1
|
Toribio-Avedillo D, Ballesté E, García-Aljaro C, Stange C, Tiehm A, Sánchez-Cid C, Mulogo E, Nasser A, Santos R, Nemes K, Blanch AR. The reliability of CrAssphage in human fecal pollution detection: A cross-regional MST marker assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125399. [PMID: 40254002 DOI: 10.1016/j.jenvman.2025.125399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Microbial Source Tracking (MST) markers play a key role in identifying sources of fecal contamination, particularly human-associated pollution, which is critical for public health. This study investigates the distribution and reliability of three MST markers (crAssphage, HMBif, and HF183) across various environmental contexts in Europe, Asia, and Africa. Samples were obtained from wastewater treatment plants (WWTPs) and rivers across different catchment areas, including sampling during extreme weather conditions such as heavy rainfall and drought. The concentrations of these MST markers were measured and compared with traditional fecal indicators. The obtained results indicate that crAssphage showed consistently the highest prevalence and concentrations in all regions and sample types, demonstrating its robustness as a marker of human fecal contamination. Population density and climatic conditions significantly influenced marker levels, with the highest concentrations found in highly populated areas with moderate climates. The impact of extreme weather events was different for each condition: heavy rainfall resulted in elevated MST marker concentrations, likely due to sediment resuspension, while drought led to more inconsistent results. Strong correlations were observed among the three MST markers and between these markers and conventional fecal indicators. This study underscores the value of crAssphage as a reliable and effective tool for tracking human fecal pollution and highlights the influence of environmental and climatic factors on MST marker behavior.
Collapse
Affiliation(s)
- D Toribio-Avedillo
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - E Ballesté
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - C García-Aljaro
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| | - C Sánchez-Cid
- Ecole Centrale de Lyon, Laboratoire Ampere, 36 Avenue Guy de Collongues, 69134, Ecully, France.
| | - E Mulogo
- Mbarara University of Science and Technology, Department of Community Health Kabale Road Plot 8-18, 04854, Mbarara, Uganda.
| | - A Nasser
- Ministry of Health, National Public Health Laboratory, Ben Zvi Rd 69, 61082, Tel Aviv, Israel.
| | - R Santos
- Universidade Lisboa, Instituto Superior Tecnico, Laboratorio Analises, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - K Nemes
- European Union Reference, Laboratory for Foodborne, Viruses, Swedish Food Agency, Biology Department, Dag Hammarskjölds Väg 56 A, 751 26, Uppsala, Sweden.
| | - A R Blanch
- Universitat de Barcelona, Departament de Genètica, Microbiologia I Estadística, Avinguda, Diagonal, 643, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Martins DT, Alegria OVC, Dantas CWD, De Los Santos EFF, Pontes PRM, Cavalcante RBL, Ramos RTJ. CrAssphage distribution analysis in an Amazonian river based on metagenomic sequencing data and georeferencing. Appl Environ Microbiol 2025:e0147024. [PMID: 40277368 DOI: 10.1128/aem.01470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Viruses are the most abundant biological entities in all ecosystems of the world. Their ubiquity makes them suitable candidates for indicating fecal contamination in rivers. Recently, a group of Bacteroidetes bacteriophages named CrAssphages, which are highly abundant, sensitive, and specific to human feces, were studied as potential viral biomarkers for human fecal pollution in water bodies. In this study, we evaluated the presence, diversity, and abundance of viruses with a focus on crAssphages via metagenomic analysis in an Amazonian river and conducted correlation analyses on the basis of physicochemical and georeferencing data. Several significant differences in viral alpha diversity indexes were observed among the sample points, suggesting an accumulation of viral organisms in the river mouth, whereas beta diversity analysis revealed a significant divergence between replicates of the most downstream point (IT4) when compared to the rest of the samples, possibly due to increased human impact at this point. In terms of the presence of crAssphage, the analysis identified 61 crAssphage contigs distributed along the Itacaiúnas River. Moreover, our analysis revealed significant correlations between 19 crAssphage contigs and human population density, substantiating the use of these viruses as possible markers for human fecal pollution in the Itacaiúnas River. This study is the first to assess the presence of crAssphages in an Amazonian river, with results suggesting the potential use of these viruses as markers for human fecal pollution in the Amazon. IMPORTANCE The Amazon biome is one of the most diverse ecosystems in the world and contains the most vast river network; however, the continuous advance of urban centers toward aquatic bodies exacerbates the discharge of pollutants into these water bodies. Fecal contamination contributes significantly to water pollution, and the application of an improved fecal indicator is essential for evaluating water quality. In this study, we evaluated the presence, diversity, and abundance of crAssphages in an Amazonian river and performed correlation analysis on the basis of physicochemical and georeferencing data to test whether crAssphages are viable fecal pollution markers. Our analysis revealed both the presence of crAssphages and their correlation with physicochemical data and showed significant correlations between the relative abundance of crAssphages and human density. These results suggest the potential use of these viruses as markers for water quality assessment in Amazonian rivers.
Collapse
Affiliation(s)
- David Tavares Martins
- Laboratory of Bioinformatics and Genomics of Microorganisms, Federal University of Pará-UFPA, Belém, Pará, Brazil
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Pará, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
| | - Oscar Victor Cardenas Alegria
- Laboratory of Bioinformatics and Genomics of Microorganisms, Federal University of Pará-UFPA, Belém, Pará, Brazil
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Pará, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
| | - Carlos Willian Dias Dantas
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Rommel Thiago Jucá Ramos
- Laboratory of Bioinformatics and Genomics of Microorganisms, Federal University of Pará-UFPA, Belém, Pará, Brazil
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Pará, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, Federal University of Pará, Belém, Pará, Brazil
- Center of High Performance Computer and Artificial Intelligence - CCAD, Federal University of Pará, Belem, Pará, Brazil
| |
Collapse
|
3
|
Boulainine D, Benhamrouche A, Ballesté E, Mezaache-Aichour S, García-Aljaro C. Fate of antibiotic resistance genes under different wastewater treatments and environmental conditions in an Algerian watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126179. [PMID: 40180301 DOI: 10.1016/j.envpol.2025.126179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In recent decades, antibiotic resistance has become a major health threat. This study evaluates the efficiency of two wastewater treatment plants (WWTP), conventional activated sludge and advanced filtration-based Enviro-Septic, for removing antibiotic resistance genes (ARGs) and their prevalence in an Algerian watershed. Thirty-five wastewater and 122 river samples were collected. Sampling covered a 50 km transect, from a low-pollution site to a water reservoir, at six sites. The study analyzed different fecal indicators (E. coli (EC), spores of sulfite-reducing clostridia (SRC), somatic coliphages (SOMCPH)), CrAssphage (CrAssPH)), and three ARGs (blaTEM, tetW, and sul1). Mean concentrations in raw sewage from the conventional and Enviro-Septic WWTPs were ∼7.1 and 6.4 log10 (CFU/100 ml) for EC, 6.2 log10 (PFU or CFU)/100 ml for SOMCPH and SRC in both treatments, and ∼7.5 and 5.2 for CrAssPH, respectively. The conventional WWTP achieved reductions of ∼4 log10 for EC and SOMCPH, 3.5 log10 for CrAssPH, and 1 log10 for SRC. The Enviro-Septic system showed similar efficacy for EC and SRC but lower for SOMCPH (2.8 log10) and CrAssPH (2.5 log10). The mean concentrations (log10 GC/100 ml) of ARGs in raw sewage of the conventional and the Enviro-Septic WWTP were 8.6 and 7.3 for tetW, 9.4 and 8.1 for sul1, 8.4 and 6.3 for blaTEM, respectively. Both treatments achieved reductions of 2.9-3 log10 for all ARGs. All river samples tested positive for the three ARGs, with lower concentrations at less fecally polluted sites, showing a reduction of up to 4 log10. Strong correlations (p < 0.05) were observed between culturable indicators, CrAssPH, and ARGs (ρ 0.58-0.96), indicating a strong association between ARGs and human fecal contamination, although other environmental sources cannot be ruled out. This study provides insights into ARG dynamics and supports strategies to mitigate their spread, and protect public health.
Collapse
Affiliation(s)
- Dalal Boulainine
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria; Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Aziz Benhamrouche
- Department of Earth Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de l'Aigua (IDRA), Universitat de Barcelona (UB), C. Montalegre, 6, 08001, Barcelona, Spain
| | - Samia Mezaache-Aichour
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de l'Aigua (IDRA), Universitat de Barcelona (UB), C. Montalegre, 6, 08001, Barcelona, Spain.
