1
|
Michalski M, Setny P. Molecular Mechanisms behind Conformational Transitions of the Influenza Virus Hemagglutinin Membrane Anchor. J Phys Chem B 2023; 127:9450-9460. [PMID: 37877534 PMCID: PMC10641832 DOI: 10.1021/acs.jpcb.3c05257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Membrane fusion is a fundamental process that is exploited by enveloped viruses to enter host cells. In the case of the influenza virus, fusion is facilitated by the trimeric viral hemagglutinin protein (HA). So far, major focus has been put on its N-terminal fusion peptides, which are directly responsible for fusion initiation. A growing body of evidence points also to a significant functional role of the HA C-terminal domain, which however remains incompletely understood. Our computational study aimed to elucidate the structural and functional interdependencies within the HA C-terminal region encompassing the transmembrane domain (TMD) and the cytoplasmic tail (CT). In particular, we were interested in the conformational shift of the TMD in response to varying cholesterol concentration in the viral membrane and in its modulation by the presence of CT. Using free-energy calculations based on atomistic molecular dynamics simulations, we characterized transitions between straight and tilted metastable TMD configurations under varying conditions. We found that the presence of CT is essential for achieving a stable, highly tilted TMD configuration. As we demonstrate, such a configuration of HA membrane anchor likely supports the tilting motion of its ectodomain, which needs to be executed during membrane fusion. This finding highlights the functional role of, so far, the relatively overlooked CT region.
Collapse
Affiliation(s)
- Michal Michalski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Kontowicz E, Moreno-Madriñan M, Ragland D, Beauvais W. A stochastic compartmental model to simulate intra- and inter-species influenza transmission in an indoor swine farm. PLoS One 2023; 18:e0278495. [PMID: 37141248 PMCID: PMC10159208 DOI: 10.1371/journal.pone.0278495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Common in swine production worldwide, influenza causes significant clinical disease and potential transmission to the workforce. Swine vaccines are not universally used in swine production, due to their limited efficacy because of continuously evolving influenza viruses. We evaluated the effects of vaccination, isolation of infected pigs, and changes to workforce routine (ensuring workers moved from younger pig batches to older pig batches). A Susceptible-Exposed-Infected-Recovered model was used to simulate stochastic influenza transmission during a single production cycle on an indoor hog growing unit containing 4000 pigs and two workers. The absence of control practices resulted in 3,957 pigs [0-3971] being infected and a 0.61 probability of workforce infection. Assuming incoming pigs had maternal-derived antibodies (MDAs), but no control measures were applied, the total number of infected pigs reduced to 1 [0-3958] and the probability of workforce infection was 0.25. Mass vaccination (40% efficacious) of incoming pigs also reduced the total number of infected pigs to 2362 [0-2374] or 0 [0-2364] in pigs assumed to not have MDAs and have MDAs, respectively. Changing the worker routine by starting with younger to older pig batches, reduced the number of infected pigs to 996 [0-1977] and the probability of workforce infection (0.22) in pigs without MDAs. In pigs with MDAs the total number of infected pigs was reduced to 0 [0-994] and the probability of workforce infection was 0.06. All other control practices alone, showed little improvement in reducing total infected pigs and the probability of workforce infection. Combining all control strategies reduced the total number of infected pigs to 0 or 1 with a minimal probability of workforce infection (<0.0002-0.01). These findings suggest that non-pharmaceutical interventions can reduce the impact of influenza on swine production and workers when efficacious vaccines are unavailable.
Collapse
Affiliation(s)
- Eric Kontowicz
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Max Moreno-Madriñan
- Global Health Program, DePauw University, Greencastle, Indiana
- Department of Global Health, Indiana University, Indianapolis, Indiana
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Wendy Beauvais
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| |
Collapse
|
3
|
Li J, Liu S, Gao Y, Tian S, Yang Y, Ma N. Comparison of N-linked glycosylation on hemagglutinins derived from chicken embryos and MDCK cells: a case of the production of a trivalent seasonal influenza vaccine. Appl Microbiol Biotechnol 2021; 105:3559-3572. [PMID: 33937925 PMCID: PMC8088833 DOI: 10.1007/s00253-021-11247-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Abstract N-linked glycosylation plays critical roles in folding, receptor binding, and immunomodulating of hemagglutinin (HA), the main antigen in influenza vaccines. Chicken embryos are the predominant production host for influenza vaccines, but Madin-Darby canine kidney (MDCK) cells have emerged as an important alternative host. In this study, we compared glycosylation patterns, including the occupancy of potential glycosylation sites and the distribution of different glycans, on the HAs of three strains of influenza viruses for the production a trivalent seasonal flu vaccine for the 2015-2016 Northern Hemisphere season (i.e., A/California/7/2009 (H1N1) X179A, A/Switzerland/9715293/2013 (H3N2) NIB-88, and B/Brisbane/60/2008 NYMC BX-35###). Of the 8, 12, and 11 potential glycosylation sites on the HAs of H1N1, H3N2, and B strains, respectively, most were highly occupied. For the H3N2 and B strains, MDCK-derived HAs contained more sites being partially occupied (<95%) than embryo-derived HAs. A highly sensitive glycan assay was developed where 50 different glycans were identified, which was more than what has been reported previously, and their relative abundance was quantified. In general, MDCK-derived HAs contain more glycans of higher molecular weight. High-mannose species account for the most abundant group of glycans, but at a lower level as compared to those reported in previous studies, presumably due to that lower abundance, complex structure glycans were accounted for in this study. The different glycosylation patterns between MDCK- and chicken embryo-derived HAs may help elucidate the role of glycosylation on the function of influenza vaccines. Key points • For the H3N2 and B strains, MDCK-derived HAs contained more partially (<95%) occupied glycosylation sites. • MDCK-derived HAs contained more glycans of higher molecular weight. • A systematic comparison of glycosylation on HAs used for trivalent seasonal flu vaccines was conducted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11247-5.
Collapse
Affiliation(s)
- Jingqi Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China
| | - Sixu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China
| | - Yanlin Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China.,School of Computing, Urban Sciences Building, Newcastle University, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Shuaishuai Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China
| | - Yu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China.
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
4
|
Khrustalev VV, Kordyukova LV, Arutyunyan AM, Poboinev VV, Khrustaleva TA, Stojarov AN, Baratova LA, Sapon AS, Lugin VG. The cytoplasmic tail of influenza A/H1N1 virus hemagglutinin is β-structural. J Biomol Struct Dyn 2020; 40:4642-4661. [PMID: 33317396 DOI: 10.1080/07391102.2020.1860827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Influenza A/H1N1 virus hemagglutinin (HA) is an integral type I glycoprotein that contains a large glycosylated ectodomain, a transmembrane domain, and a cytoplasmic tail (CT) of 10-14 amino acid residues. There are absolutely no data on the secondary or tertiary structure of the HA CT, which is important for virus pathogenesis. Three highly conserved cysteines are post-translationally modified by the attachment of fatty acid residues that pin the CT to the lipid membrane inside the virion. We applied circular dichroism (CD) and fluorescence spectroscopy analysis to examine four synthetic peptides corresponding to 14-15 C-terminal residues of H1 subtype HA (NH2-WMCSNGSLQCRICI-COOH; NH2-FWMCSNGSLQCRICI-COOH), with free or acetaminomethylated cysteines, in the reduced or non-reduced state, at various pH values and temperatures. The CD analysis detected the formation of a β-structure (30-65% according to the new BeStSel algorithm), in addition to an unstructured random coil, in every peptide in various conditions. It was completely or partially recognized as an antiparallel β-structure that was also confirmed by the multi-bounce Horizontal Attenuated Total Reflectance Fourier Transformed Infrared (HATR-FTIR) spectroscopy analysis. According to the experimental data, as well as 3 D modeling, we assume that the amino acid sequence corresponding to the HA CT may form a short antiparallel β-structure under the lipid membrane within a virion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victor V Poboinev
- Department of General Chemistry, Belarusian State Medical University, Minsk, Belarus
| | - Tatyana A Khrustaleva
- Biochemical group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Aleksander N Stojarov
- Department of Radiation Medicine and Ecology, Belarusian State Medical University, Minsk, Belarus
| | - Lyudmila A Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alena S Sapon
- Center for Physical and Chemical Research Methods, Belarusian State Technological University, Minsk, Belarus
| | - Valery G Lugin
- Center for Physical and Chemical Research Methods, Belarusian State Technological University, Minsk, Belarus
| |
Collapse
|
5
|
Liu K, Tan S, Jin W, Guan J, Wang Q, Sun H, Qi J, Yan J, Chai Y, Wang Z, Deng C, Gao GF. N-glycosylation of PD-1 promotes binding of camrelizumab. EMBO Rep 2020; 21:e51444. [PMID: 33063473 DOI: 10.15252/embr.202051444] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
PD-1 is a highly glycosylated inhibitory receptor expressed mainly on T cells. Targeting of PD-1 with monoclonal antibodies (MAbs) to block the interaction with its ligand PD-L1 has been successful for the treatment of multiple tumors. However, polymorphisms at N-glycosylation sites of PD-1 exist in the human population that might affect antibody binding, and dysregulated glycosylation has been observed in the tumor microenvironment. Here, we demonstrate varied N-glycan composition in PD-1, and show that the binding affinity of camrelizumab, a recently approved PD-1-specific MAb, to non-glycosylated PD-1 proteins from E. coli is substantially decreased compared with glycosylated PD-1. The structure of the camrelizumab/PD-1 complex reveals that camrelizumab mainly utilizes its heavy chain to bind to PD-1, while the light chain sterically inhibits the binding of PD-L1 to PD-1. Glycosylation of asparagine 58 (N58) promotes the interaction with camrelizumab, while the efficiency of camrelizumab to inhibit the binding of PD-L1 is substantially reduced for glycosylation-deficient PD-1. These results increase our understanding of how glycosylation affects the activity of PD-1-specific MAbs during immune checkpoint therapy.
