1
|
Danish M, Shahid M, Shafi Z, Zeyad MT, Farah MA, Al-Anazi KM, Ahamad L. Boosting disease resistance in Solanum melongena L. (eggplant) against Alternaria solani: the synergistic effect of biocontrol Acinetobacter sp. and indole-3-acetic acid (IAA). World J Microbiol Biotechnol 2025; 41:85. [PMID: 40011313 DOI: 10.1007/s11274-025-04282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Alternaria solani causes early blight disease in eggplants, threatening production and leading to significant economic losses. Fungicides are used to control fungal diseases, but their overuse raises resistance concerns. Finding novel, eco-friendly biocontrol agents is therefore a solution for the future. The coordination between antagonistic bacterial agents and plant growth hormones in defense responses against fungal pathogens are crucial. This study assessed biocontrol potential of Acinetobacter sp. SCR-11 (Accession no. OR751536.1) and indole-3-acetic acid (IAA; 100 µM), singly and in combination, against A. solani in eggplants. Strain SCR-11 produced hydrogen cyanide (HCN; 5.7 µg mL⁻1), siderophore i.e. salicylic acid (14.7 µg mL⁻1), 2,3-dihydroxybenzoic acid (23.1 µg mL⁻1) and various extracellular lytic enzymes. Strain SCR-11 exhibited antagonistic activity by strongly inhibiting (82%) A. solani. Acinetobacter sp. inoculation and IAA treatment enhanced growth, biomass, and leaf pigments of A. solani-diseased eggplants, with effectiveness in order: SCR-11 + IAA > SCR-11 > IAA >. The combined treatments (SCR-11 + IAA) most effectively increased total soluble protein (62.5%), carbohydrate (60%), total soluble sugar (81%), and phenol (74%) in A. solani-infected eggplant. Biocontrol agent and IAA application significantly (p ≤ 0.05) reduced proline and malondialdehyde (MDA) levels, alleviating oxidative stress in A. solani-diseased eggplant. The SCR-11 + IAA treatment significantly reduced the percent disease index (71%) and increased protection (69%) in diseased eggplant. The Acinetobacter sp. and IAA coordination enhanced disease resistance in A. solani-infected eggplants by boosting defense enzyme activities (SOD, POD, PAL, and β-1, 3 glucanase), significantly protecting plants from pathogen attack. At harvest, soil populations of A. solani decreased, while SCR-11 populations increased significantly. Acinetobacter sp. and IAA work synergistically through pathogen suppression, plant growth promotion, and induction of plant defense responses. Thus, applying antagonistic PGPR strain with exogenous IAA enhances eggplant resistance to A. solani, providing an environmentally friendly agricultural solution.
Collapse
Affiliation(s)
- Mohammad Danish
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U., Aligarh, Uttar Pradesh, 202002, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U., Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Lukman Ahamad
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
2
|
Shahid M, Singh UB, Farah MA, Al-Anazi KM. Short-term responses of identified soil beneficial-bacteria to the insecticide fipronil: toxicological impacts. World J Microbiol Biotechnol 2024; 40:403. [PMID: 39627469 DOI: 10.1007/s11274-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Pesticides including insecticides are often applied to prevent distortion posed by plant insect pests. However, the application of these chemicals detrimentally affected the non-target organisms including soil biota. Fipronil (FIP), a broad-spectrum insecticide, is extensively used to control pests across the globe. The frequent usage calls for attention regarding risk assessment of undesirable effects on non-target microorganisms. Here, laboratory-based experiments were conducted to assess the effect of FIP on plant-beneficial bacteria (PBB); Rhizobium leguminosarum (Acc. No. PQ578652), Azotobacter salinestris (Acc. No. PQ578649) and Serratia marcescens (Acc. No. PQ578651). PBB synthesized growth regulating substances were negatively affected by increasing fipronil concentrations. For instance, at 100 µg FIPmL-1, a decrease in indole-3-acetic acid (IAA) synthesis by bacterial strains followed the order: A. salinestris (95.6%) S. marcescens (91.6%) > R. leguminosarum (87%). Also, exposure of bacteria cells to FIP hindered the growth and morphology of PBB observed as distortion, cracking, and aberrant structure under scanning electron microscopy (SEM). Moreover, FIP-treated and propidium iodide (PI)-stained bacterial cells displayed an insecticide dose-dependent increase in cellular permeability as observed under a confocal laser microscope (CLSM). Colony counts (log10 CFU mL-1) and growth of A. salinestris was completely inhibited at 150 µg FIPmL-1. The surface adhering ability (biofilm formation) of PBB was also disrupted/inhibited in a FIP dose-related manner. The respiration loss due to FIP was coupled with a reduction in population size. Fipronil at 150 µgmL-1 decreased cellular respiration in A. salinestris (72%) S. marcescens (53%) and R. leguminosarum (85%). Additionally, biomarker enzymes; lactate dehydrogenase (LDH), lipid peroxidation (LPO), and oxidative stress (catalase; CAT) induced by FIP represented significant (p ≤ 0.05) toxicity towards PBB strains. Conclusively, fipronil suggests a toxic effect that emphasizes their careful monitoring in soils before application and their optimum addition in the soil-plant system. It is high time to prepare both target-specific and slow-released agrochemical formulation for crop protection with concurrent safeguarding of soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mua Nath Bhanjan, Mau, Uttar Pradesh, 275103, India.
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mua Nath Bhanjan, Mau, Uttar Pradesh, 275103, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Ilyas M, Hameed A, Shah TM. Field and biochemical evaluation of glyphosate tolerant chickpea (Cicer arietinum L.) mutants developed through induced mutagenesis. BMC PLANT BIOLOGY 2024; 24:1028. [PMID: 39472786 PMCID: PMC11523782 DOI: 10.1186/s12870-024-05733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Weed control in chickpea (Cicer arietinum L.) is challenging due to narrow genetic base of available germplasm and limited herbicide options. In this view, present research was focused on induced mutagenesis in chickpea for development of herbicide (glyphosate) tolerant mutants and subsequent screening under field conditions. Further, objective was to analyze the defence response and biochemical adjustments in selected glyphosate tolerant chickpea mutants. Initially, 376 chickpea mutants (M6 populations developed through EMS and gamma rays) were screened for glyphosate tolerance under filed conditions and scored on a 1 to 5 scale based on plant injury related traits. Among tested mutants, 40 were found highly tolerant (score = 5), 32 as tolerant (score = 4) and 20 as highly sensitive (score = 1) to glyphosate. Chickpea mutants with variable glyphosate tolerance also differed significantly (Tukey test, p < 0.05) in leaf biochemical profiles. For instant, lowest total oxidant status (4175.µM/g f. wt.) was detected in glyphosate tolerant mutant developed from desi chickpea genotype "D3009" using 0.3% EMS and in highly tolerant mutant (1775. µM/g f. wt.) developed from kabuli genotype "K709" using 0.2% EMS. In general, highly tolerant chickpea mutants exhibited highest antioxidant potential (SOD, POD, CAT, TAC) that contributed in glyphosate tolerance. Desi i.e. D1M1HT-2 and Kabuli i.e. KM3HT-2 type mutants with highest seed yield had maximum catalase activity (4200 Units/g f. wt and 540 Units/g f. wt.). Mutants developed from desi type genotypes were comparably superior to mutants derive from Kabuli in terms of herbicide tolerance.
Collapse
Affiliation(s)
- Mariam Ilyas
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| | - Tariq Mahmud Shah
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
4
|
Shahid M, Altaf M, Ali S, Tyagi A. Isolation and assessment of the beneficial effect of exopolysaccharide-producing PGPR in Triticum aestivum (L.) plants grown under NaCl and Cd -stressed conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108973. [PMID: 39133980 DOI: 10.1016/j.plaphy.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024]
Abstract
Exopolysaccharide (EPS)-producing beneficial bacteria play a multifaceted role in improving plant growth and adaptive responses against different stressors. In this study, we isolated 25 bacterial strains from pea nodules and were further studied for their sodium chloride (NaCl) and cadmium (Cd) stress tolerance. Based on our results, Rhizobium fabae SR-22 (NCBI Accession number: MG063739.1) showed better tolerance toward salinity and Cd stress and produced a wide range of plant growth-promoting compounds. However, the amount of EPS varies during NaCl and Cd stress. It was important to note that NaCl and Cd beyond the tolerant level, affected the morphology and cellular viability of R. fabae. Interestingly, plant growth-promoting (PGP) substances (indole-3-acetic acid, ammonia, siderophore, and ACC deaminase) released by R. fabae were increased with increasing NaCl concentrations. In contrast, PGP substances were greatly decreased by increasing Cd dosages. Further, the beneficial effect of EPS-producing R. fabae in Triticum aestivum grown in soil treated with different levels of NaCl and Cd was assessed. Inoculation of R. fabae in wheat seedlings grown under higher NaCl and Cd concentrations showed improved growth compared to non-inoculated plants. R. fabae exhibited maximum effect in wheat plants grown under 2% NaCl and increased seed germination (8%), root length (13%), vigor indices (19%), root biomass (20%), chlorophyll-a (31%), total chlorophyll (27%) and carotenoid content. Additionally, R. fabae increased Cd and NaCl tolerance in wheat seedlings and improved their antioxidative responses. Conclusively, this work demonstrated that EPS-producing R. fabae showed a promising role in mitigating salinity and Cd-stress in wheat possibly by reducing salt and HM stress-induced abrasions and growth promotion via inorganic phosphate solubilization, and increased nutrient absorption. In the future, R. fabae equipped with these distinguishing characteristics may be used as effective bio-inoculants/bio-formulations in agriculture to address salinity and HM stress issues.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
5
|
Shafi Z, Shahid M, AlGarawi AM, Zeyad MT, Marey SA, Hatamleh AA, Wang S, Singh UB. The Exogenous Application of 24-Epibrassinolide (24-EBL) Increases the Cd and Pb Resilience in Zea mays (L.) by Regulating the Growth and Physiological Mechanism. Appl Biochem Biotechnol 2024; 196:3949-3973. [PMID: 37792177 DOI: 10.1007/s12010-023-04730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Heavy metals (HMs) at a concentration above the threshold level act as environmental pollutants and very often threaten the agricultural productivity globally. Finding affordable and environmentally sustainable deliverables to address this issue is therefore a top focus. Phytohormones alleviate the HMs-induced toxicity and positively influence the plant growth. Considering the importance of phytohormones, the present study aimed to assess the effect of 24-epibrassinolide (24-EBL; 10 µM) as seed soaking treatment on growth performance of Zea mays (L.) contaminated separately with increasing concentrations (50-400 mg.kg-1) of lead (Pb) and cadmium (Cd). With increasing metal concentrations, growth and plant biometric criteria were reduced. For instance, Cd at 400 mg.kg-1 soil reduced the germination efficiency (56%), root (77%) and shoot (69%) dry weight, total chlorophyll (64%), and carotenoid content (45%). Contrarily, both HMs caused increase in stress biomarkers and antioxidant enzymes in seedling. However, exogenous administration of 24-EBL significantly enhanced the growth attributes, photosynthetic pigments, proline, MDA, and antioxidant enzyme activity while reducing the harmful effects of HMs stress on Z. mays. For instance, 24-EBL (10 µM) improved the germination percentage, root biomass, chl a, chl b, total chlorophyll, and carotenoid content by 16, 21, 17, 34, 18, and 15%, respectively, in 50 mg.Pb.kg-1 soil-treated Z. mays plants. Furthermore, the amounts of proline, MDA, and antioxidant enzymes in foliage of Z. mays were interestingly and dramatically lowered by 24-EBL application. Uptake of metals in plant organs was significantly reduced when 24-EBL was applied to Pb- and Cd-treated Z. mays. The recent findings help us better understand how 24-EBL regulates growth and development of Z. mays as well as how it boosts HMs' resilience, which could increase the possibility of employing 24-EBL to increase Z. mays productivity. Thus, the present findings confirmed the potentiality of pre-soaking the seed in 24-EBL solution that neutralizes the toxic effects of heavy metals in Z. mays plants. Therefore, it is suggested that applying phytohormones including 24-EBL in removal of heavy metal stress in plants is the best possible solution in sustainable agriculture.