| |
Collapse
|
4
|
Malla B, Shrestha S, Haramoto E. Optimization of a 6-plex Crystal Digital PCR® assay and its application to simultaneous surveillance of enteric and respiratory viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178939. [PMID: 40037231 DOI: 10.1016/j.scitotenv.2025.178939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Multiplex digital PCR (dPCR) approaches are commonly employed in wastewater-based epidemiology (WBE) studies. However, optimizing the dPCR workflow is a critical step to ensure its reliability and accuracy before application. In this study, a 6-plex Crystal Digital PCR® (cdPCR) workflow was optimized for the simultaneous detection of six epidemiologically important pathogens, including three enteric viruses, noroviruses of genogroups I and II (NoV-GI and GII) and enteroviruses (EnV), and three respiratory viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), influenza A virus (InfA), and respiratory syncytial virus B (RSVB), in wastewater. Four cDNA input ratios (20 %-70 %) and two extraction kits were evaluated for optimization, with 30 % cDNA input and the AllPrep PowerViral DNA/RNA Kit (Qiagen) exhibiting optimal performance. The optimized 6-plex cdPCR assay was applied to a year-long wastewater surveillance study in Japan (n = 52), revealing distinct trends and prevalence ratios for enteric and respiratory viruses. NoV-GII was detected in 96 % of the samples with the highest mean concentration (6.1 ± 0.6 log10 copies/L), while SARS-CoV-2 and InfA were detected in 60 % and 50 % of the samples, respectively, which reflected the circulation of these pathogens within the community. Notably, RSVB was detected less frequently (25 %), in line with the fewer cases of RSVB reported during the study period. The wastewater concentrations of EnV and InfA showed significant positive correlations with hand foot and mouth disease and herpangina and influenza cases, respectively. However, no positive correlations were observed for RSV and COVID-19, possibly due to the testing of RSVB while RSVA was more prevalent and also due to cluster outbreaks. These findings demonstrated the utility of the 6-plex cdPCR assay in detecting pathogens and provided insights into community disease trends, representing an advancement in WBE.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
5
|
Liang C, Wang J, Zhang Y, Liu Z, Zhu Q, Huo Y, Zhang Z, Huo M. Assessing the viral enrichment methods and their roles in indicating wastewater-associated pollution in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117951. [PMID: 40020382 DOI: 10.1016/j.ecoenv.2025.117951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increasing need for monitoring viral contamination in aquatic environments, research has increasingly focused on utilizing viruses as indicators for microbial contamination assessment. However, studies on enrichment techniques for waterborne viruses and their occurrence and risk characteristics in the environment remain relatively limited. In this study, samples were collected over one year from a wastewater treatment plant and its receiving stream to evaluate the optimal enrichment method and to assess the presence of four representative viral indicators-human adenovirus (HAdV), crAssPhage, enterovirus (EV), and the pepper mild mottle virus (PMMoV)-in the urban water environment. The results showed that skimmed milk flocculation (SMF) and silica attachment method (SAM) achieved better viral enrichment performance in both wastewater and surface water, demonstrating greater seasonal consistency compared to other methods. Seasonal variations in virus concentrations were observed, with HAdV and crAssphage peaking in winter, while EV and PMMoV peaked in summer. Virus concentrations in wastewater treatment plants were reduced by 8.61 log10 copies/L from influent to effluent. However, residual viruses discharged into receiving streams still pose a significant environmental exposure risk, as indicated by Quantitative Microbial Risk Assessment (QMRA) results, which exhibited a strong correlation with population density. This study highlights the importance of waterborne viral indicators in developing effective water quality management strategies to ensure the safe control of viruses in aquatic environments.
Collapse
Affiliation(s)
- Chen Liang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Jiaxu Wang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Ying Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Zhibo Liu
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Qiyu Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Zhiruo Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; School of Economics and Management, Jilin Jianzhu University, Changchun 130118, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
6
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Evaluation of plasmid pBI143 for its optimal concentration methods, seasonal impact, and potential as a normalization parameter in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178661. [PMID: 39893813 DOI: 10.1016/j.scitotenv.2025.178661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Plasmid pBI143, abundant in the human gut, is a promising human-specific fecal marker. However, studies on its optimal concentration methods, seasonal variations, and potential as a normalization parameter for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remain limited. Among the three concentration methods compared, polyethylene glycol (PEG) precipitation and centrifugation demonstrated comparable efficiencies (9.3 ± 0.6 and 9.2 ± 0.6 log10 copies/L, respectively; n = 8 each), outperforming membrane filtration (8.0 ± 0.6 log10 copies/L; n = 8). PEG precipitation was further applied to quantify pBI143, together with other human-specific fecal markers (crAssphage and pepper mild mottle virus (PMMoV)), in 52 wastewater samples collected weekly over a one year from a wastewater treatment plant in Yamanashi Prefecture, Japan, by quantitative polymerase chain reaction. The higher pBI143 concentrations (9.6 ± 0.5 log10 copies/L) compared to PMMoV (8.2 ± 0.2 log10 copies/L) and crAssphage (8.0 ± 0.2 log10 copies/L) highlighted its potential as a robust marker for human fecal contamination. Unlike PMMoV and crAssphage that remained stable across seasons, pBI143 showed seasonal fluctuations, especially during summer and autumn, suggesting its greater sensitivity to environmental conditions. The study evaluated the suitability of pBI143, crAssphage, and PMMoV for normalizing SARS-CoV-2 concentrations in wastewater; however, non-normalized SARS-CoV-2 concentrations showed the highest correlation with COVID-19 cases (ρ = 0.74), whereas normalization reduced this correlation (PMMoV-normalized, ρ = 0.72; crAssphage-normalized, ρ = 0.70; and pBI143-normalized, ρ = 0.50), likely due to differences in the persistence and structural properties of the markers, indicating that these markers are less effective for SARS-CoV-2 normalization. This study underscores the promising utility of pBI143 in wastewater surveillance but highlights the need for further research across diverse regions to validate its applicability.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
7
|
Liu S, Lioe TS, Sun L, Adriaenssens EM, McCarthy AJ, Sekar R. Validation of crAssphage microbial source tracking markers and comparison with Bacteroidales markers for detection and quantification of faecal contaminations in surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125403. [PMID: 39608743 DOI: 10.1016/j.envpol.2024.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Human-specific faecal contamination has been affecting surface water and is a threat to both the environment and public health due to its potential co-occurrence with pathogens. Extended studies were conducted to detect and quantify faecal contamination using microbial source tracking (MST) markers targeting bacteria and viruses. The prototypical crAssphage, a presumed Bacteroides-infecting phage discovered in 2014, showed superior specificity to human faeces and high abundance in untreated sewage water. This study evaluated the applicability of crAssphage markers, CPQ_056 and CPQ_064, as MST tools for detecting domestic sewage contamination in surface water in China. Validation tests based on domestic sewage and animal faecal samples demonstrated high sensitivity/specificity of 100%/96.7% for CPQ_056 and 100%/100% for CPQ_064 within the scope of this study, surpassing the performance of traditional Bacteroidales markers such as HF183 (100%/80.4% against sewage). MST markers targeting different hosts and validated in the Taihu watershed (CPQ_056, CPQ_064, BacUni, HF183 TaqMan, Pig-2-Bac, and GFD) were quantified in water samples collected from the inflow rivers of Taihu Lake in summer and winter 2020. The results showed the dominance of sewage/wastewater as the source of contamination in all faecal pollution. Spatial analysis revealed higher contamination levels in northwest rivers, which were those most impacted by human activities. There was also a diluting pattern downstream of some rivers. Correlations with water quality parameters indicated the co-occurrence of nutrient-related pollution and faecal contamination, particularly in areas with industrial, low-density residential, green space, and municipal service land uses. The findings established the efficacy of crAssphage markers in enhancing precision and accuracy in monitoring faecal contamination, offering valuable tools for policymakers and environmental managers.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Trillion Surya Lioe
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, 2333, CC Leiden, the Netherlands
| | - Li Sun
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | | | - Alan J McCarthy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Raju Sekar
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
8
|
Wu H, Brighton K, Chen J, Shuai D, Aw TG. Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:19. [PMID: 39812936 PMCID: PMC11735553 DOI: 10.1007/s12560-025-09634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent. As secondary effluent is the source water to the reclaimed water treatment system, this study quantified indigenous enteric viruses, and viral indicators associated with particles in secondary effluents collected from five full-scale water reclamation facilities in the United States. Particle-associated viruses were enumerated using a sequential filtration followed by microfluidic digital PCR. This study showed that enteric viruses and viral indicators (crAssphage and pepper mild mottle virus, PMMoV) were attached to particles of different sizes in secondary effluent. Significantly higher concentrations of RNA viruses including PMMoV, norovirus, and enterovirus were detected in filtrate of the sequential filtration, which contained particles < 0.45 µm. DNA viruses including adenovirus and crAssphage were found to be more associated with larger particles in secondary effluent. Overall, high correlations were observed between viral indicators and enteric viruses, supporting the use of crAssphage and PMMoV to evaluate virus removal efficiency in water and wastewater treatment processes. The association of viruses with particles in wastewater has significant implications on wastewater treatment and disinfection processes as well as virus enumeration in wastewater.
Collapse
Affiliation(s)
- Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA
| | - Keegan Brighton
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Shaffer M, North D, Bibby K. Evaluating Nanotrap Microbiome Particles as A Wastewater Viral Concentration Method. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:10. [PMID: 39754646 PMCID: PMC11700038 DOI: 10.1007/s12560-024-09628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025]
Abstract
Wastewater-based surveillance has emerged as a powerful approach to monitoring infectious diseases within a community. Typically, wastewater samples are concentrated before viral analyses to improve sensitivity. Current concentration methods vary in time requirements, costs, and efficiency. Here, we evaluated the concentration efficiency and bias of a novel viral concentration approach, Nanotrap Microbiome Particles (NMP), in wastewater. NMP concentration efficiency was target-specific, with significantly lower concentrations of the bacterial indicator HF183 and viral indicator Carjivirus (formerly crAssphage) relative to direct extraction (1.2 × 105 vs. 3.4 × 105 GC/mL and 2.0 × 105 vs. 1.2 × 105 GC/mL, respectively), but significantly higher concentrations of the viral fecal indicator Pepper Mild Mottle Virus (PMMoV) relative to direct extraction (1.4 × 105 vs. 8.4 × 103 GC/mL). Targeted metagenomic sequencing showed that NMP resulted in significantly more unique species reads per sample than direct extractions (p < 0.001) by detecting species that went undetected by direct extractions. Key viral families identified with high abundances were Adenoviridae, Caliciviridae, Herpesviridae, Papillomaviridae, and Polyomaviridae. NMP showed differential ability for concentrating clinically relevant viral families, suggesting that the technology should be evaluated and optimized for specific viral targets before implementation.