Collapse
Affiliation(s)
- Kefang Liu
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wanjun Jin
- College of Life Science, Research Center for Glycobiology and Glycotechnology, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Jiawei Guan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qingling Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhongfu Wang
- College of Life Science, Research Center for Glycobiology and Glycotechnology, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - George F Gao
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Structure-Based Modification of an Anti-neuraminidase Human Antibody Restores Protection Efficacy against the Drifted Influenza Virus. mBio 2020; 11:mBio.02315-20. [PMID: 33024040 PMCID: PMC7542365 DOI: 10.1128/mbio.02315-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The immune system produces antibodies to protect the human body from harmful invaders. The monoclonal antibody (MAb) is one kind of effective antivirals. In this study, we isolated an antibody (Z2B3) from an H7N9 influenza virus-infected child. It shows cross-reactivity to both group 1 (N1) and group 2 (N9) neuraminidases (NAs) but is sensitive to N1 NA with a K432E substitution. Structural analysis of the NA-antibody fragment antigen-binding (Fab) complex provides a clue for antibody modification, and the modified antibody restored binding and inhibition to recently drifted N1 NA and regained protection against the variant influenza strain. This finding suggests that antibodies to NA may be a useful therapy and can be in principle edited to defeat drifted influenza virus. Here, we investigate a monoclonal antibody, Z2B3, isolated from an H7N9-infected patient, that exhibited cross-reactivity to both N9 (group 2) and a broad range of seasonal and avian N1 (group 1) proteins but lost activity to the N1 with the substitution K432E. This substitution exists in 99.25% of seasonal influenza strains after 2013. The NA-Z2B3 complex structures indicated that Z2B3 binds within the conserved active site of the neuraminidase (NA) protein. A salt bridge between D102 in Z2B3 and K432 in NA plays an important role in binding. Structure-based modification of Z2B3 with D102R in heavy chain reversed the salt bridge and restored the binding and inhibition of N1 with E432. Furthermore, Z2B3-D102R can protect mice from A/Serbia/NS-601/2014 H1N1 virus (NA contains E432) infection while the wild-type Z2B3 antibody shows no protection. This study demonstrates that a broadly reactive and protective antibody to NA can be in principle edited to restore binding and inhibition to recently drifted N1 NA and regain protection against the variant influenza strain.
Collapse
|
7
|
Liu WJ, Li J, Zou R, Pan J, Jin T, Li L, Liu P, Zhao Y, Yu X, Wang H, Liu G, Jiang H, Bi Y, Liu L, Yuen KY, Liu Y, Gao GF. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A 2020; 117:23807-23814. [PMID: 32873642 PMCID: PMC7519270 DOI: 10.1073/pnas.2013267117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Avian-origin influenza viruses overcome the bottleneck of the interspecies barrier and infect humans through the evolution of variants toward more efficient replication in mammals. The dynamic adaptation of the genetic substitutions and the correlation with the virulence of avian-origin influenza virus in patients remain largely elusive. Here, based on the one-health approach, we retrieved the original virus-positive samples from patients with H7N9 and their surrounding poultry/environment. The specimens were directly deep sequenced, and the subsequent big data were integrated with the clinical manifestations. Unlike poultry/environment-derived samples with the consistent dominance of avian signature 627E of H7N9 polymerase basic protein 2 (PB2), patient specimens had diverse ratios of mammalian signature 627K, indicating the rapid dynamics of H7N9 adaptation in patients during the infection process. In contrast, both human- and poultry/environment-related viruses had constant dominance of avian signature PB2-701D. The intrahost dynamic adaptation was confirmed by the gradual replacement of 627E by 627K in H7N9 in the longitudinally collected specimens from one patient. These results suggest that host adaptation for better virus replication to new hosts, termed "genetic tuning," actually occurred in H7N9-infected patients in vivo. Notably, our findings also demonstrate the correlation between rapid host adaptation of H7N9 PB2-E627K and the fatal outcome and disease severity in humans. The feature of H7N9 genetic tuning in vivo and its correlation with the disease severity emphasize the importance of testing for the evolution of this avian-origin virus during the course of infection.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Tao Jin
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | | | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Guang Liu
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Hui Jiang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases and the HKU-Shenzhen Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
8
|
Xu Y, Peng R, Zhang W, Qi J, Song H, Liu S, Wang H, Wang M, Xiao H, Fu L, Fan Z, Bi Y, Yan J, Shi Y, Gao GF. Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Rep 2020; 29:2217-2228.e5. [PMID: 31747596 DOI: 10.1016/j.celrep.2019.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/23/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,600 human infections, posing a threat to public health. An emerging concern is whether H7N9 AIVs will cause pandemics among humans. Molecular analysis of hemagglutinin (HA), which is a critical determinant of interspecies transmission, shows that the current H7N9 AIVs are still dual-receptor tropic, indicating limited human-to-human transmission potency. Mutagenesis and structural studies reveal that a G186V substitution is sufficient for H7N9 AIVs to acquire human receptor-binding capacity, and a Q226L substitution would favor binding to both avian and human receptors only when paired with A138/V186/P221 hydrophobic residues. These data suggest a different evolutionary route of H7N9 viruses compared to other AIV-subtype HAs.
Collapse
Affiliation(s)
- Ying Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Haiyuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Min Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China
| | - Zheng Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China
| | - Jinghua Yan
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Center for Influenza Research and Early-Warning, Chinese Academy of Sciences (CASCIRE), Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| |
Collapse
|
9
|
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020. [PMID: 32275855 DOI: 10.1016/j.cell.2020.03.0452020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The recent emergence of a novel coronavirus (SARS-CoV-2) in China has caused significant public health concerns. Recently, ACE2 was reported as an entry receptor for SARS-CoV-2. In this study, we present the crystal structure of the C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in complex with human ACE2 (hACE2), which reveals a hACE2-binding mode similar overall to that observed for SARS-CoV. However, atomic details at the binding interface demonstrate that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-RBD. Additionally, a panel of murine monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) against SARS-CoV-S1/receptor-binding domain (RBD) were unable to interact with the SARS-CoV-2 S protein, indicating notable differences in antigenicity between SARS-CoV and SARS-CoV-2. These findings shed light on the viral pathogenesis and provide important structural information regarding development of therapeutic countermeasures against the emerging virus.
Collapse
Affiliation(s)
- Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Biotechnology, Tianjin 300308, China
| | - Lili Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Chunli Song
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Physical Science and Information, Anhui University, Hefei 230039, China
| | - Zengyuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Chengpeng Qiao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China; Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Physical Science and Information, Anhui University, Hefei 230039, China; College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020; 181:894-904.e9. [PMID: 32275855 PMCID: PMC7144619 DOI: 10.1016/j.cell.2020.03.045] [Citation(s) in RCA: 2190] [Impact Index Per Article: 438.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
The recent emergence of a novel coronavirus (SARS-CoV-2) in China has caused significant public health concerns. Recently, ACE2 was reported as an entry receptor for SARS-CoV-2. In this study, we present the crystal structure of the C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in complex with human ACE2 (hACE2), which reveals a hACE2-binding mode similar overall to that observed for SARS-CoV. However, atomic details at the binding interface demonstrate that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-RBD. Additionally, a panel of murine monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) against SARS-CoV-S1/receptor-binding domain (RBD) were unable to interact with the SARS-CoV-2 S protein, indicating notable differences in antigenicity between SARS-CoV and SARS-CoV-2. These findings shed light on the viral pathogenesis and provide important structural information regarding development of therapeutic countermeasures against the emerging virus.
