Germany; (M.O.); (S.K.)
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
- Correspondence: ; Tel.: +49-3641-949609
| |
Collapse
|
17
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|
18
|
Zhang Z, Liu Q, Yang J, Yao H, Fan R, Cao C, Liu C, Zhang S, Lei X, Xu S. The proteomic profiling of multiple tissue damage in chickens for a selenium deficiency biomarker discovery. Food Funct 2020; 11:1312-1321. [PMID: 32022057 DOI: 10.1039/c9fo02861g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of numerous cancers because of the impressive development of novel proteomic strategies. Selenium (Se) is an essential trace element in humans and animals. Se deficiency could lead to Keshan disease in humans, mulberry heart disease in pigs and damage of tissues including cardiac injury, apoptosis in the liver, reduction in the immune responses in spleen and cerebral lesions in chickens. However, it is well know that plasma biomarkers are not specific and also show alterations in various diseases including those caused by Se deficiency. Therefore, new definition biomarkers are needed to improve disease surveillance and reduce unnecessary chicken losses due to Se deficiency. To identify new biomarkers for Se deficiency, we performed exploratory heart, liver, spleen, muscle, vein, and artery proteomic screens to further validate the biomarkers using Venn analysis, GO enrichment, heatmap analysis, and IPA analysis. Based on the bioinformatics methods mentioned above, we found that differentially expressed genes and proteins are enriched to the PI3K/AKT/mTOR signal pathway and insulin pathway. We further used western blot to detect the expression of proteins related to the two pathways. Results showed that the components of the PI3K/AKT/mTOR signal pathway were definitely decreased in heart, liver, spleen, muscle, vein and artery tissues in the Se deficient group. Expression IGF and IGFBP2 of the insulin pathway were differentially increased in the heart, liver, and spleen in Se deficient group samples and decreased in muscle and artery. In conclusion, 5 proteins, namely PI3K, AKT, mTOR, IGF, and IGFBP2, were differentially expressed, which could be potentially useful Se deficient biomarkers. In the present study, proteomic profiling was used to elucidate protein biomarkers that distinguished Se deficient samples from the controls, which might provide a new direction for the diagnosis and targeted treatment induced by Se deficiency in chickens.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ruifeng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Changyu Cao
- College of Life and Science, Foshan University, Foshan, 528000, P. R. China
| | - Ci Liu
- College of Animal Technology, Shanxi Agricultural University, Jinzhong, 030600, P. R. China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14583, USA
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14583, USA
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
19
|
Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, Schwerdtle T, Schomburg L, Kipp AP. Copper interferes with selenoprotein synthesis and activity. Redox Biol 2020; 37:101746. [PMID: 33059313 PMCID: PMC7567034 DOI: 10.1016/j.redox.2020.101746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Selenium and copper are essential trace elements for humans, needed for the biosynthesis of enzymes contributing to redox homeostasis and redox-dependent signaling pathways. Selenium is incorporated as selenocysteine into the active site of redox-relevant selenoproteins including glutathione peroxidases (GPX) and thioredoxin reductases (TXNRD). Copper-dependent enzymes mediate electron transfer and other redox reactions. As selenoprotein expression can be modulated e.g. by H2O2, we tested the hypothesis that copper status affects selenoprotein expression. To this end, hepatocarcinoma HepG2 cells and mice were exposed to a variable copper and selenium supply in a physiologically relevant concentration range, and transcript and protein expression as well as GPX and TXNRD activities were compared. Copper suppressed selenoprotein mRNA levels of GPX1 and SELENOW, downregulated GPX and TXNRD activities and decreased UGA recoding efficiency in reporter cells. The interfering effects were successfully suppressed by applying the copper chelators bathocuproinedisulfonic acid or tetrathiomolybdate. In mice, a decreased copper supply moderately decreased the copper status and negatively affected hepatic TXNRD activity. We conclude that there is a hitherto unknown interrelationship between copper and selenium status, and that copper negatively affects selenoprotein expression and activity most probably via limiting UGA recoding. This interference may be of physiological relevance during aging, where a particular shift in the selenium to copper ratio has been reported. An increased concentration of copper in face of a downregulated selenoprotein expression may synergize and negatively affect the cellular redox homeostasis contributing to disease processes.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Katja Schirl
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Florian Kopp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Anna Patricia Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
20
|
Michalska P, León R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080740. [PMID: 32806679 PMCID: PMC7463521 DOI: 10.3390/antiox9080740] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons in the brain or spinal cord that leads to a loss of function of the affected areas. The lack of effective treatments and the ever-increasing life expectancy is raising the number of individuals affected, having a tremendous social and economic impact. The brain is particularly vulnerable to oxidative damage given the high energy demand, low levels of antioxidant defenses, and high levels of metal ions. Driven by age-related changes, neurodegeneration is characterized by increased oxidative stress leading to irreversible neuronal damage, followed by cell death. Nevertheless, neurodegenerative diseases are known as complex pathologies where several mechanisms drive neuronal death. Herein we discuss the interplay among oxidative stress, proteinopathy, and neuroinflammation at the early stages of neurodegenerative diseases. Finally, we discuss the use of the Nrf2-ARE pathway as a potential therapeutic strategy based on these molecular mechanisms to develop transformative medicines.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| |
Collapse
|
21
|
Chang C, Worley BL, Phaëton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers (Basel) 2020; 12:cancers12082197. [PMID: 32781581 PMCID: PMC7464599 DOI: 10.3390/cancers12082197] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells possess a multifaceted antioxidant enzyme system, which includes superoxide dismutases, catalase, the peroxiredoxin/thioredoxin and the glutathione peroxidase systems. The dichotomous role of reactive oxygen species and antioxidant enzymes in tumorigenesis and cancer progression complicates the use of small molecule antioxidants, pro-oxidants, and targeting of antioxidant enzymes as therapeutic approaches for cancer treatment. It also highlights the need for additional studies to investigate the role and regulation of these antioxidant enzymes in cancer. The focus of this review is on glutathione peroxidase 3 (GPx3), a selenoprotein, and the only extracellular GPx of a family of oxidoreductases that catalyze the detoxification of hydro- and soluble lipid hydroperoxides by reduced glutathione. In addition to summarizing the biochemical function, regulation, and disease associations of GPx3, we specifically discuss the role and regulation of systemic and tumor cell expressed GPx3 in cancer. From this it is evident that GPx3 has a dichotomous role in different tumor types, acting as both a tumor suppressor and pro-survival protein. Further studies are needed to examine how loss or gain of GPx3 specifically affects oxidant scavenging and redox signaling in the extracellular tumor microenvironment, and how GPx3 might be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Beth L. Worley
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology & Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
- Correspondence: ; Tel.: +1-717-531-4037
| |
Collapse
|
22
|
Lossow K, Kopp JF, Schwarz M, Finke H, Winkelbeiner N, Renko K, Meçi X, Ott C, Alker W, Hackler J, Grune T, Schomburg L, Haase H, Schwerdtle T, Kipp AP. Aging affects sex- and organ-specific trace element profiles in mice. Aging (Albany NY) 2020; 12:13762-13790. [PMID: 32620712 PMCID: PMC7377894 DOI: 10.18632/aging.103572] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
A decline of immune responses and dynamic modulation of the redox status are observed during aging and are influenced by trace elements such as copper, iodine, iron, manganese, selenium, and zinc. So far, analytical studies have focused mainly on single trace elements. Therefore, we aimed to characterize age-specific profiles of several trace elements simultaneously in serum and organs of adult and old mice. This allows for correlating multiple trace element levels and to identify potential patterns of age-dependent alterations. In serum, copper and iodine concentrations were increased and zinc concentration was decreased in old as compared to adult mice. In parallel, decreased copper and elevated iron concentrations were observed in liver. The age-related reduction of hepatic copper levels was associated with reduced expression of copper transporters, whereas the increased hepatic iron concentrations correlated positively with proinflammatory mediators and Nrf2-induced ferritin H levels. Interestingly, the age-dependent inverse regulation of copper and iron was unique for the liver and not observed in any other organ. The physiological importance of alterations in the iron/copper ratio for liver function and the aging process needs to be addressed in further studies.
