1
|
Park S, Shin J, Jun W, Lee D, Kim S, Ha DU, Im J, Han SH. Lipoteichoic acid from a canine probiotic strain Lacticaseibacillus rhamnosus possesses anti-biofilm capacity against clinically isolated canine periodontopathic Porphyromonas species. Microb Pathog 2025; 205:107660. [PMID: 40320055 DOI: 10.1016/j.micpath.2025.107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/08/2025] [Accepted: 05/02/2025] [Indexed: 05/12/2025]
Abstract
Periodontitis is one of the most prevalent oral infectious diseases in canines which is mainly caused by periodontopathic bacteria such as Porphyromonas spp. Biofilm formation of periodontopathogens is closely related to the development of the disease, as it provides increased resistance against dental medicaments or host immunity. Although we recently demonstrated the anti-biofilm activity of Lactobacillus lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, against various human dental pathogens, the anti-biofilm effects of LTA from canine probiotics on canine periodontopathic Porphyromonas spp. have not been evaluated. Here, we investigated whether LTA purified from healthy canine-derived Lacticaseibacillus rhamnosus (Lr.LTA) affects biofilm formation and pre-formed biofilm of clinically isolated canine periodontopathic Porphyromonas spp., including Porphyromonas gulae, Porphyromonas macacae, and Porphyromonas canoris. We initially purified Lr.LTA through a serial application of butanol extraction, hydrophobic-interaction chromatography, and ion-exchange chromatography and confirmed that the resulting Lr.LTA was of high purity. Lr.LTA effectively suppressed the biofilm formation of P. gulae and P. canoris, but minimally P. macacae, without any effects on the bacterial growth. In addition, the inhibitory effects of Lr.LTA on biofilm formation of P. gulae and P. canoris were more potent than that of P. macacae. Lr.LTA also reduced the pre-formed biofilm of P. gulae and P. canoris, while it rarely affected that of P. macacae. These results suggest that Lr.LTA possesses the anti-biofilm capacity against canine periodontopathic Porphyromonas spp. and can be used as an effective anti-biofilm agent for the prevention and treatment of canine periodontitis caused by infection of Porphyromonas spp.
Collapse
Affiliation(s)
- Somin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongmin Shin
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woohyung Jun
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - San Kim
- Bio Interactions Laboratory, BRD Corp., Hwaseong, 18471, Republic of Korea
| | - Dong Uk Ha
- Bio Interactions Laboratory, BRD Corp., Hwaseong, 18471, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Yu T, Bai R, Wang Z, Qin Y, Wang J, Wei Y, Zhao R, Nie G, Han B. Colon-targeted engineered postbiotics nanoparticles alleviate osteoporosis through the gut-bone axis. Nat Commun 2024; 15:10893. [PMID: 39738035 PMCID: PMC11686147 DOI: 10.1038/s41467-024-55263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site. These engineered postbiotics nanoparticles can effectively suppress macrophage inflammatory activation, modulate the redox balance, and regulate the composition of the gut microbiota, thereby restoring epithelial barriers, inhibiting bacterial invasion, and down-regulating pro-inflammatory responses. As a result, the remission of systemic inflammation is accompanied by a rebalancing of osteoblast and osteoclast activity, alleviating inflammatory bowel disease-related and post-menopausal bone loss. Specifically, the treatment of engineered postbiotics nanoparticles can also improve the quality and quantity of bone with restoration of deteriorative mechanical properties, which indicating a therapeutic potential on fracture prevention. This study provides valuable insights into the gut-bone axis and establishes a promising and safe therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Zeming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jingwei Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
3
|
Pinheiro L, Freitas M, Branco PS. Phosphate-Containing Glycolipids: A Review on Synthesis and Bioactivity. ChemMedChem 2024; 19:e202400315. [PMID: 39031174 DOI: 10.1002/cmdc.202400315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Phosphate-containing glycolipids (PcGL) are scarcer than the better understood glycolipids. They are composed of arrangements of phosphate, carbohydrates and glycerol units and are always found associated with lipids. PcGL are often found associated with cell membranes, suggesting they play roles in cell membrane structure and intercellular interactions. This article aims to provide an up-to-date overview of the existing knowledge and research on PcGL, emphasizing their synthesis and wide range of biological activities. When it comes to the synthesis of PcGL compounds, the strategies for glycosylation mainly rely on the thioglycoside donor, the trichloroacetamidate donor and halide donor strategies, while phosphorylation is stapled and falls on either phosphite chemistry or phosphoryl chloride chemistry. Certain bacteria utilize PcGLs in their pathogenicity, triggering an inflammatory response within the host's defense mechanisms. The best-known examples of these structures are teichoic acids, lipopolysaccharide and the capsular polysaccharide found in bacteria, all of which are frequently implicated in bacterial infections. Given the degree of variability within PcGL structures, they were found to display a wide range of bioactivities. PcGL compounds were found to: (1) have anti-metastatic properties, (2) behave as agonists or antagonists of platelet aggregation, (3) be mostly pro-inflammatory, (4) display antifungal and antibiotic activity and (5) have neurogenic activity.
Collapse
Affiliation(s)
- Luís Pinheiro
- Department of Chemistry, NOVA School of Science and Technology, LAQV-REQUIMTE, Campus da Caparica, 2825-149, Caparica, Portugal
| | - Marisa Freitas
- Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula S Branco
- Department of Chemistry, NOVA School of Science and Technology, LAQV-REQUIMTE, Campus da Caparica, 2825-149, Caparica, Portugal
| |
Collapse
|
4
|
Im J, Jeon JH, Lee D, Park JW, Jun W, Lim S, Park OJ, Yun CH, Han SH. Muramyl dipeptide potentiates Staphylococcus aureus lipoteichoic acid-induced nitric oxide production via TLR2/NOD2/PAFR signaling pathways. Front Immunol 2024; 15:1451315. [PMID: 39712020 PMCID: PMC11659290 DOI: 10.3389/fimmu.2024.1451315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of Staphylococcus aureus, which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of S. aureus LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of S. aureus LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.7 and mouse bone marrow-derived macrophages (BMMs). Although MDP alone did not affect NO production, MDP potently enhanced SaLTA-induced NO production via the expression of inducible NO synthases. The enhanced NO production was ameliorated in BMMs from TLR2-, CD14-, MyD88-, and NOD2-deficient mice. Moreover, the augmented SaLTA-induced NO production by MDP was attenuated by inhibitors specific for PAFR and MAP kinases. Furthermore, MDP also potently increased SaLTA-induced activities of STAT1, NF-κB, and AP-1 transcription factors, and specific inhibitors for these transcription factors suppressed the elevated NO production. Collectively, these results demonstrated that MDP potentiates SaLTA-induced NO production via TLR2/NOD2/PAFR, MAP kinases signaling axis, resulting in the activation of NF-κB, AP-1 and STAT1 transcription factors.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Jeon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jeong Woo Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Woohyung Jun
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Suwon Lim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Liu Z, Lin Z, Chen Y, Lu M, Hong W, Yu B, Liu G. Lipoteichoic Acid Rescued Age-Related Bone Loss by Enhancing Neuroendocrine and Growth Hormone Secretion Through TLR2/COX2/PGE2 Signalling Pathway. J Cell Mol Med 2024; 28:e70247. [PMID: 39622781 PMCID: PMC11611525 DOI: 10.1111/jcmm.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The phenomenon of brain-bone crosstalk pertains to the intricate interaction and communication pathways between the central nervous system and the skeletal system. Disruption in brain-bone crosstalk, particularly in disorders such as osteoporosis, can result in skeletal irregularities. Consequently, investigating and comprehending this communication network holds paramount importance in the realm of bone disease prevention and management. In this study, we found that Staphylococcus aureus lipoteichoic acid promoted the conversion of arachidonic acid to PGE2 by interacting with TLR2 receptors acting on the surface of microglial cells in the pituitary gland, leading to the upregulation of COX-2 expression. Subsequently, PGE2 bound to the EP4 receptor of growth hormone-secreting cells and activated the intracellular CREB signalling pathway, promoting GH secretion and ameliorating age-related bone loss.
Collapse
Affiliation(s)
- Zixian Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- The Second Hospital and Clinical Medical SchoolLanzhou UniversityLanzhouChina
| | - Zexin Lin
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yingqi Chen
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mincheng Lu
- Department of Orthopedic, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bin Yu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guanqiao Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Chen Q, Mi S, Xing Y, An S, Chen S, Tang Y, Wang Y, Yu Y. Transcriptome analysis identifies the NR4A subfamily involved in the alleviating effect of folic acid on mastitis induced by high concentration of Staphylococcus aureus lipoteichoic acid. BMC Genomics 2024; 25:1051. [PMID: 39506684 PMCID: PMC11542246 DOI: 10.1186/s12864-024-10895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) mastitis results in economic losses during dairy production. Understanding the biological progression of bovine S. aureus mastitis is vital for its prevention. Lipoteichoic acid is a key virulence factor of S. aureus (aLTA), but the main biological pathways involved in its effect on bovine mammary epithetionallial cells (Mac-T) apoptosis and necrosis have not been fully explored. Folic acid (FA) has anti-inflammatory and anti-apoptotic effects. However, the role of FA in mediating the effects of aLTA on apoptosis and necrosis remains unknown. RESULTS We found that low concentration of aLTA inhibited apoptosis and necrosis and that high concentration promoted the apoptosis and necrosis of Mac-T. FA pretreatment alleviated high concentration of aLTA induced apoptosis. Through transcriptomic analysis, we found that nuclear receptor subfamily 4 group A (NR4A), which alters the expression of downstream genes involved in apoptosis, proliferation, and inflammation, decreased under stimulation with a low concentration of aLTA and increased under stimulation with a high concentration of aLTA. Under stimulation with a high concentration of aLTA, the expression of the NR4A subfamily could be inhibited by FA. The results showed that aLTA may affect apoptosis and necrosis through the NR4A subfamily by targeting genes involved in bacterial invasion of epithelial cells, the IL-17 signaling pathway, DNA replication, longevity regulation, the cell cycle, and tight junction pathways. We further found that the expression trends of NR4A1 and the target genes of the NR4A subfamily (PTGS2, ESPL1, MCM5, and BUB1B) in the blood of healthy cows (Healthy), subclinical mastitis cows (SCM), and SCM supplemented with FA (SCM_FA) were consistent with those observed at the cellular level in this study. CONCLUSIONS Our study revealed that low and high concentrations of aLTA have opposite effects on apoptosis and necrosis of Mac-T and that FA can alleviate the apoptosis induced by high concentration of aLTA. Transcriptome analysis revealed that the NR4A subfamily play a role in the ability of FA to alleviate the apoptosis and necrosis induced by high concentration of aLTA.