Collapse
Affiliation(s)
- Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Biotechnology, Tianjin 300308, China
| | - Lili Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Chunli Song
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Physical Science and Information, Anhui University, Hefei 230039, China
| | - Zengyuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Chengpeng Qiao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China; Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Physical Science and Information, Anhui University, Hefei 230039, China; College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Structures of the four Ig-like domain LILRB2 and the four-domain LILRB1 and HLA-G1 complex. Cell Mol Immunol 2019; 17:966-975. [PMID: 31273318 PMCID: PMC7609294 DOI: 10.1038/s41423-019-0258-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/14/2019] [Indexed: 11/29/2022] Open
Abstract
Leukocyte immunoglobulin (Ig)-like receptors (LILRs), also known as CD85 and immunoglobulin-like transcripts (ILTs), play pivotal roles in regulating immune responses. These receptors define an immune checkpoint that immune therapy can target. Through cis or trans interactions with human leukocyte antigen (HLA)-G, the two most abundantly expressed inhibitory LILRs, LILRB1, and LILRB2 (LILRB1/2, also known as CD85j/d and ILT2/4), are involved in immunotolerance in pregnancy and transplantation, autoimmune diseases, and immune evasion by tumors. Although the discrete domains of LILRB1/2 are clear, the assembly mode of the four extracellular Ig-like domains (D1, D2, D3, and D4) remains unknown. Previous data indicate that D1D2 is responsible for binding to HLA class I (HLA-I), but the roles of D3D4 are still unclear. Here, we determined the crystal structure of the four Ig-like domain LILRB2 and four-domain LILRB1 in complex with HLA-G1. The angles between adjacent domains and the staggered assembly of the four domains suggest limited flexibility and limited plasticity of the receptors during ligand binding. The complex structure of four-domain LILRB1 and HLA-G1 supports the model that D1D2 is responsible for HLA-I binding, while D3D4 acts as a scaffold. Accordingly, cis and trans binding models for HLA-I binding to LILRB1/2 are proposed. The geometries of LILRB1/2 in complex with dimeric and monomeric HLA-G1 suggest the accessibility of the dimeric receptor, which in turn, transduces more inhibitory signals. The assembly of LILRB1/2 and its binding to HLA-G1 could aid in the design of immune regulators and benefit immune interference.
Collapse
|
12
|
Song H, Zhao Z, Chai Y, Jin X, Li C, Yuan F, Liu S, Gao Z, Wang H, Song J, Vazquez L, Zhang Y, Tan S, Morel CM, Yan J, Shi Y, Qi J, Gao F, Gao GF. Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to Chikungunya Virus Envelope Protein. Cell 2019; 177:1714-1724.e12. [PMID: 31080063 DOI: 10.1016/j.cell.2019.04.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
Arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), cause severe and debilitating rheumatic diseases worldwide, resulting in severe morbidity and economic costs. Recently, MXRA8 was reported as an entry receptor. Here, we present the crystal structures of the mouse MXRA8, human MXRA8 in complex with the CHIKV E protein, and the cryo-electron microscopy structure of human MXRA8 and CHIKV virus-like particle. MXRA8 has two Ig-like domains with unique structural topologies. This receptor binds in the "canyon" between two protomers of the E spike on the surface of the virion. The atomic details at the interface between the two binding entities reveal that both the two domains and the hinge region of MXRA8 are involved in interaction with CHIKV E1-E2 residues from two protomers. Notably, the stalk region of MXRA8 is critical for CHIKV virus entry. This finding provides important information regarding the development of therapeutic countermeasures against those arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyue Jin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Changyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fei Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengrong Gao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haiyuan Wang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Leonardo Vazquez
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Science and Technology for Innovation on Diseases of Neglected Populations (INCT-IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro 21040-361, Brazil
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Carlos M Morel
- National Institute of Science and Technology for Innovation on Diseases of Neglected Populations (INCT-IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro 21040-361, Brazil
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
13
|
Xiao H, Guo T, Yang M, Qi J, Huang C, Hong Y, Gu J, Pang X, Liu WJ, Peng R, McCauley J, Bi Y, Li S, Feng J, Zhang H, Zhang X, Lu X, Yan J, Chen L, Shi Y, Chen W, Gao GF. Light chain modulates heavy chain conformation to change protection profile of monoclonal antibodies against influenza A viruses. Cell Discov 2019; 5:21. [PMID: 30993000 PMCID: PMC6465249 DOI: 10.1038/s41421-019-0086-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
The isolation of human monoclonal antibodies with broadly neutralizing breadth can provide a promising countermeasure for influenza A viruses infection. Most broadly neutralizing antibodies against influenza A viruses bind to the conserved stem region or the receptor-binding cavity of hemagglutinin and the interaction is dominated by the heavy chain. The light chain, however, contributes few or no direct contacts to the antigen. Here we report an H3-clade neutralizing human monoclonal antibody, AF4H1K1, which recognizes the hemagglutinin glycoproteins of all group 2 influenza A viruses. This human monoclonal antibody has been obtained through the screening by pairing different heavy and light chains from an H7N9-infected patient based on the next-generation sequencing technology. Further structural studies revealed that light chains modulate the neutralizing spectrum by affecting the local conformation of heavy chains, instead of direct interaction with the antigen. These findings provide important clues to understand the molecular basis of light chains in antigen recognition and to explore the strategies in particular of the use of light chain modification to develop broadly protective monoclonal antibodies against influenza A viruses and other emerging viruses.
Collapse
Affiliation(s)
- Haixia Xiao
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | - Tianling Guo
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | - Mi Yang
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Jianxun Qi
- 2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Chaobin Huang
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | | | - Jinjin Gu
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,5College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Xuefei Pang
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | - William Jun Liu
- 6National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Ruchao Peng
- 2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - John McCauley
- 7WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Yuhai Bi
- 2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Shihua Li
- 2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Junxia Feng
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | - Hailiang Zhang
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,5College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Xupei Zhang
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | - Xishan Lu
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China
| | - Jinghua Yan
- 8CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | - Liling Chen
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215004 China
| | - Yi Shi
- 2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| | | | - George Fu Gao
- 1Laboraroty of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308 China.,2CAS Centre for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences (CAS), China Research Network, Beijing, 100101 China.,3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101 China
| |
Collapse
|
14
|
Neutralization mechanism of human monoclonal antibodies against Rift Valley fever virus. Nat Microbiol 2019; 4:1231-1241. [DOI: 10.1038/s41564-019-0411-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/14/2019] [Indexed: 02/03/2023]
|
15
|
Quan L, Ji C, Ding X, Peng Y, Liu M, Sun J, Jiang T, Wu A. Cluster-Transition Determining Sites Underlying the Antigenic Evolution of Seasonal Influenza Viruses. Mol Biol Evol 2019; 36:1172-1186. [DOI: 10.1093/molbev/msz050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lijun Quan
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, China
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Chengyang Ji
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, China
| | - Xiao Ding
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yousong Peng
- College of Biology, Human University, Changsha, China
| | - Mi Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiya Sun
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
16
|
Nieto A, Vasilijevic J, Santos NB, Zamarreño N, López P, Amorim MJ, Falcon A. Mutation S110L of H1N1 Influenza Virus Hemagglutinin: A Potent Determinant of Attenuation in the Mouse Model. Front Immunol 2019; 10:132. [PMID: 30787926 PMCID: PMC6372558 DOI: 10.3389/fimmu.2019.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/16/2019] [Indexed: 01/27/2023] Open
Abstract
Characterization of a pandemic 2009 H1N1 influenza virus isolated from a fatal case patient (F-IAV), showed the presence of three different mutations; potential determinants of its high pathogenicity that were located in the polymerase subunits (PB2 A221T and PA D529N) and the hemagglutinin (HA S110L). Recombinant viruses containing individually or in combination the polymerase mutations in the backbone of A/California/04/09 (CAL) showed that PA D529N was clearly involved in the increased pathogenicity of the F-IAV virus. Here, we have evaluated the contribution of HA S110L to F-IAV pathogenicity, through introduction of this point mutation in CAL recombinant virus (HA mut). The HA S110L protein has similar pH stability, comparable mobility, and entry properties both in human and mouse cultured cells that wild type HA. The change HA S110L leads to a non-significant trend to reduce the replication capacity of influenza virus in tissue culture, and HA mut is better neutralized than CAL virus by monoclonal and polyclonal antibodies against HA from CAL strain. In addition, recombinant viruses containing HA S110L alone or in combination with polymerase mutations considerably increased the LD50 in infected mice. Characterization of the lungs of HA mut infected animals showed reduced lung damage and inflammation compared with CAL infected mice. Accordingly, lower virus replication, decreased presence in bronchioli and parenchyma and lower leukocytes and epithelial infected cells were found in the lungs of HA mut-infected animals. Our results indicate that, mutation HA S110L constitutes a determinant of attenuation and suggest that its interaction with components of the respiratory tract mucus and lectins, that play an important role on influenza virus outcome, may constitute a physical barrier impeding the infection of the target cells, thus compromising the infection outcome.