Collapse
Affiliation(s)
- Zaryab Shafi
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, Mau, U.P, India
| | - Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, Mau, U.P, India.
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University (A.M.U), Aligarh, UP-20202, India
| | - Samy A Marey
- King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, 404000, Wanzhou, China
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, Mau, U.P, India
| |
Collapse
|
6
|
Altaf M, Ilyas T, Shahid M, Shafi Z, Tyagi A, Ali S. Trichoderma Inoculation Alleviates Cd and Pb-Induced Toxicity and Improves Growth and Physiology of Vigna radiata (L.). ACS OMEGA 2024; 9:8557-8573. [PMID: 38405473 PMCID: PMC10882690 DOI: 10.1021/acsomega.3c10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Heavy metals (HMs) pose a serious threat to agricultural productivity. Therefore, there is a need to find sustainable approaches to combat HM stressors in agriculture. In this study, we isolated Trichoderma sp. TF-13 from metal-polluted rhizospheric soil, which has the ability to resist 1600 and 1200 μg mL-1 cadmium (Cd) and lead (Pb), respectively. Owing to its remarkable metal tolerance, this fungal strain was applied for bioremediation of HMs in Vigna radiata (L.). Strain TF-13 produced siderophore, salicylic acid (SA; 43.4 μg mL-1) and 2,3-DHBA (21.0 μg mL-1), indole-3-acetic acid, ammonia, and ACC deaminase under HM stressed conditions. Increasing concentrations of tested HM ions caused severe reduction in overall growth of plants; however, Trichoderma sp. TF-13 inoculation significantly (p ≤ 0.05) increased the growth and physiological traits of HM-treated V. radiata. Interestingly, Trichoderma sp. TF-13 improved germination rate (10%), root length (26%), root biomass (32%), and vigor index (12%) of V. radiata grown under 25 μg Cd kg-1 soil. Additionally, Trichoderma inoculation showed a significant (p ≤ 0.05) increase in total chlorophyll, chl a, chl b, carotenoid content, root nitrogen (N), and root phosphorus (P) of 100 μg Cd kg-1 soil-treated plants over uninoculated treatment. Furthermore, enzymatic and nonenzymatic antioxidant activities of Trichoderma inoculated in metal-treated plants were improved. For instance, strain TF-13 increased proline (37%), lipid peroxidation (56%), catalase (35%), peroxidase (42%), superoxide dismutase (27%), and glutathione reductase (39%) activities in 100 μg Pb kg-1 soil-treated plants. The uptake of Pb and Cd in root/shoot tissues was decreased by 34/39 and 47/38% in fungal-inoculated and 25 μg kg-1 soil-treated plants. Thus, this study demonstrates that stabilizing metal mobility in the rhizosphere through Trichoderma inoculation significantly reduced the detrimental effects of Cd and Pb toxicity in V. radiata and also enhanced development under HM stress conditions.
Collapse
Affiliation(s)
- Mohammad Altaf
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, 11451 Riyadh, Saudi
Arabia
| | - Talat Ilyas
- Department
of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Zaryab Shafi
- Department
of Biosciences, Faculty of Science, Integral
University, Lucknow, Uttar Pradesh 226026, India
| | - Anshika Tyagi
- Department
of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Sajad Ali
- Department
of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
7
|
Mohy-Ud-Din W, Chen F, Bashir S, Akhtar MJ, Asghar HN, Farooqi ZUR, Zulfiqar U, Haider FU, Afzal A, Alqahtani MD. Unlocking the potential of glyphosate-resistant bacterial strains in biodegradation and maize growth. Front Microbiol 2023; 14:1285566. [PMID: 38204469 PMCID: PMC10777731 DOI: 10.3389/fmicb.2023.1285566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Glyphosate [N-(phosphonomethyl)-glycine] is a non-selective herbicide with a broad spectrum activity that is commonly used to control perennial vegetation in agricultural fields. The widespread utilization of glyphosate in agriculture leads to soil, water, and food crop contamination, resulting in human and environmental health consequences. Therefore, it is imperative to devise techniques for enhancing the degradation of glyphosate in soil. Rhizobacteria play a crucial role in degrading organic contaminants. Limited work has been done on exploring the capabilities of indigenously existing glyphosate-degrading rhizobacteria in Pakistani soils. This research attempts to discover whether native bacteria have the glyphosate-degrading ability for a sustainable solution to glyphosate contamination. Therefore, this study explored the potential of 11 native strains isolated from the soil with repeated glyphosate application history and showed resistance against glyphosate at higher concentrations (200 mg kg-1). Five out of eleven strains outperformed in glyphosate degradation and plant growth promotion. High-pressure liquid chromatography showed that, on average, these five strains degraded 98% glyphosate. In addition, these strains promote maize seed germination index and shoot and root fresh biomass up to 73 and 91%, respectively. Furthermore, inoculation gave an average increase of acid phosphatase (57.97%), alkaline phosphatase (1.76-fold), and dehydrogenase activity (1.75-fold) in glyphosate-contaminated soil. The findings indicated the importance of using indigenous rhizobacteria to degrade glyphosate. Therefore, by maintaining soil health, indigenous soil biodiversity can work effectively for the bioremediation of contaminated soils and sustainable crop production in a world facing food security.
Collapse
Affiliation(s)
- Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Aneeqa Afzal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Hameed A, Nguyen DH, Lin SY, Stothard P, Neelakandan P, Young LS, Young CC. Hormesis of glyphosate on ferulic acid metabolism and antifungal volatile production in rice root biocontrol endophyte Burkholderia cepacia LS-044. CHEMOSPHERE 2023; 345:140511. [PMID: 37871874 DOI: 10.1016/j.chemosphere.2023.140511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Glyphosate (GP, N-phosphonomethyl glycine) is one of the most popular organophosphate herbicides widely used in agricultural practices worldwide. There have been extensive reports on the biohazard attributes and hormetic impacts of GP on plant and animal systems. However, the effects of GP on plant growth-promoting microbes and its ecological relevance remain unknown. Here, we show that GP does exert a hormetic impact on Burkholderia cepacia LS-044, a rice (Oryza sativa ssp. japonica cv. Tainung 71) root endophytic isolate. We used increasing doses of ferulic acid (FA, 1-25 mM) and GP (0.5-5 mM) to test the growth and antifungal volatile production in LS-044 by electrochemical, liquid chromatographic, gas chromatographic and spectrophotometric means. GP treatment at a low dose (0.5 mM) increased FA utilization and significantly (P < 0.0001) enhanced antifungal volatile activity in LS-044. Although FA (1 mM) was rapidly utilized by LS-044, no chromatographically detectable utilization of GP was observed at tested doses (0.5-5 mM). LS-044 emitted predominant amounts of tropone in addition to moderate-to-minor amounts of diverse ketones and/or their derivatives (acetone, acetophenone, 2-butanone, 1-propanone, 1-(2-furanyl-ethanone, 1-phenyl-1-propanone and 1-(3-pyridinyl)-1-propanone), d-menthol, 2-methoxy-3-(1-methylethyl)-pyrazine, dimethyl disulfide, pyridine and ammonium carbamate when grown under GP supplement. GP hormesis on LS-044 induced phenotypic variations in O. sativa ssp. japonica cv. Tainan 11 as evident through seed germination assay. Genes involved in the transformation of FA, and a key gene encoding 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) with Gly-94 and Tyr-95 residues localized at active site most likely rendering EPSPS sensitivity to GP, were detected in LS-044. This is the first report on the GP hormesis influencing morphological and metabolic aspects including volatile emission in a biocontrol bacterium that could modulate rice plant phenotype.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India; Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Duc Hai Nguyen
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Poovarasan Neelakandan
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Li-Sen Young
- Tetanti AgriBiotech Inc. No. 1, Gongyequ 10th Rd., Xitun Dist., Taichung, 40755, Taiwan
| | - Chiu-Chung Young
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
9
|
Schwedt I, Collignon M, Mittelstädt C, Giudici F, Rapp J, Meißner J, Link H, Hertel R, Commichau FM. Genomic adaptation of Burkholderia anthina to glyphosate uncovers a novel herbicide resistance mechanism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:727-739. [PMID: 37311711 PMCID: PMC10667639 DOI: 10.1111/1758-2229.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Glyphosate (GS) specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that converts phosphoenolpyruvate (PEP) and shikimate-3-phosphate to EPSP in the shikimate pathway of bacteria and other organisms. The inhibition of the EPSP synthase depletes the cell of the EPSP-derived aromatic amino acids as well as of folate and quinones. A variety of mechanisms (e.g., EPSP synthase modification) has been described that confer GS resistance to bacteria. Here, we show that the Burkholderia anthina strain DSM 16086 quickly evolves GS resistance by the acquisition of mutations in the ppsR gene. ppsR codes for the pyruvate/ortho-Pi dikinase PpsR that physically interacts and regulates the activity of the PEP synthetase PpsA. The mutational inactivation of ppsR causes an increase in the cellular PEP concentration, thereby abolishing the inhibition of the EPSP synthase by GS that competes with PEP for binding to the enzyme. Since the overexpression of the Escherichia coli ppsA gene in Bacillus subtilis and E. coli did not increase GS resistance in these organisms, the mutational inactivation of the ppsR gene resulting in PpsA overactivity is a GS resistance mechanism that is probably unique to B. anthina.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- FG Molecular Microbiology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Madeline Collignon
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Florian Giudici
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of Tübingen, Bacterial MetabolomicsTübingenGermany
| | - Janek Meißner
- Department of General Microbiology, Institute for Microbiology and GeneticsUniversity of GoettingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of Tübingen, Bacterial MetabolomicsTübingenGermany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- Department of Genomic and Applied Microbiology, Institute for Microbiology and GeneticsUniversity of GoettingenGöttingenGermany
| | - Fabian M. Commichau
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- FG Molecular Microbiology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
10
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
11
|
Shahid M, Khan MS, Singh UB. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. ENVIRONMENTAL RESEARCH 2023; 236:116724. [PMID: 37500042 DOI: 10.1016/j.envres.2023.116724] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reclamation of pesticide-polluted lands has long been a difficult endeavour. The use of synthetic pesticides could not be restricted due to rising agricultural demand. Pesticide toxicity has become a pressing agronomic problem due to its adverse impact on agroecosystems, agricultural output, and consequently food security and safety. Among different techniques used for the reclamation of pesticide-polluted sites, microbial bioremediation is an eco-friendly approach, which focuses on the application of resilient plant growth promoting rhizobacteria (PGPR) that may transform or degrade chemical pesticides to innocuous forms. Such pesticide-resilient PGPR has demonstrated favourable effects on soil-plant systems, even in pesticide-contaminated environments, by degrading pesticides, providing macro-and micronutrients, and secreting active but variable secondary metabolites like-phytohormones, siderophores, ACC deaminase, etc. This review critically aims to advance mechanistic understanding related to the reduction of phytotoxicity of pesticides via the use of microbe-mediated remediation techniques leading to crop optimization in pesticide-stressed soils. The literature surveyed and data presented herein are extremely useful, offering agronomists-and crop protectionists microbes-assisted remedial strategies for affordably enhancing crop productivity in pesticide-stressed soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India; Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India
| |
Collapse
|
12
|
Zhang J, Wang N, Li S, Wang J, Feng Y, Wang E, Li Y, Yang T, Chen W. The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3421. [PMID: 37836161 PMCID: PMC10575130 DOI: 10.3390/plants12193421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. RESULTS Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. CONCLUSIONS Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Nan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Chen
- College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Maldani M, Aliyat FZ, Morabito M, Giarratana F, Nassiri L, Ibijbijen J. The effects of herbicide application on two soil phosphate solubilizing bacteria: Pantoea agglomerans and Serratia rubidaea. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:720-735. [PMID: 37407783 DOI: 10.1007/s10646-023-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
The application of synthetic pesticides is one of the fastest acting tools at farmers' disposal to prevent and mitigate the threats posed by plant pests in agriculture. However, the effects of these above-ground applications of pesticides are known to be detrimental to some belowground, non-target soil biota. At present, the effects many pesticides have on key functional microbial groups associated with phosphate (P) solubilization in the soil are still largely unknown. The purpose of this study was to compare the effects of two herbicides, glyphosate, and paraquat, on phosphate solubilizing bacteria (PSB) with and without pH adjustment (after herbicide addition) since pH is a major indicator of P solubilization. In our assay, two PSB strains (Pantoea agglomerans and Serratia rubidaea) were chosen to assess their ability to solubilize tricalcium phosphate (TCP) by using the vanadate-molybdate method (to measure the amount of P solubilized) in the presence of glyphosate (5.4 g/L and 10.8 g/L) or paraquat (2 g/L and 4 g/L) separately. To assess the effect of PSB treated by the herbicides, a growth experiment using PSB inoculated wheat seedlings was performed under greenhouse conditions (25 °C, light 16 h/8 h dark). After four weeks, wheat above-ground growth parameters were measured. Our results showed that even under recommended doses of glyphosate (5.4 g/L) and paraquat (2 g/L), a decrease in P solubilization activity was observed in P. agglomerans and S. rubidaea. Whilst paraquat affected TCP solubilization more than glyphosate with and without pH adjustment, there was a significant decrease (p < 0.05) in TCP solubilization, up to 39% and 93% in the presence of glyphosate and paraquat, respectively, for S. rubidaea, and up to 45% and 95% in the presence of glyphosate and paraquat, respectively, for P. agglomerans. The effect of the herbicides on the PSB had the same results as in the greenhouse test on wheat seedling growth, confirming that these herbicides have both above and belowground negative effects, despite being used at recommended doses.