Collapse
Affiliation(s)
- Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,German Institute of Human Nutrition, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany.,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Xheni Meçi
- Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Nuthetal, Germany.,DZHK German Centre for Cardiovascular Research, Berlin, Germany
| | - Wiebke Alker
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Tilman Grune
- German Institute of Human Nutrition, Nuthetal, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Institute for Experimental Endocrinology, Charité University Medical School Berlin, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.,German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| |
Collapse
|
23
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
24
|
Qian F, Misra S, Prabhu KS. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 2019; 54:484-516. [PMID: 31996052 PMCID: PMC7122104 DOI: 10.1080/10409238.2020.1717430] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.
Collapse
Affiliation(s)
- Fenghua Qian
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - Sougat Misra
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| |
Collapse
|
25
|
Diet modulates cecum bacterial diversity and physiological phenotypes across the BXD mouse genetic reference population. PLoS One 2019; 14:e0224100. [PMID: 31634382 PMCID: PMC6802831 DOI: 10.1371/journal.pone.0224100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/05/2019] [Indexed: 12/02/2022] Open
Abstract
The BXD family has become one of the preeminent genetic reference populations to understand the genetic and environmental control of phenotypic variation. Here we evaluate the responses to different levels of fat in the diet using both chow diet (CD, 13–18% fat) and a high-fat diet (HFD, 45–60% fat). We studied cohorts of BXD strains, both inbred parents C57BL/6J and DBA/2J (commonly known as B6 and D2, respectively), as well as B6D2 and D2B6 reciprocal F1 hybrids. The comparative impact of genetic and dietary factors was analyzed by profiling a range of phenotypes, most prominently their cecum bacterial composition. The parents of the BXDs and F1 hybrids express limited differences in terms of weight and body fat gain on CD. In contrast, the strain differences on HFD are substantial for percent body fat, with DBA/2J accumulating 12.5% more fat than C57BL/6J (P < 0.0001). The F1 hybrids born to DBA/2J dams (D2B6F1) have 10.6% more body fat (P < 0.001) than those born to C57BL/6J dams. Sequence analysis of the cecum microbiota reveals important differences in bacterial composition among BXD family members with a substantial shift in composition caused by HFD. Relative to CD, the HFD induces a decline in diversity at the phylum level with a substantial increase in Firmicutes (+13.8%) and a reduction in Actinobacteria (-7.9%). In the majority of BXD strains, the HFD also increases cecal sIgA (P < 0.0001)—an important component of the adaptive immunity response against microbial pathogens. Host genetics modulates variation in cecum bacterial composition at the genus level in CD, with significant quantitative trait loci (QTLs) for Oscillibacter mapped to Chr 3 (18.7–19.2 Mb, LRS = 21.4) and for Bifidobacterium mapped to Chr 6 (89.21–89.37 Mb, LRS = 19.4). Introduction of HFD served as an environmental suppressor of these QTLs due to a reduction in the contribution of both genera (P < 0.001). Relations among liver metabolites and cecum bacterial composition were predominant in CD cohort, but these correlations do not persist following the shift to HFD. Overall, these findings demonstrate the important impact of environmental/dietary manipulation on the relationships between host genetics, gastrointestinal bacterial composition, immunological parameters, and metabolites—knowledge that will help in the understanding of the causal sources of metabolic disorders.