Collapse
Affiliation(s)
- Amelia Nieto
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Center for Biomedical Research (CIBER), Madrid, Spain
| | | | - Nuno Brito Santos
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Noelia Zamarreño
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Center for Biomedical Research (CIBER), Madrid, Spain
| | - Pablo López
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Maria Joao Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Falcon
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Center for Biomedical Research (CIBER), Madrid, Spain
| |
Collapse
|
17
|
Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol 2019; 4:306-315. [PMID: 30478290 DOI: 10.1038/s41564-018-0303-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Little is known about the specificities and neutralization breadth of the H7-reactive antibody repertoire induced by natural H7N9 infection in humans. We have isolated and characterized 73 H7-reactive monoclonal antibodies from peripheral B cells from four donors infected in 2013 and 2014. Of these, 45 antibodies were H7-specific, and 17 of these neutralized the virus, albeit with few somatic mutations in their variable domain sequences. An additional set of 28 antibodies, isolated from younger donors born after 1968, cross-reacted between H7 and H3 haemagglutinins in binding assays, and had accumulated significantly more somatic mutations, but were predominantly non-neutralizing in vitro. Crystal structures of three neutralizing and protective antibodies in complex with the H7 haemagglutinin revealed that they recognize overlapping residues surrounding the receptor-binding site of haemagglutinin. One of the antibodies, L4A-14, bound into the sialic acid binding site and made contacts with haemagglutinin residues that were conserved in the great majority of 2016-2017 H7N9 isolates. However, only 3 of the 17 neutralizing antibodies retained activity for the Yangtze River Delta lineage viruses isolated in 2016-2017 that have undergone antigenic change, which emphasizes the need for updated H7N9 vaccines.
Collapse
|
18
|
Amanat F, Meade P, Strohmeier S, Krammer F. Cross-reactive antibodies binding to H4 hemagglutinin protect against a lethal H4N6 influenza virus challenge in the mouse model. Emerg Microbes Infect 2019; 8:155-168. [PMID: 30866770 PMCID: PMC6455122 DOI: 10.1080/22221751.2018.1564369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
Influenza viruses of the H4 subtype are widespread in wild birds, circulate in domestic poultry, readily infect mammals, and tolerate the insertion of a polybasic cleavage site. In addition, serological evidence suggests that humans working with poultry are exposed to these viruses. While H4 viruses are not of immediate pandemic concern, there is a lack of knowledge regarding their antigenicity. In order to study viruses of the H4 subtype, we generated and characterized a panel of antibodies that bind a wide variety of H4 hemagglutinins from avian and swine isolates of both the Eurasian and North American lineage. We further characterized these antibodies using novel recombinant H4N6 viruses that were found to be lethal in DBA/2J mice. Non-neutralizing antibodies, which had activity in an antibody dependent cell-mediated cytotoxicity reporter assay in vitro, protected mice against challenge in vivo, highlighting the importance of effector functions. Our data suggest a high degree of antigenic conservation of the H4 hemagglutinin.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Khrustalev VV, Khrustaleva TA, Kordyukova LV. Selection and structural analysis of the NY25 peptide – A vaccine candidate from hemagglutinin of swine-origin Influenza H1N1. Microb Pathog 2018; 125:72-83. [DOI: 10.1016/j.micpath.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023]
|
20
|
Kuenstling TE, Sambol AR, Hinrichs SH, Larson MA. Oligomerization of bacterially expressed H1N1 recombinant hemagglutinin contributes to protection against viral challenge. Sci Rep 2018; 8:11856. [PMID: 30087372 PMCID: PMC6081378 DOI: 10.1038/s41598-018-30079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/13/2018] [Indexed: 11/18/2022] Open
Abstract
Vaccination is the most effective intervention to prevent influenza and control the spread of the virus. Alternatives are needed to the traditional egg-based vaccine strategy for a more rapid response to new outbreaks. Two different hemagglutinin (HA) fragments (rHA11-326 and rHA153-269) derived from influenza A virus subtype H1N1 were expressed in Escherichia coli and characterized by immunoblot, gel filtration, hemagglutination, and competitive binding assays. rHA11-326 included neutralizing epitopes and the trimerization domain, whereas rHA153-269 included only the head of HA with the neutralizing epitopes. Mice were immunized with rHA11-326 or rHA153-269, and sera were tested for the presence of neutralizing antibodies. Mice were then challenged with H1N1 and infection severity was monitored. rHA11-326 trimerized, whereas rHA153-269 was unable to form oligomers. Both rHA11-326 and rHA153-269 elicited the production of neutralizing antibodies, but only oligomerized rHA11-326 protected against live virus challenges in mice. This study demonstrated that bacterially expressed HA was capable of folding properly and eliciting the production of neutralizing antibodies, and that HA oligomerization contributed to protection against viral challenge. Therefore, prokaryotic-derived vaccine platforms can provide antigenic and structural requirements for viral protection, as well as allow for the rapid and cost-effective incorporation of multiple antigens for broader protection.
Collapse
Affiliation(s)
- Tess E Kuenstling
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony R Sambol
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Nebraska Public Health Laboratory, Omaha, NE, USA
| | - Steven H Hinrichs
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Nebraska Public Health Laboratory, Omaha, NE, USA
| | - Marilynn A Larson
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
21
|
Zhao X, Li R, Zhou Y, Xiao M, Ma C, Yang Z, Zeng S, Du Q, Yang C, Jiang H, Hu Y, Wang K, Mok CKP, Sun P, Dong J, Cui W, Wang J, Tu Y, Yang Z, Hu W. Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. J Med Chem 2018; 61:5187-5198. [PMID: 29799746 DOI: 10.1021/acs.jmedchem.8b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Influenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies. In this study, we explored a structure-activity relationship (SAR) of pinanamine-based antivirals and discovered a potent inhibitor M090 against amantadine-resistant viruses, including the 2009 H1N1 pandemic strains, and oseltamivir-resistant viruses. Mechanism of action studies, particularly hemolysis inhibition, indicated that M090 targets influenza HA and it occupied a highly conserved pocket of the HA2 domain and inhibited virus-mediated membrane fusion by "locking" the bending state of HA2 during the conformational rearrangement process. This work provides new binding sites within the HA protein and indicates that this pocket may be a promising target for broad-spectrum anti-influenza A drug design and development.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China.,Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Mengjie Xiao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhongjin Yang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Shaogao Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Kefeng Wang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China.,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine , The University of Hong Kong , 5 Sassoon Road , Pokfulam , Hong Kong
| | - Ping Sun
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Jianghong Dong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Wei Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| |
Collapse
|
22
|
New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five. J Virol 2018; 92:JVI.00301-18. [PMID: 29563296 DOI: 10.1128/jvi.00301-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKGKRTAR/G, PKGKRIAR/G, PKRKRAAR/G, and PKRKRTAR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5.IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9/H9N2 and H6Ny) and lineages (Yangtze and Pearl River Delta lineages), resulting in totals of 36 and 3 major genotypes, respectively. Notably, the NAI drug-resistant (R292K in NA) and mammalian-adapted (e.g., E627K in PB2) mutations were found in HP-H7N9 not only from human isolates but also from poultry and environmental isolates, indicating increased risks for human infections. The broad dissemination of LP- and HP-H7N9 with high levels of genetic diversity and host adaptation and drug-resistant mutations likely accounted for the sharp increases in the number of human infections during wave 5. Therefore, more strategies are needed against the further spread and damage of H7N9 in the world.