Collapse
Affiliation(s)
- Quanzhen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Songyan An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Garrido-Palazuelos LI, Almanza-Orduño AA, Waseem M, Basheer A, Medrano-Félix JA, Mukthar M, Ahmed-Khan H, Shahid F, Aguirre-Sánchez JR. Immunoinformatic approach for multi-epitope vaccine design against Staphylococcus aureus based on hemolysin proteins. J Mol Graph Model 2024; 132:108848. [PMID: 39182254 DOI: 10.1016/j.jmgm.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Staphylococcus aureus is a common bacterium that causes a variety of infections in humans. This microorganism produces several virulence factors, including hemolysins, which contribute to its disease-causing ability. The treatment of S. aureus infections typically involves the use of antibiotics. However, the emergence of antibiotic-resistant strains has become a major concern. Therefore, vaccination against S. aureus has gained attention as an alternative approach. Vaccination has the advantage of stimulating the immune system to produce specific antibodies that can neutralize bacteria and prevent infection. However, developing an effective vaccine against S. aureus has proven to be challenging. This study aimed to use in silico methods to design a multi-epitope vaccine against S. aureus infection based on hemolysin proteins. The designed vaccine contained four B-cell epitopes, four CTL epitopes, and four HTL epitopes, as well as the ribosomal protein L7/L12 and pan-HLA DR-binding epitope, included as adjuvants. Furthermore, the vaccine was non-allergenic and non-toxic with the potential to stimulate the TLR2-, TLR-4, and TLR-6 receptors. The predicted vaccine exhibited a high degree of antigenicity and stability, suggesting potential for further development as a viable vaccine candidate. The population coverage of the vaccine was 94.4 %, indicating potential widespread protection against S. aureus. Overall, these findings provide valuable insights into the design of an effective multi-epitope vaccine against S. aureus infection and pave the way for future experimental validations.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Universidad Autónoma de Occidente, Unidad Regional Los Mochis. Departamento Académico de Ciencias de la Salud. Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico
| | - Arath Andrés Almanza-Orduño
- Universidad Autónoma de Occidente, Unidad Regional Los Mochis. Departamento Académico de Ciencias de la Salud. Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico
| | - Maaz Waseem
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan; School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Amina Basheer
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México Centro de Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria. Carretera a El Dorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Mamuna Mukthar
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haris Ahmed-Khan
- Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Fatima Shahid
- Department of Applied Physics, Faculty of Science & Technology, National University of Malaysia (UKM), Selangor Malaysia, Malaysia
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA). Centro de Investigación en ALimentación y Desarrollo A.C. (CIAD) Unidad Culiacán, Sinaloa, México.
| |
Collapse
|
8
|
Liu Y, Mei L, Wang L, Tian P, Jin X, Guo M, Lu J, Chen W, Zhang H, Wang G. The Immunomodulatory Effects of Lipoteichoic Acid from Lactobacillus reuteri L1 on RAW264.7 Cells and Mice Vary with Dose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20930-20943. [PMID: 39279192 DOI: 10.1021/acs.jafc.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The probiotic properties of Lactobacillus reuteri (L. reuteri) and its impact on immune function are well-documented. Lipoteichoic acid (LTA) is a crucial immune molecule in Gram-positive bacteria. Despite extensive research on LTA's structural diversity, the immunomodulatory mechanisms of L. reuteri LTA remain largely unexplored. This study investigates the immunomodulatory effects of L. reuteri L1 LTA at various concentrations on RAW 264.7 cells and mice under normal and inflammatory conditions. We found that LTA does not significantly affect healthy subjects; however, low-concentration LTA can reduce inflammation induced by LPS in cells and mice, enhancing the abundance of dominant intestinal bacteria. In contrast, high-concentration LTA exacerbates intestinal damage and dysbiosis. Creatinine may play a role in this differential response. In summary, while LTA does not alter immune homeostasis in healthy organisms, low-concentration LTA may mitigate damage from immune imbalance, but high-concentration LTA can worsen it. This suggests a quantitative requirement for probiotic intake. Our study provides critical theoretical support for understanding the immunomodulatory effects of probiotics on the host and paves the way for future research into the immune mechanisms of probiotics.
Collapse
Affiliation(s)
- Yini Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liya Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
9
|
Zhang S, Li P, Zhang X, Ding Y, Wang T, Lee S, Xu Y, Lim C, Shang N. Lipoteichoic Acid from Heyndrickxia coagulans HOM5301 Modulates the Immune Response of RAW 264.7 Macrophages. Nutrients 2024; 16:3014. [PMID: 39275329 PMCID: PMC11396992 DOI: 10.3390/nu16173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Heyndrickxia coagulans (formerly Bacillus coagulans) has been increasingly utilized as an immunomodulatory probiotics. Oral administration of H. coagulans HOM5301 significantly boosted both innate and adaptive immunity in mice, particularly by increasing the phagocytic capacity of monocytes/macrophages. Lipoteichoic acid (LTA), a major microbe-associated molecular pattern (MAMP) in Gram-positive bacteria, exhibits differential immunomodulatory effects due to its structural heterogeneity. We extracted, purified, and characterized LTA from H. coagulans HOM5301. The results showed that HOM5301 LTA consists of a glycerophosphate backbone. Its molecular weight is in the range of 10-16 kDa. HOM5301 LTA induced greater productions of nitric oxide, TNFα, and IL-6 in RAW 264.7 macrophages compared to Staphylococcus aureus LTA. Comparative transcriptome and proteome analyses identified the differentially expressed genes and proteins triggered by HOM5301 LTA. KEGG analyses revealed that HOM5301 LTA transcriptionally and translationally activated macrophages through two immune-related pathways: cytokine-cytokine receptor interaction and phagosome formation. Protein-protein interaction network analysis indicated that the pro-inflammatory response elicited by HOM5301 LTA was TLR2-dependent, possibly requiring the coreceptor CD14, and is mediated via the MAPK and NF-kappaB pathways. Our results demonstrate that LTA is an important MAMP of H. coagulans HOM5301 that boosts immune responses, suggesting that HOM5301 LTA may be a promising immunoadjuvant.
Collapse
Affiliation(s)
- Shiqi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Healthy, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Zhang
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
| | - Yan Ding
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
| | - Tingting Wang
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
| | - Suwon Lee
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
| | - Ying Xu
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
| | - Chongyoon Lim
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing 101312, China
| | - Nan Shang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Healthy, China Agricultural University, Beijing 100083, China
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
Ai J, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Gut microbiota: a superior operator for dietary phytochemicals to improve atherosclerosis. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38940319 DOI: 10.1080/10408398.2024.2369169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Li Y, Schütte W, Dekeukeleire M, Janssen C, Boon N, Asselman J, Lebeer S, Spacova I, De Rijcke M. The immunostimulatory activity of sea spray aerosols: bacteria and endotoxins activate TLR4, TLR2/6, NF-κB and IRF in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171969. [PMID: 38547998 DOI: 10.1016/j.scitotenv.2024.171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.
Collapse
Affiliation(s)
- Yunmeng Li
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium; Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Wyona Schütte
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Max Dekeukeleire
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Colin Janssen
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium.
| |
Collapse
|
12
|
Che J, Shi J, Fang C, Zeng X, Wu Z, Du Q, Tu M, Pan D. Elimination of Pathogen Biofilms via Postbiotics from Lactic Acid Bacteria: A Promising Method in Food and Biomedicine. Microorganisms 2024; 12:704. [PMID: 38674648 PMCID: PMC11051744 DOI: 10.3390/microorganisms12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogenic biofilms provide a naturally favorable barrier for microbial growth and are closely related to the virulence of pathogens. Postbiotics from lactic acid bacteria (LAB) are secondary metabolites and cellular components obtained by inactivation of fermentation broth; they have a certain inhibitory effect on all stages of pathogen biofilms. Postbiotics from LAB have drawn attention because of their high stability, safety dose parameters, and long storage period, which give them a broad application prospect in the fields of food and medicine. The mechanisms of eliminating pathogen biofilms via postbiotics from LAB mainly affect the surface adhesion, self-aggregation, virulence, and QS of pathogens influencing interspecific and intraspecific communication. However, there are some factors (preparation process and lack of target) which can limit the antibiofilm impact of postbiotics. Therefore, by using a delivery carrier and optimizing process parameters, the effect of interfering factors can be eliminated. This review summarizes the concept and characteristics of postbiotics from LAB, focusing on their preparation technology and antibiofilm effect, and the applications and limitations of postbiotics in food processing and clinical treatment are also discussed.