Collapse
|
26
|
Schwarz M, Lossow K, Kopp JF, Schwerdtle T, Kipp AP. Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper. Nutrients 2019; 11:E2112. [PMID: 31491970 PMCID: PMC6770424 DOI: 10.3390/nu11092112] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Johannes F Kopp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
27
|
Santos LR, Durães C, Ziros PG, Pestana A, Esteves C, Neves C, Carvalho D, Bongiovanni M, Renaud CO, Chartoumpekis DV, Habeos IG, Simões MS, Soares P, Sykiotis GP. Interaction of Genetic Variations in NFE2L2 and SELENOS Modulates the Risk of Hashimoto's Thyroiditis. Thyroid 2019; 29:1302-1315. [PMID: 31426718 PMCID: PMC6760180 DOI: 10.1089/thy.2018.0480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Several single-nucleotide polymorphisms (SNPs) are known to increase the risk of Hashimoto's thyroiditis (HT); such SNPs reside in thyroid-specific genes or in genes related to autoimmunity, inflammation, and/or cellular defense to stress. The transcription factor Nrf2, encoded by NFE2L2, is a master regulator of the cellular antioxidant response. This study aimed to evaluate the impact of genetic variation in NFE2L2 on the risk of developing HT. Methods: In a case-control candidate gene association study, functional SNPs in the NFE2L2 promoter (rs35652124, rs6706649, and rs6721961) were examined either as independent risk factors or in combination with a previously characterized HT risk allele (rs28665122) in the gene SELENOS, encoding selenoprotein S (SelS). A total of 997 individuals from the north of Portugal (Porto) were enrolled, comprising 481 HT patients and 516 unrelated healthy controls. SELENOS and NFE2L2 SNPs were genotyped using TaqMan® assays and Sanger sequencing, respectively. Odds ratios (ORs) were calculated using logistic regression, with adjustment for sex and age. Expression of SelS was analyzed by immunohistochemistry in thyroid tissue from HT patients and control subjects. Molecular interactions between the Nrf2 and SelS pathways were investigated in thyroid tissues from mice and in rat PCCL3 thyroid follicular cells. Results: When all three NFE2L2 SNPs were considered together, the presence of one or more minor alleles was associated with a near-significant increased risk (OR = 1.43, p = 0.072). Among subjects harboring only major NFE2L2 alleles, there was no increased HT risk associated with heterozygosity or homozygosity for the SELENOS minor allele. Conversely, in subjects heterozygous or homozygous for the SELENOS risk allele, the presence of an NFE2L2 minor allele significantly increased HT risk by 2.8-fold (p = 0.003). Immunohistochemistry showed reduced expression of SelS in thyroid follicular cells of HT patients. In Nrf2 knockout mice, there was reduced expression of SelS in thyroid follicular cells; conversely, in PCCL3 cells, reducing SelS expression caused reduced activity of Nrf2 signaling. Conclusions: The NFE2L2 promoter genotype interacts with the SELENOS promoter genotype to modulate the risk of HT in a Portuguese population. This interaction may be due to a bidirectional positive feedback between the Nrf2 and SelS pathways.
Collapse
Affiliation(s)
- Liliana R. Santos
- Department of Internal Medicine, Hospital de Santa Maria, Lisbon, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Cecília Durães
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana Pestana
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - César Esteves
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Hospital of S. João, Porto, Portugal
| | - Celestino Neves
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Hospital of S. João, Porto, Portugal
| | - Davide Carvalho
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Hospital of S. João, Porto, Portugal
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cédric O. Renaud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dionysios V. Chartoumpekis
- Department of Internal Medicine, Division of Endocrinology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis G. Habeos
- Department of Internal Medicine, Division of Endocrinology, School of Medicine, University of Patras, Patras, Greece
| | - Manuel Sobrinho Simões
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Address correspondence to: Gerasimos P. Sykiotis, MD, PhD, Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, SA08/02/250, Ave de la Sallaz 8, Lausanne CH-1011, Switzerland
| |
Collapse
|
28
|
Yim SH, Clish CB, Gladyshev VN. Selenium Deficiency Is Associated with Pro-longevity Mechanisms. Cell Rep 2019; 27:2785-2797.e3. [PMID: 31141699 PMCID: PMC6689410 DOI: 10.1016/j.celrep.2019.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/21/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium (Se) is an essential trace element because of its presence in selenoproteins in the form of selenocysteine residue. Both Se deficiency, which compromises selenoprotein functions, and excess Se, which is toxic, have been associated with altered redox homeostasis and adverse health conditions. Surprisingly, we found that, although Se deficiency led to a drastic decline in selenoprotein expression, mice subjected to this dietary regimen for their entire life had normal lifespans. To understand the molecular mechanisms involved, we performed systemic analyses at the level of metabolome, transcriptome, and microRNA profiling. These analyses revealed that Se deficiency reduced amino acid levels, elevated mononucleotides, altered metabolism, and activated signaling pathways linked to longevity-related nutrient sensing. The data show that the metabolic control associated with nutrient sensing coordinately responds to suppressed selenoprotein functions, resulting in normal lifespan under Se deficiency.
Collapse
Affiliation(s)
- Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Liao C, Carlson BA, Paulson RF, Prabhu KS. The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic Biol Med 2018; 127:165-171. [PMID: 29719207 PMCID: PMC6168382 DOI: 10.1016/j.freeradbiomed.2018.04.578] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is incorporated as the 21st amino acid selenocysteine (Sec) into the growing polypeptide chain of proteins involved in redox gatekeeper functions. Erythropoiesis presents a particular problem to redox regulation as the presence of iron, heme, and unpaired globin chains lead to high levels of free radical-mediated oxidative stress, which are detrimental to erythroid development and can lead to anemia. Under homeostatic conditions, bone marrow erythropoiesis produces sufficient erythrocytes to maintain homeostasis. In contrast, anemic stress induces an alternative pathway, stress erythropoiesis, which rapidly produces new erythrocytes at extramedullary sites, such as spleen, to alleviate anemia. Previous studies suggest that dietary Se protects erythrocytes from such oxidative damage and the absence of selenoproteins causes hemolysis of erythrocytes due to oxidative stress. Furthermore, Se deficiency or lack of selenoproteins severely impairs stress erythropoiesis exacerbating the anemia in rodent models and human patients. Interestingly, erythroid progenitors develop in close proximity with macrophages in structures referred to as erythroblastic islands (EBIs), where macrophage expression of selenoproteins appears to be critical for the expression of heme transporters to facilitate export of heme from macrophage stores to the developing erythroid cells. Here we review the role of Se and selenoproteins in the intrinsic development of erythroid cells in addition to their role in the development of the erythropoietic niche that supports the functional role of EBIs in erythroid expansion and maturation in the spleen during recovery from anemia.
Collapse
Affiliation(s)
- Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
30
|
Metformin Promotes HaCaT Cell Apoptosis through Generation of Reactive Oxygen Species via Raf-1-ERK1/2-Nrf2 Inactivation. Inflammation 2018; 41:948-958. [PMID: 29549478 DOI: 10.1007/s10753-018-0749-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although metformin (MET) may be useful for the treatment of psoriasis, the mechanisms underlying its method of action have yet to be fully elucidated. Here, the relationship between MET function and reactive oxygen species (ROS) levels and the underlying mechanism were explored in human immortalized keratinocyte cell line (HaCaT). HaCaT cells were incubated with MET at 0, 10, 20, 40, and 60 mM for 24 h. The cell viability was evaluated by the CCK-8 assay. The cell apoptosis rate and intracellular ROS levels were examined using flow cytometry. The protein expression and the phosphorylation levels of nuclear factor erythroid-derived 2 related factor 2 (Nrf2), Raf-1, and ERK1/2 were assessed by Western blot. The specific ROS scavenger N-acetyl-cysteine (NAC) and the specific Nrf2 agonist Oltipraz (OPZ) were used to analyze the effect of MET. MET decreased HaCaT cell proliferation and induced HaCaT cell apoptosis in a dose-dependent manner. MET was found to elevate intracellular ROS levels in a dose-dependent manner, while pretreatment with NAC attenuated these effects. MET inhibits the protein expression and the phosphorylation levels of Nrf2. The combination of OPZ and MET can significantly increase the cell viability, decrease the rate of apoptosis, and attenuate the intracellular ROS levels relative to MET alone. MET inhibits the protein expression and the phosphorylation levels of Raf-1 and ERK1/2. MET was found to attenuate Raf-1-ERK1/2 signaling in HaCaT cells to suppress the expression and phosphorylation levels of Nrf2, which contributed to the intracellular generation of ROS and the pro-apoptotic effects of MET.