Collapse
|
23
|
Rajendran M, Sun W, Comella P, Nachbagauer R, Wohlbold TJ, Amanat F, Kirkpatrick E, Palese P, Krammer F. An immuno-assay to quantify influenza virus hemagglutinin with correctly folded stalk domains in vaccine preparations. PLoS One 2018; 13:e0194830. [PMID: 29617394 PMCID: PMC5884525 DOI: 10.1371/journal.pone.0194830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/09/2018] [Indexed: 11/29/2022] Open
Abstract
The standard method to quantify the hemagglutinin content of influenza virus vaccines is the single radial immunodiffusion assay. This assay primarily relies on polyclonal antibodies against the head domain of the influenza virus hemagglutinin, which is the main target antigen of influenza virus vaccines. Novel influenza virus vaccine candidates that redirect the immune response towards the evolutionary more conserved hemagglutinin stalk, including chimeric hemagglutinin and headless hemagglutinin constructs, are highly dependent on the structural integrity of the protein to present conformational epitopes for neutralizing antibodies. In this study, we describe a novel enzyme-linked immunosorbent assay that allows quantifying the amount of hemagglutinin with correctly folded stalk domains and which could be further developed into a potency assay for stalk-based influenza virus vaccines.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Phillip Comella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Teddy John Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Ericka Kirkpatrick
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wu NC, Wilson IA. Structural insights into the design of novel anti-influenza therapies. Nat Struct Mol Biol 2018; 25:115-121. [PMID: 29396418 PMCID: PMC5930012 DOI: 10.1038/s41594-018-0025-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022]
Abstract
A limited arsenal of therapies is currently available to tackle the emergence of a future influenza pandemic or even to deal effectively with the continual outbreaks of seasonal influenza. However, recent findings hold great promise for the design of novel vaccines and therapeutics, including the possibility of more universal treatments. Structural biology has been a major contributor to those advances, in particular through the many studies on influenza hemagglutinin (HA), the major surface antigen. HA's primary function is to enable the virus to enter host cells, and structural work has revealed the various HA conformational forms generated during the entry process. Other studies have explored how human broadly neutralizing antibodies (bnAbs), designed proteins, peptides and small molecules, can inhibit and neutralize the virus. Here we review milestones in HA structural biology and how the recent insights from bnAbs are paving the way to design novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
25
|
The Postfusion Structure of the Heartland Virus Gc Glycoprotein Supports Taxonomic Separation of the Bunyaviral Families Phenuiviridae and Hantaviridae. J Virol 2017; 92:JVI.01558-17. [PMID: 29070692 DOI: 10.1128/jvi.01558-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022] Open
Abstract
Heartland virus (HRTV) is an emerging human pathogen that belongs to the newly defined family Phenuiviridae, order Bunyavirales Gn and Gc are two viral surface glycoproteins encoded by the M segment and are required for early events during infection. HRTV delivers its genome into the cytoplasm by fusion of the viral envelope and endosomal membranes under low-pH conditions. Here, we describe the crystal structure of HRTV Gc in its postfusion conformation. The structure shows that Gc displays a typical class II fusion protein conformation, and the overall structure is identical to severe fever with thrombocytopenia syndrome virus (SFTSV) Gc, which also belongs to the Phenuiviridae family. However, our structural analysis indicates that the hantavirus Gc presents distinct features in the aspects of subdomain orientation, N-linked glycosylation, the interaction pattern between protomers, and the fusion loop conformation. This suggests their family-specific subunit arrangement during the fusogenic process and supports the recent taxonomic revision of bunyaviruses. Our results provide insights into the comprehensive comparison of class II membrane fusion proteins in two bunyavirus families, yielding valuable information for treatments against these human pathogens.IMPORTANCE HRTV is an insect-borne virus found in America that can infect humans. It belongs to the newly defined family Phenuiviridae, order Bunyavirales HRTV contains three single-stranded RNA segments (L, M, and S). The M segment of the virus encodes a polyprotein precursor that is cleaved into two glycoproteins, Gn and Gc. Gc is a fusion protein facilitating virus entry into host cells. Here, we report the crystal structure of the HRTV Gc protein. The structure displays a typical class II fusion protein conformation. Comparison of HRTV Gc with a recently solved structure of another bunyavirus Gc revealed that these Gc structures display a newly defined family specificity, supporting the recent International Committee on Taxonomy of Viruses reclassification of the bunyaviruses. Our results expand the knowledge of bunyavirus fusion proteins and help us to understand bunyavirus characterizations. This study provides useful information to improve protection against and therapies for bunyavirus infections.
Collapse
|
26
|
Tan S, Zhang S, Wu B, Zhao Y, Zhang W, Han M, Wu Y, Shi G, Liu Y, Yan J, Wu G, Wang H, Gao GF, Zhu F, Liu WJ. Hemagglutinin-specific CD4 + T-cell responses following 2009-pH1N1 inactivated split-vaccine inoculation in humans. Vaccine 2017; 35:5644-5652. [PMID: 28917539 DOI: 10.1016/j.vaccine.2017.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/08/2017] [Accepted: 08/19/2017] [Indexed: 12/24/2022]
Abstract
Influenza A virus remains a major threat to public health, and the inactivated split-virus vaccine is the most prevalent vaccine used worldwide. However, our knowledge about cellular immune responses to the inactivated influenza virus vaccine and its correlation with humoral responses are yet limited, which has restricted our understanding of the vaccine's protective mechanisms. Herein, in two clinical trials, T-cell responses specific for both previously identified human leucocyte antigen (HLA)-I-restricted epitopes from influenza virus and hemagglutinin (HA) protein were longitudinally investigated before, during, and after a two-dose vaccination with the inactivated 2009 pandemic H1N1 (2009-pH1N1) vaccine. A robust antibody response in all of the donors after vaccination was observed. Though no CD8+ T-cell responses to known epitopes were detected, HA-specific T-cell responses were primed following vaccination, and the responses were found to be mainly CD4+ T-cell dependent. However, HA-specific T-cells circulating in peripheral blood dropped to baseline levels 6weeks after vaccination, but humoral immune responses maintained a high level for 4months post-vaccination. Significant correlations between the magnitude of the HA-specific T-cell responses and hemagglutination inhibition antibody titers were demonstrated, indicating a priming role of HA-specific T-cells for humoral immune responses. In conclusion, our study indicates that HA-specific CD4+ T-cell responses can be primed by the inactivated 2009-pH1N1 vaccine, which may coordinate with the elicitation of antibody protection. These findings would benefit a better understanding of the immune protective mechanisms of the widely used inactivated 2009-pH1N1 vaccine.
Collapse
Affiliation(s)
- Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Shihong Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bin Wu
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing, China
| | - Yingze Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Min Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Wu
- School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuchang District, Wuhan, China
| | - Guoli Shi
- National Cancer Institute/HIV dynamics and replication program, Frederick, MD, USA
| | - Yingxia Liu
- Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hua Wang
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fengcai Zhu
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing, China.
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
| |
Collapse
|
27
|
Peng B, Peng N, Zhang Y, Zhang F, Li X, Chang H, Fang F, Wang F, Lu F, Chen Z. Comparison of the Protective Efficacy of Neutralizing Epitopes of 2009 Pandemic H1N1 Influenza Hemagglutinin. Front Immunol 2017; 8:1070. [PMID: 28912784 PMCID: PMC5583165 DOI: 10.3389/fimmu.2017.01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/16/2017] [Indexed: 12/03/2022] Open
Abstract
The 2009 H1N1 influenza (Pdm09) pandemic has been referred to as the first influenza pandemic of the twenty-first century. There is a marked difference in antigenicity between the pandemic H1N1 virus and past seasonal H1N1 viruses, which allowed the pandemic virus to spread rapidly in humans. Antibodies (Abs) against hemagglutinin (HA), especially neutralizing Abs against epitopes in the head of HA, play critical roles in defending the host against the virus. Some preexisting neutralizing Abs that recognize neutralizing epitopes of Pdm09 HA, thereby affording cross-protection, have been reported. To better understand the protective effects of epitopes in Pdm09 HA, we constructed a series of plasmid DNAs (DNA vaccines) by cloning various combinations of Pdm09 neutralizing epitopes into the HA backbone derived from A/PR/8/1934 (H1N1). We subsequently compared the protective immune responses induced by these various forms of HA in a mouse model. We found that the plasmid DNAs with epitope substitutions provided better protection against lethal virus challenge and induced higher strain-specific antibody titers, with epitope Sa being the most effective. Moreover, the combination of epitopes Sa and Sb provided almost complete protection in mice. These findings provide new insights into the protective efficacy of neutralizing epitopes of influenza HA.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Science, Hunan Normal University, Changsha, China
| | - Na Peng
- College of Life Science, Hunan Normal University, Changsha, China
| | - Yanan Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fenghua Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Haiyan Chang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fang Fang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fuyan Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fangguo Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ze Chen
- College of Life Science, Hunan Normal University, Changsha, China.,Shanghai Institute of Biological Products, Shanghai, China
| |
Collapse
|
28
|
Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci U S A 2017; 114:E7564-E7573. [PMID: 28827346 DOI: 10.1073/pnas.1705176114] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.