Collapse
Affiliation(s)
- Mohamed Maldani
- Department of Biological & Forensic Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, NC, 28301, USA.
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Fatima Zahra Aliyat
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Marina Morabito
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario dell' Annunziata, Messina, Italy
| | - Laila Nassiri
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Jamal Ibijbijen
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
14
|
Irsad, Shahid M, Haq E, Mohamed A, Rizvi PQ, Kolanthasamy E. Entomopathogen-based biopesticides: insights into unraveling their potential in insect pest management. Front Microbiol 2023; 14:1208237. [PMID: 37564286 PMCID: PMC10411202 DOI: 10.3389/fmicb.2023.1208237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 08/12/2023] Open
Abstract
Global food security is a critical challenge to fulfill the demands of an exponentially growing population. To date, growers rely on chemicals; the broad-spectrum application of synthetic molecules leads to environmental contamination, resistance development, residual toxicity, pest resurgence, and a detrimental effect on human health and cattle. Crop production needs to be improved considering environmental and human health concerns to ensure food security. Furthermore, economically important crops are prone to attack by insect pests, causing considerable yield losses. Microbes are an eco-friendly, versatile alternative, and a potential candidate for combatting destructive pests below the economic injury level and improving the plant's health and productivity. Several microbial pathogens, including parasites, predators, parasitoids, pollinators, and many beneficial microorganisms, possess toxic properties against target organisms but do not cause harm to the non-target organisms. Entomopathogens (ENMs) have great potential for pest suppression due to their remarkable properties. Bacteria are host-specific, but fungi have a broader host range and can be significantly affected by both soil-dwelling and terrestrial insect pests. Virulent pathogens cause mortality in target insect pests known as ENMs and can penetrate through natural openings, ingestions, and integuments to cause a possible effect on target insect pests. The objective of using ENMs is to sustain productivity, improve environmental health, reduce pesticides, and conserve natural resources. Moreover, research is ongoing to discover other possible aspects, especially exploring potential ENMs. Therefore, there is a need for identification, isolation, and bioformulation to overcome the existing issues. This study is mainly focused on the status of bio-formulations, pathogenicity, their mode of action, and the potential application of different types of microbial formulations for sustainable pest management.
Collapse
Affiliation(s)
- Irsad
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology, ICAR-NBAIM, Kushmaur, India
| | - Ejazul Haq
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | | | - Parvez Qamar Rizvi
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Elango Kolanthasamy
- Kumaraguru Institute of Agriculture, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| |
Collapse
|
15
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
16
|
Lastochkina O, Yakupova A, Avtushenko I, Lastochkin A, Yuldashev R. Effect of Seed Priming with Endophytic Bacillus subtilis on Some Physio-Biochemical Parameters of Two Wheat Varieties Exposed to Drought after Selective Herbicide Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:1724. [PMID: 37111947 PMCID: PMC10144775 DOI: 10.3390/plants12081724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Wheat plants are frequently exposed to combined herbicide and drought stress (HDS) which induces complex responses negatively, affects productivity, and is becoming more exacerbated with current climate change. In this work, we studied the influence of seed priming with endophytic bacteria Bacillus subtilis (strains 104 and 26D) on growth and tolerance of two wheat (Triticum aestivum L.) varieties (E70-drought tolerant; SY-drought susceptible) exposed to soil drought after application of selective herbicide Sekator® Turbo in pot experiments under controlled conditions; 17-day-old plants sprayed with herbicide and after 3 days were subjected to soil drought by stopping irrigating the plants for 7 days with subsequent resumption of normal irrigation (recovery). Additionally, the growth of tested strains (104, 26D) in the presence of different concentrations of herbicide Sekator® Turbo and drought (PEG-6000) were evaluated. It was established that both strains are herbicide and drought tolerant and capable to improve seed germination and early seedlings' growth under different herbicide and drought stress degrees. The results of pot experiments showed that HDS exposure declined growth (plant length, biomass), photosynthetic pigments (chlorophyll a and b), leaf area, and increased lipid peroxidation (LPO) and proline accumulation in plants, demonstrating higher damaging effects for SY variety. Strains 104 and 26D mitigated (in different levels) such negative impacts of HDS on growth of both varieties by increasing length of roots and shoots, biomass, photosynthetic pigments (chlorophyll a and b), and leaf area, reducing stress-caused LPO (i.e., malondialdehyde), and regulating proline biosynthesis, as well as contributing to a faster recovery of growth, photosynthetic pigments, and redox-status of plants in post-stress period in comparison with non-primed plants. These ultimately manifested in forming a better grain yield of both varieties primed with 104, 26D, and exposed to HDS. Thus, both strains 104 and 26D (which are herbicide and drought tolerant) may be used as seed priming agents to improve wheat HDS tolerance and grain yield; however, strain 104 more effectively protected plants of E70, while strain 26D-plants of SY. Further research should be focused on understanding the mechanisms that determine the strain and variety-specificity of endophytic symbiosis and the role of bacteria in the modulation of physiological states of primed plants under stress conditions, including HDS.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Albina Yakupova
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Irina Avtushenko
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Artem Lastochkin
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| |
Collapse
|
17
|
Metabolomics-Based Mechanistic Insights into Revealing the Adverse Effects of Pesticides on Plants: An Interactive Review. Metabolites 2023; 13:metabo13020246. [PMID: 36837865 PMCID: PMC9958811 DOI: 10.3390/metabo13020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
In plant biology, metabolomics is often used to quantitatively assess small molecules, metabolites, and their intermediates in plants. Metabolomics has frequently been applied to detect metabolic alterations in plants exposed to various biotic and abiotic stresses, including pesticides. The widespread use of pesticides and agrochemicals in intensive crop production systems is a serious threat to the functionality and sustainability of agroecosystems. Pesticide accumulation in soil may disrupt soil-plant relationships, thereby posing a pollution risk to agricultural output. Application of metabolomic techniques in the assessment of the biological consequences of pesticides at the molecular level has emerged as a crucial technique in exposome investigations. State-of-the-art metabolomic approaches such as GC-MS, LC-MS/MS UHPLC, UPLC-IMS-QToF, GC/EI/MS, MALDI-TOF MS, and 1H-HR-MAS NMR, etc., investigating the harmful effects of agricultural pesticides have been reviewed. This updated review seeks to outline the key uses of metabolomics related to the evaluation of the toxicological impacts of pesticides on agronomically important crops in exposome assays as well as bench-scale studies. Overall, this review describes the potential uses of metabolomics as a method for evaluating the safety of agricultural chemicals for regulatory applications. Additionally, the most recent developments in metabolomic tools applied to pesticide toxicology and also the difficulties in utilizing this approach are discussed.
Collapse
|
18
|
Shahid M, Singh UB, Khan MS, Singh P, Kumar R, Singh RN, Kumar A, Singh HV. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front Microbiol 2023; 14:1132770. [PMID: 37180266 PMCID: PMC10174264 DOI: 10.3389/fmicb.2023.1132770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Growth and productivity of crop plants worldwide are often adversely affected by anthropogenic and natural stresses. Both biotic and abiotic stresses may impact future food security and sustainability; global climate change will only exacerbate the threat. Nearly all stresses induce ethylene production in plants, which is detrimental to their growth and survival when present at higher concentrations. Consequently, management of ethylene production in plants is becoming an attractive option for countering the stress hormone and its effect on crop yield and productivity. In plants, ACC (1-aminocyclopropane-1-carboxylate) serves as a precursor for ethylene production. Soil microorganisms and root-associated plant growth promoting rhizobacteria (PGPR) that possess ACC deaminase activity regulate growth and development of plants under harsh environmental conditions by limiting ethylene levels in plants; this enzyme is, therefore, often designated as a "stress modulator." TheACC deaminase enzyme, encoded by the AcdS gene, is tightly controlled and regulated depending upon environmental conditions. Gene regulatory components of AcdS are made up of the LRP protein-coding regulatory gene and other regulatory components that are activated via distinct mechanisms under aerobic and anaerobic conditions. ACC deaminase-positive PGPR strains can intensively promote growth and development of crops being cultivated under abiotic stresses including salt stress, water deficit, waterlogging, temperature extremes, and presence of heavy metals, pesticides and other organic contaminants. Strategies for combating environmental stresses in plants, and improving growth by introducing the acdS gene into crop plants via bacteria, have been investigated. In the recent past, some rapid methods and cutting-edge technologies based on molecular biotechnology and omics approaches involving proteomics, transcriptomics, metagenomics, and next generation sequencing (NGS) have been proposed to reveal the variety and potential of ACC deaminase-producing PGPR that thrive under external stresses. Multiple stress-tolerant ACC deaminase-producing PGPR strains have demonstrated great promise in providing plant resistance/tolerance to various stressors and, therefore, it could be advantageous over other soil/plant microbiome that can flourish under stressed environments.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Ratan Kumar
- Krishi Vigyan Kendra, Rohtas, Bihar Agricultural University, Bikramganj, Bihar, India
| | - Raj Narian Singh
- Directorate of Extension Education, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Arun Kumar
- Swamy Keshwanand Rajasthan Agriculture University, Bikaner, Rajasthan, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
| |
Collapse
|
19
|
Shahid M, Khan MS. Ecotoxicological implications of residual pesticides to beneficial soil bacteria: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105272. [PMID: 36464377 DOI: 10.1016/j.pestbp.2022.105272] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Optimization of crop production in recent times has become essential to fulfil food demands of constantly increasing human populations worldwide. To address this formidable challenge, application of agro-chemicals including synthetic pesticides in intensive farm practices has increased alarmingly. The excessive and indiscriminate application of pesticides to foster food production however, leads to its exorbitant deposition in soils. After accumulation in soils beyond threshold limits, pesticides harmfully affect the abundance, diversity and composition and functions of rhizosphere microbiome. Also, the cost of pesticides and emergence of resistance among insect-pests against pesticides are other reasons that require attention. Due to this, loss in soil nutrient pool cause a substantive reduction in agricultural production which warrant the search for newer environmentally friendly technology for sustainable crop production. Rhizosphere microbes, in this context, play vital roles in detoxifying the polluted environment making soil amenable for cultivation through detoxification of pollutants, rhizoremediation, bioremediation, pesticide degradation, and stress alleviation, leading to yield optimization. The response of soil microorganisms to range of chemical pesticides is variable ranging from unfavourable to the death of beneficial microbes. At cellular and biochemical levels, pesticides destruct the morphology, ultrastructure, viability/cellular permeability, and many biochemical reactions including protein profiles of soil bacteria. Several classes of pesticides also disturb the molecular interaction between crops and their symbionts impeding the overall useful biological processes. The harmful impact of pesticides on soil microbes, however, is poorly researched. In this review, the recent findings related with potential effects of synthetic pesticides on a range of soil microbiota is highlighted. Emphasis is given to find and suggest strategies to minimize the chemical pesticides usage in the real field conditions to preserve the viability of soil beneficial bacteria and soil quality for safe and sustainable crop production even in pesticide contaminated soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
20
|
Ibrahim RIH, Alkhudairi UA, Alhusayni SAS. Alleviation of Herbicide Toxicity in Solanum lycopersicum L.-An Antioxidant Stimulation Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:2261. [PMID: 36079642 PMCID: PMC9459734 DOI: 10.3390/plants11172261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Application of the herbicide glyphosate in crops is a common practice among farmers around the world. Tomato is one of the crops that are treated with glyphosate to fight weed growth and loss of crop. However, tomato plants often show phytotoxic effects from glyphosate. In this study, the ability of pongamia oil derived from Pongamia pinnata (known also as Millettia pinnata) tree to alleviate the herbicide glyphosate toxicity effects in tomato (S.lycopersicum L. cv. Micro-tom) plants was tested. Tomato plants were treated with a mixture of a dose of (GLY) glyphosate (10 mg kg−1) and different doses of pongamia oil (PO) foliar spray (5, 10, 50, and 100 mM) and compared with the herbicide or oil control (glyphosate 10 mg kg−1 or pongamia oil PO 50 mM). Some morphological features, non-enzymatic and enzymatic antioxidants, and gene expression were observed. Glyphosate-treated plants sprayed with PO 50 mM (GLY + PO 50) showed increased root biomass (0.28 g-p ≤ 0.001), shoot biomass (1.2 g-p ≤ 0.01), H2O2 (68 nmol/g), and the activities of superoxide dismutase (SOD; 40 mg-p ≤ 0.001), catalase (CAT; 81.21 mg-p ≤ 0.05), ascorbate peroxidase (APX; 80 mg-p ≤ 0.01) and glutathione reductase (GR; 53 min/mg-F4,20 = 15.88, p ≤ 0.05). In contrast, these plants showed reduced contents of Malondialdehyde (MDA; 30 nmol/g-F4,20 = 18.55, p ≤ 0.01), O2 (0.6 Abs/g), Prolne (Pro; 345 µg/g), Glutathine (GSH; 341 nmol/mg-p ≤ 0.001), ascorbate (AsA; 1.8 µmol/gm), ascorbic acid (AA; 1.62 mg-p ≤ 0.05) and dehydroascorbate (DHAR; 0.32 mg p ≤ 0.05). The gene expression analysis was conducted for seven oxidative stress related genes besides the house-keeping gene Actin as a reference. The gene CYP1A1450 showed the highest mRNA expression level (6.8 fold ± 0.4) in GLY-treated tomato plants, whereas GLY-treated plants + PO 50 showed 2.9 fold. The study concluded that foliar spray of 50 mM pongamia oil alleviated the toxic effects of glyphosate on tomato plants in the form of increased root and shoot biomass, SOD, CAT, APX, and GR activity, while reduced MDA, O2, Pro, GSH, AsA, AA, DHAR, and gene CYP1A1450 expression.