Collapse
|
31
|
Xie Z, Zhong L, Wu Y, Wan X, Yang H, Xu X, Li P. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:161-173. [PMID: 30166101 DOI: 10.1016/j.phymed.2018.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/22/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN), one of the most serious complications of diabetes, is the leading cause of morbidity and mortality of end-stage renal disease. Our previous research found that carnosic acid (CA) or rosemary extract can effectively improve glucose and lipid metabolism disorder by inhibiting SREBPs. PURPOSE In this study, we aimed to explore the therapeutic effects of CA on the DN. METHODS The mice glomerular mesangial cells (mGMCs) were used to evaluate the anti-oxidative and anti-inflammation effects of CA under high glucose (HG) condition. Furthermore, db/db mice and streptozotocin (STZ)-induced diabetic mice were used to investigate the effects of CA against DN in vivo. RESULTS The results showed that CA activated Nrf2, inhibited NF-κB pathway and regulated related downstream genes in mGMC under HG condition. A 14-week treatment of mice with CA reduced water uptake and urine volume, attenuated diabetes-induced albuminuria, increased urine creatinine, and subsequently improved the glomerular sclerosis and mesangial expansion in db/db mice. Similarly, a 20-week oral administration of CA improved kidney damage in STZ-induced diabetic mice. In addition, CA inhibited the expression of profibrotic factors, such as TGF-β1, fibronectin and E-cadherin. Compared to irbesartan, CA exerted better glucose lowering effect, and in kidney, CA was more potent to reduce fibronectin and E-cadherin expression. In all the animal experiment, CA did not lead to abnormal damages to other tissues. CONCLUSION These findings suggest that CA is a safe compound which exerts the protective effects on diabetes-induced kidney complications.
Collapse
Affiliation(s)
- Zhisheng Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjun Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanrao Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaomeng Wan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Integrated analysis of microRNA and mRNA expression profiles in rats with selenium deficiency and identification of associated miRNA-mRNA network. Sci Rep 2018; 8:6601. [PMID: 29700405 PMCID: PMC5920094 DOI: 10.1038/s41598-018-24826-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Selenium deficiency is closely related with various type of cardiovascular disease. However, the miRNA-mRNA regulatory network in Selenium deficiency related cardiac change remains to be understand. In the present study, a reliable Selenium deficiency rat model was established and confirmed by pathological and biochemical examination. The mRNA and miRNA expression profiles were conducted by microarray technology. Gene Ontology (GO) Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis was performed to investigate the function of targeted genes, and the relationship between miRNA and mRNA was studied by network analysis. A total of 4931 mRNAs and 119 miRNAs was differentially expressed between any two groups (control group, low-selenium group and selenium supplementation group). GO and KEGG pathway analysis of selected miRNAs target genes found that selenium deficiency was related to several different biological processes. Furthermore, a miRNA-mRNA regulatory network was conducted to illustrate the interaction of miRNAs and these targeted genes. In conclusion, our present study provides a new insight that potential molecular mechanism of Selenium deficiency was a multiply miRNAs and mRNA caused biological change.
Collapse
|
33
|
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling. Sci Rep 2018; 8:2446. [PMID: 29402993 PMCID: PMC5799251 DOI: 10.1038/s41598-018-20901-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. We addressed this question by asking whether the nuclear factor erythroid-derived-like 2 (Nrf2), a transcription factor and master regulator of cellular redox status is involved in adaptive physiological responses including muscle mitohormesis. Using a transgenic mouse model with skeletal muscle-specific mitochondrial uncoupling and oxidative phosphorylation (OXPHOS) inefficiency (UCP1-transgenic, TG) we show that additional genetic ablation of Nrf2 abolishes an adaptive muscle NAD(P)H quinone dehydrogenase 1 (NQO1) and catalase induction. Deficiency of Nrf2 also leads to decreased mitochondrial respiratory performance although muscle functional integrity, fiber-type profile and mitochondrial biogenesis were not significantly altered. Importantly, Nrf2 ablation did not abolish the induction of key genes and proteins of muscle integrated stress response including the serine, one-carbon cycle, and glycine synthesis (SOG) pathway in TG mice while further increasing glutathione peroxidase (GPX) activity linked to increased GPX1 protein levels. Conclusively, our results tune down the functions controlled by Nrf2 in muscle mitohormesis and oxidative stress defense during mitochondrial OXPHOS inefficiency.
Collapse
|
34
|
Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM, Zhang XQ, Gao XB. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2017; 44:8-16. [PMID: 28965605 DOI: 10.1016/j.jtemb.2017.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Selenium is a crucial mineral with antioxidant and immune functions, and selenium deficiency may increase the risk of coronary heart disease (CHD). However, the effect of selenium supplementation on CHD is still controversial according to numerous randomized controlled trials (RCTs). The aim of our meta-analysis study was to investigate the impact of selenium on CHD. METHODS PUBMED, EMBASE, MEDLINE, and the Cochrane Central Register of Controlled Trials databases were systematically searched to identify RCTs evaluating the effect of selenium supplementation on CHD mortality, blood lipid profile (high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol), serum C-reactive protein (CRP), and the level of glutathione peroxidase (GSH-PX) from inception until September 20, 2016. Odds ratio of CHD mortality and the associated 95% confidence intervals (CIs) were calculated using the fixed effect model. Weighted mean difference or standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated to determine the lipid profile, serum CRP, and GSH-PX using fixed effect or random effect models depending on the observed heterogeneity. RESULTS A total of 16 eligible RCTs with 43998 participants were included. Significant effects were observed for serum CRP (SMD=-0.48; 95% CI, -0.96 to 0; p=0.049) and GSH-PX (SMD=0.5; 95% CI, 0.36-0.64; p<0.001) after selenium supplementation. However, selenium supplementation was not statistically associated with CHD mortality and an aberrant lipid profile. CONCLUSION Selenium supplementation decreased serum CRP and increased the GSH-PX level, suggesting a positive effect on reducing oxidative stress and inflammation in CHD. However, selenium supplementation is not sufficient to reduce mortality and to improve the lipid status.