Collapse
Affiliation(s)
- Marlee Shaffer
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Devin North
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
10
|
Gómez-Gómez C, Ramos-Barbero MD, Sala-Comorera L, Morales-Cortes S, Vique G, García-Aljaro C, Muniesa M. Persistence of crAssBcn phages in conditions of natural inactivation and disinfection process and their potential role as human source tracking markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177450. [PMID: 39536863 DOI: 10.1016/j.scitotenv.2024.177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Due to their abundance in the human gut, human specificity, and global distribution, some crAss-like phages, including the original p-crAssphage, have been proposed as indicators of human fecal pollution suitable for microbial source tracking (MST). The prevalence of crAss-like phages in water, and consequently their usefulness as MST indicators, is determined by their ability to survive various inactivation and disinfection processes. Recently, we isolated new crAss-like phages (named crAssBcn phages) capable of infecting Bacteroides intestinalis and exhibiting a wide geographical distribution. Here, we assessed the infectivity and DNA integrity of three crAssBcn phages (ΦCrAssBcn6, 10, and 15) and ΦCrAss001, the first crAss-like phage isolated, at different pHs and temperatures, after UV and chlorine treatments, and under natural conditions. Their bacterial host, B. intestinalis and a siphovirus Bacteroides-infecting phage GA17-A were used as controls. Infectious crAssBcn phages remained stable for a month at 4, 22, and 37 °C, and at pH 7, but inactivated when exposed to pH 3. Infective crAssBcn phages decreased by 5 log10 after treatment with 10 ppm of chlorine for 1 min and after UV treatment at a fluence of 5.94 mJ/cm2. However, heat treatment at 60 and 70 °C resulted in only a moderate decrease (<1 log10 and almost 3 log10 units of reduction, respectively). Experiments under natural conditions in outdoor mesocosms revealed that inactivation rates for crAssBcn phages, as for the other microorganisms, were higher in summer (up to 6 log10) than in winter (<4 log10), suggesting a higher incidence of inactivation factors, such as sunlight and temperature, in the warmer months. B. intestinalis was significantly more prone to inactivation than phages in most conditions except for the irradiation treatment. In contrast, crAssBcn phage DNA remained stable, with minimal reduction under most of the tested conditions, except in the summer mesocosm and UV assays.
Collapse
Affiliation(s)
- Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maria Dolores Ramos-Barbero
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Gloria Vique
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
11
|
Düker U, Nogueira R, Carpio-Vallejo E, Joost I, Hüppe K, Suchenwirth R, Saathoff Y, Wallner M. Sewer system sampling for wastewater-based disease surveillance: Is the work worth it? JOURNAL OF WATER AND HEALTH 2024; 22:2218-2232. [PMID: 39611680 DOI: 10.2166/wh.2024.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024]
Abstract
Wastewater treatment plant (WWTP) influent sampling is commonly used in wastewater-based disease surveillance to assess the circulation of pathogens in the population aggregated in a catchment area. However, the signal can be lost within the sewer network due to adsorption, degradation, and dilution processes. The present work aimed to investigate the dynamics of SARS-CoV-2 concentration in three sub-catchments of the sewer system in the city of Hildesheim, Germany, characterised by different levels of urbanisation and presence/absence of industry, and to evaluate the benefit of sub-catchment sampling compared to WWTP influent sampling. Our study shows that sampling and analysis of virus concentrations in sub-catchments with particular settlement structures allows the identification of high concentrations of the virus at a local level in the wastewater, which are lower in samples collected at the inlet of the treatment plant covering the whole catchment. Higher virus concentrations per inhabitant were found in the sub-catchments in comparison to the inlet of the WWTP. Additionally, sewer sampling provides spatially resolved concentrations of SARS-CoV-2 in the catchment area, which is important for detecting local high incidences of COVID-19.
Collapse
Affiliation(s)
- Urda Düker
- Leibniz University Hannover, Welfengarten 1, 30459 Hannover, Germany
| | - Regina Nogueira
- Leibniz University Hannover, Welfengarten 1, 30459 Hannover, Germany
| | | | - Ingeborg Joost
- Ostfalia University of Applied Sciences, Campus Suderburg, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany
| | - Katharina Hüppe
- Local Health Authority Hildesheim, Ludolfingerstr. 2, 31137 Hildesheim, Germany
| | - Roland Suchenwirth
- Public Health Agency of Lower Saxony, Roesebeckstr. 4-6, 30449 Hannover, Germany
| | - Yvonne Saathoff
- Public Health Agency of Lower Saxony, Roesebeckstr. 4-6, 30449 Hannover, Germany
| | - Markus Wallner
- Ostfalia University of Applied Sciences, Campus Suderburg, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany E-mail:
| |
Collapse
|
12
|
Armenise E, Rustage S, Jackson KJ, Watts G, Hart A. Adjusting for dilution in wastewater using biomarkers: A practical approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121596. [PMID: 38991335 DOI: 10.1016/j.jenvman.2024.121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
We developed a biomarker-based approach to quantify in-sewer dilution by measuring wastewater quality parameters (ammoniacal-N, orthophosphate, crAssphage). This approach can enhance the environmental management of wastewater treatment works (WWTW) by optimising their operation and providing cost-effective information on the health and behaviour of populations and their interactions with the environment through wastewater-based epidemiology (WBE). Our method relies on site specific baselines calculated for each biomarker. These baselines reflect the sewer conditions without the influence of rainfall-derived inflow and infiltration (RDII). Ammoniacal-N was the best candidate to use as proxy for dilution. We demonstrated that the dilution calculated using biomarkers correlates well with the dilution indicated by measured flow. In some instances, the biomarkers showed much higher dilution than measured flows. These differences were attributed to the loss of flow volume at wastewater treatment works due to the activation of combined sewer overflows (CSOs) and/or storm tanks. Using flow measured directly at the WWTW could therefore result in underestimation of target analyte loads.
Collapse
Affiliation(s)
- E Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK.
| | - S Rustage
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - K J Jackson
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - G Watts
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - A Hart
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| |
Collapse
|
13
|
George PBL, Hillary LS, Leclerc S, Cooledge EC, Lemieux J, Duchaine C, Jones DL. Needles in haystacks: monitoring the potential escape of bioaerosolised antibacterial resistance genes from wastewater treatment plants with air and phyllosphere sampling. Can J Microbiol 2024; 70:348-357. [PMID: 38608289 DOI: 10.1139/cjm-2023-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Wastewater treatment plants are well-known point sources of emissions of antibacterial resistance genes (ARGs) into the environment. Although most work to date has focused on ARG dispersal via effluent, aerial dispersal in bioaerosols is a poorly understood, but likely important vector for ARG dispersal. Recent evidence suggests that ARG profiles of the conifer needle phyllosphere could be used to measure bioaerosol dispersal from anthropogenic sources. Here, we assessed airborne dispersal of ARGs from wastewater treatment plants in Wales, UK and Quebec, Canada, using conifer needles as passive bioaerosol monitors. ARG profiles of wastewater were compared to those of conifer phyllosphere using high-throughput qPCR. ARG richness was significantly lower in conifer phyllosphere samples than wastewater samples, though no differences were observed across the dispersal gradients. Mean copy number of ARGs followed a similar trend. ARG profiles showed limited, but consistent patterns with increasing distance from wastewater treatment plants, but these did not align with those of wastewater samples. For example, proportional abundance of aminoglycosides decreased over the dispersal gradient in Wales, whereas mobile genetic elements showed the inverse relationship. In summary, while distinct ARG profiles exist along dispersal gradients, links to those of wastewater were not apparent.
Collapse
Affiliation(s)
- Paul B L George
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Luke S Hillary
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Samantha Leclerc
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Emily C Cooledge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Joanie Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
14
|
Williams RC, Perry WB, Lambert-Slosarska K, Futcher B, Pellett C, Richardson-O'Neill I, Paterson S, Grimsley JMS, Wade MJ, Weightman AJ, Farkas K, Jones DL. Examining the stability of viral RNA and DNA in wastewater: Effects of storage time, temperature, and freeze-thaw cycles. WATER RESEARCH 2024; 259:121879. [PMID: 38865915 DOI: 10.1016/j.watres.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.
Collapse
Affiliation(s)
- Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - William B Perry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | - Ben Futcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK; The London Data Company, London, EC2N 2AT, UK
| | - Matthew J Wade
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
15
|
Jones DL, Bridgman M, Pellett C, Weightman AJ, Kille P, García Delgado Á, Cross G, Cobley S, Howard-Jones H, Chadwick DR, Farkas K. Use of wastewater from passenger ships to assess the movement of COVID-19 and other pathogenic viruses across maritime international boundaries. Front Public Health 2024; 12:1377996. [PMID: 39076415 PMCID: PMC11284076 DOI: 10.3389/fpubh.2024.1377996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Objective The worldwide spread of SARS-CoV-2 and the resulting COVID-19 pandemic has been driven by international travel. This has led to the desire to develop surveillance approaches which can estimate the rate of import of pathogenic organisms across international borders. The aim of this study was to investigate the use of wastewater-based approaches for the surveillance of viral pathogens on commercial short-haul (3.5 h transit time) roll-on/roll-off passenger/freight ferries operating between the UK and the Republic of Ireland. Methods Samples of toilet-derived wastewater (blackwater) were collected from two commercial ships over a 4-week period and analysed for SARS-CoV-2, influenza, enterovirus, norovirus, the faecal-marker virus crAssphage and a range of physical and chemical indicators of wastewater quality. Results A small proportion of the wastewater samples were positive for SARS-CoV-2 (8% of the total), consistent with theoretical predictions of detection frequency (4%-15% of the total) based on the national COVID-19 Infection Survey and defecation behaviour. In addition, norovirus was detected in wastewater at low frequency. No influenza A/B viruses, enterovirus or enterovirus D68 were detected throughout the study period. Conclusion We conclude that testing of wastewater from ships that cross international maritime boundaries may provide a cost-effective and relatively unbiased method to estimate the flow of infected individuals between countries. The approach is also readily applicable for the surveillance of other disease-causing agents.