Collapse
Affiliation(s)
- Rashid I. H. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Botany, Faculty of Science, University of Khartoum, PC 11115, Khartoum P.O. Box 321, Sudan
| | - Ubai A. Alkhudairi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sultan A. S. Alhusayni
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
21
|
Shahid M, Al-Khattaf FS, Danish M, Zeyad MT, Atef Hatamleh A, Mohamed A, Ali S. PGPR Kosakonia Radicincitans KR-17 Increases the Salt Tolerance of Radish by Regulating Ion-Homeostasis, Photosynthetic Molecules, Redox Potential, and Stressor Metabolites. FRONTIERS IN PLANT SCIENCE 2022; 13:919696. [PMID: 35979076 PMCID: PMC9376370 DOI: 10.3389/fpls.2022.919696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 05/10/2023]
Abstract
Among abiotic stresses, salinity is a significant limiting factor affecting agricultural productivity, survival, and production, resulting in significant economic losses. Considering the salinity problem, the goal of this study was to identify a halotolerant beneficial soil bacterium to circumvent salinity-induced phytotoxicity. Here, strain KR-17 (having an irregular margin; a mucoid colony; Gm-ve short rod; optimum temperature, 30°C; pH 7.0; no any pigmentation; showed a positive response to citrate utilization, catalase, starch, sucrose, lactose, and dextrose, etc.) recovered from rhizosphere soils of the potato-cultivating field, tolerated surprisingly a high (18% NaCl; 3.-M concentration) level of salt and identified as Kosakonia radicincitans (Accession No. OM348535). This strain was discovered to be metabolically active, synthesized essential PGP bioactive molecules like indole-3-acetic acid (IAA), siderophore (iron-chelating compounds), ACC deaminase, and ammonia, the quantity of which, however, increased with increasing NaCl concentrations. Here, Raphanus sativus L. (radish) was taken as a model crop to evaluate the adverse impact of NaCl, as well as salinity alleviation by halotolerant K. radicincitans. Salinity-induced toxicity to R. sativus was increased in a dose-dependent way, as observed both in vitro and in vivo conditions. Maximum NaCl levels (15%) demonstrated more extreme harm and considerably reduced the plant's biological features. However, membrane damage, relative leaf water content (RLWC), stressor metabolites, and antioxidant enzymes were increased as NaCl concentration increased. In contrast, halotolerant K. radicincitans KR-17 relieved salinity stress and enhanced the overall performance of R. sativus (L.) by increasing germination efficiency, dry biomass, and leaf pigments even in salt-challenged conditions. Additionally, KR-17 inoculation significantly (p ≤ 0.05) improved plant mineral nutrients (Na, K, Ca, Mg, Zn, Fe, Cu, P, and N). Following inoculation, strain KR-17 enhanced the protein, carbohydrates, root pigments, amino acids (AsA and Lys), lipids, and root alkaloids in R. sativus (L.). Besides these, due to PGPR seed priming in NaCl-stressed/non-stressed conditions, membrane damage, RLWC, stressor metabolites, and antioxidant defense enzymes were dramatically reduced. The strong biofilm-forming capacity of K. radicincitans could result in both in vitro and in vivo colonization under NaCl stress. Conclusively, halotolerant K. radicincitans KR-17 may probably be investigated affordably as the greatest way to increase the production of radish under salinity-stressed soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Fatimah S. Al-Khattaf
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Danish
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
22
|
Al-Enazi NM, AlTami MS, Alhomaidi E. Unraveling the potential of pesticide-tolerant Pseudomonas sp. augmenting biological and physiological attributes of Vigna radiata (L.) under pesticide stress. RSC Adv 2022; 12:17765-17783. [PMID: 35765317 PMCID: PMC9200474 DOI: 10.1039/d2ra01570f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
In the agricultural domain, chemical pesticides are repetitively and harshly used to kill harmful pests, but they often pose a serious threat to microbial diversity, soil fertility and agricultural output. To deal with these problems, pesticide-tolerant plant growth promoting (PGP) rhizobacterial strains are often used to combat pesticidal toxicity. Here, Pseudomonas sp. PGR-11 (accession no. OM348534), recovered from a Vigna radiata (L.) rhizosphere, produced various growth regulating (GR) substances, including indole-3-acetic acid (IAA; 82.5 ± 9.2 μg mL-1), enzyme 1-aminocyclopropane 1-carboxylate (ACC) deaminase (μM α-ketobutyrate mg-1 protein h-1), siderophores and ammonia. Strain PGR-11 grew well when cultured in growth medium with added metalaxyl (MTXL; 1200 μg mL-1), carbendazim (CBZM; 800 μg mL-1) and tebuconazole (TBZL; 1600 μg mL-1). Pseudomonas sp. synthesized PGP substances even in the presence of increasing doses of pesticides. The phytotoxicity of the tested pesticides was assessed both in vitro and under pot-house conditions using a Vigna radiata (L.) crop. Increasing concentrations of chemical pesticides negatively impacted the growth, physiological and biochemical features. However, pesticide-tolerant Pseudomonas sp. relieved the toxicity and improved the biological attributes of the plant. Bio-inoculated plants showed significant enhancement in germination attributes, dry biomass, symbiotic features and yield features when compared to un-inoculated ones. Furthermore, with 100 μg metalaxyl kg-1 soil, strain PGR-11 increased the chl-a, chl-b, total chlorophyll, carotenoids, SPAD index, photosystem efficiency (Fv/Fm), PSII quantum yield (FPSII), photochemical quenching (qP) and non-photochemical quenching (NpQ) content by 12, 19, 16, 27, 34, 41, 26, 29 and 33%, respectively, over un-inoculated but pesticide-treated plants. Additionally, inoculation of Pseudomonas sp. with 100 μg tebuconazole kg-1 soil caused a significant (p ≤ 0.05) enhancement in transpiration rate (E), stomatal conductance (g s), photosynthetic rate (P N), vapor pressure deficit (kPa) and internal CO2 concentration (C i) of 19, 26, 23, 28 and 34%, respectively. Conclusively, the power to tolerate abnormally high pesticide concentration, the capacity to produce/secrete PGP substances even in a pesticide-stressed medium and the potential for improving/increasing the growth and physiology of plants by pesticide detoxification makes Pseudomonas sp. PGR-11 a fascinating choice for augmenting the productivity of V. radiata (L.) even in pesticide-stressed soils. The current findings will be helpful for exploring pesticide-tolerant ACC-deaminase-positive microbial strains as gifted entities for the environmental bioremediation of pesticides.
Collapse
Affiliation(s)
- Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharj 11492 Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University Burydah Saudi Arabia
| | - Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|
23
|
Al-Shwaiman HA, Shahid M, Elgorban AM, Siddique KHM, Syed A. Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: Deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). CHEMOSPHERE 2022; 295:133843. [PMID: 35122822 DOI: 10.1016/j.chemosphere.2022.133843] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Environmental challenges like drought, salinity, heavy metals and pesticides directly/indirectly influence the environment and decreased the agricultural output. During its long developmental stages, cereal crops including wheat is exposed to a variety of abiotic/biotic stressors. Certain beneficial soil bacteria that can ameliorate environmental stresses can be exploited as crop growth promoters/enhancers under adverse situations. In this study, Beijerinckia fluminensis BFC-33 (accession no. MT672580) isolated from potato rhizosphere tolerated variousabiotic (drought, salinity, temperature, heavy metals, and fungicides) stresses. Strain BFC-33 demonstrated multifarious plant-growth-promoting (PGP) characteristics, such as the production of indole-3-acetic acid, P-solubilization, ACC deaminase, ammonia, siderophore, HCN, EPS, and extracellular enzymes. The antagonistic potential of BFC-33 against major fungal pathogens was ranked: Alternaria alternata (79.2%)>Rhizoctonia solani (69%)>Fusarium oxysporum (23.5%)>Ustilaginoidea virens (17%). Furthermore, bacterization of wheat seeds witha multi-stress-tolerant strain revealed B. fluminensis as a plant growth enhancer and biocontrol agent. For instance, increase in root length (cm) in BFC-33 inoculated wheat exposed to abiotic and biotic stresses at the seedling stage was ranked: B. fluminensis (24.2)>B. fluminensis + 100μgTBZLmL-1 (21.3) = B. fluminensis + 2%PEG (21.3)>B. fluminensis + 100 mM NaCl (19.7)>B. fluminensis + 100μgPbmL-1 (19) = B. fluminensis 100μgMNZBmL-1 (19)>B. fluminensis + A. alternata (17.4)>B. fluminensis + 100μgCdmL-1 (17)>B. fluminensis + F. oxysporum (13.4). In addition, increase in carotenoid accumulation (mg g-1FW) in the foliage of BFC-33 inoculated wheat exposed to fungal infection was ranked: BFC-33 (3.88)>BFC-33+ A. alternata (3.0)>BFC-33+ R. solani (2.78)>BFC-33+ F. oxysporum (2.44). Moreover, BFC-33 inoculation significantly (p ≤ 0.05) reduced stress-induced stressor molecules (proline and TBARS) and electrolyte leakage. Furthermore, B. fluminensis BFC-33 potentially enhanced the defense responses in wheat seedlings by increasing phenylalanine ammonia lyase (PAL), β-1,3 glucanase, and polyphenol oxidase (PPO), which play a significant role in protecting plants from phytopathogens. Even so, by successfully establishing a product with the requisite effects under field settings, selecting multi-stress-tolerant and antagonistic plant growth promoting rhizobacteria (PGPRs) would be helpful to end-users. Future use of native multi-stress-tolerant bacteria as biocontrol agents in conjunction with existing drought, salinity, heavy metal, and pesticide tolerance might contribute to global food security.