Collapse
|
29
|
Seok JH, Kim J, Lee DB, Cho KJ, Lee JH, Bae G, Chung MS, Kim KH. Conformational modulation of influenza virus hemagglutinin: characterization and in vivo efficacy of monomeric form. Sci Rep 2017; 7:7540. [PMID: 28790432 PMCID: PMC5548806 DOI: 10.1038/s41598-017-08021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Mutational changes that mostly occur at the head region of hemagglutinin (HA) lead to the emergence of new epidemic influenza viruses, whereas HA antigens have been modified to generate broadly neutralizing antibodies toward highly conserved epitopes in the HA stem. Interestingly, a recent analysis of serum antibody repertoires showed that broadly neutralizing antibodies bind to HA monomer at a conserved region occluded at the intermonomer interface of HA trimer and confer protection in animal models. We showed previously that the recombinant HA ectodomain from a pandemic strain A/Korea/01/2009 was monomeric in solution and crystal structure. In order to examine the potential antigenicity of a monomeric form, we designed HA monomer that incorporates mutations to destabilize trimer conformations. Starting with the HA trimer from a seasonal strain A/Thailand/CU44/2006, mutations were introduced at the intermonomer interface, Ser199 of HA1 and Gly47, Arg75, Phe88, Val91, and Arg106 of HA2. Two mutants, F88E and V91W, were characterized to form a monomer and their double mutant F88E/V91W monomer was selected as an antigen. Animal studies showed that the HA monomer induced protective immunity in vivo, comparable to the trimer, albeit low antibody titers in sera.
Collapse
Affiliation(s)
- Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Jeongwon Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Dan Bi Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Ki Joon Cho
- Antibody Engineering Team, Mogam Institute, Yongin Kyunggi, 16924, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea
| | - Garam Bae
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, 30019, Korea.
| |
Collapse
|
30
|
Ge Y, Yao QC, Wang XF, Fan ZQ, Deng GH, Chai HL, Chen HL, Hua YP. Epidemic of wild-origin H1NX avian influenza viruses in Anhui, China. Infect Dis Poverty 2017; 6:98. [PMID: 28669354 PMCID: PMC5494855 DOI: 10.1186/s40249-017-0304-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/13/2017] [Indexed: 01/21/2023] Open
Abstract
Background As the natural hosts of avian influenza viruses (AIVs), aquatic and migratory birds provide a gene pool for genetic transfer among species and across species, forming transient “genome constellations.” This work describes the phylogenetic dynamics of H1NX based on the complete molecular characterization of eight genes of viruses that were collected from 2014 to 2015 in Anhui Province, China. Methods Hemagglutination and hemagglutination inhibition tests were used to determine the hemagglutination (HA) activity of the HA subtypes. The entire genomes of the viruses were sequenced on an ABI PRISM 3500xl DNA Analyzer. The sequences were genetically analysed to study their genetic evolution using DNASTAR and MEGA 6. The pathogenic effects of the viruses were evaluated using mouse infection models. Results Seven strains of the H1 subtype avian influenza virus were isolated. Phylogenetic analysis indicated natural recombination of the H1 influenza viruses between the Eurasian lineage and the North American lineage. Some genes had high sequence identity with A/bean goose/Korea/220/2011(H9N2), which is a typical case involving viral reassortment between the Eurasian lineage and the North American lineage. The results of infection experiments in mice showed that the viruses could acquire the ability to multiply in mouse respiratory organs without adaptation. Conclusions These findings suggest that continued surveillance of wild birds, particularly migratory birds, is important to provide early warning of possible H1 influenza epidemics and to understand the ecology of the virus. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0304-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Ge
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiu-Cheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xian-Fu Wang
- Natural Protection & Management Station of Forestry Department Centre of Anhui Province, Hefei, Anhui Province, China
| | - Zhi-Qiang Fan
- School of Life Sciences, Anqing Normal University, Anqing, Anhui Province, China
| | - Guo-Hua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hong-Liang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Hua-Lan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu-Ping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
31
|
Li A, Lu G, Qi J, Wu L, Tian K, Luo T, Shi Y, Yan J, Gao GF. Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D. PLoS Pathog 2017; 13:e1006314. [PMID: 28542478 PMCID: PMC5453625 DOI: 10.1371/journal.ppat.1006314] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/01/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
An early and yet indispensable step in the alphaherpesvirus infection is the engagement of host receptors by the viral envelope glycoprotein D (gD). Of the thus-far identified gD receptors, nectin-1 is likely the most effective in terms of its wide usage by multiple alphaherpesviruses for cell entry. The molecular basis of nectin-1 recognition by the gD protein is therefore an interesting scientific question in the alphaherpesvirus field. Previous studies focused on the herpes simplex virus (HSV) of the Simplexvirus genus, for which both the free gD structure and the gD/nectin-1 complex structure were reported at high resolutions. The structural and functional features of other alphaherpesviral gDs, however, remain poorly characterized. In the current study, we systematically studied the characteristics of nectin-1 binding by the gD of a Varicellovirus genus member, the pseudorabies virus (PRV). We first showed that PRV infects host cells via both human and swine nectin-1, and that its gD exhibits similar binding affinities for nectin-1 of the two species. Furthermore, we demonstrated that removal of the PRV gD membrane-proximal residues could significantly increase its affinity for the receptor binding. The structures of PRV gD in the free and the nectin-1-bound states were then solved, revealing a similar overall 3D fold as well as a homologous nectin-1 binding mode to its HSV counterpart. However, several unique features were observed at the binding interface of PRV gD, enabling the viral ligand to utilize different gD residues (from those of HSV) for nectin-1 engagement. These observed binding characteristics were further verified by the mutagenesis study using the key-residue mutants of nectin-1. The structural and functional data obtained in this study, therefore, provide the basis of receptor recognition by PRV gD.
Collapse
Affiliation(s)
- An Li
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lili Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- National Research Center for veterinary Medicine, High-Tech District, Luoyang, Henan, China
| | - Tingrong Luo
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- * E-mail: (GFG); (JY); (TL)
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (JY); (TL)
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (JY); (TL)
| |
Collapse
|
32
|
An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun 2017; 8:14369. [PMID: 28165004 PMCID: PMC5303876 DOI: 10.1038/ncomms14369] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/21/2016] [Indexed: 12/23/2022] Open
Abstract
Cancer immunotherapy by targeting of immune checkpoint molecules has been a research ‘hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1. Programmed cell death 1 (PD-1) is a key target for cancer immunotherapy. Here the authors present the crystal structure of the extracellular PD-1 domain with the clinically approved monoclonal antibody nivolumab, which shows that the N-terminal PD-1 loop is crucial for antibody binding.
Collapse
|
33
|
Huang C, Qi J, Lu G, Wang Q, Yuan Y, Wu Y, Zhang Y, Yan J, Gao GF. Putative Receptor Binding Domain of Bat-Derived Coronavirus HKU9 Spike Protein: Evolution of Betacoronavirus Receptor Binding Motifs. Biochemistry 2016; 55:5977-5988. [PMID: 27696819 PMCID: PMC7075523 DOI: 10.1021/acs.biochem.6b00790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The suggested bat origin for Middle East respiratory syndrome coronavirus (MERS-CoV) has revitalized the studies of other bat-derived coronaviruses with respect to interspecies transmission potential. Bat coronavirus (BatCoV) HKU9 is an important betacoronavirus (betaCoV) that is phylogenetically affiliated with the same genus as MERS-CoV. The bat surveillance data indicated that BatCoV HKU9 has been widely spreading and circulating in bats. This highlights the necessity of characterizing the virus for its potential to cross species barriers. The receptor binding domain (RBD) of the coronavirus spike (S) protein recognizes host receptors to mediate virus entry and is therefore a key factor determining the viral tropism and transmission capacity. In this study, the putative S RBD of BatCoV HKU9 (HKU9-RBD), which is homologous to other betaCoV RBDs that have been structurally and functionally defined, was characterized via a series of biophysical and crystallographic methods. By using surface plasmon resonance, we demonstrated that HKU9-RBD binds to neither SARS-CoV receptor ACE2 nor MERS-CoV receptor CD26. We further determined the atomic structure of HKU9-RBD, which as expected is composed of a core and an external subdomain. The core subdomain fold resembles those of other betaCoV RBDs, whereas the external subdomain is structurally unique with a single helix, explaining the inability of HKU9-RBD to react with either ACE2 or CD26. Via comparison of the available RBD structures, we further proposed a homologous intersubdomain binding mode in betaCoV RBDs that anchors the external subdomain to the core subdomain. The revealed RBD features would shed light on the evolution route of betaCoV.