Collapse
Affiliation(s)
- Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Mathew Bridgman
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Andrew J. Weightman
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Álvaro García Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cardiff, United Kingdom
| | - Steve Cobley
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cardiff, United Kingdom
| | - Helen Howard-Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - David R. Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
16
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
17
|
Dantas CWD, Martins DT, Nogueira WG, Alegria OVC, Ramos RTJ. Tools and methodology to in silico phage discovery in freshwater environments. Front Microbiol 2024; 15:1390726. [PMID: 38881659 PMCID: PMC11176557 DOI: 10.3389/fmicb.2024.1390726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost-benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Carlos Willian Dias Dantas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - David Tavares Martins
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Wylerson Guimarães Nogueira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Oscar Victor Cardenas Alegria
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
18
|
Puchades-Colera P, Díaz-Reolid A, Girón-Guzmán I, Cuevas-Ferrando E, Pérez-Cataluña A, Sánchez G. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters. Viruses 2024; 16:816. [PMID: 38932109 PMCID: PMC11209584 DOI: 10.3390/v16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (P.P.-C.); (A.D.-R.); (A.P.-C.)
| |
Collapse
|
19
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
20
|
Suh SH, Lee JS, Kim SH, Vinjé J, Kim SH, Park GW. Evaluation of crAssphages as a potential marker of human viral contamination in environmental water and fresh leafy greens. Front Microbiol 2024; 15:1374568. [PMID: 38618485 PMCID: PMC11010641 DOI: 10.3389/fmicb.2024.1374568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2-3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain.
Collapse
Affiliation(s)
- Soo Hwan Suh
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jeong Su Lee
- Division of Emerging Virus Vector Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Seung Hwan Kim
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Soon Han Kim
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Geun Woo Park
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
21
|
Campos CJA, Gyawali P, Hewitt J. Study of Shellfish Growing Area During Normal Harvesting Periods and Following Wastewater Overflows in an Urban Estuary With Complex Hydrography. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:79-96. [PMID: 38329699 DOI: 10.1007/s12560-023-09579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
Viral testing combined with hydrographic studies is considered standard good practice in determining microbiological impacts on shellfish growing areas following wastewater overflows. In this study, norovirus genogroup I and II, indicators of viral contamination (F-RNA bacteriophage genogroup II (F-RNA GII), crAssphage, pepper mild mottle virus) and Escherichia coli were monitored during periods of normal harvesting and following overflows in two commercial shellfish growing areas in Otago Harbour (Aotearoa New Zealand). Dye tracing, drogue tracking and analysis of particle tracking modelling were also undertaken to assess the dispersion, dilution and time of travel of wastewater discharged from a pump station discharge that impacts the growing areas. Norovirus was not detected in any of the 218 shellfish samples tested. PMMoV and crAssphage were more prevalent than F-RNA GII as determined by RT-qPCR. The dye study indicated long residence time of the waters (≥5 days) in the embayment impacted by the discharge. No relationships were found between the concentrations of viral indicators or E. coli and wastewater dilution, distance between the discharge and the growing areas or time since the last overflow. For the three spills studied (≤327 m3), there was little evidence of microbiological impact on the growing areas. This was likely associated with a deep shipping channel that enhances water flushing in the harbour and reduces contaminant transport to the growing areas. We recommend flexibility in the approach for closure/reopening growing areas impacted by spills, particularly for small duration/volume spills and when norovirus is not present in the community.
Collapse
Affiliation(s)
- Carlos J A Campos
- Cawthron Institute, 98 Halifax Street East, Nelson, 7042, New Zealand.
- Jacobs, 47 Hereford Street Level 2, Wynn Williams Building, Christchurch, 8013, New Zealand.
| | - Pradip Gyawali
- Institute of Environmental Science and Research Limited (ESR), Kenepuru Science Centre, 34 Kenepuru Drive, Kenepuru, Porirua, 5240, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Limited (ESR), Kenepuru Science Centre, 34 Kenepuru Drive, Kenepuru, Porirua, 5240, New Zealand
| |
Collapse
|
22
|
Farkas K, Mannion F, Sorby R, Winterbourn B, Allender S, Gregory CGM, Holding P, Thorpe JM, Malham SK, Le Vay L. Assessment of wastewater derived pollution using viral monitoring in two estuaries. MARINE POLLUTION BULLETIN 2024; 200:116081. [PMID: 38354589 DOI: 10.1016/j.marpolbul.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Human wastewater-derived pollution of the environment is an emerging health risk that increases the number of waterborne and foodborne illnesses globally. To better understand and mitigate such health risks, we investigated the prevalence of faecal indicator bacteria, Escherichia coli, and indicator virus (crAssphage) along with human and animal enteric viruses (adenoviruses, noroviruses, sapoviruses, hepatitis E virus) in shellfish and water samples collected from two shellfish harvesting areas in the UK. Human noroviruses were detected at higher detection rates in oyster and water samples compared to mussels with peaks during the autumn-winter seasons. Human enteric viruses were sporadically detected during the warmer months, suggesting potential introduction by tourists following the relaxation of COVID-19 lockdown measures. Our results suggest that viral indicators are more suitable for risk assessment and source tracking than E. coli. The detection of emerging hepatitis and sapoviruses, support the need for comprehensive viral monitoring in shellfish harvesting areas.
Collapse
Affiliation(s)
- Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK; School of Environment & Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, UK.
| | - Finn Mannion
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Rees Sorby
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Ben Winterbourn
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Susan Allender
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Charlie G M Gregory
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK; School of Environment & Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, UK
| | - Phoebe Holding
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Jamie M Thorpe
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Lewis Le Vay
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| |
Collapse
|
23
|
Li E, Saleem F, Edge TA, Schellhorn HE. Assessment of crAssphage as a human fecal source tracking marker in the lower Great Lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168840. [PMID: 38036144 DOI: 10.1016/j.scitotenv.2023.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
CrAssphage or crAss-like phage ranks as the most abundant phage in the human gut and is present in human feces-contaminated environments. Due to its high human specificity and sensitivity, crAssphage is a potentially robust source tracking indicator that can distinguish human fecal contamination from agricultural or wildlife sources. Its suitability in the Great Lakes area, one of the world's most important water systems, has not been well tested. In this study, we tested a qPCR-based quantification method using two crAssphage marker genes (ORF18-mod and CPQ_064) at Toronto recreational beaches along with their adjacent river mouths. Our results showed a 71.4 % (CPQ_064) and 100 % (ORF18-mod) human sensitivity for CPQ_064 and ORF18-mod, and a 100 % human specificity for both marker genes. CrAssphage was present in 57.7 % or 71.2 % of environmental water samples, with concentrations ranging from 1.45 to 5.14 log10 gene copies per 100 mL water. Though concentrations of the two marker genes were strongly correlated, ORF18-mod features a higher human sensitivity and higher positive detection rates in environmental samples. Quantifiable crAssphage was mostly present in samples collected in June and July 2021 associated with higher rainfall. In addition, rivers had more frequent crAssphage presence and higher concentrations than their associated beaches, indicating more frequent and greater human fecal contamination in the rivers. However, crAssphage was more correlated with E. coli and Enterococcus at the beaches than in the rivers, suggesting human fecal sources may be more predominant in driving the increases in E. coli and Enterococcus at the beaches when impacted by river plumes.
Collapse
Affiliation(s)
- Enze Li
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Faizan Saleem
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Thomas A Edge
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada
| | - Herb E Schellhorn
- Department of Biology, McMaster University, Ontario L8S 4L8, Canada.