Collapse
Affiliation(s)
- Jiahao Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Chenguang Fang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| |
Collapse
|
13
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Neutralizing Staphylococcus aureus PAMPs that Trigger Cytokine Release from THP-1 Monocytes. ACS OMEGA 2024; 9:10967-10978. [PMID: 38463252 PMCID: PMC10918781 DOI: 10.1021/acsomega.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Innate immunity has considerable specificity and can discriminate between individual species of microbes. In this regard, pathogens are "seen" as dangerous to the host and elicit an inflammatory response capable of destroying the microbes. This immune discrimination is achieved by toll-like receptors on host cells recognizing pathogens, such as Staphylococcus aureus, and microbe-specific pathogen-associated molecular pattern (PAMP) molecules, such as lipoteichoic acid (LTA). PAMPs impede wound healing by lengthening the inflammatory phase of healing and contributing to the development of chronic wounds. Preventing PAMPs from triggering the release of inflammatory cytokines will counteract the dysregulation of inflammation. Here, we use ELISA to evaluate the use of cationic molecules branched polyethylenimine (BPEI), PEGylated BPEI (PEG-BPEI), and polymyxin-B to neutralize anionic LTA and lower levels of TNF-α cytokine release from human THP-1 monocytes in a concentration-dependent manner. Additional data collected with qPCR shows that BPEI and PEG-BPEI reduce the expression profile of the TNF-α gene. Similar effects are observed for the neutralization of whole-cell S. aureus bacteria. In vitro cytotoxicity data demonstrate that PEGylation lowers the toxicity of PEG-BPEI (IC50 = 2661 μm) compared to BPEI (IC50 = 853 μM) and that both compounds are orders of magnitude less toxic than the cationic antibiotic polymyxin-B (IC50 = 79 μM). Additionally, the LTA neutralization ability of polymyxin-B is less effective than BPEI or PEG-BPEI. These properties of BPEI and PEG-BPEI expand their utility beyond disabling antibiotic resistance mechanisms and disrupting S. aureus biofilms, providing additional justification for developing these agents as wound healing therapeutics. The multiple mechanisms of action for BPEI and PEG-BPEI are superior to current wound treatment strategies that have a single modality.
Collapse
Affiliation(s)
- Neda Heydarian
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Maya Ferrell
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Ayesha S. Nair
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Chase Roedl
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zongkai Peng
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tra D. Nguyen
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - William Best
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Karen L. Wozniak
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Charles V. Rice
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
14
|
Li J, Zhang Q, Zhao J, Zhang H, Chen W. Lactobacillus-derived components for inhibiting biofilm formation in the food industry. World J Microbiol Biotechnol 2024; 40:117. [PMID: 38429597 DOI: 10.1007/s11274-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Biofilm, a microbial community formed by especially pathogenic and spoilage bacterial species, is a critical problem in the food industries. It is an important cause of continued contamination by foodborne pathogenic bacteria. Therefore, removing biofilm is the key to solving the high pollution caused by foodborne pathogenic bacteria in the food industry. Lactobacillus, a commonly recognized probiotic that is healthy for consumer, have been proven useful for isolating the potential biofilm inhibitors. However, the addition of surface components and metabolites of Lactobacillus is not a current widely adopted biofilm control strategy at present. This review focuses on the effects and preliminary mechanism of action on biofilm inhibition of Lactobacillus-derived components including lipoteichoic acid, exopolysaccharides, bacteriocins, secreted protein, organic acids and some new identified molecules. Further, the review discusses several modern biofilm identification techniques and particularly interesting new technology of biofilm inhibition molecules. These molecules exhibit stronger inhibition of biofilm formation, playing a pivotal role in food preservation and storage. Overall, this review article discusses the application of biofilm inhibitors produced by Lactobacillus, which would greatly aid efforts to eradicate undesirable bacteria from environment in the food industries.
Collapse
Affiliation(s)
- Jiaxun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
15
|
Akamp T, Rosendahl A, Galler KM, Wölflick M, Buchalla W, Widbiller M. An in vitro coculture approach to study the interplay between dental pulp cells and Streptococcus mutans. Int Endod J 2024; 57:164-177. [PMID: 37947494 DOI: 10.1111/iej.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
AIM To develop a new coculture system that allows exposure of dental pulp cells (DPCs) to Streptococcus mutans and dentine matrix proteins (eDMP) to study cellular interactions in dentine caries. METHODOLOGY Dental pulp cells and S. mutans were cocultured with or without eDMP for 72 h. Cell proliferation and viability were assessed by cell counting and MTT assays, while bacterial growth and viability were determined by CFU and LIVE/DEAD staining. Glucose catabolism and lactate excretion were measured photometrically as metabolic indicators. To evaluate the inflammatory response, the release of cytokines and growth factors (IL-6, IL-8, TGF-β1, VEGF) was determined by ELISA. Non-parametric statistical analyses were performed to compare all groups and time points (Mann-Whitney U test or Kruskal-Wallis test; α = .05). RESULTS While eDMP and especially S. mutans reduced the number and viability of DPCs (p ≤ .0462), neither DPCs nor eDMP affected the growth and viability of S. mutans during coculture (p > .0546). The growth of S. mutans followed a common curve, but the death phase was not reached within 72 h. S. mutans consumed medium glucose in only 30 h, whereas in the absence of S. mutans, cells were able to catabolize glucose throughout 72 h, resulting in the corresponding amount of l-lactate. No change in medium pH was observed. S. mutans induced IL-6 production in DPCs (p ≤ .0011), whereas eDMP had no discernible effect (p > .7509). No significant changes in IL-8 were observed (p > .198). TGF-β1, available from eDMP supplementation, was reduced by DPCs over time. VEGF, on the other hand, was increased in all groups during coculture. CONCLUSIONS The results show that the coculture of DPCs and S. mutans is possible without functional impairment. The bacterially induced stimulation of proinflammatory and regenerative cytokines provides a basis for future investigations and the elucidation of molecular biological relationships in pulp defence against caries.
Collapse
Affiliation(s)
- Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Rosendahl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Wölflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Jeong S, Im J, Lee D, Ko KH, Yun CH, Han SH. Lipoproteins are key immunostimulatory components of Bacillus species for dendritic cell maturation and activation. Mol Immunol 2024; 165:82-91. [PMID: 38160652 DOI: 10.1016/j.molimm.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Dendritic cells (DCs) play an important role in immunity by sensing and responding to invasive microbes. Bacillus species are rod-shaped sporulating bacteria that include the pathogenic Bacillus cereus and commensal Bacillus subtilis. Although the interaction between DC and these two Bacillus species has been studied, their key structural component that prompts DC activation is poorly understood. Here, we investigated the two Bacillus species in DC activation by whole cells and their representative microbe-associated molecular patterns (MAMPs). MAMPs including lipoteichoic acid (LTA), lipoprotein (LPP), and peptidoglycan (PGN) were purified from the two Bacillus species. Among the MAMPs, LPP from both species most potently induced the maturation and activation of DCs while PGN, but not LTA, moderately stimulated DCs. LPPs from both Bacillus species enhanced the expression of DC maturation markers including CCR7, CD40, CD80, CD83, CD86, CD205, MHC-I, and MHC-II. Among the MAMPs from B. cereus, PGN most considerably lowered the endocytic capacity of DCs implying DC maturation whereas PGN from B. subtilis lowered it to a similar degree to its LPP. Furthermore, DCs sensitized with LPPs from both Bacillus species and PGN from B. subtilis moderately induced TNF-α and IL-6 production. Notably, a combination of MAMPs did not show any synergistic effect on DC activation. Taken together, our results demonstrate that LPP is the key structural component in B. cereus and B. subtilis that leads to DC activation.
Collapse
Affiliation(s)
- Sungho Jeong
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Hyun Ko
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Liang B, Xing D. The Current and Future Perspectives of Postbiotics. Probiotics Antimicrob Proteins 2023; 15:1626-1643. [PMID: 36763279 PMCID: PMC9913028 DOI: 10.1007/s12602-023-10045-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
With the emphasis on intestinal health, probiotics have exploded into a vast market potential. However, new scientific evidence points out that the beneficial health benefits of probiotics are not necessarily directly related to viable bacteria. However, the metabolites or bacterial components of the live bacteria are the driving force behind health promotion. Therefore, scientists gradually noticed that the beneficial effects of probiotics are based on bacteria itself, metabolites, or cell lysates, and these factors are officially named "postbiotics" by the ISAPP. Postbiotic components are diverse and outperform live probiotics in terms of technology, safety, and cost due to their good absorption, metabolism, and organismal distribution. Postbiotics have been shown to have bioactivities such as antimicrobial, antioxidant, anti-inflammatory, anti-proliferative, and immunomodulation. Moreover, numerous studies have revealed the significant potential of postbiotics for disease treatment. This paper first presents the production and classification of postbiotics with examples from lactic acid bacteria (LAB), followed by the mechanisms of action with the most recent pre-clinical and clinical studies and the wide range of non-clinical and clinical applications of postbiotics. Furthermore, the current and future prospects of the postbiotic market with commercial available products are discussed. Finally, we comment on the knowledge gaps and future clinical applications with several examples.