Collapse
Affiliation(s)
- Canping Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC) , Beijing 102206, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yuan Yuan
- School of Life Sciences, University of Science and Technology of China , Hefei, Anhui Province 230026, China
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC) , Beijing 102206, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China , Hefei, Anhui Province 230026, China.,Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
34
|
Liu WJ, Tan S, Zhao M, Quan C, Bi Y, Wu Y, Zhang S, Zhang H, Xiao H, Qi J, Yan J, Liu W, Yu H, Shu Y, Wu G, Gao GF. Cross-immunity Against Avian Influenza A(H7N9) Virus in the Healthy Population Is Affected by Antigenicity-Dependent Substitutions. J Infect Dis 2016; 214:1937-1946. [PMID: 27738054 DOI: 10.1093/infdis/jiw471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The emergence of infections by the novel avian influenza A(H7N9) virus has posed a threat to human health. Cross-immunity between A(H7N9) and other heterosubtypic influenza viruses affected by antigenicity-dependent substitutions needs to be investigated. METHODS We investigated the cellular and humoral immune responses against A(H7N9) and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09), by serological and T-cell-specific assays, in a healthy population. The molecular bases of the cellular and humoral antigenic variability of A(H7N9) were illuminated by structural determination. RESULTS We not only found that antibodies against A(H7N9) were lacking in the studied population, but also revealed that both CD4+ and CD8+ T cells that cross-reacted with A(H7N9) were at significantly lower levels than those against the A(H1N1)pdm09 peptides with substitutions. Moreover, individual peptides for A(H7N9) with low cross-reactivity were identified. Structural determination indicated that substitutions within these peptides influence the antigenic variability of A(H7N9) through both major histocompatibility complex (MHC) binding and T-cell receptor docking. CONCLUSIONS The impact of antigenicity-dependent substitutions on cross-reactivity of T-cell immunity against the novel influenza virus A(H7N9) in the healthy population benefits the understanding of immune evasion of influenza viruses and provides a useful reference for universal vaccine development.
Collapse
Affiliation(s)
- William J Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,University of Chinese Academy of Sciences, Beijing
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,University of Chinese Academy of Sciences, Beijing
| | - Chuansong Quan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Shuijun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Haifeng Zhang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention
| | - Yuelong Shu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - Guizhen Wu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention
| | - George F Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences.,University of Chinese Academy of Sciences, Beijing.,College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou
| |
Collapse
|
35
|
Wang H, Shi Y, Song J, Qi J, Lu G, Yan J, Gao GF. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 2016; 164:258-268. [PMID: 26771495 PMCID: PMC7111281 DOI: 10.1016/j.cell.2015.12.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/30/2015] [Accepted: 12/23/2015] [Indexed: 02/05/2023]
Abstract
Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Structural basis of Ebola virus endosomal-receptor binding NPC1 domain C (NPC1-C) displays a helical core structure with two protruding loops NPC1-C binds to the primed Ebola virus GP (GPcl) protein with a low affinity NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl
Collapse
Affiliation(s)
- Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; CAS Key Laboratory of Microbial Physiology and Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
36
|
Dai L, Song J, Lu X, Deng YQ, Musyoki AM, Cheng H, Zhang Y, Yuan Y, Song H, Haywood J, Xiao H, Yan J, Shi Y, Qin CF, Qi J, Gao GF. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host Microbe 2016; 19:696-704. [PMID: 27158114 DOI: 10.1016/j.chom.2016.04.013] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a current global public health concern. The flavivirus envelope (E) glycoprotein is responsible for virus entry and represents a major target of neutralizing antibodies for other flaviviruses. Here, we report the structures of ZIKV E protein at 2.0 Å and in complex with a flavivirus broadly neutralizing murine antibody 2A10G6 at 3.0 Å. ZIKV-E resembles all the known flavivirus E structures but contains a unique, positively charged patch adjacent to the fusion loop region of the juxtaposed monomer, which may influence host attachment. The ZIKV-E-2A10G6 complex structure reveals antibody recognition of a highly conserved fusion loop. 2A10G6 binds to ZIKV-E with high affinity in vitro and neutralizes currently circulating ZIKV strains in vitro and in mice. The E protein fusion loop epitope represents a potential candidate for therapeutic antibodies against ZIKV.
Collapse
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xishan Lu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Abednego Moki Musyoki
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijun Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuan Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joel Haywood
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Microbial Physiology and Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
37
|
Wu ZL, Zhou H, Ethen CM, N Reinhold V. Core-6 fucose and the oligomerization of the 1918 pandemic influenza viral neuraminidase. Biochem Biophys Res Commun 2016; 473:524-9. [PMID: 27012207 DOI: 10.1016/j.bbrc.2016.03.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/19/2016] [Indexed: 12/09/2022]
Abstract
The 1918 H1N1 influenza virus was responsible for one of the most deadly pandemics in human history. Yet to date, the structure component responsible for its virulence is still a mystery. In order to search for such a component, the neuraminidase (NA) antigen of the virus was expressed, which led to the discovery of an active form (tetramer) and an inactive form (dimer and monomer) of the protein due to different glycosylation. In this report, the N-glycans from both forms were released and characterized by mass spectrometry. It was found that the glycans from the active form had 26% core-6 fucosylated, while the glycans from the inactive form had 82% core-6 fucosylated. Even more surprisingly, the stalk region of the active form was almost completely devoid of core-6-linked fucose. These findings were further supported by the results obtained from in vitro incorporation of azido fucose and (3)H-labeled fucose using core-6 fucosyltransferase, FUT8. In addition, the incorporation of fucose did not change the enzymatic activity of the active form, implying that core-6 fucose is not directly involved in the enzymatic activity. It is postulated that core-6 fucose prohibits the oligomerization and subsequent activation of the enzyme.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-Techne Inc., 614 McKinley Place NE, Minneapolis, MN 55413, USA.
| | - Hui Zhou
- Gregg Hall, UNH Glycomics Center, University of New Hampshire, USA
| | - Cheryl M Ethen
- Bio-Techne Inc., 614 McKinley Place NE, Minneapolis, MN 55413, USA
| | | |
Collapse
|
38
|
Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Fu Gao G, Yan X. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 2015; 74:134-41. [DOI: 10.1016/j.bios.2015.05.025] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 01/08/2023]
|
39
|
Wang F, Qi J, Bi Y, Zhang W, Wang M, Zhang B, Wang M, Liu J, Yan J, Shi Y, Gao GF. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference. EMBO J 2015; 34:1661-73. [PMID: 25940072 DOI: 10.15252/embj.201590960] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/16/2015] [Indexed: 12/27/2022] Open
Abstract
The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference.
Collapse
Affiliation(s)
- Fei Wang
- College of Veterinary Medicine China Agricultural University, Beijing, China CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- College of Veterinary Medicine China Agricultural University, Beijing, China CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Baorong Zhang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing, China Aviation General Hospital, Beijing, China
| | - Ming Wang
- College of Veterinary Medicine China Agricultural University, Beijing, China
| | - Jinhua Liu
- College of Veterinary Medicine China Agricultural University, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- College of Veterinary Medicine China Agricultural University, Beijing, China CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences, Beijing, China Center of Influenza Research and Early-Warning Chinese Academy of Sciences, Beijing, China Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing, China National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention (China CDC), Beijing, China Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
40
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
41
|
Design and Structure of an Engineered Disulfide-Stabilized Influenza Virus Hemagglutinin Trimer. J Virol 2015; 89:7417-20. [PMID: 25926650 DOI: 10.1128/jvi.00808-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022] Open
Abstract
We engineered a disulfide-stabilized influenza virus hemagglutinin (HA) trimer, termed HA3-SS, by introducing cysteine residues into the HA stem to covalently bridge the three protomers. HA3-SS has increased thermostability compared to wild-type HA, and binding of head- and stem-targeted antibodies (Abs) is preserved; only minor structural changes are found in the vicinity of the additional disulfide. This platform has been applied to H1 and H3 HAs and provides prospects for design of intact, stabilized influenza virus HA immunogens.