| |
Collapse
|
24
|
Farkas K, Kevill JL, Adwan L, Garcia-Delgado A, Dzay R, Grimsley JMS, Lambert-Slosarska K, Wade MJ, Williams RC, Martin J, Drakesmith M, Song J, McClure V, Jones DL. Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiol Infect 2024; 152:e31. [PMID: 38329110 PMCID: PMC10894896 DOI: 10.1017/s0950268824000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Rande Dzay
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jasmine M. S. Grimsley
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- The London Data Company, London, UK
| | | | - Matthew J. Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel C. Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Mark Drakesmith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Jiao Song
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Victoria McClure
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
25
|
Katayama YA, Hayase S, Iwamoto R, Kuroita T, Okuda T, Kitajima M, Masago Y. Simultaneous extraction and detection of DNA and RNA from viruses, prokaryotes, and eukaryotes in wastewater using a modified COPMAN. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167866. [PMID: 37863234 DOI: 10.1016/j.scitotenv.2023.167866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Wastewater surveillance can offer a comprehensive grasp of infectious disease prevalence and human health because wastewater contains various human-derived microbial pathogens, including viruses, bacteria, and fungi. However, methods capable of simultaneous detection of multiple groups of targets in the automated systems and large-scale surveillance are still under development. Here, we demonstrated the modification, involving the addition of bead-beating, to the existing COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater) enabled enhanced detection of various microorganisms, including SARS-CoV-2. The modified method, termed bead-beating COPMAN (BB-COPMAN), was evaluated through spike-and-recovery experiments and comparative analysis against three previously reported methods for simultaneous DNA/RNA detection. Our study targeted a range of microorganisms, including enveloped and non-enveloped RNA viruses (SARS-CoV-2, PMMoV), a DNA virus (crAssphage), archaea, gram-negative and gram-positive bacteria (E. coli, Lachnospiraceae), antibiotic resistance gene (ampC), and fungi (Candida albicans). The recovery rates of BB-COPMAN for gram-negative and gram-positive bacteria were 17 and 2.1-fold higher, respectively, compared to the method for DNA/RNA detection. Additionally, BB-COPMAN exhibited the highest extraction efficiency among the tested methods, achieving 1.2-5.7 times more DNA and 1.1-69 times more RNA yield on average. BB-COPMAN allowed the detection of SARS-CoV-2 from all nine samples and PMMoV at concentrations 39-97 times higher than other methods. Moreover, BB-COPMAN detected larger amounts of DNA for four out of six DNA targets than the previously reported DNA/RNA detection method. These results demonstrated that BB-COPMAN enables enhanced detection of multiple targets in a single flow of nucleic acid extraction, making the method well-suited for automated systems. In conclusion, BB-COPMAN is a promising method in wastewater surveillance for assessing the prevalence of wide range of pathogenic microorganisms.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryo Iwamoto
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiro Kuroita
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiko Okuda
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
26
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
27
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
28
|
Alotaibi R, Eifan S, Hanif A, Nour I, Alkathiri A. Prevalence and Genetic Diversity of Cross-Assembly Phages in Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:2167. [PMID: 37764011 PMCID: PMC10535421 DOI: 10.3390/microorganisms11092167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The most common DNA virus found in wastewaters globally is the cross-assembly phage (crAssphage). King Saud University wastewater treatment plant (KSU-WWTP); Manfoha wastewater treatment plant (MN-WWTP); and the Embassy wastewater treatment plant (EMB-WWTP) in Riyadh, Saudi Arabia were selected, and 36 untreated sewage water samples during the year 2022 were used in the current study. The meteorological impact on crAssphage prevalence was investigated. CrAssphage prevalence was recorded using PCR and Sanger sequencing. The molecular diversity of crAssphage sequences was studied for viral gene segments from the major capsid protein (MCP) and membrane protein containing the peptidoglycan-binding domain (MP-PBD). KSU-WWTP and EMB-WWTP showed a higher prevalence of crAssphage (83.3%) than MN-WWTP (75%). Phylogenetic analysis of MCP and MP-PBD segments depicted a close relationship to the Japanese isolates. The MCP gene from the current study's isolate WW/2M/SA/2022 depicted zero evolutionary divergence from 3057_98020, 2683_104905, and 4238_99953 isolates (d = 0.000) from Japan. A significant influence of temporal variations on the prevalence of crAssphage was detected in the three WWTPs. CrAssphage displayed the highest prevalence at high temperatures (33-44 °C), low relative humidity (6-14%), and moderate wind speed (16-21 Km/h). The findings provided pioneering insights into crAssphage prevalence and its genetic diversity in WWTPs in Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
29
|
Meuchi Y, Nakada M, Kuroda K, Hanamoto S, Hata A. Applicability of F-specific bacteriophage subgroups, PMMoV and crAssphage as indicators of source specific fecal contamination and viral inactivation in rivers in Japan. PLoS One 2023; 18:e0288454. [PMID: 37450468 PMCID: PMC10348522 DOI: 10.1371/journal.pone.0288454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
To date, several microbes have been proposed as potential source-specific indicators of fecal pollution. 16S ribosomal RNA gene markers of the Bacteroidales species are the most widely applied due to their predominance in the water environment and source specificity. F-specific bacteriophage (FPH) subgroups, especially FRNA phage genogroups, are also known as potential source-specific viral indicators. Since they can be quantified by both culture-based and molecular assays, they may also be useful as indicators for estimating viral inactivation in the environment. Pepper mild mottle virus (PMMoV) and crAssphage, which are frequently present in human feces, are also potentially useful as human-specific indicators of viral pollution. This study aimed to evaluate the applicability of FPH subgroups, PMMoV, and crAssphage as indicators of source-specific fecal contamination and viral inactivation using 108 surface water samples collected at five sites affected by municipal and pig farm wastewater. The host specificity of the FPH subgroups, PMMoV, and crAssphage was evaluated by principal component analysis (PCA) along with other microbial indicators, such as 16S ribosomal RNA gene markers of the Bacteroidales species. The viabilities (infectivity indices) of FRNA phage genogroups were estimated by comparing their numbers determined by infectivity-based and molecular assays. The PCA explained 58.2% of the total information and classified microbes into three groups: those considered to be associated with pig and human fecal contamination and others. Infective and gene of genogroup IV (GIV)-FRNA phage were assumed to be specific to pig fecal contamination, while the genes of GII-FRNA phage and crAssphage were identified to be specific to human fecal contamination. However, PMMoV, infective GI-FRNA phage, and FDNA phage were suggested to not be specific to human or pig fecal contamination. FRNA phage genogroups, especially the GIV-FRNA phage, were highly inactivated in the warm months in Japan (i.e., July to November). Comparing the infectivity index of several FRNA phage genogroups or other viruses may provide further insight into viral inactivation in the natural environment and by water treatments.
Collapse
Affiliation(s)
- Yuno Meuchi
- Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Miu Nakada
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Keisuke Kuroda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| |
Collapse
|
30
|
Wu H, Juel MAI, Eytcheson S, Aw TG, Munir M, Molina M. Temporal and spatial relationships of CrAssphage and enteric viral and bacterial pathogens in wastewater in North Carolina. WATER RESEARCH 2023; 239:120008. [PMID: 37192571 PMCID: PMC10896230 DOI: 10.1016/j.watres.2023.120008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
Enteric disease remains one of the most common concerns for public health, particularly when it results from human exposure to surface and recreational waters contaminated with wastewater. Characterizing the temporal and spatial variation of enteric pathogens prevalent in wastewater is critical to develop approaches to mitigate their distribution in the environment. In this study, we aim to characterize pathogen variability and test the applicability of the human-associated wastewater indicator crAssphage as an indicator of enteric viral and bacterial pathogens. We conducted weekly samplings for 14 months from four wastewater treatment plants in North Carolina, USA. Untreated wastewater samples were processed using hollow fiber ultrafiltration, followed by secondary concentration methods. Adenovirus, norovirus, enterovirus, Salmonella, Shiga toxin 2 (stx2), Campylobacter, and crAssphage were measured by quantitative polymerase chain reaction (qPCR) and reverse transcriptase (rt)-qPCR. Our results revealed significant correlations between crAssphage and human adenovirus, enterovirus, norovirus, Salmonella, and Campylobacter (p<0.01). Pathogens and crAssphage concentrations in untreated wastewater showed distinct seasonal patterns, with peak concentrations of crAssphage and viral pathogens in fall and winter, while bacterial pathogens showed peaked concentrations in either winter (Campylobacter), fall (Salmonella), or summer (stx2). This study enhances the understanding of crAssphage as an alternative molecular indicator for both bacterial and viral pathogens. The findings of this study can also inform microbial modeling efforts for the prediction of the impact of wastewater pathogens on surface waters due to increased flooding events and wastewater overflows associated with climate change.
Collapse
Affiliation(s)
- Huiyun Wu
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA; Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, Tennessee 37831 USA; Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Md Ariful Islam Juel
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Stephanie Eytcheson
- Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, Tennessee 37831 USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Marirosa Molina
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA.
| |
Collapse
|
31
|
Andrianjakarivony FH, Bettarel Y, Desnues C. Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments. J Microbiol 2023:10.1007/s12275-023-00052-6. [PMID: 37261715 DOI: 10.1007/s12275-023-00052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), 13009, Marseille, France
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, 34090, Montpellier, France.
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
| |
Collapse
|
32
|
Kasprzyk-Hordern B, Sims N, Farkas K, Jagadeesan K, Proctor K, Wade MJ, Jones DL. Wastewater-based epidemiology for comprehensive community health diagnostics in a national surveillance study: Mining biochemical markers in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130989. [PMID: 36848844 DOI: 10.1016/j.jhazmat.2023.130989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This manuscript showcases results from a large scale and comprehensive wastewater-based epidemiology (WBE) study focussed on multi-biomarker suite analysis of both chemical and biological determinants in 10 cities and towns across England equating to a population of ∼7 million people. Multi-biomarker suite analysis, describing city metabolism, can provide a holistic understanding to encompass all of human, and human-derived, activities of a city in a single model: from lifestyle choices (e.g. caffeine intake, nicotine) through to health status (e.g. prevalence of pathogenic organisms, usage of pharmaceuticals as proxy for non-communicable disease, NCD, conditions or infectious disease status), and exposure to harmful chemicals due to environmental and industrial sources (e.g. pesticide intake via contaminated food and industrial exposure). Population normalised daily loads (PNDLs) of many chemical markers were found, to a large extent, driven by the size of population contributing to wastewater (especially NCDs). However, there are several exceptions providing insights into chemical intake that can inform either disease status in various communities or unintentional exposure to hazardous chemicals: e.g. very high PNDLs of ibuprofen in Hull resulting from its direct disposal (confirmed by ibuprofen/2-hydroxyibuprofen ratios) and bisphenol A (BPA) in Hull, Lancaster and Portsmouth likely related to industrial discharge. An importance for tracking endogenous health markers such as 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, an oxidative stress marker) as a generic marker of health status in communities was observed due to increased levels of HNE-MA seen at Barnoldswick wastewater treatment plant that coincided with higher-than-average paracetamol usage and SARS-CoV-2 prevalence in this community. PNDLs of virus markers were found to be highly variable. Being very prevalent in communities nationwide during sampling, SARS-CoV-2 presence in wastewater was to a large extent community driven. The same applies to the fecal marker virus, crAssphage, which is very prevalent in urban communities. In contrast, norovirus and enterovirus showed much higher variability in prevalence across all sites investigated, with clear cases of localized outbreaks in some cities while maintaining low prevalence in other locations. In conclusion, this study clearly demonstrates the potential for WBE to provide an integrated assessment of community health which can help target and validate policy interventions aimed at improving public health and wellbeing.
Collapse
Affiliation(s)
| | - Natalie Sims
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, London SW1P 3JR, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| |
Collapse
|
33
|
Schill R, Nelson KL, Harris-Lovett S, Kantor RS. The dynamic relationship between COVID-19 cases and SARS-CoV-2 wastewater concentrations across time and space: Considerations for model training data sets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162069. [PMID: 36754324 PMCID: PMC9902279 DOI: 10.1016/j.scitotenv.2023.162069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
During the COVID-19 pandemic, wastewater-based surveillance has been used alongside diagnostic testing to monitor infection rates. With the decline in cases reported to public health departments due to at-home testing, wastewater data may serve as the primary input for epidemiological models, but training these models is not straightforward. We explored factors affecting noise and bias in the ratio between wastewater and case data collected in 26 sewersheds in California from October 2020 to March 2022. The strength of the relationship between wastewater and case data appeared dependent on sampling frequency and population size, but was not increased by wastewater normalization to flow rate or case count normalization to testing rates. Additionally, the lead and lag times between wastewater and case data varied over time and space, and the ratio of log-transformed individual cases to wastewater concentrations changed over time. This ratio decreased between the Epsilon/Alpha and Delta variant surges of COVID-19 and increased during the Omicron BA.1 variant surge, and was also related to the diagnostic testing rate. Based on this analysis, we present a framework of scenarios describing the dynamics of the case to wastewater ratio to aid in data handling decisions for ongoing modeling efforts.