Collapse
Affiliation(s)
- W Ju
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China
| | - X Li
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China
| | - Z Li
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China
| | - G R Wu
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China
| | - X F Fu
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China
| | - X M Yang
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China
| | - X Q Zhang
- Laboratory of Physical and Chemical Inspection, Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266011, Shandong Province, China
| | - X B Gao
- Department of Public Health, Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
35
|
Cao L, Zhang L, Zeng H, Wu RT, Wu TL, Cheng WH. Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice. J Nutr 2017; 147:1858-1866. [PMID: 28855418 DOI: 10.3945/jn.117.247775] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/14/2017] [Accepted: 08/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background: The hierarchies of tissue selenium distribution and selenotranscriptomes are thought to critically affect healthspan and longevity.Objective: We determined selenium status and selenotranscriptomes in response to long-term dietary selenium deficiency and age in tissues of male and female mice.Methods: Weanling telomerase RNA component knockout C57BL/6 mice were fed a selenium-deficient (0.03 mg Se/kg) Torula yeast-based AIN-93G diet or a diet supplemented with sodium selenate (0.15 mg Se/kg) until age 18 or 24 mo. Plasma, hearts, kidneys, livers, and testes were collected to assay for selenotranscriptomes, selected selenoproteins, and tissue selenium concentrations. Data were analyzed with the use of 2-factor ANOVA (diet × age) in both sexes.Results: Dietary selenium deficiency decreased (P ≤ 0.05) selenium concentrations (65-72%) and glutathione peroxidase (GPX) 3 (82-94%) and selenoprotein P (SELENOP) (17-41%) levels in the plasma of both sexes of mice and mRNA levels (9-68%) of 4, 4, and 12 selenoproteins in the heart, kidney, and liver of males, respectively, and 5, 16, and 14 selenoproteins, respectively, in females. Age increased selenium concentrations and SELENOP levels (27% and 30%, respectively; P ≤ 0.05) in the plasma of males only but decreased (12-46%; P < 0.05) mRNA levels of 1, 5, and 13 selenoproteins in the heart, kidney, and liver of males, respectively, and 6, 5, and 0 selenoproteins, respectively, in females. Among these mRNAs, selenoprotein H (Selenoh), selenoprotein M (Selenom), selenoprotein W (Selenow), methionine-R-sulfoxide reductase 1 (MsrB1), Gpx1, Gpx3, thioredoxin reductase 1 (Txnrd1), Txnrd2, selenoprotein S (Selenos), selenoprotein F (Selenof), and selenoprotein O (Selenoo) responded in parallel to dietary selenium deficiency and age in ≥1 tissue or sex, or both. Dietary selenium deficiency upregulated (40-160%; P ≤ 0.05) iodothyronine deiodinase 2 (Dio2) and selenoprotein N (Selenon) in the kidneys of males. Age upregulated (11-44%; P < 0.05) Selenon in the kidneys of males, selenoprotein K (Selenok) and selenoprotein I (Selenoi) in the kidneys of females, and Selenof and Selenok in the testes.Conclusions: These results illustrate tissue-specific sexual dimorphisms of selenium status and selenotranscriptomes because of dietary selenium deficiency and age.
Collapse
Affiliation(s)
- Lei Cao
- Departments of Food Science, Nutrition and Health Promotion and
| | - Li Zhang
- Departments of Food Science, Nutrition and Health Promotion and
| | - Huawei Zeng
- Grand Forks Human Nutrition Center, Agricultural Research Service, USDA, Grand Forks, ND; and
| | - Ryan Ty Wu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD
| | - Tung-Lung Wu
- Mathematics and Statistics, Mississippi State University, Mississippi State, MS
| | - Wen-Hsing Cheng
- Departments of Food Science, Nutrition and Health Promotion and
| |
Collapse
|
36
|
Qin W, Guan D, Ma R, Yang R, Xing G, Shi H, Tang G, Li J, Lv H, Jiang Y. Effects of trigonelline inhibition of the Nrf2 transcription factor in vitro on Echinococcus granulosus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:696-705. [PMID: 28810706 DOI: 10.1093/abbs/gmx067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to investigate the impact of trigonelline (TRG) on Echinococcus granulosus, and to explore the inhibition impact of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway on E. granulosus protoscoleces. Echinococcus granulosus protoscoleces were incubated with various concentrations of TRG, and then Nrf2 protein expression and its localization in protoscoleces were detected by western blot analysis and immunofluorescence assay, respectively. Reactive oxygen species (ROS) level in protoscoleces was measured using ROS detection kit. Caspase-3 activity was measured using a caspase-3 activity assay kit, and NAD(P)H quinone oxidoreductase (NQO)-1 and heme oxygenase (HO)-1 activities in protoscoleces were measured by ELISA. The effect of TRG on protoscoleces viability was investigated using 0.1% eosin staining, and ultrastructural alterations in protoscoleces were examined by scanning electron microscopy (SEM). Immunolocalization experiment clearly showed that Nrf2 protein was predominantly present in cells of protoscoleces. TRG treatment reduced NQO-1 and HO-1 activities in protoscoleces, but could increase ROS level at early time. Protoscoleces could not survive when treated with 250 μM TRG for 12 days. SEM results showed that TRG-treated protoscoleces presented damage in the protoscoleces region, including hook deformation, lesions, and digitiform protuberance. Nrf2 protein expression was significantly decreased and caspase-3 activity was clearly increased in protoscoleces treated with TRG for 24 and 48 h, respectively, when compared with that in controls (P < 0.05). Our results demonstrated that TRG had scolicidal activity against E. granulosus protoscoleces. Nrf2 protein was mainly expressed in the cells and TRG could efficiently inhibit the Nrf2 signaling pathway in E. granulosus.