Collapse
Affiliation(s)
- Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
- Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Cancer Institute, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Chegini Z, Noei M, Hemmati J, Arabestani MR, Shariati A. The destruction of mucosal barriers, epithelial remodeling, and impaired mucociliary clearance: possible pathogenic mechanisms of Pseudomonas aeruginosa and Staphylococcus aureus in chronic rhinosinusitis. Cell Commun Signal 2023; 21:306. [PMID: 37904180 PMCID: PMC10614382 DOI: 10.1186/s12964-023-01347-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a pathological condition characterized by persistent inflammation in the upper respiratory tract and paranasal sinuses. The epithelium serves as the first line of defense against potential threats and protects the nasal mucosa. The fundamental mechanical barrier is formed by the cell-cell contact and mucociliary clearance (MCC) systems. The physical-mechanical barrier is comprised of many cellular structures, including adhesion junctions and tight junctions (TJs). To this end, different factors, such as the dysfunction of MCC, destruction of epithelial barriers, and tissue remodeling, are related to the onset and development of CRS. Recently published studies reported the critical role of different microorganisms, such as Staphylococcus aureus and Pseudomonas aeruginosa, in the induction of the mentioned factors. Bacteria could result in diminished ciliary stimulation capacity, and enhance the chance of CRS by reducing basal ciliary beat frequency. Additionally, bacterial exoproteins have been demonstrated to disrupt the epithelial barrier and induce downregulation of transmembrane proteins such as occludin, claudin, and tricellulin. Moreover, bacteria exert an influence on TJ proteins, leading to an increase in the permeability of polarized epithelial cells. Noteworthy, it is evident that the activation of TLR2 by staphylococcal enterotoxin can potentially undermine the structural integrity of TJs and the epithelial barrier through the induction of pro-inflammatory cytokines. The purpose of this article is an attempt to investigate the possible role of the most important microorganisms associated with CRS and their pathogenic mechanisms against mucosal surfaces and epithelial barriers in the paranasal sinuses. Video Abstract.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Aref Shariati
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
19
|
Wang X, Peng Z, Wang L, Zhang J, Zhang K, Guo Z, Xu G, Li J. Cordyceps militaris Solid Medium Extract Alleviates Lipoteichoic Acid-Induced MH-S Inflammation by Inhibiting TLR2/NF-κB/NLRP3 Pathways. Int J Mol Sci 2023; 24:15519. [PMID: 37958501 PMCID: PMC10648577 DOI: 10.3390/ijms242115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to investigate the inhibitory effects of Cordyceps militaris solid medium extract (CME) and cordycepin (COR) on LTA-induced inflammation in MH-S cells and their mechanisms of action. In this study, the establishment of an LTA-induced MH-S inflammation model was determined, the CCK-8 method was used to determine the safe concentration range for a drug for COR and CME, the optimal concentration of COR and CME to exert anti-inflammatory effects was further selected, and the expression of inflammatory factors of TNF-α, IL-1β, IL-18, and IL-6 was detected using ELISA. The relative expression of TNF-α, IL-1β, IL-18, IL-6, IL-10, TLR2 and MyD88 mRNA was detected using RT-PCR, and the IL-1β, IL-18, TLR2, MyD88, NF-κB p-p65, NLRP3, pro-caspase-1, Caspase-1 and ASC protein expression in the cells were detected using Western blot; immunofluorescence assay detected the expression of Caspase-1 in MH-S cells. The results revealed that both CME and COR inhibited the levels of IL-1β, IL-18, IL-6, and TNF-α in the supernatants of LTA-induced MH-S cells and the mRNA expression levels of IL-1β, IL-18, IL-6, TNF-α, TLR2 and MyD88, down-regulated the LTA-induced IL-1β, IL-18, TLR2 in MH-S cells, MyD88, NF-κB p-p65/p65, NLRP3, ASC, pro-caspase-1, and caspase-1 protein expression levels, and inhibited LTA-induced caspase-1 activation in MH-S cells. In conclusion, CME can play a therapeutic role in LTA-induced inflammation in MH-S cells via TLR2/NF-κB/NLRP3, and may serve as a potential drug for bacterial pneumonia caused by Gram-positive bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Controlling biofilm and virulence properties of Gram-positive bacteria by targeting wall teichoic acid and lipoteichoic acid. Int J Antimicrob Agents 2023; 62:106941. [PMID: 37536571 DOI: 10.1016/j.ijantimicag.2023.106941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Wall teichoic acid (WTA) and lipoteichoic acid (LTA) are structural components of Gram-positive bacteria's peptidoglycan and cell membrane, which are mostly anionic glycopolymers. WTA confers numerous physiological, virulence, and pathogenic features to bacterial pathogens. It controls cell shape, cell division, and the localisation of autolytic enzymes and ion homeostasis. In the context of virulence and pathogenicity, it aids bacterial cell attachment and colonisation and protects against the host defence system and antibiotics. Having such a broad function in pathogenic bacteria's lifecycle, WTA/LTA become one of the potential targets for antibacterial agents to reduce bacterial infection in the host. The number of reports for targeting the WTA/LTA pathway has risen, mostly by focusing on three distinct targets: antivirulence targets, β-lactam potentiator targets, and essential targets. The current review looked at the role of WTA/LTA in biofilm development and virulence in a range of Gram-positive pathogenic bacteria. Furthermore, alternate strategies, such as the application of natural and synthetic compounds that target the WTA/LTA pathway, have been thoroughly discussed. Moreover, the application of nanomaterials and a combination of drugs have also been discussed as a viable method for targeting the WTA/LTA in numerous Gram-positive bacteria. In addition, a future perspective for controlling bacterial infection by targeting the WTA/LTA is proposed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
21
|
Elashiry MM, Bergeron BE, Tay FR. Enterococcus faecalis in secondary apical periodontitis: Mechanisms of bacterial survival and disease persistence. Microb Pathog 2023; 183:106337. [PMID: 37683835 DOI: 10.1016/j.micpath.2023.106337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Enterococcus faecalis is a commensal bacterium commonly found in the human gastrointestinal tract. However, in individuals with compromised immune systems, the pathogen can lead to severe illness. This opportunistic pathogen is associated with secondary apical diseases and is adept at resisting antibiotics and other forms of treatment because of its numerous virulence factors. Enterococcus faecalis is capable of disrupting the normal functions of immune cells, thereby hindering the body's ability to eradicate the infection. However, intensive research is needed in further understanding the adverse immunomodulatory effects of E. faecalis. Potential strategies specific for eradicating E. faecalis have proven beneficial in the treatment of persistent secondary apical periodontitis.
Collapse
Affiliation(s)
- Mohamed M Elashiry
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA; Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Brian E Bergeron
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA
| | - Franklin R Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA
| |
Collapse
|
22
|
Kwon Y, Yang J, Park OJ, Park C, Kim J, Lee D, Yun CH, Han SH. Lipoteichoic acid inhibits osteoclast differentiation and bone resorption via interruption of gelsolin-actin dissociation. J Cell Physiol 2023; 238:2425-2439. [PMID: 37642258 DOI: 10.1002/jcp.31099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone resorption can be caused by excessive differentiation and/or activation of bone-resorbing osteoclasts. While microbe-associated molecular patterns can influence the differentiation and activation of bone cells, little is known about the role of lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, in the regulation of bone metabolism. In this study, we investigated the effect of LTA on bone metabolism using wild-type Staphylococcus aureus and the LTA-deficient mutant strain. LTA-deficient S. aureus induced higher bone loss and osteoclast differentiation than wild-type S. aureus. LTA isolated from S. aureus (SaLTA) inhibited osteoclast differentiation from committed osteoclast precursors in the presence of various osteoclastogenic factors by downregulating the expression of NFATc1. Remarkably, SaLTA attenuated the osteoclast differentiation from committed osteoclast precursors of TLR2-/- or MyD88-/- mice and from the committed osteoclast precursors transfected with paired immunoglobulin-like receptor B-targeting siRNA. SaLTA directly interacted with gelsolin, interrupting the gelsolin-actin dissociation which is a critical process for osteoclastogenesis. Moreover, SaLTA suppressed the mRNA expression of dendritic cell-specific transmembrane protein, ATPase H+ transporting V0 subunit D2, and Integrin, which encode proteins involved in cell-cell fusion of osteoclasts. Notably, LTAs purified from probiotics, including Bacillus subtilis, Enterococcus faecalis, and Lactobacillus species, also suppressed Pam2CSK4- or RANKL-induced osteoclast differentiation. Taken together, these results suggest that LTAs have anti-resorptive activity through the inhibition of osteoclastogenesis by interfering with the gelsolin-actin dissociation and may be used as effective therapeutic agents for the prevention or treatment of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Radiation Fusion Technology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jihyun Yang
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
You Y, Kim SH, Kim CH, Kim IH, Shin Y, Kim TR, Sohn M, Park J. Immune-Stimulating Potential of Lacticaseibacillus rhamnosus LM1019 in RAW 264.7 Cells and Immunosuppressed Mice Induced by Cyclophosphamide. Microorganisms 2023; 11:2312. [PMID: 37764156 PMCID: PMC10535240 DOI: 10.3390/microorganisms11092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Probiotics, including Lacticaseibacillus rhamnosus (L. rhamnosus), have gained recognition for their potential health benefits, such as enhancing immune function, maintaining gut health, and improving nutrient absorption. This study investigated the effectiveness of L. rhamnosus LM1019 (LM1019) in enhancing immune function. In RAW 264.7 cells, LM1019 demonstrated dose-dependent immune stimulation by increasing nitric oxide production, gene expression of proinflammatory cytokines, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These effects were mediated through the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) translocation without inducing cytotoxicity. Furthermore, orally administered LM1019 was evaluated in immunosuppressed mice induced by cyclophosphamide (CTX). High-dose administration of LM1019 significantly increased the subpopulations of lymphocytes, specifically helper T cells (CD4+), as well as two subtypes of natural killer (NK) cells, namely, IFN-γ+ and granzyme B+ NK cells. Additionally, LM1019 at a high dose led to elevated levels of proinflammatory cytokines, including IFN-γ and IL-12, compared to CTX-treated mice. These findings highlight the potential of LM1019 in enhancing the immune system. The study contributes to the growing body of research on the beneficial effects of probiotics on immune function.
Collapse
Affiliation(s)
- Yeji You
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| | - Sung-Hwan Kim
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - Chul-Hong Kim
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - In-Hwan Kim
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - YoungSup Shin
- Food Research Center, Binggrae Co., Ltd., Namyangju 12253, Republic of Korea; (S.-H.K.); (C.-H.K.); (I.-H.K.); (Y.S.)
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| | - Minn Sohn
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| | - Jeseong Park
- Microbiome R&D Center, Lactomason Co., Ltd., Jinju 52840, Republic of Korea; (Y.Y.); (T.-R.K.); (M.S.)
| |
Collapse
|
24
|
Tsai WH, Fang YT, Huang TY, Chiang YJ, Lin CG, Chang WW. Heat-killed Lacticaseibacillus paracasei GMNL-653 ameliorates human scalp health by regulating scalp microbiome. BMC Microbiol 2023; 23:121. [PMID: 37120517 PMCID: PMC10148562 DOI: 10.1186/s12866-023-02870-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND The equilibrium of the scalp microbiome is important for maintaining healthy scalp conditions, including sebum secretion, dandruff, and hair growth. Many different strategies to improve scalp health have been reported; however, the effect of postbiotics, such as heat-killed probiotics, on scalp health remains unclear. We examined the beneficial effects of heat-killed probiotics consisting of Lacticaseibacillus paracasei, GMNL-653, on scalp health. RESULTS Heat-killed GMNL-653 could co-aggregate with scalp commensal fungi, Malassezia furfur, in vitro, and the GMNL-653-derived lipoteichoic acid inhibited the biofilm formation of M. furfur on Hs68 fibroblast cells. The mRNA of hair follicle growth factors, including insulin-like growth factor-1 receptor (IGF-1R), vascular endothelial growth factor, IGF-1, and keratinocyte growth factor was up-regulated in skin-related human cell lines Hs68 and HaCaT after treatment with heat-killed GMNL-653. For clinical observations, we recruited 22 volunteer participants to use the shampoo containing the heat-killed GMNL-653 for 5 months and subsequently measured their scalp conditions, including sebum secretion, dandruff formation, and hair growth. We applied polymerase chain reaction (PCR) to detect the scalp microbiota of M. restricta, M. globosa, Cutibacterium acnes, and Staphylococcus epidermidis. A decrease in dandruff and oil secretion and an increase in hair growth in the human scalp were observed after the use of heat-killed GMNL-653-containing shampoo. The increased abundance of M. globosa and the decreased abundance of M. restricta and C. acnes were also observed. We further found that accumulated L. paracasei abundance was positively correlated with M. globosa abundance and negatively correlated with C. acnes abundance. S. epidermidis and C. acnes abundance was negatively correlated with M. globosa abundance and positively correlated with M. restricta. Meanwhile, M. globosa and M. restricta abundances were negatively associated with each other. C. acnes and S. epidermidis abundances were statistically positively correlated with sebum secretion and dandruff, respectively, in our shampoo clinical trial. CONCLUSION Our study provides a new strategy for human scalp health care using the heat-killed probiotics GMNL-653-containing shampoo. The mechanism may be correlated with the microbiota shift.