Collapse
Affiliation(s)
- Rebecca Schill
- TUM School of Engineering and Design, Technical University of Munich, Germany
| | - Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | | | - Rose S Kantor
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
34
|
Hamza IA, Abd-Elmaksoud S. Applicability of crAssphage as a performance indicator for viral reduction during activated sludge wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50723-50731. [PMID: 36800087 PMCID: PMC10104927 DOI: 10.1007/s11356-023-25824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023]
Abstract
A major threat to water quality is the discharge of human-derived wastewater, which can cause waterborne illnesses associated with enteric viruses. A poor association exists between fecal indicator bacteria and virus fate in the environment, especially during wastewater treatment. In the current study, the potential of using a novel human gut bacteriophage crAssphage as a wastewater treatment process indicator was evaluated. Using qPCR, influent and effluent wastewater samples of two wastewater treatment plants were analyzed for crAssphage and human viruses including human bocavirus (HBoV), human adenovirus (HAdV), and human polyomavirus (HPyV). All samples were positive for crAssphage. The annual crAssphage concentrations varied between 1.45E + 04 and 2.39E + 08 gc/l in influent samples and from 1.25E + 04 to 7.88E + 06 gc/l in effluent samples. Human viruses concentrations were some orders of magnitude lower than that of crAssphage. Data demonstrated a significant correlation between crAssphage, HAdV, and HPyV during the wastewater treatment process, suggesting that crAssphage and human viral pathogens have similar removal mechanisms. Ultimately, this work concludes that crAssphage could be a performance indicator for viral reduction in the wastewater treatment process.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt.
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt
| |
Collapse
|
35
|
CrAssphage May Be Viable Markers of Contamination in Pristine and Contaminated River Water. mSystems 2023; 8:e0128222. [PMID: 36744944 PMCID: PMC9948693 DOI: 10.1128/msystems.01282-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses are the most biologically abundant entities and may be ideal indicators of fecal pollutants in water. Anthropogenic activities have triggered drastic ecosystem changes in rivers, leading to substantial shifts in chemical and biological attributes. Here, we evaluate the viability of using the presence of crAssphage as indicators of fecal contamination in South African rivers. Shotgun analysis revealed diverse crAssphage viruses in these rivers, which are impacted by chemical and biological pollution. Overall, the diversity and relative abundances of these viruses was higher in contaminated sites compared to pristine locations. In contrast to fecal coliform counts, crAssphage sequences were detected in pristine rivers, supporting the assertion that the afore mentioned marker may be a more accurate indicator of fecal contamination. Our data demonstrate the presence of diverse putative hosts which includes members of the phyla Bacteroidota, Pseudomonadota, Verrucomicrobiota, and Bacillota. Phylogenetic analysis revealed novel subfamilies, suggesting that rivers potentially harbor distinct and uncharacterized clades of crAssphage. These data provide the first insights regarding the diversity, distribution, and functional roles of crAssphage in rivers. Taken together, the results support the potential application of crAssphage as viable markers for water quality monitoring. IMPORTANCE Rivers support substantial populations and provide important ecosystem services. Despite the application of fecal coliform tests and other markers, we lack rapid and reproducible approaches for determining fecal contamination in rivers. Waterborne viral outbreaks have been reported even after fecal indicator bacteria (FIB) were suggested to be absent or below regulated levels of coliforms. This indicates a need to develop and apply improved indicators of pollutants in aquatic ecosystems. Here, we evaluate the viability of crAssphage as indicators of fecal contamination in two South African rivers. We assess the abundance, distribution, and diversity of these viruses in sites that had been predicted pristine or contaminated by FIB analysis. We show that crAssphage are ideal and sensitive markers for fecal contamination and describe novel clades of crAss-like phages. Known crAss-like subfamilies were unrepresented in our data, suggesting that the diversity of these viruses may reflect geographic locality and dependence.
Collapse
|
36
|
Rothman JA, Saghir A, Chung SA, Boyajian N, Dinh T, Kim J, Oval J, Sharavanan V, York C, Zimmer-Faust AG, Langlois K, Steele JA, Griffith JF, Whiteson KL. Longitudinal metatranscriptomic sequencing of Southern California wastewater representing 16 million people from August 2020-21 reveals widespread transcription of antibiotic resistance genes. WATER RESEARCH 2023; 229:119421. [PMID: 36455460 DOI: 10.1016/j.watres.2022.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs (as measured through PERMANOVA, P < 0.001) and that the relative abundance of many individual AMR genes/variants increased over time (as measured with MaAsLin2, Padj < 0.05). Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America.
| | - Andrew Saghir
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Seung-Ah Chung
- Genomics High-Throughput Facility, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Nicholas Boyajian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Thao Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Jinwoo Kim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Jordan Oval
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Vivek Sharavanan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Courtney York
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America.
| |
Collapse
|
37
|
Kevill JL, Lambert-Slosarska K, Pellett C, Woodhall N, Richardson-O'Neill I, Pântea I, Alex-Sanders N, Farkas K, Jones DL. Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156580. [PMID: 35690190 PMCID: PMC9181630 DOI: 10.1016/j.scitotenv.2022.156580] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has proven to be a useful surveillance tool during the ongoing SARS-CoV-2 pandemic, and has driven research into evaluating the most reliable and cost-effective techniques for obtaining a representative sample of wastewater. When liquid samples cannot be taken efficiently, passive sampling approaches have been used, however, insufficient data exists on their usefulness for multi-virus capture and recovery. In this study, we compared the virus-binding capacity of two passive samplers (cotton-based tampons and ion exchange filter papers) in two different water types (deionised water and wastewater). Here we focused on the capture of wastewater-associated viruses including Influenza A and B (Flu-A & B), SARS-CoV-2, human adenovirus (AdV), norovirus GII (NoVGII), measles virus (MeV), pepper mild mottle virus (PMMoV), the faecal marker crAssphage and the process control virus Pseudomonas virus phi6. After deployment, we evaluated four different methods to recover viruses from the passive samplers namely, (i) phosphate buffered saline (PBS) elution followed by polyethylene glycol (PEG) precipitation, (ii) beef extract (BE) elution followed by PEG precipitation, (iii) no-elution into PEG precipitation, and (iv) direct extraction. We found that the tampon-based passive samplers had higher viral recoveries in comparison to the filter paper. Overall, the preferred viral recovery method from the tampon passive samplers was the no-elution/PEG precipitation method. Furthermore, we evidenced that non-enveloped viruses had higher percent recoveries from the passive samplers than enveloped viruses. This is the first study of its kind to assess passive sampler and viral recovery methods amongst a plethora of viruses commonly found in wastewater or used as a viral surrogate in wastewater studies.
Collapse
Affiliation(s)
- Jessica L Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - India Richardson-O'Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
38
|
Farkas K, Pellett C, Alex-Sanders N, Bridgman MTP, Corbishley A, Grimsley JMS, Kasprzyk-Hordern B, Kevill JL, Pântea I, Richardson-O’Neill IS, Lambert-Slosarska K, Woodhall N, Jones DL. Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Microbiol Spectr 2022; 10:e0110222. [PMID: 35950856 PMCID: PMC9430619 DOI: 10.1128/spectrum.01102-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Matthew T. P. Bridgman
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Alexander Corbishley
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Jasmine M. S. Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
| | | | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - India S. Richardson-O’Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
39
|
Rothman JA, Saghir A, Chung SA, Boyajian N, Dinh T, Kim J, Oval J, Sharavanan V, York C, Zimmer-Faust AG, Langlois K, Steele JA, Griffith JF, Whiteson KL. Longitudinal metatranscriptomic sequencing of Southern California wastewater representing 16 million people from August 2020-21 reveals widespread transcription of antibiotic resistance genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502560. [PMID: 35982656 PMCID: PMC9387120 DOI: 10.1101/2022.08.02.502560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically-important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs and that the relative abundance of many individual AMR genes/variants increased over time and may be connected to antibiotic use during the COVID-19 pandemic. Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Andrew Saghir
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Seung-Ah Chung
- Genomics High-Throughput Facility, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Nicholas Boyajian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Thao Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Jinwoo Kim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Jordan Oval
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Vivek Sharavanan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Courtney York
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | | | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Joshua A. Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
40
|
Sabar MA, Honda R, Haramoto E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment. WATER RESEARCH 2022; 221:118827. [PMID: 35820313 DOI: 10.1016/j.watres.2022.118827] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Viral indicators of human-fecal contamination in wastewaters and environmental waters have been getting much attention in the past decade. Cross-assembly phage (crAssphage) is the most abundant DNA virus in human feces. Recently, the usefulness of crAssphage as a microbial source tracking and water quality monitoring tool for human-fecal contamination has been highlighted. Here, we conducted a comprehensive review on crAssphage in water, focusing on detection methodology, concentration range in various waters and wastewaters, specificity to human-fecal contamination, and reduction in wastewater treatment systems. This review highlights that crAssphage is globally distributed in wastewaters and various fecal-contaminated water bodies at high concentrations without seasonal fluctuations. CrAssphage is highly specific to human-fecal contamination and is rarely found in animal feces. It also has a good potential as a performance indicator to ensure virus reduction in wastewater treatment systems. Accordingly, crAssphage could be an effective tool for monitoring of human-fecal contamination and potential presence of fecal pathogenic microbes in environmental waters. Bridging the research gaps highlighted in this review would make crAssphage a powerful tool to support the control of water-related health risks.