Collapse
Affiliation(s)
- Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Asad Syed
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
24
|
Danish M, Shahid M, Zeyad MT, Bukhari NA, Al-Khattaf FS, Hatamleh AA, Ali S. Bacillus mojavensis, a Metal-Tolerant Plant Growth-Promoting Bacterium, Improves Growth, Photosynthetic Attributes, Gas Exchange Parameters, and Alkalo-Polyphenol Contents in Silver Nanoparticle (Ag-NP)-Treated Withania somnifera L. (Ashwagandha). ACS OMEGA 2022; 7:13878-13893. [PMID: 35559145 PMCID: PMC9088912 DOI: 10.1021/acsomega.2c00262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 05/19/2023]
Abstract
Discharge of nanoparticles (NPs) into aquatic and terrestrial ecosystems during manufacturing processes and from various commercial goods has become a significant ecotoxicological concern. After reaching soil systems, NPs cause deleterious effects on soil fertility, microbial activity, and crop productivity. Taking into consideration the medicinal importance of Withania somnifera (L.) (ashwagandha), the present study assessed the potential hazards of silver nanoparticles (Ag-NPs) and the toxicity amelioration by a metal-tolerant plant growth-promoting rhizobacterium (PGPR). Bacillus mojavensis BZ-13 (NCBI accession number MZ950923) recovered from metal-polluted rhizosphere soil, tolerated an exceptionally high level of Ag-NPs. The growth-regulating substances synthesized by B. mojavensis were increased with increasing concentrations (0-1000 μg mL-1) of Ag-NPs. Also, strain BZ-13 had the ability to form biofilm, produce alginate and exopolysaccharides (EPSs), as well maintain swimming and swarming motilities in the presence of Ag-NPs. Soil application of varying concentrations of Ag-NPs resulted in a dose-related reduction in growth and biochemical features of ashwagandha. In contrast, following soil inoculation, B. mojavensis relieved the Ag-NPs-induced phytotoxicity and improved plant productivity. Root, shoot length, dry biomass, and leaf area increased by 13, 17, 37, 25%, respectively, when B. mojavensis was applied with 25 mg/kg Ag-NPs when compared to noninoculated controls. Furthermore, the soil plant analysis development (SPAD) index, photosystem efficiency (Fv/Fm), PS II quantum yield (FPS II), photochemical quenching (qP), non-photochemical quenching (NpQ), and total chlorophyll and carotenoid content of BZ-13-inoculated plants in the presence of 25 mg Ag-NPs/kg increased by 33, 29, 41, 47, 35, 26, and 25%, respectively, when compared to noninoculated controls that were exposed to the same amounts of NPs. In addition, a significant (p ≤ 0.05) increase in 48, 18, 21, and 19% in withaferin-A (alkaloids), flavonoids, phenols, and tannin content, respectively, was recorded when plants were detached from bacterized and Ag-NP-treated plants. Leaf gas exchange parameters were also modulated in the case of inoculated plants. Furthermore, bacterial inoculation significantly decreased proline, lipid peroxidation, antioxidant enzymes, and Ag-NP's absorption and build-up in phyto-organs. In conclusion, soil inoculation with B. mojavensis may possibly be used as an alternative to protect W. somnifera plants in soil contaminated with nanoparticles. Therefore, phytohormone and other biomolecule-synthesizing and NP-tolerant PGPR strains like B. mojavensis might serve as an agronomically significant and cost-effective remediation agent for augmenting the yield and productivity of medicinally important plants like ashwagandha raised in soil contaminated with nanoparticles in general and Ag-NPs in particular.
Collapse
Affiliation(s)
- Mohammad Danish
- Section
of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National
Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, 275101, Uttar Pradesh, India
| | - Najat A. Bukhari
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatimah S. Al-Khattaf
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sajad Ali
- Department
of Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
25
|
Hatamleh AA, Danish M, Al-Dosary MA, El-Zaidy M, Ali S. Physiological and oxidative stress responses of Solanum lycopersicum (L.) (tomato) when exposed to different chemical pesticides. RSC Adv 2022; 12:7237-7252. [PMID: 35424659 PMCID: PMC8982233 DOI: 10.1039/d1ra09440h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Pesticide overuse can have negative effects on developmental processes of non-target host plants. By increasing reactive oxygen species (ROS) levels, pesticides negatively affect cellular metabolism, biochemistry and physiological machinery of plants. Considering these problems, the current study was planned to assess the effect of three different groups of pesticides, namely diazinon (DIZN), imidacloprid (IMID) and mancozeb (MNZB) on Solanum lycopersicum L. (tomato). In general, pesticides resulted in a progressive decrease in physiological and biometric parameters of S. lycopersicum (L.), which varies significantly among concentrations and species of pesticides. Among them, 200 μgMNZB mL-1 had the most severe negative impact and reduced germination rate, root biomass, chl a, chl b, total chlorophyll and carotenoids by 62, 87, 90, 88, 92 and 90%, respectively. In addition, higher doses of pesticides greatly reduced the flowering, fruit attributes and lycopene content. Furthermore, plants exposed to 200 μgDIZN mL-1 showed a progressive drop in root cell viability (54% decrease), total soluble sugar (TSS) (64% decrease) and total soluble protein (TSP) (67% decrease) content. Data analysis indicated that greater doses of pesticides dramatically raised ROS levels and induced membrane damage through production of thiobarbituric acid reactive substances (TBARS), as well as increased cell injury. To deal with pesticide-induced oxidative stress, plants subjected to greater pesticide dosages, showed a substantial increase in antioxidant levels. For instance, ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and guaiacol peroxidase (GPX) were maximally increased by 48, 93, 71, 52 and 94%, respectively following 200 μgMNZB mL-1 soil exposures. Additionally, under a confocal laser scanning microscope (CLSM), pesticide exposed S. lycopersicum (L.) roots stained with 2',7'-dichlorodihydrofluorescein diacetate (2'7'-DCF) and 3,3'-diaminobenzidine, exhibited an increased ROS production in a concentration-dependent manner. Further, elevated pesticide concentrations resulted in alterations in mitochondrial membrane potential (ΔΨ m) and cellular death in roots, as evidenced by increased Rhodamine 123 (Rhd 123) and Evan's blue fluorescence, respectively. These findings clearly showed that applying pesticides in excess of permissible amounts might induce oxidative stress and cause oxidative damage in non-target host plants. Overall, the current study indicates that a thorough and secure method be used before selecting pesticides for increasing production of agronomically important vegetable crops in various agro-climatic zones.
Collapse
Affiliation(s)
- Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Sciences, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad Danish
- Department of Botany, Section of Plant Pathology and Nematology, Aligarh Muslim University Aligarh-202002 Uttar Pradesh India
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Sciences, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, College of Sciences, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University Gyeongsan 38541 South Korea
| |
Collapse
|
26
|
Shahid M, Khan MS. Tolerance of pesticides and antibiotics among beneficial soil microbes recovered from contaminated rhizosphere of edible crops. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100091. [PMID: 34977827 PMCID: PMC8683648 DOI: 10.1016/j.crmicr.2021.100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Soil bacterial isolates were recovered from contaminated rhizosphere regions. Majority of bacterial isolatesshowed multifarious plant growth promoting (PGP) activities. Bacterial isolates exhibited a varied level of pesticide tolerance. Sensitivity/resistance pattern among isolates was variable Pesticides tolerance and antibiotic resistance among soil isolates were variably correlated
A total of 45 beneficial soil bacterial isolates (15 each of Pseudomonas, Azotobacter and phosphate solubilizing bacteria: PSB) recovered from polluted rhizosphere soils were morphologically and biochemically characterized. Bacterial isolates produced indole-3-acetic acid (IAA), phenolate siderophores; SA (salicylic acid) and 2, 3-dihydroxy benzoic acid (2, 3-DHBA), 1-amino cyclopropane 1-carboxylate (ACC) deaminase, solubilised insoluble phosphate (Pi), secreted exopolysaccharides (EPS) and produced ammonia and cyanogenic compound (HCN). Isolates were tested for their tolerance ability against 12 different agrochemicals (chemical pesticides) and 14 antibiotics. Among Pseudomonas, isolate PS1 showed maximum (2183 µg mL−1) tolerance to all tested agrochemicals. Likewise, among all Azotobacter isolates (n = 15), AZ12 showed maximum (1766 µg mL−1) while AZ7 had lowest (950 µg mL−1) tolerance ability to all tested agrochemicals. Moreover, among phosphate solubilizing bacterial isolates, maximum (1970 µg mL−1) and minimum (1308 µg mL−1) tolerance to agrochemicals was represented by PSB8 and PSB13 isolates, respectively. The antibiotic sensitivity/resistance among isolates varied considerably. As an example, Pseudomonas spp. was susceptible to several antibiotics, and inhibition zone differed between 10 mm (polymyxin B) to 34 mm (nalidixic acid). Also, isolate PS2 showed resistance to erythromycin, ciprofloxacin, methicillin, novobiocin and penicillin. The resistance percentage to multiple antibiotics among Azotobacter isolates varied between 7 and 33%. Among PSB isolates, inhibition zone differed between 10 and 40 mm and maximum and minimum resistance percentage to multiple antibiotics was recorded as 47% and 20%, respectively. The persistence of pesticides in agricultural soil may contribute to an increase in multidrug resistance among soil microorganisms. In conclusion, plant growth promoting (PGP) substances releasing soil microorganisms comprising of inherent/intrinsic properties of pesticides tolerance and antibiotics resistance may provide an attractive, agronomically feasible, and long-term prospective alternative for the augmentation of edible crops. However, in future, more research is needed to uncover the molecular processes behind the development of pesticide tolerance and antibiotic resistance among soil microorganisms.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
27
|
Enrichment of Burkholderia in the Rhizosphere by Autotoxic Ginsenosides to Alleviate Negative Plant-Soil Feedback. Microbiol Spectr 2021; 9:e0140021. [PMID: 34756064 PMCID: PMC8579924 DOI: 10.1128/spectrum.01400-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The accumulation of autotoxins and soilborne pathogens in soil was shown to be the primary driver of negative plant-soil feedback (NPSF). There is a concerted understanding that plants could enhance their adaptability to biotic or abiotic stress by modifying the rhizosphere microbiome. However, it is not clear whether autotoxins could enrich microbes to degrade themselves or antagonize soilborne pathogens. Here, we found that the microbiome degraded autotoxic ginsenosides, belonging to triterpenoid glycosides, and antagonized pathogens in the rhizosphere soil of Panax notoginseng (sanqi). Deep analysis by 16S rRNA sequencing showed that the bacterial community was obviously changed in the rhizosphere soil and identified the Burkholderia-Caballeronia-Paraburkholderia (BCP) group as the main ginsenoside-enriched bacteria in the rhizosphere soil. Eight strains belonging to the BCP group were isolated, and Burkholderia isolate B36 showed a high ability to simultaneously degrade autotoxic ginsenosides (Rb1, Rg1, and Rd) and antagonize the soilborne pathogen Ilyonectria destructans. Interestingly, ginsenosides could stimulate the growth and biofilm formation of B36, eventually enhancing the antagonistic ability of B36 to I. destructans and the colonization ability in the rhizosphere soil. In summary, autotoxic ginsenosides secreted by P. notoginseng could enrich beneficial microbes in the rhizosphere to simultaneously degrade autotoxins and antagonize pathogen, providing a novel ecological strategy to alleviate NPSF. IMPORTANCE Autotoxic ginsenosides, secreted by sanqi into soil, could enrich Burkholderia sp. to alleviate negative plant-soil feedback (NPSF) by degrading autotoxins and antagonizing the root rot pathogen. In detail, ginsenosides could stimulate the growth and biofilm formation of Burkholderia sp. B36, eventually enhancing the antagonistic ability of Burkholderia sp. B36 to a soilborne pathogen and the colonization of B36 in soil. This ecological strategy could alleviate NPSF by manipulating the rhizosphere microbiome to simultaneously degrade autotoxins and antagonize pathogen.