Collapse
Affiliation(s)
- Wenjuan Qin
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Dongfang Guan
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rongji Ma
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rentan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guoqiang Xing
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hongjuan Shi
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guangyao Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jiajie Li
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hailong Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yufeng Jiang
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
37
|
Frede K, Ebert F, Kipp AP, Schwerdtle T, Baldermann S. Lutein Activates the Transcription Factor Nrf2 in Human Retinal Pigment Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5944-5952. [PMID: 28665123 DOI: 10.1021/acs.jafc.7b01929] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The degeneration of the retinal pigment epithelium caused by oxidative damage is a stage of development in age-related macular degeneration (AMD). The carotenoid lutein is a major macular pigment that may reduce the incidence and progression of AMD, but the underlying mechanism is currently not fully understood. Carotenoids are known to be direct antioxidants. However, carotenoids can also activate cellular pathways resulting in indirect antioxidant effects. Here, we investigate the influence of lutein on the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes in human retinal pigment epithelial cells (ARPE-19 cells) using lutein-loaded Tween40 micelles. The micelles were identified as a suitable delivery system since they were nontoxic in APRE-19 cells up to 0.04% Tween40 and led to a cellular lutein accumulation of 62 μM ± 14 μM after 24 h. Lutein significantly enhanced Nrf2 translocation to the nucleus 1.5 ± 0.4-fold compared to that of unloaded micelles after 4 h. Furthermore, lutein treatment for 24 h significantly increased the transcripts of NAD(P)H:quinone oxidoreductase 1 (NQO1) by 1.7 ± 0.1-fold, glutamate-cysteine ligase regulatory subunit (GCLm) by 1.4 ± 0.1-fold, and heme oxygenase-1 (HO-1) by 1.8 ± 0.3-fold. Moreover, we observed a significant enhancement of NQO1 activity by 1.2 ± 0.1-fold. Collectively, this study indicates that lutein not only serves as a direct antioxidant but also activates Nrf2 in ARPE-19 cells.
Collapse
Affiliation(s)
- Katja Frede
- Plant Quality and Food Security, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. , Theodor-Echtermeyer-Weg 1, Großbeeren 14979, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena , Dornburger Straße 24, Jena 07743, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. , Theodor-Echtermeyer-Weg 1, Großbeeren 14979, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| |
Collapse
|
38
|
Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. J Nutr Biochem 2017; 48:112-119. [PMID: 28810182 DOI: 10.1016/j.jnutbio.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
Abstract
The average intake of the essential trace element selenium (Se) is below the recommendation in most European countries, possibly causing sub-optimal expression of selenoproteins. It is still unclear how a suboptimal Se status may affect health. To mimic this situation, mice were fed one of three physiologically relevant amounts of Se. We focused on the liver, the organ most sensitive to changes in the Se supply indicated by hepatic glutathione peroxidase activity. In addition, liver is the main organ for synthesis of methyl groups and glutathione via one-carbon metabolism. Accordingly, the impact of Se on global DNA methylation, methylation capacity, and gene expression was assessed. We observed higher global DNA methylation indicated by LINE1 methylation, and an increase of the methylation potential as indicated by higher S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio and by elevated mRNA expression of serine hydroxymethyltransferase in both or either of the Se groups. Furthermore, increasing the Se supply resulted in higher plasma concentrations of triglycerides. Hepatic expression of glycolytic and lipogenic genes revealed consistent Se-dependent up-regulation of glucokinase. The sterol regulatory element-binding transcription factor 1 (Srebf1) was also up-regulated by Se. Both effects were confirmed in primary hepatocytes. In contrast to the overall Se-dependent increase of methylation capacity, the up-regulation of Srebf1 expression was paralleled by reduced local methylation of a specific CpG site within the Srebf1 gene. Thus, we provided evidence that Se-dependent effects on lipogenesis involve epigenetic mechanisms.
Collapse
|
39
|
Rahn J, Lennicke C, Kipp AP, Müller AS, Wessjohann LA, Lichtenfels R, Seliger B. Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compounds. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jette Rahn
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Claudia Lennicke
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Anna P. Kipp
- German Institute of Human Nutrition; Potsdam-Rehbrücke; Nuthetal Germany
| | - Andreas S. Müller
- Institute of Agricultural and Nutritional Sciences; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
- Delacon Biotechnik GmbH; Steyregg Austria
| | | | - Rudolf Lichtenfels
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Barbara Seliger
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
40
|
Yang T, Zhao Z, Liu T, Zhang Z, Wang P, Xu S, Lei XG, Shan A. Oxidative stress induced by Se-deficient high-energy diet implicates neutrophil dysfunction via Nrf2 pathway suppression in swine. Oncotarget 2017; 8:13428-13439. [PMID: 28077800 PMCID: PMC5355109 DOI: 10.18632/oncotarget.14550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
The mechanism of the interaction between Se deficiency and high energy remains limited. The aim of the current study was to identify whether Se-deficient, high-energy diet can induce oxidative stress, and downregulate the Nrf2 pathway and phagocytic dysfunction of neutrophils. We detected the phagocytic activity, ROS production, protein levels of Nrf2 and Nrf2 downstream target genes, and the mRNA levels of 25 selenoproteins, heat shock proteins, and cytokines in neutrophils. Cytokine ELISA kits were used to measure the serum cytokines. The concentration of ROS was elevated (P < 0.05) in obese swine fed on a low Se diet (less than 0.03 mg/kg Se) compared to control swine. The protein levels of Nrf2 and its downstream target genes were depressed during Se deficiency and high-energy intake. The mRNA levels of 16 selenoproteins were significantly decreased (P < 0.05) in the Se-deficient group and Se-deficient, high-energy group compared to the control group. However, the mRNA levels of 13 selenoproteins in peripheral blood neutrophils were upregulated in high energy group, except TrxR1, SelI and SepW. In summary, these data indicated that a Se-deficient, high-energy diet inhibits the Nrf2 pathway and its regulation of oxidative stress, and prompted a pleiotropic mechanism that suppresses phagocytosis.