Collapse
Affiliation(s)
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Eiji Haramoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Japan
| |
Collapse
|
41
|
Korajkic A, Kelleher J, Shanks OC, Herrmann MP, McMinn BR. Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154861. [PMID: 35358531 PMCID: PMC9291237 DOI: 10.1016/j.scitotenv.2022.154861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Primary influent and final effluent samples were collected from wastewater treatment plants using either chlorination or ultraviolet (UV) disinfection biweekly for one year. Paired measurements were determined for fecal indicator bacteria (Escherichia coli and enterococci), cultivated bacteriophages (somatic, F+, and CB-390 coliphage and GB-124 Bacteroides phage), human-associated viral markers (human polyomavirus [HPyV] and crAssphage), enteric pathogens (adenovirus, noroviruses genogroups I and II) as well as total infectious enteric virus. To increase the probability of detecting low concentration targets, both primary (10L) and final effluent wastewater samples (40-100 L) were concentrated using a dead-end hollow-fiber ultrafilter (D-HFUF). Despite seasonal temperature fluctuations, concentration shifts of FIB, bacteriophages, human-associated viruses, and viral pathogens measured in primary influent samples were minimal, while levels of infectious enteric virus were significantly higher in the spring and fall (P range: 0.0003-0.0409). FIB levels measured in primary influents were 1-2 log10 higher than bacteriophage, human-associated viral markers (except crAssphage) and viral pathogens measured. FIB displayed the greatest sensitivity to chlorine disinfection, while crAssphage, adenoviruses and infectious enteric viruses were significantly less sensitive (P ≤ 0.0096). During UV treatment, bacteriophages F+ and GB-124 were the most resistant of the culturable viruses measured (P ≤ 0.001), while crAssphage were the most resistant (P ≤ 0.0124) overall. When UV lamps were inactive, infectious enteric viruses were significantly more resilient to upstream treatment processes than all other targets measured (P ≤ 0.0257). Similar to infectious enteric viruses and adenoviruses; GB-124, F+, and crAssphages displayed the highest resistance to UV irradiation, signaling a potential applicability as pathogen surrogates in these systems. The use of D-HFUF enhanced the ability to estimate removal of viruses through wastewater treatment, with the expectation that future applications of this method will be used to better elucidate viral behavior within these systems.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Orin C Shanks
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Michael P Herrmann
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States.
| |
Collapse
|
42
|
Bagi A, Skogerbø G. Tracking bacterial pollution at a marine wastewater outfall site - A case study from Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154257. [PMID: 35247400 DOI: 10.1016/j.scitotenv.2022.154257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Coastal marine environments are increasingly affected by anthropogenic impacts, such as the release of sewage at outfall sites and agricultural run-off. Fecal pollution introduced to the sea through these activities poses risks of spreading microbial diseases and disseminating antibiotic resistant bacteria and their genes. The study area of this research, Bore beach, is situated between two such point sources, an outfall site where treated sewage is released 1 km off the coast and a stream that carries run-off from an agricultural area to the northern end of the beach. In order to investigate whether and to what extent fecal contamination from the sewage outfall reached the beach, we used microbial source tracking, based on whole community analysis. Samples were collected from sea water at varying distances from the sewage outfall site and along the beach, as well as from the sewage effluent and the stream. Amplicon sequencing of 16S rRNA genes from all the collected samples was carried out at two time points (June and September). In addition, the seawater at the sewage outfall site and the sewage effluent were subject to shotgun metagenomics. To estimate the contribution of the sewage effluent and the stream to the microbial communities at Bore beach, we employed SourceTracker2, a program that uses a Bayesian algorithm to perform such quantification. The SourceTracker2 results suggested that the sewage effluent is likely to spread fecal contamination towards the beach to a greater extent than anticipated based on the prevailing sea current. The estimated mixing proportions of sewage at the near-beach site (P4) were 0.22 and 0.035% in June and September, respectively. This was somewhat below that stream's contribution in June (0.028%) and 10-fold higher than the stream's contribution in September (0.004%). Our analysis identified a sewage signal in all the tested seawater samples.
Collapse
Affiliation(s)
- Andrea Bagi
- NORCE Norwegian Research Centre, Marine Ecology, Mekjarvik 12, 4070 Randaberg, Norway.
| | | |
Collapse
|
43
|
Wang Y, Zheng G, Wang D, Zhou L. Occurrence of bacterial and viral fecal markers in municipal sewage sludge and their removal during sludge conditioning processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114802. [PMID: 35228166 DOI: 10.1016/j.jenvman.2022.114802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Fecal contamination in wastewater treatment system may pose severe threats to human health, but the detailed contamination of fecal bacterial and viral pathogens in municipal sewage sludge remains unclear. In addition, it is also unclear how sludge conditioning treatments would impact the distribution of fecal markers in conditioned sewage sludge. Before addressing these two issues, the possible polymerase chain reaction (PCR) inhibition effect when determining the abundances of fecal markers in both sludge solids and sludge supernatants should be solved, and methods of effectively concentrating fecal markers from sludge supernatant should also be developed. In the present study, we found that the serial tenfold dilution effectively reduced the PCR inhibition effect when determining the abundances of fecal markers including cross-assembly phages (CrAssphage), JC polyomavirus (JCPyV), human-specific HF183 bacteroides (HF183), human BK polyomavirus (BKPyV), human adenovirus (HAdV) and Escherichia coli (EC), while the utilization of negatively charged HA membrane was effective to recover fecal markers from sludge supernatant. The results of a six-month monitoring revealed that gene markers of CrAssphage, JCPyV, HF183, BKPyV, HAdV, and EC can be detected in municipal sewage sludge collected from a local wastewater treatment plant. Among the investigated four chemical conditioning methods, i.e., chemical conditioning with polyacrylamide (PAM), Fe[III]/CaO, or Fenton's reagent, and chemical acidification conditioning, chemical conditioning with Fenton's reagent was much more effective than the other three conditioning methods to reduce the abundances of fecal markers in the supernatant and solid of conditioned sewage sludge. Furthermore, the investigated fecal markers in the conditioned sewage sludge can be simultaneously attenuated by employing suitable conditioning methods, consequently reducing the associated environmental risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
44
|
Runtuvuori‐Salmela A, Kunttu HMT, Laanto E, Almeida GMF, Mäkelä K, Middelboe M, Sundberg L. Prevalence of genetically similar Flavobacterium columnare phages across aquaculture environments reveals a strong potential for pathogen control. Environ Microbiol 2022; 24:2404-2420. [PMID: 35049114 PMCID: PMC9304149 DOI: 10.1111/1462-2920.15901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Intensive aquaculture conditions expose fish to bacterial infections, leading to significant financial losses, extensive antibiotic use and risk of antibiotic resistance in target bacteria. Flavobacterium columnare causes columnaris disease in aquaculture worldwide. To develop a bacteriophage-based control of columnaris disease, we isolated and characterized 126 F. columnare strains and 63 phages against F. columnare from Finland and Sweden in 2017. Bacterial isolates were virulent on rainbow trout (Oncorhynchus mykiss) and fell into four previously described genetic groups A, C, E and G, with genetic groups C and E being the most virulent. Phage host range studied against a collection of 227 bacterial isolates (from 2013 to 2017) demonstrated modular infection patterns based on host genetic group. Phages infected contemporary and previously isolated bacterial hosts, but bacteria isolated most recently were generally resistant to previously isolated phages. Despite large differences in geographical origin, isolation year or host range of the phages, whole-genome sequencing of 56 phages showed high level of genetic similarity to previously isolated F. columnare phages (Ficleduovirus, Myoviridae). Altogether, this phage collection demonstrates a potential for use in phage therapy.
Collapse
Affiliation(s)
- Anniina Runtuvuori‐Salmela
- Department of Biological and Environmental Science and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Heidi M. T. Kunttu
- Department of Biological and Environmental Science and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Elina Laanto
- Department of Biological and Environmental Science and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences Research Programme, University of HelsinkiHelsinkiFinland
| | - Gabriel M. F. Almeida
- Department of Biological and Environmental Science and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøNorway
| | - Kati Mäkelä
- Department of Biological and Environmental Science and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| | - Mathias Middelboe
- Department of Biology, Marine Biological SectionUniversity of CopenhagenHelsingørDenmark
| | - Lotta‐Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
45
|
Cuevas-Ferrando E, Pérez-Cataluña A, Falcó I, Randazzo W, Sánchez G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front Microbiol 2022; 13:836193. [PMID: 35464930 PMCID: PMC9026171 DOI: 10.3389/fmicb.2022.836193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
Wastewater discharge to the environment or its reuse after sanitization poses a concern for public health given the risk of transmission of human viral diseases. However, estimating the viral infectivity along the wastewater cycle presents technical challenges and still remains underexplored. Recently, human-associated crAssphage has been investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies, even though its assessment as biomarker for infectious enteric viruses has not been explored yet. To this end, the occurrence of potentially infectious norovirus genogroup I (GI), norovirus GII, hepatitis A virus (HAV), rotavirus A (RV), and human astrovirus (HAstV) along with crAssphage was investigated in influent and effluent water sampled in four wastewater treatment plants (WWTPs) over 1 year by a PMAxx-based capsid integrity RT-qPCR assay. Moreover, influent and effluent samples of a selected WWTP were additionally assayed by an in situ capture RT-qPCR assay (ISC-RT-qPCR) as estimate for viral infectivity in alternative to PMAxx-RT-qPCR. Overall, our results showed lower viral occurrence and concentration assessed by ISC-RT-qPCR than PMAxx-RT-qPCR. Occurrence of potentially infectious enteric virus was estimated by PMAxx-RT-qPCR as 88–94% in influent and 46–67% in effluent wastewaters with mean titers ranging from 4.77 to 5.89, and from 3.86 to 4.97 log10 GC/L, with the exception of HAV that was sporadically detected. All samples tested positive for crAssphage at concentration ranging from 7.41 to 9.99 log10 GC/L in influent and from 4.56 to 6.96 log10 GC/L in effluent wastewater, showing higher mean concentration than targeted enteric viruses. Data obtained by PMAxx-RT-qPCR showed that crAssphage strongly correlated with norovirus GII (ρ = 0.67, p < 0.05) and weakly with HAstV and RV (ρ = 0.25–0.30, p < 0.05) in influent samples. In effluent wastewater, weak (ρ = 0.27–0.38, p < 0.05) to moderate (ρ = 0.47–0.48, p < 0.05) correlations between crAssphage and targeted viruses were observed. Overall, these results corroborate crAssphage as an indicator for fecal contamination in wastewater but a poor marker for either viral occurrence and viral integrity/infectivity. Despite the viral load reductions detected in effluent compared to influent wastewaters, the estimates of viral infectivity based on viability molecular methods might pose a concern for (re)-using of treated water.