Collapse
Affiliation(s)
- Wen-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Yi-Ting Fang
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Tsuei-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Ying-Ju Chiang
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Ching-Gong Lin
- Bachelor Program in Cosmeceutical and Biotech Industry, Department of Cosmetic Science, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N. Rd, Taichung City, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
25
|
Zhang J, Cao L, Gao A, Ren R, Yu L, Li Q, Liu Y, Qi W, Hou Y, Sui W, Su G, Zhang Y, Zhang C, Zhang M. E3 ligase RNF99 negatively regulates TLR-mediated inflammatory immune response via K48-linked ubiquitination of TAB2. Cell Death Differ 2023; 30:966-978. [PMID: 36681779 PMCID: PMC10070438 DOI: 10.1038/s41418-023-01115-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Innate immunity is the first line to defend against pathogenic microorganisms, and Toll-like receptor (TLR)-mediated inflammatory responses are an essential component of innate immunity. However, the regulatory mechanisms of TLRs in innate immunity remain unperfected. We found that the expression of E3 ligase Ring finger protein 99 (RNF99) decreased significantly in peripheral blood monocytes from patients infected with Gram negative bacteria (G-) and macrophages stimulated by TLRs ligands, indicating the role of RNF99. We also demonstrated for the first time, the protective role of RNF99 against LPS-induced septic shock and dextran sodium sulfate (DSS)-induced colitis using RNF99 knockout mice (RNF99-/-) and bone marrow-transplanted mice. In vitro experiments revealed that RNF99 deficiency significantly promoted TLR-mediated inflammatory cytokine expression and activated the NF-κB and MAPK pathways in macrophages. Mechanistically, in both macrophages and HEK293 cell line with TLR4 stably transfection, RNF99 interacted with and degraded TAK1-binding protein (TAB) 2, a regulatory protein of the kinase TAK1, via the lysine (K)48-linked ubiquitin-proteasomal pathway on lysine 611 of TAB2, which further regulated the TLR-mediated inflammatory response. Overall, these findings indicated the physiological significance of RNF99 in macrophages in regulating TLR-mediated inflammatory reactions. It provided new insight into TLRs signal transduction, and offered a novel approach for preventing bacterial infections, endotoxin shock, and other inflammatory ills.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Cao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Amy Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruiqing Ren
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yapeng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenqian Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yonghao Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guohai Su
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Kim SK, Im J, Ko EB, Lee D, Seo HS, Yun CH, Han SH. Lipoteichoic acid of Streptococcus gordonii as a negative regulator of human dendritic cell activation. Front Immunol 2023; 14:1056949. [PMID: 37056772 PMCID: PMC10086370 DOI: 10.3389/fimmu.2023.1056949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Streptococcus gordonii, an opportunistic Gram-positive bacterium, causes an infective endocarditis that could be fatal to human health. Dendritic cells (DCs) are known to be involved in disease progression and immune responses in S. gordonii infection. Since lipoteichoic acid (LTA) is a representative virulence factor of S. gordonii, we here investigated its role in the activation of human DCs stimulated with LTA-deficient (ΔltaS) S. gordonii or S. gordonii LTA. DCs were differentiated from human blood-derived monocytes in the presence of GM-CSF and IL-4 for 6 days. DCs treated with heat-killed ΔltaS S. gordonii (ΔltaS HKSG) showed relatively higher binding and phagocytic activities than those treated with heat-killed wild-type S. gordonii (wild-type HKSG). Furthermore, ΔltaS HKSG was superior to wild-type HKSG in inducing phenotypic maturation markers including CD80, CD83, CD86, PD-L1, and PD-L2, antigen-presenting molecule MHC class II, and proinflammatory cytokines such as TNF-α and IL-6. Concomitantly, DCs treated with the ΔltaS HKSG induced better T cell activities, including proliferation and activation marker (CD25) expression, than those treated with the wild-type. LTA, but not lipoproteins, isolated from S. gordonii weakly activated TLR2 and barely affected the expression of phenotypic maturation markers or cytokines in DCs. Collectively, these results demonstrated that LTA is not a major immuno-stimulating agent of S. gordonii but rather it interferes with bacteria-induced DC maturation, suggesting its potential role in immune evasion.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Seung Hyun Han,
| |
Collapse
|
27
|
Park OJ, Ha YE, Sim JR, Lee D, Lee EH, Kim SY, Yun CH, Han SH. Butyrate potentiates Enterococcus faecalis lipoteichoic acid-induced inflammasome activation via histone deacetylase inhibition. Cell Death Discov 2023; 9:107. [PMID: 36977666 PMCID: PMC10050190 DOI: 10.1038/s41420-023-01404-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Enterococcus faecalis, a Gram-positive opportunistic pathogen having lipoteichoic acid (LTA) as a major virulence factor, is closely associated with refractory apical periodontitis. Short-chain fatty acids (SCFAs) are found in the apical lesion and may affect inflammatory responses induced by E. faecalis. In the current study, we investigated inflammasome activation by E. faecalis LTA (Ef.LTA) and SCFAs in THP-1 cells. Among SCFAs, butyrate in combination with Ef.LTA markedly enhanced caspase-1 activation and IL-1β secretion whereas these were not induced by Ef.LTA or butyrate alone. Notably, LTAs from Streptococcus gordonii, Staphylococcus aureus, and Bacillus subtilis also showed these effects. Activation of TLR2/GPCR, K+ efflux, and NF-κB were necessary for the IL-1β secretion induced by Ef.LTA/butyrate. The inflammasome complex comprising NLRP3, ASC, and caspase-1 was activated by Ef.LTA/butyrate. In addition, caspase-4 inhibitor diminished IL-1β cleavage and release, indicating that non-canonical activation of the inflammasome is also involved. Ef.LTA/butyrate induced Gasdermin D cleavage, but not the release of the pyroptosis marker, lactate dehydrogenase. This indicated that Ef.LTA/butyrate induces IL-1β production without cell death. Trichostatin A, a histone deacetylase (HDAC) inhibitor, enhanced Ef.LTA/butyrate-induced IL-1β production, indicating that HDAC is engaged in the inflammasome activation. Furthermore, Ef.LTA and butyrate synergistically induced the pulp necrosis that accompanies IL-1β expression in the rat apical periodontitis model. Taken all these results together, Ef.LTA in the presence of butyrate is suggested to facilitate both canonical- and non-canonical inflammasome activation in macrophages via HDAC inhibition. This potentially contributes to dental inflammatory diseases such as apical periodontitis, particularly associated with Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Eun Ha
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ri Sim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green Bio Science Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
28
|
Kosznik-Kwaśnicka K, Stasiłojć M, Stasiłojć G, Kaźmierczak N, Piechowicz L. The Influence of Bacteriophages on the Metabolic Condition of Human Fibroblasts in Light of the Safety of Phage Therapy in Staphylococcal Skin Infections. Int J Mol Sci 2023; 24:5961. [PMID: 36983034 PMCID: PMC10055722 DOI: 10.3390/ijms24065961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Phage therapy has been successfully used as an experimental therapy in the treatment of multidrug-resistant strains of Staphylococcus aureus (MDRSA)-caused skin infections and is seen as the most promising alternative to antibiotics. However, in recent years a number of reports indicating that phages can interact with eukaryotic cells emerged. Therefore, there is a need to re-evaluate phage therapy in light of safety. It is important to analyze not only the cytotoxicity of phages alone but also the impact their lytic activity against bacteria may have on human cells. As progeny virions rupture the cell wall, lipoteichoic acids are released in high quantities. It has been shown that they act as inflammatory agents and their presence could lead to the worsening of the patient's condition and influence their recovery. In our work, we have tested if the treatment of normal human fibroblasts with staphylococcal phages will influence the metabolic state of the cell and the integrity of cell membranes. We have also analyzed the effectiveness of bacteriophages in reducing the number of MDRSA attached to human fibroblasts and the influence of the lytic activity of phages on cell viability. We observed that, out of three tested anti-Staphylococcal phages-vB_SauM-A, vB_SauM-C and vB_SauM-D-high concentrations (109 PFU/mL) of two, vB_SauM-A and vB_SauM-D, showed a negative impact on the viability of human fibroblasts. However, a dose of 107 PFU/mL had no effect on the metabolic activity or membrane integrity of the cells. We also observed that the addition of phages alleviated the negative effect of the MDRSA infection on fibroblasts' viability, as phages were able to effectively reduce the number of bacteria in the co-culture. We believe that these results will contribute to a better understanding of the influence of phage therapy on human cells and encourage even more studies on this topic.