Collapse
Affiliation(s)
- Tianshu Yang
- Northeast Agricultural University, Harbin, P. R. China
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tianqi Liu
- Northeast Agricultural University, Harbin, P. R. China
| | - Ziwei Zhang
- Northeast Agricultural University, Harbin, P. R. China
| | - Pengzu Wang
- Northeast Agricultural University, Harbin, P. R. China
| | - Shiwen Xu
- Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Anshan Shan
- Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
41
|
Protective effect of seleno-β-lactoglobulin (Se-β-lg) against oxidative stress in D-galactose-induced aging mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Ohlow MJ, Sohre S, Granold M, Schreckenberger M, Moosmann B. Why Have Clinical Trials of Antioxidants to Prevent Neurodegeneration Failed? - A Cellular Investigation of Novel Phenothiazine-Type Antioxidants Reveals Competing Objectives for Pharmaceutical Neuroprotection. Pharm Res 2016; 34:378-393. [DOI: 10.1007/s11095-016-2068-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022]
|
43
|
Lennicke C, Rahn J, Kipp AP, Dojčinović BP, Müller AS, Wessjohann LA, Lichtenfels R, Seliger B. Individual effects of different selenocompounds on the hepatic proteome and energy metabolism of mice. Biochim Biophys Acta Gen Subj 2016; 1861:3323-3334. [PMID: 27565357 DOI: 10.1016/j.bbagen.2016.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Selenium (Se) exerts its biological activity largely via selenoproteins, which are key enzymes for maintaining the cellular redox homeostasis. However, besides these beneficial effects there is also evidence that an oversupply of Se might increase the risk towards developing metabolic disorders. To address this in more detail, we directly compared effects of feeding distinct Se compounds and concentrations on hepatic metabolism and expression profiles of mice. METHODS Male C57BL6/J mice received either a selenium-deficient diet or diets enriched with adequate or high doses of selenite, selenate or selenomethionine for 20weeks. Subsequently, metabolic parameters, enzymatic activities and expression levels of hepatic selenoproteins, Nrf2 targets, and additional redox-sensitive proteins were analyzed. Furthermore, 2D-DIGE-based proteomic profiling revealed Se compound-specific differentially expressed proteins. RESULTS Whereas heterogeneous effects between high concentrations of the Se compounds were observed with regard to body weight and metabolic activities, selenoproteins were only marginally increased by high Se concentrations in comparison to the respective adequate feeding. In particular the high-SeMet group showed a unique response compromising higher hepatic Se levels in comparison to all other groups. Accordingly, hepatic glutathione (GSH) levels, glutathione S-transferase (GST) activity, and GSTpi1 expression were comparably high in the high-SeMet and Se-deficient group, indicating that compound-specific effects of high doses appear to be independent of selenoproteins. CONCLUSIONS Not only the nature, but also the concentration of Se compounds differentially affect biological processes. GENERAL SIGNIFICANCE Thus, it is important to consider Se compound-specific effects when supplementing with selenium.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Anna P Kipp
- German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Biljana P Dojčinović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Belgrade, Serbia
| | - Andreas S Müller
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Delacon Biotechnik GmbH, 4221 Steyregg, Austria
| | | | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany.
| |
Collapse
|
44
|
Liao JC, Lee KT, You BJ, Lee CL, Chang WT, Wu YC, Lee HZ. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr Res 2015; 59:29884. [PMID: 26699938 PMCID: PMC4689951 DOI: 10.3402/fnr.v59.29884] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 01/05/2023] Open
Abstract
Background Trigonelline occurs in many dietary food plants and has been found to have anti-carcinogenic activity. Trigonelline is also found in coffee which is one of the most widely consumed beverages. Many epidemiological studies have reported that coffee consumption has an inverse relationship with the risk of cirrhosis or hepatocellular carcinoma. It would be interesting to investigate whether trigonelline is an ideal chemoprevent agent to prevent cancer progression. Methods The protein expression was performed by western blotting. The trigonelline content in snow pea (Pisum sativum) was analyzed by high-performance liquid chromatography (HPLC). The migratory activity of human hepatocarcinoma cells (Hep3B) was assessed by using a wound migration assay. The percentage of each phase in the cell cycle was analyzed on a FACScan flow cytometer. Gene expression was detected by real-time reverse transcriptase-polymerase chain reaction techniques. Native gel analysis was performed to analyze the activity of superoxide dismutase (SOD), catalase and glutathione peroxidase. Results According to the data of HPLC analysis, P. sativum, which is a popular vegetable, has relatively high content of trigonelline. Our findings suggest that trigonelline is an efficient compound for inhibiting Hep3B cell migration. Trigonelline inhibited the migration of hepatoma cells at concentrations of 75–100 µM without affecting proliferation. Raf/ERK/Nrf2 protein levels and further downstream antioxidative enzymes activity, such as SOD, catalase, and glutathione peroxidase, significantly decreased after treatment with 100 µM of trigonelline for 24 h. The migration inhibition of trigonelline is also related to its ability to regulate the matrix metalloproteinases 7 (MMP-7) gene expression. Conclusions In this study, protein kinase Cα (PKCα) and Raf/ERK/Nrf2 signaling pathway and MMP-7 gene expression were involved in the trigonelline-mediated migration inhibition of Hep3B cells. We also demonstrated that trigonelline inhibits Hep3B cell migration through downregulation of nuclear factor E2-related factor 2–dependent antioxidant enzymes activity. This study analyzed the trigonelline content in a popular vegetable, snow pea, as a representative proof to prove that trigonelline is often found in the daily intake of food. Our finding suggested that trigonelline should be a useful chemopreventive agent derived from the daily intake of food to prevent cancer progression.