Collapse
|
28
|
de Oliveira EP, Rovida AFDS, Martins JG, Pileggi SAV, Schemczssen-Graeff Z, Pileggi M. Tolerance of Pseudomonas strain to the 2,4-D herbicide through a peroxidase system. PLoS One 2021; 16:e0257263. [PMID: 34855750 PMCID: PMC8638965 DOI: 10.1371/journal.pone.0257263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herbicides are widely used in agricultural practices for preventing the proliferation of weeds. Upon reaching soil and water, herbicides can harm nontarget organisms, such as bacteria, which need an efficient defense mechanism to tolerate stress induced by herbicides. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that exerts increased oxidative stress among bacterial communities. Bacterial isolates were obtained from the biofilm of tanks containing washing water from the packaging of different pesticides, including 2,4-D. The Pseudomonas sp. CMA-7.3 was selected because of its tolerance against 2,4-D toxicity, among several sensitive isolates from the biofilm collection. This study aimed to evaluate the antioxidative response system of the selected strain to 2,4-D. It was analyzed the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase GPX enzymes, that are poorly known in the literature for bacterial systems. The Pseudomonas sp. CMA-7.3 presented an efficient response system in balancing the production of hydrogen peroxide, even at 25x the dose of 2,4-D used in agriculture. The antioxidative system was composed of Fe–SOD enzymes, less common than Mn–SOD in bacteria, and through the activities of KatA and KatB isoforms, working together with APX and GPX, having their activities coordinated possibly by quorum sensing molecules. The peroxide control is poorly documented for bacteria, and this work is unprecedented for Pseudomonas and 2,4-D. Not all bacteria harbor efficient response system to herbicides, therefore they could affect the diversity and functionality of microbiome in contaminated soils, thereby impacting agricultural production, environment sustainability and human health.
Collapse
Affiliation(s)
- Elizangela Paz de Oliveira
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Juliane Gabriele Martins
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Sônia Alvim Veiga Pileggi
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | - Marcos Pileggi
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
- * E-mail:
| |
Collapse
|
29
|
Syed A, Zeyad MT, Shahid M, Elgorban AM, Alkhulaifi MM, Ansari IA. Heavy Metals Induced Modulations in Growth, Physiology, Cellular Viability, and Biofilm Formation of an Identified Bacterial Isolate. ACS OMEGA 2021; 6:25076-25088. [PMID: 34604686 PMCID: PMC8482775 DOI: 10.1021/acsomega.1c04396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/17/2023]
Abstract
The release of untreated tannery effluents comprising biotoxic heavy metal (HM) compounds into the ecosystem is one of our society's most serious environmental and health issues. After discharge, HM-containing industrial effluents reach agricultural soils and thus negatively affect the soil microbial diversity. Considering these, we assessed the effect of HMs on identified soil beneficial bacteria. Here, the effects of four heavy metals (HMs), viz., chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb), on cellular growth, physiology, cell permeability, and biofilm formation of Enterobacter cloacae MC9 (accession no.: MT672587) were evaluated. HMs in a concentration range of 25-200 μg mL-1 were used throughout the study. Among HMs, Cd in general had the maximum detrimental effect on bacterial physiology. With increasing concentrations of HMs, bacterial activities consistently decreased. For instance, 200 μgCr mL-1 concentration greatly and significantly (p ≤ 0.05) reduced the synthesis of indole-3-acetic acid (IAA) by 70% over control. Furthermore, 200 μg mL-1 Cd maximally and significantly (p ≤ 0.05) reduced the synthesis of 2,3-dihydroxybenzoic acid (2,3-DHBA), salicylic acid (SA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, and extra polymeric substances (EPSs) of E. cloacae MC9 by 80, 81, 77, and 59%, respectively, over control. While assessing the toxic effect of HMs on the P-solubilizing activity of E. cloacae, the toxicity pattern followed the order Cr (mean value = 94.6 μg mL-1) > Cd (mean value = 127.2 μg mL-1) > Pb (mean value = 132.4 μg mL-1) > Ni (mean value = 140.4 μg mL-1). Furthermore, the colony-forming unit (CFU) count (Log10) of strain MC9 was completely inhibited at 150, 175, and 200 μg mL-1 concentrations of Cr and Cd. The confocal laser scanning microscopic (CLSM) analysis of HM-treated bacterial cells showed an increased number of red-colored dead cells as the concentration of HMs increased from 25 to 200 μg mL-1. Likewise, the biofilm formation ability of strain MC9 was maximally (p ≤ 0.05) inhibited at higher concentrations of Cd. In summary, the present investigation undoubtedly suggests that E. cloacae strain MC9 recovered from the HM-contaminated rhizosphere endowed with multiple activities could play an important role in agricultural practices to augment crop productivity in soils contaminated with HMs. Also, there is an urgent need to control the direct discharge of industrial waste into running water to minimize heavy metal pollution. Furthermore, before the application of HMs in agricultural fields, their appropriate field dosages must be carefully monitored.
Collapse
Affiliation(s)
- Asad Syed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| |
Collapse
|
30
|
Shahid M, Manoharadas S, Chakdar H, Alrefaei AF, Albeshr MF, Almutairi MH. Biological toxicity assessment of carbamate pesticides using bacterial and plant bioassays: An in-vitro approach. CHEMOSPHERE 2021; 278:130372. [PMID: 33839399 DOI: 10.1016/j.chemosphere.2021.130372] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 05/25/2023]
Abstract
In recent times, agricultural practices mainly rely on agrochemicals and pesticides to safe-guard edible crops against various pests and to ensure high yields. However, their indiscriminate use may cause severe environmental hazards that directly and negatively affect soil microorganisms and crop productivity. Considering these, present study was aimed to assess the toxicity of carbamate pesticides namely carbamoyl (CBL), methomyl (MML) and carbofuran (CBN) using bacterial and plant (Vigna mungo L.) bioassays. All pesticide doses (25-100 μg mL-1) showed negative effect on bacteria as well as plant. Growth, morphology, survival, cellular respiration and inner membrane permeability of Sinorhizobiumsaheli was hampered when exposed to pesticides. Pesticide induced morphological changes viz. aberrant margins; cellular cracking and distortion/damage in S. saheli were obvious under scanning electron microscope (SEM). The 100 μgCBNmL-1 had maximum inhibitory effect and it reduced survivability of S. saheli by 75%. In addition, biofilm formation ability of S. saheli was inhibited in a pesticides-dose dependent manner and it was statistically (p ≤ 0.05) significant. Pesticides indorsed significant changes in biomarker enzymatic assays and oxidative stress parameters towards S. saheli. Furthermore, at 100 μgCBNmL-1, germination efficiency, root, shoot length, plant survival and tolerance index of V. mungo were decrease by 50, 75, 65, 70 and 66%, respectively over control. Staining of pesticide treated roots with fluorescently labeled dyes propidium iodide (PI) and acridine orange (AO) showed increased oxidative stress, ROS generation and membrane permeability as revealed under confocal laser scanning microscope (CLSM). Furthermore, stressor metabolites and antioxidant enzymes in plant seedlings were progressively enhanced with increasing concentration of pesticides. Conclusively, present finding bestow an insights into a mechanistic approach of carbamate pesticide induced phyto, morpho and cellular toxic effects towards soil bacterium as well as plant with forthcoming implications for designing the pesticides to reduce their toxic/harmful effects.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Salim Manoharadas
- Department of Botany and Microbiology, Central Laboratory, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Abdulwahed F Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box. 2454, Riyadh, 11451, Saudi Arabia
| | - Mohammed F Albeshr
- Department of Zoology, College of Science, King Saud University, P.O. Box. 2454, Riyadh, 11451, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box. 2454, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
31
|
Rovida AFDS, Costa G, Santos MI, Silva CR, Freitas PNN, Oliveira EP, Pileggi SAV, Olchanheski RL, Pileggi M. Herbicides Tolerance in a Pseudomonas Strain Is Associated With Metabolic Plasticity of Antioxidative Enzymes Regardless of Selection. Front Microbiol 2021; 12:673211. [PMID: 34239509 PMCID: PMC8258386 DOI: 10.3389/fmicb.2021.673211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.