Collapse
Affiliation(s)
- Katarzyna Kosznik-Kwaśnicka
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdansk, Poland
| | - Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Natalia Kaźmierczak
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdansk, Poland
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdansk, Poland
| |
Collapse
|
29
|
Zhang S, Li P, Lee S, Wang Y, Tan C, Shang N. Weizmannia coagulans: an Ideal Probiotic for Gut Health. FOOD SCIENCE AND HUMAN WELLNESS 2023:1-20. [DOI: 10.26599/fshw.2022.9250002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Hu W, Liu L, Forn-Cuní G, Ding Y, Alia A, Spaink HP. Transcriptomic and Metabolomic Studies Reveal That Toll-like Receptor 2 Has a Role in Glucose-Related Metabolism in Unchallenged Zebrafish Larvae ( Danio rerio). BIOLOGY 2023; 12:biology12020323. [PMID: 36829598 PMCID: PMC9952914 DOI: 10.3390/biology12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Toll-like receptors (TLRs) have been implicated in the regulation of various metabolism pathways, in addition to their function in innate immunity. Here, we investigate the metabolic function of TLR2 in a larval zebrafish system. We studied larvae from a tlr2 mutant and the wild type sibling controls in an unchallenged normal developmental condition using transcriptomic and metabolomic analyses methods. RNAseq was used to evaluate transcriptomic differences between the tlr2 mutant and wild-type control zebrafish larvae and found a signature set of 149 genes to be significantly altered in gene expression. The expression level of several genes was confirmed by qPCR analyses. Gene set enrichment analysis (GSEA) revealed differential enrichment of genes between the two genotypes related to valine, leucine, and isoleucine degradation and glycolysis and gluconeogenesis. Using 1H nuclear magnetic resonance (NMR) metabolomics, we found that glucose and various metabolites related with glucose metabolism were present at higher levels in the tlr2 mutant. Furthermore, we confirmed that the glucose level is higher in tlr2 mutants by using a fluorometric assay. Therefore, we have shown that TLR2, in addition to its function in immunity, has a function in controlling metabolism during vertebrate development. The functions are associated with transcriptional regulation of various enzymes involved in glucose metabolism that could explain the different levels of glucose, lactate, succinate, and malate in larvae of a tlr2 mutant.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Li Liu
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yi Ding
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alia Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
31
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
32
|
Cheng YC, Kim SW. Use of Microorganisms as Nutritional and Functional Feedstuffs for Nursery Pigs and Broilers. Animals (Basel) 2022; 12:3141. [PMID: 36428369 PMCID: PMC9686830 DOI: 10.3390/ani12223141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of this review paper are to introduce the structures and composition of various microorganisms, to show some applications of single cells as alternative protein supplements or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms as feed additives on the growth performance and intestinal health of nursery pigs and broilers. Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented in animal diets because they are cost-effective, stable, and have quantitative production that provides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative antibiotics to enhance intestinal health due to bioactive components from cell wall components, which interact with receptors on epithelial and immune cells. In addition, bioactive components could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs) are sustainable and economic choices to replace conventional protein supplements and energy feeds. Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by 1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on the properties of each microorganism, traditional protein supplements, energy feeds, and functional feed additives could be replaced by microorganisms, which have shown benefits to animal's growth and health. Therefore, specific microorganisms could be promising alternatives as nutritional and functional feedstuffs in animal diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
33
|
Abril AG, Quintela-Baluja M, Villa TG, Calo-Mata P, Barros-Velázquez J, Carrera M. Proteomic Characterization of Virulence Factors and Related Proteins in Enterococcus Strains from Dairy and Fermented Food Products. Int J Mol Sci 2022; 23:ijms231810971. [PMID: 36142880 PMCID: PMC9503237 DOI: 10.3390/ijms231810971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023] Open
Abstract
Enterococcus species are Gram-positive bacteria that are normal gastrointestinal tract inhabitants that play a beneficial role in the dairy and meat industry. However, Enterococcus species are also the causative agents of health care-associated infections that can be found in dairy and fermented food products. Enterococcal infections are led by strains of Enterococcus faecalis and Enterococcus faecium, which are often resistant to antibiotics and biofilm formation. Enterococci virulence factors attach to host cells and are also involved in immune evasion. LC-MS/MS-based methods offer several advantages compared with other approaches because one can directly identify microbial peptides without the necessity of inferring conclusions based on other approaches such as genomics tools. The present study describes the use of liquid chromatography−electrospray ionization tandem mass spectrometry (LC−ESI−MS/MS) to perform a global shotgun proteomics characterization for opportunistic pathogenic Enterococcus from different dairy and fermented food products. This method allowed the identification of a total of 1403 nonredundant peptides, representing 1327 proteins. Furthermore, 310 of those peptides corresponded to proteins playing a direct role as virulence factors for Enterococcus pathogenicity. Virulence factors, antibiotic sensitivity, and proper identification of the enterococcal strain are required to propose an effective therapy. Data are available via ProteomeXchange with identifier PXD036435. Label-free quantification (LFQ) demonstrated that the majority of the high-abundance proteins corresponded to E. faecalis species. Therefore, the global proteomic repository obtained here can be the basis for further research into pathogenic Enterococcus species, thus facilitating the development of novel therapeutics.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
| | - Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
- Correspondence:
| |
Collapse
|
34
|
Activation of Nrf2 by Esculetin Mitigates Inflammatory Responses through Suppression of NF-κB Signaling Cascade in RAW 264.7 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165143. [PMID: 36014382 PMCID: PMC9412493 DOI: 10.3390/molecules27165143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Inflammation is a major root of several diseases such as allergy, cancer, Alzheimer’s, and several others, and the present state of existing drugs provoked researchers to search for new treatment strategies. Plants are regarded to be unique sources of active compounds holding pharmacological properties, and they offer novel designs in the development of therapeutic agents. Therefore, this study aimed to explore the anti-inflammatory mechanism of esculetin in lipoteichoic acid (LTA)-induced macrophage cells (RAW 264.7). The relative expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) production and COX-2 expression were intensified in LTA-induced RAW cells. The phosphorylation status of mitogen-activated protein kinases (extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and c-Jun N-terminal kinase (JNK)) and nuclear factor kappa B (NF-κB) p65 were detected by using Western blot assay. The nuclear translocation of p65 was assessed by confocal microscopic image analysis. Esculetin significantly and concentration-dependently inhibited LTA-induced NO production and iNOS expression, but not COX-2 expression, in RAW cells. Esculetin was not effective in LTA-induced MAPK molecules (ERK, p38 and JNK). However, esculetin recovered LTA-induced IκBα degradation and NF-κB p65 phosphorylation. Moreover, esculetin at a higher concentration of 20 µM evidently inhibited the nuclear translocation of NF-κB p65. At the same high concentration, esculetin augmented Nrf2 expression and decreased DPPH radical generation in RAW 264.7 cells. This study exhibits the value of esculetin for the treatment of LTA-induced inflammation by targeting NF-κB signaling pathways via its antioxidant properties.
Collapse
|
35
|
Takeo M, Nishio A, Masuda M, Aoi K, Okazaki T, Fukui T, Uchida K, Naganuma M, Okazaki K. Repeated Stimulation of Toll-Like Receptor 2 and Dectin-1 Induces Chronic Pancreatitis in Mice Through the Participation of Acquired Immunity. Dig Dis Sci 2022; 67:3783-3796. [PMID: 34424458 DOI: 10.1007/s10620-021-07186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/20/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Stimulation of Toll-like receptor 3 (TLR3) induces autoimmune-mediated pancreatitis in susceptible mice, whereas stimulation of TLR4 causes nonautoimmune-mediated pancreatitis. However, the effects of TLR2 stimulation on the pancreas are unknown. AIMS We investigated the role of TLR2 stimulation on pancreatic damage by repeatedly stimulating mice with TLR2 ligands. METHODS Wild-type (WT) and interleukin 10-deficient (IL-10-knockout (KO)) mice were administered zymosan and lipoteichoic acid (LTA) intraperitoneally at various doses twice weekly for 4 weeks. Syngeneic T-cell-deficient mice, B-cell-deficient mice, recombination activating gene 2-deficient (RAG2-KO) mice and RAG2-KO mice that had been reconstituted with CD4+ or CD8+ T cells isolated from WT mice were treated with zymosan similarly. Mice were killed, the severity of pancreatitis was graded histologically, and serum cytokine levels were measured. RESULTS Repeated administration of zymosan induced pancreatitis dose dependently in both WT and IL-10-KO mice. Administration of LTA induced pancreatitis only in IL-10-KO mice. Adoptive transfer of splenocytes obtained from IL-10-KO mice with pancreatitis did not cause pancreatitis in recipient RAG2-KO mice. Pancreatitis was scarcely observed in RAG2-KO mice and was attenuated in T-cell-deficient and B-cell-deficient mice compared with WT mice. A single administration of zymosan significantly increased the serum level of monocyte chemoattractant protein 1 (MCP-1) in WT mice. CONCLUSIONS Repeated stimulation of TLR2 and dectin-1 induced nonautoimmune-mediated pancreatitis in mice. Participation of acquired immunity seems to play an important role in the pathogenesis of pancreatitis in association with the increase in serum MCP-1 level.
Collapse
Affiliation(s)
- Masahiro Takeo
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Akiyoshi Nishio
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, 10-15 Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan.
| | - Masataka Masuda
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Kazunori Aoi
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, 10-15 Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan
| | - Takashi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, 10-15 Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan
| | - Toshiro Fukui
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Kazushige Uchida
- Department of Gastroenterology and Hepatology, Kochi Medical School, 185-1 Kohasu Okocho, Nankoku, Kochi, Japan
| | - Makoto Naganuma
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| |
Collapse
|
36
|
Patterson GT, Osorio EY, Peniche A, Dann SM, Cordova E, Preidis GA, Suh JH, Ito I, Saldarriaga OA, Loeffelholz M, Ajami NJ, Travi BL, Melby PC. Pathologic Inflammation in Malnutrition Is Driven by Proinflammatory Intestinal Microbiota, Large Intestine Barrier Dysfunction, and Translocation of Bacterial Lipopolysaccharide. Front Immunol 2022; 13:846155. [PMID: 35720380 PMCID: PMC9204284 DOI: 10.3389/fimmu.2022.846155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute malnutrition, or wasting, is implicated in over half of all deaths in children under five and increases risk of infectious disease. Studies in humans and preclinical models have demonstrated that malnutrition is linked to an immature intestinal microbiota characterized by increased prevalence of Enterobacteriaceae. Observational studies in children with moderate acute malnutrition (MAM) have also observed heightened systemic inflammation and increased circulating bacterial lipopolysaccharides (LPS; endotoxin). However, the mechanisms that underpin the systemic inflammatory state and endotoxemia, and their pathophysiological consequences, remain uncertain. Understanding these pathophysiological mechanisms is necessary to design targeted treatments that will improve the unacceptable rate of failure or relapse that plague current approaches. Here we use a mouse model of MAM to investigate the mechanisms that promote inflammation in the malnourished host. We found that mice with MAM exhibited increased systemic inflammation at baseline, increased translocation of bacteria and bacterial LPS, and an exaggerated response to inflammatory stimuli. An exaggerated response to bacterial LPS was associated with increased acute weight loss. Remarkably, intestinal inflammation and barrier dysfunction was found in the cecum and colon. The cecum showed a dysbiotic microbiota with expansion of Gammaproteobacteria and some Firmicutes, and contraction of Bacteroidetes. These changes were paralleled by an increase in fecal LPS bioactivity. The inflammatory phenotype and weight loss was modulated by oral administration of non-absorbable antibiotics that altered the proportion of cecal Gammaproteobacteria. We propose that the heightened inflammation of acute malnutrition is the result of changes in the intestinal microbiota, intestinal barrier dysfunction in the cecum and colon, and increased systemic exposure to LPS.