Collapse
|
46
|
Jiang SC, Bischel HN, Goel R, Rosso D, Sherchan S, Whiteson KL, Yan T, Solo-Gabriele HM. Integrating Virus Monitoring Strategies for Safe Non-potable Water Reuse. WATER 2022; 14:1187. [PMID: 37622131 PMCID: PMC10448804 DOI: 10.3390/w14081187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, and especially viral pathogen exposure, limit widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling of viral health risks in the context of water reuse. First, we describe the current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We introduce promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies are ready for identifying and implementing viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in more robust assessment of water reuse risk.
Collapse
Affiliation(s)
- Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Heather N Bischel
- Department of Civil & Environmental Engineering, University of California, Davis CA 95616
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah 84112
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Samendra Sherchan
- Department of Environmental Health sciences, Tulane university, New Orleans, LA 70112
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawaii at Manoa, HI 96822, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
47
|
Ballesté E, Blanch AR, Muniesa M, García-Aljaro C, Rodríguez-Rubio L, Martín-Díaz J, Pascual-Benito M, Jofre J. Bacteriophages in sewage: abundance, roles, and applications. FEMS MICROBES 2022; 3:xtac009. [PMID: 37332509 PMCID: PMC10117732 DOI: 10.1093/femsmc/xtac009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 08/25/2023] Open
Abstract
The raw sewage that flows through sewage systems contains a complex microbial community whose main source is the human gut microbiome, with bacteriophages being as abundant as bacteria or even more so. Phages that infect common strains of the human gut bacteriome and transient bacterial pathogens have been isolated in raw sewage, as have other phages corresponding to non-sewage inputs. Although human gut phages do not seem to replicate during their transit through the sewers, they predominate at the entrance of wastewater treatment plants, inside which the dominant populations of bacteria and phages undergo a swift change. The sheer abundance of phages in the sewage virome prompts several questions, some of which are addressed in this review. There is growing concern about their potential role in the horizontal transfer of genes, including those related with bacterial pathogenicity and antibiotic resistance. On the other hand, some phages that infect human gut bacteria are being used as indicators of fecal/viral water pollution and as source tracking markers and have been introduced in water quality legislation. Other potential applications of enteric phages to control bacterial pathogens in sewage or undesirable bacteria that impede the efficacy of wastewater treatments, including biofilm formation on membranes, are still being researched.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Anicet R Blanch
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Julia Martín-Díaz
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Miriam Pascual-Benito
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - J Jofre
- Reial Academia de Ciències i Arts de Barcelona, La Rambla, 115, 08002 Barcelona, Spain
| |
Collapse
|
48
|
Cannon JL, Park GW, Anderson B, Leone C, Chao M, Vinjé J, Fraser AM. Hygienic monitoring in long-term care facilities using ATP, crAssphage, and human noroviruses to direct environmental surface cleaning. Am J Infect Control 2022; 50:289-294. [PMID: 35184878 PMCID: PMC8903150 DOI: 10.1016/j.ajic.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Norovirus and C. difficile are associated with diarrheal illnesses and deaths in long-term care (LTC) facilities and can be transmitted by contaminated environmental surfaces. Hygienic monitoring tools such as adenosine triphosphate (ATP) bioluminescence and indicators of fecal contamination can help to identify LTC facility surfaces with cleaning deficiencies. METHODS High-touch surfaces in 11 LTC facilities were swabbed and tested for contamination by norovirus, a fecal indicator virus, crAssphage, and ATP which detects organic debris. High levels of contamination were defined as log ATP relative light unit values or crAssphage log genomic copy values in the 75th percentile of values obtained from each facility. RESULTS Over 90% of surfaces tested positive for crAssphage or gave failing ATP scores. Norovirus contamination was not detected. Handrails, equipment controls, and patient beds were 4 times more likely than other surfaces or locations to have high levels of crAssphage. Patient bed handrails and tables and chairs in patient lounges had high levels of both ATP and crAssphage. CONCLUSIONS Surfaces with high levels of ATP and crAssphage were identified. Quantifying levels of contamination longitudinally and before and after cleaning might enhance infection prevention and control procedures for reducing diarrheal illnesses in LTC facilities.
Collapse
Affiliation(s)
- Jennifer L. Cannon
- National Foundation for the Centers for Disease Control and Prevention Inc., 600 Peachtree St. NE #1000, Atlanta, GA, 30308, USA,Center for Food Safety, University of Georgia, 1109 Experiment St, Griffin, GA, 30223, USA,Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA,Correspondence: Jennifer Cannon, 1600 Clifton Rd. NE, H18-7, Atlanta, GA, 30333, USA,
| | - Geun Woo Park
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Benjamin Anderson
- Center for Food Safety, University of Georgia, 1109 Experiment St, Griffin, GA, 30223, USA
| | - Cortney Leone
- Food, Nutrition, and Packaging Sciences Department, Clemson University, 206 Poole Agricultural Center, Clemson, SC, 29334, USA
| | - Morgan Chao
- Food, Nutrition, and Packaging Sciences Department, Clemson University, 206 Poole Agricultural Center, Clemson, SC, 29334, USA
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Angela M. Fraser
- Food, Nutrition, and Packaging Sciences Department, Clemson University, 206 Poole Agricultural Center, Clemson, SC, 29334, USA
| |
Collapse
|
49
|
Kevill JL, Pellett C, Farkas K, Brown MR, Bassano I, Denise H, McDonald JE, Malham SK, Porter J, Warren J, Evens NP, Paterson S, Singer AC, Jones DL. A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151916. [PMID: 34826466 PMCID: PMC8610557 DOI: 10.1016/j.scitotenv.2021.151916] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0-400 NTU), surfactant load (0-200 mg/l), and storage temperature (5-20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and <10% with IP in turbid samples, whilst viral recoveries for samples with additional surfactant were between 0-18% for AS and 0-5% for IP. Turbidity and sample storage temperature combined had no significant effect on SARS-CoV-2 recovery (p > 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples.
Collapse
Affiliation(s)
- Jessica L Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Mathew R Brown
- Joint Biosecurity Centre, Department of Health and Social Care, London WC1B 4DA, UK; School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Irene Bassano
- Joint Biosecurity Centre, Department of Health and Social Care, London WC1B 4DA, UK; Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Hubert Denise
- Joint Biosecurity Centre, Department of Health and Social Care, London WC1B 4DA, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jonathan Porter
- Environment Agency National Laboratory Service, Exeter, Devon EX6 8PE, UK
| | - Jonathan Warren
- Environment Agency National Laboratory Service, Exeter, Devon EX6 8PE, UK
| | - Nicholas P Evens
- Environment Agency National Laboratory Service, Exeter, Devon EX6 8PE, UK
| | - Steve Paterson
- Centre of Genomics Research & NERC Environmental Omics Facility, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
50
|
Garcia A, Le T, Jankowski P, Yanaç K, Yuan Q, Uyaguari-Diaz MI. Quantification of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes. PeerJ 2022; 10:e12957. [PMID: 35186509 PMCID: PMC8852272 DOI: 10.7717/peerj.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
We investigated the potential use and quantification of human enteric viruses in municipal wastewater samples of Winnipeg (Manitoba, Canada) as alternative indicators of contamination and evaluated the processing stages of the wastewater treatment plant. During the fall 2019 and winter 2020 seasons, samples of raw sewage, activated sludge, effluents, and biosolids (sludge cake) were collected from the North End Sewage Treatment Plant (NESTP), which is the largest wastewater treatment plant in the City of Winnipeg. DNA (Adenovirus and crAssphage) and RNA enteric viruses (Pepper mild mottle virus, Norovirus genogroups GI and GII, Rotavirus Astrovirus, and Sapovirus) as well as the uidA gene found in Escherichia coli were targeted in the samples collected from the NESTP. Total nucleic acids from each wastewater treatment sample were extracted using a commercial spin-column kit. Enteric viruses were quantified in the extracted samples via quantitative PCR using TaqMan assays. Overall, the average gene copies assessed in the raw sewage were not significantly different (p-values ranged between 0.1023 and 0.9921) than the average gene copies assessed in the effluents for DNA and RNA viruses and uidA in terms of both volume and biomass. A significant reduction (p-value ≤ 0.0438) of Adenovirus and Noroviruses genogroups GI and GII was observed in activated sludge samples compared with those for raw sewage per volume. Higher GCNs of enteric viruses were observed in dewatered sludge samples compared to liquid samples in terms of volume (g of sample) and biomass (ng of nucleic acids). Enteric viruses found in gene copy numbers were at least one order of magnitude higher than the E. coli marker uidA, indicating that enteric viruses may survive the wastewater treatment process and viral-like particles are being released into the aquatic environment. Viruses such as Noroviruses genogroups GI and GII, and Rotavirus were detected during colder months. Our results suggest that Adenovirus, crAssphage, and Pepper mild mottle virus can be used confidently as complementary viral indicators of human fecal pollution.
Collapse
Affiliation(s)
- Audrey Garcia
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Jankowski
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|