Collapse
Affiliation(s)
| | - Gessica Costa
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Mariana Inglês Santos
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Elizangela Paz Oliveira
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Luiz Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
32
|
Shahid M, Khan MS, Syed A, Marraiki N, Elgorban AM. Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Sci Rep 2021; 11:9655. [PMID: 33958646 PMCID: PMC8102606 DOI: 10.1038/s41598-021-89103-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 02/03/2023] Open
Abstract
Fungicides among agrochemicals are consistently used in high throughput agricultural practices to protect plants from damaging impact of phytopathogens and hence to optimize crop production. However, the negative impact of fungicides on composition and functions of soil microbiota, plants and via food chain, on human health is a matter of grave concern. Considering such agrochemical threats, the present study was undertaken to know that how fungicide-tolerant symbiotic bacterium, Mesorhizobium ciceri affects the Cicer arietinum crop while growing in kitazin (KITZ) stressed soils under greenhouse conditions. Both in vitro and soil systems, KITZ imparted deleterious impacts on C. arietinum as a function of dose. The three-time more of normal rate of KITZ dose detrimentally but maximally reduced the germination efficiency, vigor index, dry matter production, symbiotic features, leaf pigments and seed attributes of C. arietinum. KITZ-induced morphological alterations in root tips, oxidative damage and cell death in root cells of C. arietinum were visible under scanning electron microscope (SEM). M. ciceri tolerated up to 2400 µg mL-1 of KITZ, synthesized considerable amounts of bioactive molecules including indole-3-acetic-acid (IAA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, siderophores, exopolysaccharides (EPS), hydrogen cyanide, ammonia, and solubilised inorganic phosphate even in fungicide-stressed media. Following application to soil, M. ciceri improved performance of C. arietinum and enhanced dry biomass production, yield, symbiosis and leaf pigments even in a fungicide-polluted environment. At 96 µg KITZ kg-1 soil, M. ciceri maximally and significantly (p ≤ 0.05) augmented the length of plants by 41%, total dry matter by 18%, carotenoid content by 9%, LHb content by 21%, root N by 9%, shoot P by 11% and pod yield by 15% over control plants. Additionally, the nodule bacterium M. ciceri efficiently colonized the plant rhizosphere/rhizoplane and considerably decreased the levels of stressor molecules (proline and malondialdehyde) and antioxidant defence enzymes viz. ascorbate peroxidise (APX), guaiacol peroxidise (GPX), catalase (CAT) and peroxidises (POD) of C. arietinum plants when inoculated in soil. The symbiotic strain effectively colonized the plant rhizosphere/rhizoplane. Conclusively, the ability to endure higher fungicide concentrations, capacity to secrete plant growth modulators even under fungicide pressure, and inherent features to lower the level of proline and plant defence enzymes makes this M. ciceri as a superb choice for augmenting the safe production of C. arietinum even under fungicide-contaminated soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Is phosphate solubilizing ability in plant growth-promoting rhizobacteria isolated from chickpea linked to their ability to produce ACC deaminase? J Appl Microbiol 2021; 131:2416-2432. [PMID: 33884699 DOI: 10.1111/jam.15108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS Since most phosphate solubilizing bacteria (PSB) also produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase, we investigated if there was an association between these two plant growth-promoting properties under in vitro conditions. METHODS AND RESULTS A total of 841 bacterial isolates were obtained using selective and enrichment isolation methods. ACC deaminase was investigated using in vitro methods and by sequencing the acdS gene. The effect of ACC deaminase on P solubilization was investigated further using five efficient PSB. ACC deaminase production ability was found amongst a wide range of bacteria belonging to the genera Bacillus, Burkholderia, Pseudomonas and Variovorax. The amount of ACC deaminase produced by PSB was significantly associated with the liberation of Pi from Ca-P when ACC was the sole N source. Ca-P solubilization was associated with the degree of acidification of the medium. Additionally, the P solubilization potential of PSB with (NH4 )2 SO4 was determined by the type of carboxylates produced. An in-planta experiment was conducted using Burkholderia sp. 12F on chickpea cv. Genesis-863 in sand : vermiculite (1 : 1 v/v) amended with rock phosphate and inoculation of this efficient PSB significantly increased growth, nodulation and P uptake of chickpea fertilized with rock phosphate. CONCLUSION ACC deaminase activity influenced the capacity of PSB to solubilize P from Ca-P when ACC was the sole N source and Burkholderia sp. 12F promoted the chickpea-Mesorhizobium symbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY ACC deaminase activity could enhance the P solubilizing activity of rhizobacteria that improve plant growth.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
34
|
Shahid M, Manoharadas S, Altaf M, Alrefaei AF. Organochlorine Pesticides Negatively Influenced the Cellular Growth, Morphostructure, Cell Viability, and Biofilm-Formation and Phosphate-Solubilization Activities of Enterobacter cloacae Strain EAM 35. ACS OMEGA 2021; 6:5548-5559. [PMID: 33681595 PMCID: PMC7931423 DOI: 10.1021/acsomega.0c05931] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/05/2021] [Indexed: 05/08/2023]
Abstract
An in vitro study was conducted to assess the impact of organochlorine pesticides (OCPs) on cellular growth, morphology, cell viability, biofilm-formation activity, and growth-regulating substances of a soil bacterium. Phosphate-solubilizing EAM 35 isolated from rhizosphere soil was molecularly identified as Enterobacter cloacae (accession number MT672578.1). Strain EAM 35 tolerated varying levels of OCPs, viz., benzene hexachloride (BHC), chlorpyrifos (CP), dieldrin (DE), and endosulfan (ES). The toxicity of OCPs to strain EAM 35 was displayed in a concentration-dependent manner. Among the OCPs, ES at a concentration of 200 μM showed a higher toxicity, where it maximally reduced the bacterial synthesis of indole-3-acetic acid (IAA), salicylic acid (SA), and 2,3-dihydroxy-benzoic acid (DHBA) by 73% (p ≤ 0.001), 85% (p ≤ 0.005), and 83% (p ≤ 0.001), respectively, over the control. While comparing the toxicity of OCPs to P-solubilizing activity of E. cloacae after 10 days of growth, the toxicity pattern followed the order ES (mean value = 82.6 μg mL-1) > CP (mean value = 93.2 μg mL-1) > DE (mean value = 113.6 μg mL-1) > BHC (mean value = 127 μg mL-1). Furthermore, OCP-induced surface morphological distortion in E. cloacae EAM 35 was observed as gaps, pits on both cellular facets, and fragmented and disorganized cell structure under a scanning electron microscope (SEM). The membrane-compromised cells increased as the concentrations of OC pesticides increased from 25 to 200 μM. Additionally, microbial counts (log10 CFU/mL) were also affected after pesticide exposure and decreased with increasing concentrations. While assessing the impact of OCPs on inhibition (%) of log10 CFU/mL, 150, 175, and 200 μM concentrations of ES completely reduced the growth of E. cloacae. Similarly, while comparing the toxicity of higher concentrations of OCPs to bacterial growth, sensitivity followed the order ES > DE > CP > BHC. In addition, the biofilm-formation ability of strain EAM 35 was inhibited in a pesticide-dose-dependent manner, and it was statistically (p ≤ 0.05, p ≤ 0.005, and p ≤ 0.001) significant. Conclusively, the present study clearly suggests that before applying pesticides to soil, their recommended dose should carefully be monitored.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
- . Tel: +91-08090939511
| | - Salim Manoharadas
- Department
of Botany and Microbiology, Central Laboratory, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Altaf
- Department
of Botany and Microbiology, Central Laboratory, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Central Laboratory, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department
of Zoology, College of Science, King Saud
University, P.O. Box. 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
35
|
Dolui D, Saha I, Adak MK. 2, 4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111708. [PMID: 33396039 DOI: 10.1016/j.ecoenv.2020.111708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In a laboratory based study, Salvinia natans L. was pre-treated with reduced glutathione (GSH) following transfer under 2, 4-Dicholro phenoxy acetic acid (2,4-D), peroxide (H2O2), dark and irradiation. Plants recorded 2, 4-D bio-accumulation and tolerance maximally under 500 µM following absorption kinetics modulated with GSH in changes of relative water content (20.98%), growth rate (3.04%) and net assimilation rate (1.3 fold) over control. GSH pre-treatment minimized the oxidative revelation with reactive oxygen species (ROS) by 5.55% decrease under 2, 4-D and 1.3, 1.2, 0.8 fold increase through the other stresses. Apoplastic NADPH-oxidase expression was moderated by GSH with 11.76% less over the control. Also the activity of alcohol dehydrogenase and glutathione-S-transferase had their altered values by 1.5 and 9.0 fold increases respectively and may serve as biomarkers. The oxidized:reduced glutathione was positively correlated with glutathione-peroxidase (r=+0.99) and negatively with glutathione reductase (r=-0.04). The induced activities sustained oxidized:reduced GSH pool by 1.09 fold and had varied polymorphic gene expression under 2, 4-D and allied stresses. This study may be relevant to consider Salvinia as a potent weed species remediating 2, 4-D toxicity in soil with its wider hyper-accumulating efficiency. The cellular responses in tolerance to oxidative stress and thereby, induced physiological attributes may opt for selection pressures in other weed flora for broader aspects of phytoremediation against xenobiotics like 2, 4-D.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology and Plant Molecular Biology Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Indraneel Saha
- Plant Physiology and Plant Molecular Biology Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
36
|
Shahid M, Khan MS, Ahmed B, Syed A, Bahkali AH. Physiological disruption, structural deformation and low grain yield induced by neonicotinoid insecticides in chickpea: A long term phytotoxicity investigation. CHEMOSPHERE 2021; 262:128388. [PMID: 33182095 DOI: 10.1016/j.chemosphere.2020.128388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Arbitrary use of insecticides in agricultural practices cause severe environmental hazard that adversely affects the growth and productivity of edible crops. Considering theses, the aim of the present study was to evaluate the toxicological potential of two neonicotinoid insecticides, imidacloprid (IMID) and thiamethoxam (THIA) using chickpea as a test crop. Application of insecticides at three varying doses revealed a gradual decrease in biological performance of chickpea plants which however, varied noticeably among insecticides and their doses. Significant (P ≤ 0.05) decline in germination efficiency, length of plant organs under in vitro condition was observed in a dose related manner. Among insecticides, 300 μgIMIDkg-1 (3X dose) maximally and significantly (P ≤ 0.05) inhibited germination efficiency, vigor index, length, dry matter accumulation, photosynthetic pigment formation, nodule volume and mass, nutrient uptake, grain yield and protein over untreated control. In contrast, 75 μgTHIAkg-1 (3X dose) considerably declined the leghaemoglobin content, shoot phosphorus and root nitrogen. Enhanced expression of stress biomarkers including proline, malondialdehyde (MDA), and antioxidant defence enzymes was noticed in the presence of insecticides. For instance, at 3X IMID, shoot proline, MDA, ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and peroxidase (POD) were increased significantly (P ≤ 0.05) by 66%, 81%, 36% and 35%, respectively. Additionally, electrolyte leakage was maximally (77%) increased at 3X dose of IMID, whereas, H2O2 in foliage was maximally accumulated (0.0156 μ moles min-1 g-1 fw) at 3X dose of THIA which was 58% greater than untreated foliage. A clear distortion/damage in tip and surface of roots and ultrastructural deformation in xylem and phloem of plant tissues as indication of insecticidal phytotoxicity was observed under scanning electron microscope (SEM). For oxidative stress and cytotoxicity assessment, root tips were stained with a combination of acridine orange and propidium iodide, and Evan blue dyes and examined. Confocal laser scanning microscopic (CLSM) images of roots revealed a 10-fold and 13.5-fold increase in red and blue fluorescence when 3X IMID treated roots were assessed quantitatively. Conclusively, the present investigation recommends that a careful and protected approach should be adopted before the application of insecticides in agricultural ecosystems.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Bilal Ahmed
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
37
|
Khan S, Shahid M, Khan MS, Syed A, Bahkali AH, Elgorban AM, Pichtel J. Fungicide-Tolerant Plant Growth-Promoting Rhizobacteria Mitigate Physiological Disruption of White Radish Caused by Fungicides Used in the Field Cultivation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7251. [PMID: 33020389 PMCID: PMC7579310 DOI: 10.3390/ijerph17197251] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Excessive use of fungicides in agriculture may result in substantial accumulation of active residues in soil, which affect crop health and yield. We investigated the response of Raphanus sativus (white radish) to fungicides in soil and potential beneficial interactions of radish plants with fungicide-tolerant plant growth-promoting rhizobacteria (PGPR). The PGPR were isolated from cabbage and mustard rhizospheres. Morphological and biochemical characteristics measured using standard methods, together with analysis of partial 16S rRNA gene sequences, revealed that fungicide-tolerant PGPR, isolates PS3 and AZ2, were closely related to Pseudomonas spp. These PGPR survived in the presence of high fungicide concentrations i.e., up to 2400 μg mL-1 carbendazim (CBZM) and 3200 μg mL-1 hexaconazole (HEXA). Bacterial isolates produced plant growth stimulants even under fungicide stress, though fungicides induced surface morphological distortion and alteration in membrane permeability of these bacteria, which was proved by a set of microscopic observations. Fungicides considerably affected the germination efficiency, growth, and physiological development of R. sativus, but these effects were relieved when inoculated with PGPR isolates. For instance, CBZM at 1500 mg kg-1 decreased whole dry biomass by 71%, whole plant length by 54%, total chlorophyll by 50%, protein content by 61%, and carotenoid production by 29%. After applying isolate AZ2 for white radish grown in CBZM (10 mg kg-1)-amended soil, it could improve plant growth and development with increased whole plant dry weight (10%), entire plant length (13%) and total chlorophyll content (18%). Similarly, isolate PS3 enhanced plant survival by relieving plant stress with declined biomarkers, i.e., proline (12%), malondialdehyde (3%), ascorbate peroxidase (6.5%), catalase (18%), and glutathione reductase (4%). Application of isolates AZ2 and PS3 could be effective for remediation of fungicide-contaminated soil and for improving the cultivation of radish plants while minimizing inputs of fungicides.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA;
| |
Collapse
|
38
|
Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 2020; 113:1075-1107. [PMID: 32488494 DOI: 10.1007/s10482-020-01429-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.