Collapse
Affiliation(s)
- Grace T Patterson
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elvia Y Osorio
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Sara M Dann
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Erika Cordova
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Geoffrey A Preidis
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Ji Ho Suh
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Ichiaki Ito
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Omar A Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael Loeffelholz
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Bruno L Travi
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter C Melby
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
37
|
Lu Q, Guo Y, Yang G, Cui L, Wu Z, Zeng X, Pan D, Cai Z. Structure and Anti-Inflammation Potential of Lipoteichoic Acids Isolated from Lactobacillus Strains. Foods 2022; 11:foods11111610. [PMID: 35681360 PMCID: PMC9180668 DOI: 10.3390/foods11111610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
Lactobacillus are normal inhabitants of the gastrointestinal tract and confer a variety of health effects. Lipoteichoic acid (LTA), an amphiphilic substance located in the cell membrane, is a key molecule in probiotic–host crosstalk. Through the characterization of structural characteristics of LTA molecules derived from Lactobacillus plantarum A3, Lactobacillus reuteri DMSZ 8533, and Lactobacillus acidophilus CICC 6074, there exists some heterogeneity in LTA molecules, which perhaps contributes to the distinguishable adhesion properties of Lactobacillus strains based on fluorescence microscopy observations. In LPS-induced RAW 264.7 cells, LTAs derived from three Lactobacillus strains obviously alleviated inflammatory responses as evidenced by the altered inflammatory cytokine levels of TNF-α, IL-6, and IL-10. Western blotting demonstrated that L. reuteri LTA blocked LPS-triggered expression of the MAPK and NF-κB pathways. The findings further validated that LTA is an important effector molecule and deserves further consideration as an alternative therapeutic for ulcerative colitis treatment.
Collapse
Affiliation(s)
- Qianqian Lu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Yingqi Guo
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Guo Yang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Lei Cui
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
38
|
Levilactobacillus brevis KU15151 Inhibits Staphylococcus aureus Lipoteichoic Acid-Induced Inflammation in RAW 264.7 Macrophages. Probiotics Antimicrob Proteins 2022; 14:767-777. [PMID: 35554865 DOI: 10.1007/s12602-022-09949-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is a host defense response to harmful agents, such as pathogenic invasion, and is necessary for health. Excessive inflammation may result in the development of inflammatory disorders. Levilactobacillus brevis KU15151 has been reported to exhibit probiotic characteristics and antioxidant activities, but the effect of this strain on inflammatory responses has not been determined. The present study aimed to investigate the anti-inflammatory potential of L. brevis KU15151 in Staphylococcus aureus lipoteichoic acid (aLTA)-induced RAW264.7 macrophages. Treatment with L. brevis KU15151 reduced the production of nitric oxide and prostaglandin E2 by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the production of proinflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, decreased after treatment with L. brevis KU15151 in aLTA-stimulated RAW 264.7 cells. Furthermore, this strain alleviated the activation of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Moreover, the generation of reactive oxygen species was downregulated by treatment with L. brevis KU15151. These results demonstrate that L. brevis KU15151 possesses an inhibitory effect against aLTA-mediated inflammation and may be employed as a functional probiotic for preventing inflammatory disorders.
Collapse
|
39
|
Naclerio GA, Abutaleb NS, Onyedibe KI, Karanja C, Eldesouky HE, Liang HW, Dieterly A, Aryal UK, Lyle T, Seleem MN, Sintim HO. Mechanistic Studies and In Vivo Efficacy of an Oxadiazole-Containing Antibiotic. J Med Chem 2022; 65:6612-6630. [PMID: 35482444 PMCID: PMC9124606 DOI: 10.1021/acs.jmedchem.1c02034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are still difficult to treat, despite the availability of many FDA-approved antibiotics. Thus, new compound scaffolds are still needed to treat MRSA. The oxadiazole-containing compound, HSGN-94, has been shown to reduce lipoteichoic acid (LTA) in S. aureus, but the mechanism that accounts for LTA biosynthesis inhibition remains uncharacterized. Herein, we report the elucidation of the mechanism by which HSGN-94 inhibits LTA biosynthesis via utilization of global proteomics, activity-based protein profiling, and lipid analysis via multiple reaction monitoring (MRM). Our data suggest that HSGN-94 inhibits LTA biosynthesis via direct binding to PgcA and downregulation of PgsA. We further show that HSGN-94 reduces the MRSA load in skin infection (mouse) and decreases pro-inflammatory cytokines in MRSA-infected wounds. Collectively, HSGN-94 merits further consideration as a potential drug for staphylococcal infections.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth I Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caroline Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hassan E Eldesouky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hsin-Wen Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Alexandra Dieterly
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tiffany Lyle
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Modulatory Effects of Fractalkine on Inflammatory Response and Iron Metabolism of Lipopolysaccharide and Lipoteichoic Acid-Activated THP-1 Macrophages. Int J Mol Sci 2022; 23:ijms23052629. [PMID: 35269771 PMCID: PMC8910483 DOI: 10.3390/ijms23052629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Fractalkine (CX3CL1) acts as a chemokine as well as a regulator of iron metabolism. Fractalkine binds CX3CR1, the fractalkine receptor on the surface of monocytes/macrophages regulating different intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), phospholipase C (PLC) and NFκB contributing to the production of pro-inflammatory cytokine synthesis, and the regulation of cell growth, differentiation, proliferation and metabolism. In this study, we focused on the modulatory effects of fractalkine on the immune response and on the iron metabolism of Escherichia coli and Pseudomonas aeruginosa lipopolysaccharides (LPS) and Staphylococcus aureus lipoteichoic acid (LTA) activated THP-1 cells to get a deeper insight into the role of soluble fractalkine in the regulation of the innate immune system. Pro-inflammatory cytokine secretions of the fractalkine-treated, LPS/LTA-treated, and co-treated THP-1 cells were determined using ELISArray and ELISA measurements. We analysed the protein expression levels of signalling molecules regulated by CX3CR1 as well as hepcidin, the major iron regulatory hormone, the iron transporters, the iron storage proteins and mitochondrial iron utilization. The results showed that fractalkine treatment alone did not affect the pro-inflammatory cytokine secretion, but it was proposed to act as a regulator of the iron metabolism of THP-1 cells. In the case of two different LPS and one type of LTA with fractalkine co-treatments, fractalkine was able to alter the levels of signalling proteins (NFκB, PSTAT3, Nrf2/Keap-1) regulating the expression of pro-inflammatory cytokines as well as hepcidin, and the iron storage and utilization of the THP-1 cells.
Collapse
|
41
|
Lee D, Im J, Park DH, Jeong S, Park M, Yoon S, Park J, Han SH. Lactobacillus plantarum Lipoteichoic Acids Possess Strain-Specific Regulatory Effects on the Biofilm Formation of Dental Pathogenic Bacteria. Front Microbiol 2021; 12:758161. [PMID: 34867884 PMCID: PMC8636137 DOI: 10.3389/fmicb.2021.758161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial biofilm residing in the oral cavity is closely related to the initiation and persistence of various dental diseases. Previously, we reported the anti-biofilm activity of Lactobacillus plantarum lipoteichoic acid (Lp.LTA) on a representative dental cariogenic pathogen, Streptococcus mutans. Since LTA structure varies in a bacterial strain-specific manner, LTAs from various L. plantarum strains may have differential anti-biofilm activity due to their distinct molecular structures. In the present study, we isolated Lp.LTAs from four different strains of L. plantarum (LRCC 5193, 5194, 5195, and 5310) and compared their anti-biofilm effects on the dental pathogens, including S. mutans, Enterococcus faecalis, and Streptococcus gordonii. All Lp.LTAs similarly inhibited E. faecalis biofilm formation in a dose-dependent manner. However, their effects on S. gordonii and S. mutans biofilm formation were different: LRCC 5310 Lp.LTA most effectively suppressed the biofilm formation of all strains of dental pathogens, while Lp.LTAs from LRCC 5193 and 5194 hardly inhibited or even enhanced the biofilm formation. Furthermore, LRCC 5310 Lp.LTA dramatically reduced the biofilm formation of the dental pathogens on the human dentin slice infection model. Collectively, these results suggest that Lp.LTAs have strain-specific regulatory effects on biofilm formation of dental pathogens and LRCC 5310 Lp.LTA can be used as an effective anti-biofilm agent for the prevention of dental infectious diseases.