Collapse
|
42
|
Wang M, Zhang W, Qi J, Wang F, Zhou J, Bi Y, Wu Y, Sun H, Liu J, Huang C, Li X, Yan J, Shu Y, Shi Y, Gao GF. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Nat Commun 2015; 6:5600. [DOI: 10.1038/ncomms6600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 01/26/2023] Open
|
43
|
Dormitzer P, Tsai T, Del Giudice G. New technologies for influenza vaccines. Hum Vaccin Immunother 2014; 8:45-58. [DOI: 10.4161/hv.8.1.18859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
44
|
García-Barreno B, Delgado T, Benito S, Casas I, Pozo F, Melero JA. Exploring the antigenic relatedness of influenza virus haemagglutinins with strain-specific polyclonal antibodies. J Gen Virol 2014; 95:2140-2145. [PMID: 25000959 DOI: 10.1099/vir.0.067413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Alternative methods to the standard haemagglutination inhibition (HI) and neutralization tests to probe the antigenic properties of the influenza virus haemagglutinin (HA) were developed in this study. Vaccinia virus recombinants expressing reference HAs were used to immunize rabbits from which polyclonal antibodies were obtained. These antibodies were subtype specific but showed limited intra-subtype strain specificity in ELISA. The discriminatory capacity of these antibodies was, however, markedly increased after adsorption to cells infected with heterologous influenza viruses, revealing antigenic differences that were otherwise undistinguishable by standard HI and neutralization tests. Furthermore, the unadsorbed antibodies could be used to select escape mutants of the reference strain, which after sequencing unveiled amino acid changes responsible of the noted antigenic differences. These procedures therefore provide alternative methods for the antigenic characterization of influenza HA and might be useful in studies of HA antigenic evolution.
Collapse
Affiliation(s)
- Blanca García-Barreno
- CIBER de Enfermedades Respiratorias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Teresa Delgado
- CIBER de Enfermedades Respiratorias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Sonia Benito
- CIBER de Enfermedades Respiratorias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Inmaculada Casas
- Virus Respiratorios & Gripe, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Francisco Pozo
- Virus Respiratorios & Gripe, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - José A Melero
- CIBER de Enfermedades Respiratorias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
45
|
Koyama Y, Ueno-Noto K, Takano K. Affinity of HIV-1 antibody 2G12 with monosaccharides: A theoretical study based on explicit and implicit water models. Comput Biol Chem 2014; 49:36-44. [DOI: 10.1016/j.compbiolchem.2014.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 11/25/2022]
|
46
|
El Zowalaty ME, Bustin SA, Husseiny MI, Ashour HM. Avian influenza: virology, diagnosis and surveillance. Future Microbiol 2014; 8:1209-27. [PMID: 24020746 DOI: 10.2217/fmb.13.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avian influenza virus (AIV) is the causative agent of a zoonotic disease that affects populations worldwide with often devastating economic and health consequences. Most AIV subtypes cause little or no disease in waterfowl, but outbreaks in poultry can be associated with high mortality. Although transmission of AIV to humans occurs rarely and is strain dependent, the virus has the ability to mutate or reassort into a form that triggers a life-threatening infection. The constant emergence of new influenza strains makes it particularly challenging to predict the behavior, spread, virulence or potential for human-to-human transmission. Because it is difficult to anticipate which viral strain or what location will initiate the next pandemic, it is difficult to prepare for that event. However, rigorous implementation of biosecurity, vaccination and education programs can minimize the threat of AIV. Global surveillance programs help record and identify newly evolving and potentially pandemic strains harbored by the reservoir host.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Postgraduate Medical Institute, Faculty of Health, Social Care & Education, Anglia Ruskin University, Chelmsford, Essex, UK
| | | | | | | |
Collapse
|
47
|
García-Barreno B, Delgado T, Benito S, Casas I, Pozo F, Cuevas MT, Mas V, Trento A, Rodriguez-Frandsen A, Falcón A, Ortín J, Nieto A, Melero JA. Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin. J Gen Virol 2014; 95:1033-1042. [PMID: 24531414 DOI: 10.1099/vir.0.061598-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283-6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.
Collapse
Affiliation(s)
- Blanca García-Barreno
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Teresa Delgado
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sonia Benito
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Inmaculada Casas
- National Influenza Centre at Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Virus Respiratorios & Gripe, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Francisco Pozo
- National Influenza Centre at Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Virus Respiratorios & Gripe, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Teresa Cuevas
- National Influenza Centre at Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Virus Respiratorios & Gripe, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Vicente Mas
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alfonsina Trento
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ariel Rodriguez-Frandsen
- Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain
| | - Ana Falcón
- Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain
| | - Juan Ortín
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain
| | - José A Melero
- CIBER de Enfermedades Respiratorias, Mallorca, Illes Baleares, Spain.,Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
48
|
Almansa R, Bermejo-Martín JF, de Lejarazu Leonardo RO. Immunopathogenesis of 2009 pandemic influenza. Enferm Infecc Microbiol Clin 2013; 30 Suppl 4:18-24. [PMID: 23116788 PMCID: PMC7130369 DOI: 10.1016/s0213-005x(12)70100-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three years after the pandemic, major advances have been made in our understanding of the innate and adaptive immune responses to the influenza A(H1N1)pdm09 virus and those responses' contribution to the immunopathology associated with this infection. Severe disease is characterized by early secretion of proinflammatory and immunomodulatory cytokines. This cytokine secretion persisted in patients with severe viral pneumonia and was directly associated with the degree of viral replication in the respiratory tract. Cytokines play important roles in the antiviral defense, but persistent hypercytokinemia may cause inflammatory tissue damage and participate in the genesis of the respiratory failure observed in these patients. An absence of pre-existing protective antibodies was the rule for both mild and severe cases. A role for pathogenic immunocomplexes has been proposed for this disease. Defective T cell responses characterize severe cases of infection caused by the influenza A(H1N1)pdm09 virus. Immune alterations associated with accompanying conditions such as obesity, pregnancy or chronic obstructive pulmonary disease may interfere with the normal development of the specific response to the virus. The role of host immunogenetic factors associated with disease severity is also discussed in this review. In conclusion, currently available information suggests a complex immunological dysfunction/alteration that characterizes the severe cases of 2009 pandemic influenza. The potential benefits of prophylactic/therapeutic interventions aimed at preventing/correcting such dysfunction warrant investigation.
Collapse
Affiliation(s)
- Raquel Almansa
- Unidad de Investigación Médica en Infección e Inmunidad (IMI), Investigación Biomédica del Clínico (ibC), Hospital Clínico Universitario, Valladolid, Spain
| | | | | |
Collapse
|
49
|
Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, Wahab HA. Structurally conserved binding sites of hemagglutinin as targets for influenza drug and vaccine development. J Chem Inf Model 2013; 53:2423-36. [PMID: 23980878 DOI: 10.1021/ci400421e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
Collapse
Affiliation(s)
- Muhammad Yusuf
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Pulau Pinang, Malaysia
| | | | | | | | | | | | | |
Collapse
|
50
|
Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol 2013; 87:12471-80. [PMID: 24027321 DOI: 10.1128/jvi.01388-13] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Influenza virus is a global health concern due to its unpredictable pandemic potential. This potential threat was realized in 2009 when an H1N1 virus emerged that resembled the 1918 virus in antigenicity but fortunately was not nearly as deadly. 5J8 is a human antibody that potently neutralizes a broad spectrum of H1N1 viruses, including the 1918 and 2009 pandemic viruses. Here, we present the crystal structure of 5J8 Fab in complex with a bacterially expressed and refolded globular head domain from the hemagglutinin (HA) of the A/California/07/2009 (H1N1) pandemic virus. 5J8 recognizes a conserved epitope in and around the receptor binding site (RBS), and its HCDR3 closely mimics interactions of the sialic acid receptor. Electron microscopy (EM) reconstructions of 5J8 Fab in complex with an HA trimer from a 1986 H1 strain and with an engineered stabilized HA trimer from the 2009 H1 pandemic virus showed a similar mode of binding. As for other characterized RBS-targeted antibodies, 5J8 uses avidity to extend its breadth and affinity against divergent H1 strains. 5J8 selectively interacts with HA insertion residue 133a, which is conserved in pandemic H1 strains and has precluded binding of other RBS-targeted antibodies. Thus, the RBS of divergent HAs is targeted by 5J8 and adds to the growing arsenal of common recognition motifs for design of therapeutics and vaccines. Moreover, consistent with previous studies, the bacterially expressed H1 HA properly refolds, retaining its antigenic structure, and presents a low-cost and rapid alternative for engineering and manufacturing candidate flu vaccines.
Collapse
|