Collapse
|
39
|
Kováčik J, Novotný V, Bujdoš M, Dresler S, Hladký J, Babula P. Glyphosate does not show higher phytotoxicity than cadmium: Cross talk and metabolic changes in common herb. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121250. [PMID: 31654965 DOI: 10.1016/j.jhazmat.2019.121250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Toxicity of glyphosate (G) alone or in combination with cadmium (Cd) was studied in Matricaria chamomilla. Cadmium accumulated in shoots and roots in relation to prolonged exposure while glyphosate and aminomethylphosphonic acid (AMPA) were detected only in roots. After 7 days of exposure, root Cd and G accumulation was similar (56 μg G or 47 μg Cd/g DW in 1 μM treatments and 330 μg G or 321 μg Cd/g DW in 10 μM treatments). Despite this fact, Cd stimulated higher ROS formation and G rather suppressed nitric oxide while H2O2 content was elevated by Cd. Subsequent assay of antioxidative enzymes (SOD, CAT, and APX) showed only the impact of Cd. Non-enzymatic antioxidants revealed more pronounced impact of Cd on ascorbic acid and soluble phenols while non-protein thiols showed synergistic effect of G and Cd in roots. Surprisingly, G alone or in combination with Cd depleted shoot citrate and tartrate accumulation despite no detectable G in shoots. In the roots, Cd evoked expected increase in malate and citrate content while G rather suppressed Cd-induced elevation. These data indicate that glyphosate is less toxic than cadmium but even low G doses are able to induce metabolic changes.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Vít Novotný
- Technical University of Liberec, CxI, Studentská 2, 461 17 Liberec, Czech Republic
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina - Ilkovičova 6, 842 15 Bratislava 4, Slovak Republic
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Juraj Hladký
- Faculty of Education, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
40
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:302-322. [PMID: 30758729 DOI: 10.1007/s10646-019-02023-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution destruct soil microbial compositions and functions, plant's performance and subsequently human health. Culturable microbes among many metal abatement strategies are considered inexpensive, viable and environmentally safe. In this study, nitrogen fixing bacterial strain CAZ3 recovered from chilli rhizosphere tolerated 100, 1000 and 1200 µg mL-1 of cadmium, chromium and nickel, respectively and was identified as Azotobacter chroococcum by 16S rDNA sequence analysis. Under metal stress, cellular morphology of A. chroococcum observed under SEM was found distorted and shrinkage of cells was noticed when grown with 50 µg mL-1 of Cd (cell size 1.7 µm) and 100 of µg mL-1 Ni (cell size 1.3 µm) compared to untreated control (cell size 1.8 µm). In the presence of 100 µg mL-1 of Cr, cells became elongated and measured 1.9 µm in size. Location of metals inside the cells was revealed by EDX. A dose dependent growth arrest and consequently the death of A. chroococcum cells was revealed under CLSM. A. chroococcum CAZ3 secreted 320, 353 and 133 µg EPS mL-1 when grown with 100 µg mL-1 each of Cd, Cr and Ni, respectively. The EDX revealed the presence of 0.4, 0.07 and 0.24% of Cd, Cr and Ni, respectively within EPS extracted from metal treated cells. Moreover, a dark brown pigment (melanin) secreted by A. chroococcum cells under metal pressure displayed tremendous metal chelating activity. The EDX spectra of melanin extracted from metal treated cells of A. chroococcum CAZ3 displayed 0.53, 0.22 and 0.12% accumulation of Cd, Cr and Ni, respectively. The FT-IR spectra of EPS and melanin demonstrated stretching vibrations and variations in surface functional groups of bacterial cells. The C-H stretching of CH3 in fatty acids and CH2 groups, stretching of N-H bond of proteins and O-H bond of hydroxyl groups caused the shifting of peaks in the EPS spectra. Similar stretching vibrations were recorded in metal treated melanin which involved CHO, alkyl, carboxylate and alkene groups resulting in significant peak shifts. Nuclear magnetic resonance (NMR) spectrum of EPS extracted from A. chroococcum CAZ3 revealed apparent peak signals at 4.717, 9.497, 9.369 and 9.242 ppm. However, 1H NMR peaks were poorly resolved due largely to the impurity/viscosity of the EPS. The entrapment of metals by EPS and melanin was confirmed by EDX. Also, the induction and excretion of variable amounts of metallothioneins (MTs) by A. chroococcum under metal pressure was interesting. Conclusively, the present findings establish- (i) cellular damage due to Cd, Cr and Ni and (ii) role of EPS, melanin and MTs in adsorption/complexation and concurrently the removal of heavy metals. Considering these, A. chroococcum can be promoted as a promising candidate for supplying N efficiently to plants and protecting plants from metal toxicity while growing under metal stressed environment.
Collapse
Affiliation(s)
- Asfa Rizvi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | - Bilal Ahmed
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Almas Zaidi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohd Saghir Khan
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| |
Collapse
|
41
|
Shahid M, Khan MS, Kumar M. Kitazin-pea interaction: understanding the fungicide induced nodule alteration, cytotoxicity, oxidative damage and toxicity alleviation byRhizobium leguminosarum. RSC Adv 2019; 9:16929-16947. [PMID: 35519857 PMCID: PMC9064474 DOI: 10.1039/c9ra01253b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Realizing the severity of fungicidal toxicity to legumes and importance of fungicide tolerant rhizobia in legume production, kitazin tolerant (2400 μg mL−1) strain RP1 was recovered from pea nodules and was identified as Rhizobium leguminosarum (accession no. KY940047). R. leguminosarum produced indole acetic acid (80.5 ± 2.5 mL−1), siderophores: salicylic acid (54 ± 7.3 μg mL−1) and 2,3-dihydoxybenzoic acid (31.9 ± 2.7 μg mL−1), α-ketobutyrate (51 ± 3.2 per mg per protein per hour), solubilized insoluble phosphate (29.5 ± 1.8 μg mL−1) and secreted 29.5 + 2.6 μg mL−1 exopolysaccharides, which, however, decreased consistently with gradually increasing kitazin concentrations. Beyond the tolerance level, kitazin caused structural damage and altered membrane integrity of RP1, as revealed under scanning (SEM) and confocal (CLSM) electron microscopy. Phytotoxicity of kitazin to peas was obvious under both in vitro and in vivo conditions. A significant reduction of 23, 68, 57 and 50% in germination, seedling vigor index, plumule length and radicle length was found at 2× kitazin compared to the control. Cellular damage and cytotoxicity induced by kitazin in membrane altered root cells was detected with acridine orange/propidium iodide (AO/PI) and Evans blue dye. A maximum increase of 1.72, 5.2, 9.3 and 1.72, 5.2, 9.3-fold in red and blue fluorescence was quantified at 1×, 2×, and 3× doses of kitazin, respectively. In contrast, application of R. leguminosarum RP1 alleviated toxicity and enhanced the length of plant organs, dry biomass, symbiotic attributes, photosynthetic pigments, nutrient uptake and grain features of peas comparatively uninoculated and fungicide-treated plants. Additionally, strain RP1 expressively reduced the antioxidant enzymes peroxidase, ascorbate peroxidase, guaiacol peroxidase, catalase and malondialdehyde contents by 10, 2.2, 11, 20 and 4% compared to stressed plants raised at 192 μg kg−1 soil. Moreover, a decline of 19, 21 and 20% in proline content extracted from roots, shoots and grains, respectively was recorded for R. leguminosarum inoculated pea plants grown with 96 μg kg−1 kitazin. Also, the SEM and CLSM of roots revealed the bacterial colonization. In conclusion, R. leguminosarum tolerated a higher level of kitazin, secreted plant growth promoting (PGP) bioactive molecules even under fungicide stress and significantly increased the performance of peas while reducing the levels of proline and antioxidant enzymes. So, it can safely be suggested to legume growers that RP1 strain could inexpensively be explored as an efficient biofertilizer for enhancing the production of legumes especially peas while growing even under fungicide (kitazin) enriched soils. Realizing the severity of fungicidal toxicity to legumes and the importance of fungicide tolerant rhizobia in legume production, kitazin tolerant strain RP1 was recovered from pea nodules and was identified as Rhizobium leguminosarum.![]()
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Murugan Kumar
- Genomics-II
- ICAR-NBAIM (National Bureau of Agriculturally Important Microorganisms)
- Mau-275103
- India
| |
Collapse
|
42
|
Shahid M, Khan MS. Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:8-19. [PMID: 30033020 DOI: 10.1016/j.pestbp.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/22/2018] [Accepted: 05/01/2018] [Indexed: 05/24/2023]
Abstract
In vitro experiments were performed to ascertain the impact of kitazin, hexaconazole, metalaxyl and carbendazim on growth behaviour, enzymatic profile, ultrastructure, cell permeability and bioactive molecules of phosphate-solubilizing bacterium. Strain BC8 isolated from Brassica oleracea rhizosphere was characterized and identified as Bacillus subtilis by 16S rDNA sequencing (Accession no. MG028650) technique. Strain BC8 was unambiguously chosen due to its high tolerance capability to various fungicides and substantial production of plant growth regulators. The biomarker enzymatic assays (lipid peroxidation, lactate dehydrogenase) and oxidative stress (catalase) induced by fungicides exhibited significant (p < 0.05) toxicity of fungicides toward strain BC8. Fungicides caused the cellular/ultrastructural damage and reduced the viability of strain BC8 as clearly revealed under scanning (SEM), high resolution transmission (HR-TEM) and confocal laser scanning (CLSM) microscopy. As the concentration of fungicides increased, a gradual drop in the plant growth promoting traits of B. subtilis strain BC8 was observed. Kitazin at 2400 μg mL-1, hexaconazole at 1500 μg mL-1, metalaxyl at 1200 μg mL-1 and carbendazim at 1200 μg mL-1decreased the IAA production by 35 (48.3 μg mL-1), 27 (51.5 μg mL-1), 39 (43.6 μg mL-1) and 47% (37.3 μg mL-1), respectively, over control (71.3 μg mL-1), while, α-ketobutyrate was declined by 51 (29.6), 56 (26.2), 61 (22.8) and 68 (19)%, respectively, over untreated control (59.9 mg protein-1 h-1). Also, with increase in the concentration of fungicides there was a significant decrease in plant nutrient (P); the maximum being (19.6 μg mL-1) observed at 1500 μg mL-1 hexaconazole with consequent drop in pH (from pH 6.4 to 4.2). The current findings clearly suggest that despite injury, B. subtilis maintained secreting active biomolecules and this property makes this organism truly indispensable for enhancing crop production under fungicide stressed conditions.
Collapse
MESH Headings
- Bacillus subtilis/drug effects
- Bacillus subtilis/genetics
- Bacillus subtilis/growth & development
- Bacillus subtilis/ultrastructure
- Brassica/microbiology
- Cell Membrane Permeability/drug effects
- Cell Survival
- DNA, Ribosomal/genetics
- Enzymes/metabolism
- Fungicides, Industrial/pharmacology
- Microbial Sensitivity Tests
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Oxidative Stress
- Plant Growth Regulators/metabolism
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
43
|
Shahid M, Ahmed B, Zaidi A, Khan MS. Toxicity of fungicides toPisum sativum: a study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC Adv 2018; 8:38483-38498. [PMID: 35559088 PMCID: PMC9090578 DOI: 10.1039/c8ra03923b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Considering the fungicidal threat to the sustainable agro-environment, the toxicological impacts of three fungicides, namely kitazin, hexaconazole and carbendazim, on the biological, chemical and morpho-anatomical changes of peas were assessed. Fungicide applications in general caused a slow but gradual reduction in growth, symbiosis and yields of peas, which, however, varied appreciably among species and concentrations of the three fungicides. Of the three fungicides, carbendazim had the most lethal effect, in which it delayed seed germination and also diminished the overall pea growth. Carbendazim at 3000 μg kg−1 maximally reduced the germination, SVI, size of roots and shoots and total dry matter accumulation in roots, shoots and whole plants distinctly by 40%, 84%, 72%, 73%, 68%, 75% and 73% (p ≤ 0.05), respectively. Hexaconazole at 120 μg kg−1 significantly (p ≤ 0.05) declined total chlorophyll, carotenoids, grain yields, grain protein, root P and shoot N by 19%, 28%, 46%, 69%, 48% and 51%, respectively, over the control. The synthesis of stress biomarkers and oxidative stress were increased with increasing dosage rates of fungicides. Proline content in roots, shoots, leaves and grains, MDA, electrolyte leakage and H2O2 of plants grown in soil treated with 288 μg kg−1 kitazin were increased significantly (p ≤ 0.05) by 73%, 52%, 41%, 24%, 59%, 40% and 27%, respectively, relative to the control. Antioxidant defence enzymes were greater in pea foliage. The SEM and CLSM images revealed an obvious alteration in root tips, enhanced cellular damage and cell death when plants were raised under fungicide stress. Also, morpho-anatomical variations in fungicide-treated foliage were visible in the SEM images. Overall, the present study suggests that a careful and secure strategy should be adopted before fungicides are chosen for enhancing pulse production in different agro-climatic regions. Considering the fungicidal threat to the sustainable agro-environment, the toxicological impacts of three fungicides, namely kitazin, hexaconazole and carbendazim, on the biological, chemical and morpho-anatomical changes of peas were assessed.![]()
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Almas Zaidi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|