Collapse
Affiliation(s)
- Dongwook Lee
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Miri Park
- Bio Research Team, Lotte R&D Center, Seoul, South Korea
| | - Seokmin Yoon
- Bio Research Team, Lotte R&D Center, Seoul, South Korea
| | - Jaewoong Park
- Bio Research Team, Lotte R&D Center, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients 2021; 13:nu13113839. [PMID: 34836095 PMCID: PMC8618457 DOI: 10.3390/nu13113839] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a crucial factor in maintaining homeostasis. The presence of commensal microorganisms leads to the stimulation of the immune system and its maturation. In turn, dysbiosis with an impaired intestinal barrier leads to accelerated contact of microbiota with the host’s immune cells. Microbial structural parts, i.e., pathogen-associated molecular patterns (PAMPs), such as flagellin (FLG), peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS), induce inflammation via activation of pattern recognition receptors. Microbial metabolites can also develop chronic low-grade inflammation, which is the cause of many metabolic diseases. This article aims to systematize information on the influence of microbiota on chronic inflammation and the benefits of microbiota modification through dietary changes, prebiotics, and probiotic intake. Scientific research indicates that the modification of the microbiota in various disease states can reduce inflammation and improve the metabolic profile. However, since there is no pattern for a healthy microbiota, there is no optimal way to modify it. The methods of influencing microbiota should be adapted to the type of dysbiosis. Although there are studies on the microbiota and its effects on inflammation, this subject is still relatively unknown, and more research is needed in this area.
Collapse
|
43
|
Pribadi N, Rahayu RP, Ismiyatin K, Putri CR, Surboyo MDC. The Effect of Lipoteichoic Acid from Lactobacillus plantarum on Dental Pulp Inflammation. Eur J Dent 2021; 15:682-686. [PMID: 34416767 PMCID: PMC8630942 DOI: 10.1055/s-0041-1728238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ObjectiveLactobacillus plantarum,
a bacterium located in deep caries, has a virulence factor in the form of lipoteichoic acid (LTA), which is found in the bacterial cell wall. LTA is able to trigger a neutrophils response in the dental pulp inflammation process within the first 6 to 24 hours. The quantity of bacteria is one factor influencing the increase in number of neutrophils in addition to the quality of the bacteria. This study seeks to analyze the effect of lipoteichoic acid of
Lactobacillus plantarum
(LTA-Lp) in the dental pulp inflammation by observing the number of neutrophil cells in a histopathological view.
Materials and Methods
The LTA was isolated from
L. plantarum.
The left upper molar of
Rattus novergicus
was mechanically perforated under anesthesia to induce dental pulp inflammation. The perforated tooth was then induced by 10 and 15 µg/mL of LTA-Lp and then restored by a temporary filling. The perforated tooth in the control group was only restored by a temporary filling. After 24, 48, and 72 hours, the tooth was extracted and then stained with hematoxylins and eosin to observe the neutrophils in the dental pulp via a light microscope.
Result
The number of neutrophils in the dental pulp after induction by 15 µg/mL of LTA-Lp is higher than 10 µg/mL of LTA-Lp and both controls. There were significant differences in the number of neutrophils in the dental pulp, in each group on 24, 48, and 72 hours after LTA-Lp inducing (
p
< 0.05).
Conclusion
The LTA-Lp dose of of 10 and 15 µg/mL affected the dental pulp inflammation by affecting the number of neutrophils.
Collapse
Affiliation(s)
- Nirawati Pribadi
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | - Kun Ismiyatin
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | - Cindy Ramadhan Putri
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
44
|
Larrouy-Maumus G. Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry. Methods Mol Biol 2021; 2306:275-283. [PMID: 33954953 DOI: 10.1007/978-1-0716-1410-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
45
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int J Mol Sci 2021; 22:8141. [PMID: 34360905 PMCID: PMC8348566 DOI: 10.3390/ijms22158141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
46
|
Inhibitory Effect of Lipoteichoic Acid Derived from Three Lactobacilli on Flagellin-Induced IL-8 Production in Porcine Peripheral Blood Mononuclear Cells. Probiotics Antimicrob Proteins 2021; 13:72-79. [PMID: 32607729 DOI: 10.1007/s12602-020-09682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Probiotics in livestock feed supplements are considered to be an alternative to antibiotics. However, effector molecules responsible for the beneficial roles of probiotics in pigs are in general not well known. Thus, this study demonstrated that a well-known virulence factor, flagellin of Salmonella typhimurium, significantly induced IL-8 production in porcine peripheral blood mononuclear cells, whereas lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria Lactobacillus plantarum, L. casei, and L. rhamnosus GG, effectively inhibited flagellin-induced IL-8 production at mRNA and protein levels. However, the lipoproteins of L. plantarum, L. casei, and L. rhamnosus GG did not suppress flagellin-induced IL-8 production. While D-alanine-deficient L. plantarum LTA inhibited flagellin-induced IL-8 production, L. plantarum LTA deficient in both D-alanine and acyl chains failed to inhibit it; this suggests that the acyl moieties of L. plantarum LTA are essential for inhibiting flagellin-induced IL-8 production. Taken together, L. plantarum LTA plays an important role in improving anti-inflammatory responses of porcine peripheral blood mononuclear cells.
Collapse
|
47
|
Kwon Y, Park C, Lee J, Park DH, Jeong S, Yun CH, Park OJ, Han SH. Regulation of Bone Cell Differentiation and Activation by Microbe-Associated Molecular Patterns. Int J Mol Sci 2021; 22:ijms22115805. [PMID: 34071605 PMCID: PMC8197933 DOI: 10.3390/ijms22115805] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has emerged as an important regulator of bone homeostasis. In particular, the modulation of innate immunity and bone homeostasis is mediated through the interaction between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors including Toll-like receptors and nucleotide-binding oligomerization domains. Pathogenic bacteria such as Porphyromonas gingivalis and Staphylococcus aureus tend to induce bone destruction and cause various inflammatory bone diseases including periodontal diseases, osteomyelitis, and septic arthritis. On the other hand, probiotic bacteria such as Lactobacillus and Bifidobacterium species can prevent bone loss. In addition, bacterial metabolites and various secretory molecules such as short chain fatty acids and cyclic nucleotides can also affect bone homeostasis. This review focuses on the regulation of osteoclast and osteoblast by MAMPs including cell wall components and secretory microbial molecules under in vitro and in vivo conditions. MAMPs could be used as potential molecular targets for treating bone-related diseases such as osteoporosis and periodontal diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Jueun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| |
Collapse
|
48
|
Wu Y, Sun Y, Zhang R, He T, Huang G, Tian K, Liu J, Chen J, Dong G. Sodium Butyrate More Effectively Mitigates the Negative Effects of High-Concentrate Diet in Dairy Cows than Sodium β-Hydroxybutyrate via Reducing Free Bacterial Cell Wall Components in Rumen Fluid and Plasma. Toxins (Basel) 2021; 13:352. [PMID: 34069117 PMCID: PMC8157208 DOI: 10.3390/toxins13050352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The present study was aimed at investigating the effects of sodium butyrate and sodium β-hydroxybutyrate on lactation and health of dairy cows fed a high-concentrate (HC) diet. Eighty mid-lactation dairy cows with an average milk yield of 33.75 ± 5.22 kg/d were randomly allocated to four groups (n = 20 per group) and were fed either a low-concentrate (LC) diet, a HC diet, the HC diet with 1% sodium butyrate (HCSB), or the HC diet with 1% sodium β-hydroxybutyrate (HCHB). The feeding trial lasted for 7 weeks, with a 2-week adaptation period and a 5-week measurement period, and the trial started from 96 ± 13 d in milk. Sodium butyrate supplementation delayed the decline in milk production and improved milk synthesis efficiency and milk fat content. Additionally, it decreased the proinflammatory cytokines and acute phase proteins (APPs) in plasma, the leucocytes in blood, the somatic cell count (SCC) in milk, and the gene expression of pattern recognition receptors (PRRs) and proinflammatory cytokines in the mammary gland, due to decreasing the contents of bacterial cell wall components (lipopolysaccharide, LPS; peptidoglycan, PGN; and lipoteichoic acid, LTA) in the rumen and plasma, compared with the HC diet. Sodium β-hydroxybutyrate supplementation also improved milk yield, milk synthesis efficiency and milk fat content and partially reduced the adverse effects caused by the HC diet, but it had no effect on decreasing bacterial cell wall components in the rumen and plasma, compared with the HC diet. Collectively, both sodium butyrate and sodium β-hydroxybutyrate mitigated the negative effects of HC diet on lactation and health of dairy cows, with sodium butyrate being more effective than sodium β-hydroxybutyrate.
Collapse
Affiliation(s)
- Yongjiang Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Ruiming Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Tianle He
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Guohao Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Ke Tian
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
- United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - Junhui Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
- Centre for Research in Agricultural Genomics (CRAG), University Autonomous of Barcelona, 08193 Barcelona, Spain
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.W.); (Y.S.); (R.Z.); (T.H.); (G.H.); (K.T.); (J.L.); (J.C.)
| |
Collapse
|
49
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
50
|
Kiyan Y, Tkachuk S, Rong S, Gorrasi A, Ragno P, Dumler I, Haller H, Shushakova N. TLR4 Response to LPS Is Reinforced by Urokinase Receptor. Front Immunol 2020; 11:573550. [PMID: 33362762 PMCID: PMC7757075 DOI: 10.3389/fimmu.2020.573550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
GPI-anchored uPAR is the receptor for the extracellular serine protease urokinase-type plasminogen activator (uPA). Though uPAR role in inflammatory processes is documented, underlying mechanisms are not fully understood. In this study we demonstrate that uPAR is a part of Toll-like receptor 4 (TLR4) interactome. Downregulation of uPAR expression resulted in diminished LPS-induced TLR4 signaling, less activation of NFκB, and decreased secretion of inflammatory mediators in myeloid and non-myeloid cells in vitro. In vivo uPAR−/− mice demonstrated better survival, strongly diminished inflammatory response and better organ functions in cecal ligation and puncture mouse polymicrobial sepsis model. Mechanistically, GPI-uPAR and soluble uPAR colocalized with TLR4 on the cell membrane and interacted with scavenger receptor CD36. Our data show that uPAR can interfere with innate immunity response via TLR4 and this mechanism represents a potentially important target in inflammation and sepsis therapy.
Collapse
Affiliation(s)
- Yulia Kiyan
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | | | | | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Inna Dumler
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Nephrology Department, Hannover Medical School, Hannover, Germany.,Phenos GmbH, Hannover, Germany
| |
Collapse
|