Collapse
Affiliation(s)
- Jung Chun Liao
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kun Tsung Lee
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bang Jau You
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chia Lin Lee
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Wen Te Chang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yang Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hong-Zin Lee
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Pharmacy Department, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan;
| |
Collapse
|
45
|
Yang HL, Korivi M, Lin MW, Chen SC, Chou CW, Hseu YC. Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells. Biochem Pharmacol 2015; 98:144-156. [PMID: 26348871 DOI: 10.1016/j.bcp.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023]
Abstract
Various coenzyme Q (CoQ) analogs have been reported as anti-inflammatory and antioxidant substances. However, coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has not been well studied for its pharmacological efficacies, and its response to cytokine stimulation remains unclear. Therefore, we investigated the potential anti-angiogenic properties of CoQ0 in human endothelial (EA.hy 926) cells against tumor necrosis factor-α (TNF-α) stimulation. We found that the non-cytotoxic concentrations of CoQ0 (2.5-10μM) significantly suppressed the TNF-α-induced migration/invasion and tube formation abilities of endothelial cells. CoQ0 suppressed TNF-α-induced activity and protein expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) followed by an abridged adhesion of U937 leukocytes to endothelial cells. CoQ0 treatment remarkably downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) possibly through suppressed I-κBα degradation. Furthermore, CoQ0 triggered the expressions of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCLC), followed by an increased nuclear accumulation of NF-E2 related factor-2 (Nrf2)/antioxidant response element (ARE) activity. In agreement with these, intracellular glutathione levels were significantly increased in CoQ0 treated cells. More interestingly, knockdown of HO-1 gene by specific shRNA showed diminished anti-angiogenic effects of CoQ0 against TNF-α-induced invasion, tube formation and adhesion of leukocyte to endothelial cells. Our findings reveal that CoQ0 protective effects against cytokine-stimulation are mediated through the suppression of MMP-9/NF-κB and/or activation of HO-1 signaling cascades. This novel finding emphasizes the pharmacological efficacies of CoQ0 to treat inflammation and angiogenesis.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ming-Wei Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li 32001, Taiwan
| | - Chih-Wei Chou
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
46
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
47
|
Hiller F, Oldorff L, Besselt K, Kipp AP. Differential acute effects of selenomethionine and sodium selenite on the severity of colitis. Nutrients 2015; 7:2687-706. [PMID: 25867950 PMCID: PMC4425167 DOI: 10.3390/nu7042687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 01/08/2023] Open
Abstract
The European population is only suboptimally supplied with the essential trace element selenium. Such a selenium status is supposed to worsen colitis while colitis-suppressive effects were observed with adequate or supplemented amounts of both organic selenomethionine (SeMet) and inorganic sodium selenite. In order to better understand the effect of these selenocompounds on colitis development we examined colonic phenotypes of mice fed supplemented diets before the onset of colitis or during the acute phase. Colitis was induced by treating mice with 1% dextran sulfate sodium (DSS) for seven days. The selenium-enriched diets were either provided directly after weaning (long-term) or were given to mice with a suboptimal selenium status after DSS withdrawal (short-term). While long-term selenium supplementation had no effect on colitis development, short-term selenite supplementation, however, resulted in a more severe colitis. Colonic selenoprotein expression was maximized in all selenium-supplemented groups independent of the selenocompound or intervention time. This indicates that the short-term selenite effect appears to be independent from colonic selenoprotein expression. In conclusion, a selenite supplementation during acute colitis has no health benefits but may even aggravate the course of disease.
Collapse
Affiliation(s)
- Franziska Hiller
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Lisa Oldorff
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Karolin Besselt
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Anna Patricia Kipp
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
48
|
Reszka E, Wieczorek E, Jablonska E, Janasik B, Fendler W, Wasowicz W. Association between plasma selenium level and NRF2 target genes expression in humans. J Trace Elem Med Biol 2015; 30:102-6. [PMID: 25524402 DOI: 10.1016/j.jtemb.2014.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 11/21/2022]
Abstract
Animal studies in rodent and in vitro studies indicate compensatory role of nuclear factor (erythroid-derived 2)-like (Nrf2) and Nrf2-regulated antioxidant and phase II biotransformation enzymes for the dietary selenium (Se) deficiency or for the loss of selenoproteins. To explore associations between plasma Se level and NRF2-regulated cytoprotective genes expression, an observational study was conducted in a population of 96 healthy non-smoking men living in Central Poland aged 18-83 years with relatively low plasma Se level. NRF2, KEAP2, CAT, EPHX1, GCLC, GCLM, GPX2, GSR, GSTA1, GSTM1, GSTP1, GSTT1, HMOX1, NQO1, PRDX1, SOD1, SOD2, TXNRD1 transcript levels in peripheral blood leukocytes and polymorphism of NRF2-617C/A (rs6721961) in blood genomic DNA were determined by means of quantitative real-time PCR. Mean plasma Se level was found to be 51.10±15.25μg/L (range 23.86-96.18μg/L). NRF2 mRNA level was positively correlated with expression of investigated NRF2-target genes. The multivariate linear regression adjusting for selenium status showed that plasma Se level was significantly inversely associated only with expression of GSTP1 (β-coef.=-0.270, p=0.009), PRDXR1 (β-coef.=-0.245, p=0.017) and SOD2 with an inverse trend toward significance (β-coef.=-0.186, p=0.074), but without an effect of NRF2 gene variants. NRF2 expression was inversely associated with age (r=-0.23, p=0.03) and body mass index (r=-0.29, p<0.001). The findings may suggest a possible link between plasma Se level and cytoprotective response at gene level in humans.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland.
| | - Edyta Wieczorek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | - Ewa Jablonska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | - Beata Janasik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | - Wojciech Fendler
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna Street, 91-738 Lodz, Poland
| | - Wojciech Wasowicz
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| |
Collapse
|
49
|
Oropeza-Moe M, Wisløff H, Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol 2015; 31:148-56. [PMID: 25456335 DOI: 10.1016/j.jtemb.2014.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace element playing an important role in animal and human physiological homeostasis. It is a key component in selenoproteins (SeP) exerting multiple actions on endocrine, immune, inflammatory and reproductive processes. The SeP family of glutathione peroxidases (GSH-Px) inactivates peroxides and thereby maintains physiological muscle function in humans and animals. Animals with high feed conversion efficiency and substantial muscle mass have shown susceptibility to Se deficiency related diseases since nutritional requirements of the organism may not be covered. Mulberry Heart Disease (MHD) in pigs is an important manifestation of Se deficiency often implicating acute heart failure and sudden death without prior clinical signs. Post-mortem findings include hemorrhagic and pale myocardial areas accompanied by fluid accumulation in the pericardial sac and pleural cavity. Challenges in MHD are emerging in various parts of the world. Se is of fundamental importance also to human health. In the 1930s the Se deficiency associated cardiomyopathy named Keshan Disease (KD) was described for the first time in China. Various manifestations, such as cardiogenic shock, enlarged heart, congestive heart failure, and cardiac arrhythmias are common. Multifocal necrosis and fibrous replacement of myocardium are characteristic findings. Pathological findings in MD and KD show striking similarities.
Collapse
Affiliation(s)
- Marianne Oropeza-Moe
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Department of Production Animal Clinical Sciences, Kyrkjevegen 332-334, 4325 Sandnes, Norway.
| | - Helene Wisløff
- Norwegian Veterinary Institute, Department of Laboratory Services, Postbox 750 Sentrum, NO-0106 Oslo, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Department of Health Surveillance, Postbox 750 Sentrum, NO-0106 Oslo, Norway
| |
Collapse
|
50
|
Jena S, Sahu L, Ray DK, Mishra SK, Chand PK. PIXE-based quantification of health-proactive trace elements in genetically transformed roots of a multi-medicinal plant, Sida acuta Burm.f. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|